// // Copyright (C) 2023-2025 The llama.cpp authors // Copyright (C) 2024-2025 Iwan Kawrakow // MIT license // SPDX-License-Identifier: MIT // #define LLAMA_API_INTERNAL #include "common.h" #include "ggml.h" #include "llama.h" #define GGML_COMMON_DECL_C #define GGML_COMMON_IMPL_C #include "../ggml/src/ggml-common.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #include #include #include #include #include inline int popcount(uint8_t x) { return __popcnt(x); } inline int popcount(uint16_t x) { return __popcnt(x); } inline int popcount(uint32_t x) { return __popcnt(x); } inline int popcount(uint64_t x) { return _mm_popcnt_u64(x); } #else constexpr int popcount(uint8_t x) { return __builtin_popcount(x); } constexpr int popcount(uint16_t x) { return __builtin_popcount(x); } constexpr int popcount(uint32_t x) { return __builtin_popcount(x); } constexpr int popcount(uint64_t x) { return __builtin_popcountll(x); } #endif #ifdef __AVX2__ #include #endif struct quantize_stats_params { std::string model = DEFAULT_MODEL_PATH; bool verbose = false; bool per_layer_stats = false; bool print_histogram = false; bool reference = false; std::vector include_layers; std::vector exclude_layers; std::vector include_types; }; constexpr size_t HISTOGRAM_BUCKETS = 150; constexpr double HISTOGRAM_RANGE = 0.03; struct error_stats { size_t num_samples; double total_error; double max_error; double sum_x2; uint64_t error_histogram[HISTOGRAM_BUCKETS]; }; static void quantize_stats_print_usage(int /*argc*/, char ** argv) { quantize_stats_params params; fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -r, --reference\n"); fprintf(stderr, " use reference implementation (default: false)\n"); fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " verbose output (default: false)\n"); fprintf(stderr, " -p, --per-layer-stats\n"); fprintf(stderr, " print stats per layer (default: false)\n"); fprintf(stderr, " --histogram\n"); fprintf(stderr, " print error histogram (default: false)\n"); fprintf(stderr, " -l LAYER, --include-layer LAYER\n"); fprintf(stderr, " only test layers matching pattern\n"); fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n"); fprintf(stderr, " exclude layers matching pattern\n"); fprintf(stderr, " -t TYPE, --type TYPE\n"); fprintf(stderr, " only test given type (q4_0, q4_1)\n"); fprintf(stderr, "\n"); } // Check if a layer is included/excluded by command line static bool layer_included(const quantize_stats_params & params, const std::string & layer) { for (const auto& excluded : params.exclude_layers) { if (std::regex_search(layer, std::regex(excluded))) { return false; } } for (const auto& included : params.include_layers) { if (std::regex_search(layer, std::regex(included))) { return true; } } return params.include_layers.empty(); } // Update error statistics given vectors with the before/after result of quantization static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) { for (int64_t i = 0; i < nelements; i++) { double diff = input[i] - output[i]; stats.total_error += diff * diff; stats.max_error = fmax(fabs(diff), stats.max_error); stats.sum_x2 += input[i]*input[i]; stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++; } stats.num_samples += nelements; } static void combine_error_stats(error_stats & into, const error_stats & from) { into.num_samples += from.num_samples; into.total_error += from.total_error; into.sum_x2 += from.sum_x2; if (from.max_error > into.max_error) into.max_error = from.max_error; for (size_t i=0; i= sum*quantile) { return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; } } return INFINITY; } static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) { double rmse = sqrt(stats.total_error / (double) stats.num_samples); double av_x = sqrt(stats.sum_x2 / (double) stats.num_samples); double median = find_quantile(stats, .5); double pct95 = find_quantile(stats, .95); printf("%-40s: rmse %.8f, %.6f maxerr %.8f, %.6f 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, rmse/av_x, stats.max_error, stats.max_error/av_x, pct95, median); if (print_histogram) { printf("Error distribution:\n"); for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) { double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY; printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]); } } } // copied from ggml.h - verify that we can access this as a flat array static bool tensor_is_contiguous(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->nb[0] == ggml_type_size(tensor->type) && tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } static void test_roundtrip_on_chunk( const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference, float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats ) { if (layer->type == GGML_TYPE_F16) { for (int i = 0; i < chunk_size; i++) { input_scratch[i] = ggml_get_f32_1d(layer, i + offset); } } else { input_scratch = ggml_get_data_f32(layer) + offset; } if (use_reference) { qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size); } else { qfns.from_float(input_scratch, quantized_scratch, chunk_size); } qfns.to_float(quantized_scratch, output_scratch, chunk_size); update_error_stats(chunk_size, input_scratch, output_scratch, stats); } // Run quantization function for a single layer and update error stats static void test_roundtrip_on_layer( std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference, const ggml_tensor * layer, std::vector & input_scratch, std::vector & quantized_scratch, std::vector & output_scratch, error_stats & total_error, int max_thread = 0 ) { assert(tensor_is_contiguous(layer)); error_stats layer_error {}; uint64_t nelements = ggml_nelements(layer); float* input_scratch_ptr = nullptr; if (layer->type == GGML_TYPE_F16) { if (input_scratch.size() < nelements) input_scratch.resize(nelements); input_scratch_ptr = input_scratch.data(); } if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements); if (output_scratch.size() < nelements) output_scratch.resize(nelements); if (max_thread < 1) max_thread = std::thread::hardware_concurrency(); int chunk_size = 32*512; int num_chunks = (nelements + chunk_size - 1)/chunk_size; if (num_chunks < 2 || max_thread < 2) { test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(), output_scratch.data(), print_layer_stats ? layer_error : total_error); } else { auto & stats = print_layer_stats ? layer_error : total_error; std::mutex mutex; uint64_t counter = 0; auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr, &quantized_scratch, &output_scratch, chunk_size] () { error_stats local_stats {}; while (true) { std::unique_lock lock(mutex); uint64_t offset = counter; counter += chunk_size; if (offset >= nelements) { combine_error_stats(stats, local_stats); break; } lock.unlock(); uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset; test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset, quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats); } }; int nthread = std::min(num_chunks, max_thread); std::vector workers(nthread-1); for (auto& w : workers) w = std::thread(compute); compute(); for (auto& w : workers) w.join(); } if (print_layer_stats) { print_error_stats(name, layer_error, false); combine_error_stats(total_error, layer_error); } } static inline int nearest_int(float fval) { assert(fval <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } static const int8_t scale_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; static std::vector make_values(int nval, int n_per_val, float scale = 16.f) { std::vector result(nval*n_per_val); uint16_t m16 = ggml_fp32_to_fp16(0.922f); uint32_t m32 = (uint32_t(m16) << 16) | m16; const uint32_t a = 89226354, b = 64248484; float * data = result.data(); for (int i = 0; i < nval; ++i) { uint32_t x = i + 4096; for (int k = 0; k < n_per_val; ++k) { x = a*x + b; uint32_t s = (x & 0b10001111111111111000111111111111) ^ m32; float val = ggml_fp16_to_fp32(s & 65535) + ggml_fp16_to_fp32(s >> 16); int ival = nearest_int(scale*val); data[k] = ival; } data += n_per_val; } return result; } #ifdef __AVX2__ static inline float hsum_float_4(__m128 x) { x = _mm_add_ps(x, _mm_movehl_ps(x, x)); x = _mm_add_ss(x, _mm_movehdup_ps(x)); return _mm_cvtss_f32(x); } static inline float hsum_float_8(__m256 x) { return hsum_float_4(_mm_add_ps(_mm256_castps256_ps128(x), _mm256_extractf128_ps(x, 1))); } static __m256 hsum_float_8x8(__m256 * accm) { for (int i = 0; i < 4; ++i) { accm[i] = _mm256_set_m128(_mm_add_ps(_mm256_castps256_ps128(accm[i+4]), _mm256_extractf128_ps(accm[i+4], 1)), _mm_add_ps(_mm256_castps256_ps128(accm[i+0]), _mm256_extractf128_ps(accm[i+0], 1))); } for (int i = 0; i < 2; ++i) accm[i] = _mm256_add_ps(_mm256_unpacklo_ps(accm[i], accm[i+2]), _mm256_unpackhi_ps(accm[i], accm[i+2])); return _mm256_add_ps(_mm256_unpacklo_ps(accm[0], accm[1]), _mm256_unpackhi_ps(accm[0], accm[1])); } #endif const int8_t scale_index[241] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 18, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 20, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 21, 21, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 22, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 23, 23, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 24, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 25, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 26, 26, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 27, 27, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 28, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 29, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 30, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 }; inline int best_index_scale(const int8_t * values, float x) { int ix = (int)x - values[0]; if (ix < 0 || ix >= 241) return ix < 0 ? 0 : 15; ix = scale_index[ix]; return ix < 16 ? ix : x - values[ix-16] < values[ix-15] - x ? ix-16 : ix-15; } inline int best_index_iq4nl(const int8_t * values, float x) { return best_index_scale(values, x); } static float find_best_scale(int block_size, const float * xb, const float * weight, const int8_t * values, int ntry) { float amax = 0, max = 0; for (int j = 0; j < block_size; ++j) { float ax = fabsf(xb[j]); if (ax > amax) { amax = ax; max = xb[j]; } } return amax/96.f; //120.f; //127.f; if (!amax) return 0.f; float d = ntry > 0 ? -max/values[0] : max/values[0]; float id = 1/d; float sumqx_p = 0, sumq2_p = 0; float sumqx_m = 0, sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } d = sumqx_p/sumq2_p; float best = d*sumqx_p; if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d*sumqx_m; } for (int itry = -ntry; itry <= ntry; ++itry) { id = (itry + values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; } } return d; } static std::vector cluster_points(const std::vector& points, int ndim, int ncluster, int niter) { if (points.size() % ndim != 0) { printf("%s: bad input\n", __func__); return {}; } int npoint = points.size() / ndim; if (npoint < 2*ncluster) { printf("%s: bad input\n", __func__); return {}; } std::vector> range(ndim, std::make_pair(INFINITY, -INFINITY)); double Fo = 0; for (int i = 0; i < npoint; ++i) { auto v = points.data() + i*ndim; for (int k = 0; k < ndim; ++k) { Fo += v[k]*v[k]; range[k].first = std::min(range[k].first, v[k]); range[k].second = std::max(range[k].second, v[k]); } } printf("%s (ndim = %d, npoint = %d): Fo = %g\n", __func__, ndim, npoint, Fo/points.size()); std::mt19937 rndm(1234); float scale = 1.f/4294967296.f; std::vector result(ncluster*ndim); for (int i = 0; i < ncluster; ++i) { auto v = result.data() + i*ndim; for (int k = 0; k < ndim; ++k) v[k] = range[k].first + (range[k].second - range[k].first)*scale*rndm(); } std::vector sump(ncluster*ndim); std::vector counts(ncluster); std::vector which_cluster(npoint, -1); double Flast = Fo; for (int iter = 0; iter < niter; ++iter) { std::memset(sump.data(), 0, sump.size()*sizeof(float)); std::memset(counts.data(), 0, counts.size()*sizeof(int)); int nchanged = 0; double F = 0; for (int ip = 0; ip < npoint; ++ip) { auto vp = points.data() + ndim*ip; float best = INFINITY; int ibest = -1; for (int ic = 0; ic < ncluster; ++ic) { auto vc = result.data() + ndim*ic; float dist2 = 0; for (int k = 0; k < ndim; ++k) { float d = vp[k] - vc[k]; dist2 += d*d; } if (dist2 < best) { best = dist2; ibest = ic; } } if (ibest < 0) { printf("Oops.\n"); exit(1); } F += best; if (which_cluster[ip] != ibest) ++nchanged; which_cluster[ip] = ibest; ++counts[ibest]; auto vc = sump.data() + ndim*ibest; for (int k = 0; k < ndim; ++k) vc[k] += vp[k]; } if (nchanged == 0) break; for (int ic = 0; ic < ncluster; ++ic) { float norm = counts[ic] > 0 ? 1.f/counts[ic] : 0.f; auto vc = sump.data() + ndim*ic; auto r = result.data() + ndim*ic; for (int k = 0; k < ndim; ++k) r[k] = vc[k]*norm; } printf("%s(iteration %d): F = %g, nchanged = %d\n", __func__, iter+1, F/points.size(), nchanged); if (iter > 1 && Flast/F - 1 < 1e-6) break; Flast = F; } return result; } static void analyze_x_v2(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_mse_q, float& tot_elements) { constexpr int kNumVal = 1 << 15; constexpr int kBlockSize = 32; constexpr int kGroupSize = 8; constexpr int kNg = kBlockSize/kGroupSize; constexpr int kSuperBlockSize = 256; static_assert(kNumVal%8 == 0); static std::vector codes, clusters; static std::vector> p_in_cluster; if (codes.empty()) { codes = make_values(kNumVal, kGroupSize, 31.75f); clusters = cluster_points(codes, kGroupSize, kNumVal/512, 200); if (clusters.empty()) { printf("Oops\n"); exit(1); } int ncluster = clusters.size()/kGroupSize; p_in_cluster.resize(ncluster); std::vector which_cluster(4*kNumVal); GGML_ASSERT(ncluster%8 == 0); for (int ip = 0; ip < kNumVal; ++ip) { auto vp = codes.data() + ip*kGroupSize; float best[4] = {INFINITY, INFINITY, INFINITY, INFINITY}; int ibest[4] = {-1, -1, -1, -1}; for (int ic = 0; ic < ncluster; ++ic) { auto vc = clusters.data() + ic*kGroupSize; float dist2 = 0; for (int k = 0; k < kGroupSize; ++k) { float d = vp[k] - vc[k]; dist2 += d*d; } if (dist2 < best[0]) { best[3] = best[2]; ibest[3] = ibest[2]; best[2] = best[1]; ibest[2] = ibest[1]; best[1] = best[0]; ibest[1] = ibest[0]; best[0] = dist2; ibest[0] = ic; } else if (dist2 < best[1]) { best[3] = best[2]; ibest[3] = ibest[2]; best[2] = best[1]; ibest[2] = ibest[1]; best[1] = dist2; ibest[1] = ic; } else if (dist2 < best[2]) { best[3] = best[2]; ibest[3] = ibest[2]; best[2] = dist2; ibest[2] = ic; } else if (dist2 < best[3]) { best[3] = dist2; ibest[3] = ic; } } GGML_ASSERT(ibest[0] >= 0 && ibest[1] >= 0 && ibest[2] >= 0 && ibest[3] >= 0); p_in_cluster[ibest[0]].push_back(ip); p_in_cluster[ibest[1]].push_back(ip); p_in_cluster[ibest[2]].push_back(ip); p_in_cluster[ibest[3]].push_back(ip); std::memcpy(which_cluster.data() + 4*ip, ibest, 4*sizeof(int)); } std::vector> extra; extra.reserve(kNumVal); for (int ic = 0; ic < ncluster; ++ic) { auto& points = p_in_cluster[ic]; if (!points.empty() && points.size()%8 == 0) continue; extra.clear(); auto vc = clusters.data() + ic*kGroupSize; for (int ip = 0; ip < kNumVal; ++ip) { if (which_cluster[4*ip] == ic || which_cluster[4*ip+1] == ic || which_cluster[4*ip+2] == ic || which_cluster[4*ip+3] == ic) continue; auto vp = codes.data() + ip*kGroupSize; float dist2 = 0; for (int k = 0; k < kGroupSize; ++k) { float d = vp[k] - vc[k]; dist2 += d*d; } extra.push_back(std::make_pair(dist2, ip)); } std::sort(extra.begin(), extra.end()); int nadd = 8*((points.size()+7)/8) - points.size(); for (int i = 0; i < nadd; ++i) points.push_back(extra[i].second); GGML_ASSERT(points.size()%8 == 0); } auto min = p_in_cluster.front().size(), max = p_in_cluster.front().size(); int nzero = 0; for (auto& points : p_in_cluster) { min = std::min(min, points.size()); max = std::max(max, points.size()); if (points.empty()) ++nzero; } printf("%s: prepared %d clusters\n", __func__, ncluster); printf(" min number of points in a cluster: %d\n", int(min)); printf(" max number of points in a cluster: %d\n", int(max)); if (nzero > 0) { printf(" there are %d empty clusters\n", nzero); for (auto& points : p_in_cluster) { if (!points.empty()) continue; points.reserve(kNumVal); for (int j = 0; j < kNumVal; ++j) points.push_back(j); // i.e., if we end iup picking an empty cluster, we just check all points } } } int nthread = std::max(1, int(std::thread::hardware_concurrency()/2)); int chunk = (nrows + 8*nthread - 1)/(8*nthread); std::mutex mutex; int counter = 0; float mse = 0, mse_q = 0; auto compute = [&mutex, &counter, &mse, &mse_q, values, nrows, n_per_row, chunk] () { double lmse = 0, lmse_q = 0; std::vector scales(n_per_row/kBlockSize); std::vector best_idx(n_per_row/kGroupSize); std::vector weight(kBlockSize, 1.f); int ncluster = clusters.size() / kGroupSize; while (true) { std::unique_lock lock(mutex); int first = counter; counter += chunk; if (first >= nrows) { mse += lmse; mse_q += lmse_q; return; } lock.unlock(); int last = std::min(first + chunk, nrows); #ifdef __AVX2__ __m256 sqx[8]; __m256i add_idx = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); float sx[8]; int index[8]; #endif for (int row = first; row < last; ++row) { auto xr = values + row*n_per_row; float sigma2 = 0; for (int j = 0; j < n_per_row; ++j) sigma2 += xr[j]*xr[j]; sigma2 /= n_per_row; for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) { auto xb = xr + kBlockSize*ib; //for (int i = 0; i < kBlockSize; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i]; float d = find_best_scale(kBlockSize, xb, weight.data(), iq4k_values, 5); float id = d ? 1/d : 0.f; #ifdef __AVX2__ auto vid = _mm256_set1_ps(id); for (int l = 0; l < kNg; ++l) { auto xl = xb + 8*l; auto wl = weight.data() + 8*l; auto vx = _mm256_mul_ps(vid, _mm256_loadu_ps(xl)); auto vw = _mm256_loadu_ps(wl); auto vbest = _mm256_set1_ps(INFINITY); auto best_index = _mm256_set1_epi32(-1); float best = INFINITY; int jbest = -1; for (int j = 0; j < ncluster; j += 8) { auto idx = _mm256_add_epi32(_mm256_set1_epi32(j), add_idx); for (int i = 0; i < 8; ++i) { auto vq = _mm256_loadu_ps(clusters.data() + kGroupSize*(j+i)); auto vdiff = _mm256_sub_ps(vq, vx); sqx[i] = _mm256_mul_ps(vw, _mm256_mul_ps(vdiff, vdiff)); } auto score = hsum_float_8x8(sqx); auto mask = _mm256_cmp_ps(score, vbest, _CMP_LT_OQ); best_index = _mm256_or_si256(_mm256_and_si256(_mm256_castps_si256(mask), idx), _mm256_andnot_si256(_mm256_castps_si256(mask), best_index)); vbest = _mm256_min_ps(vbest, score); } _mm256_store_ps(sx, vbest); _mm256_store_si256((__m256i *)index, best_index); for (int i = 0; i < 8; ++i) { if (sx[i] < best) { best = sx[i]; jbest = index[i]; } } auto& points = p_in_cluster[jbest]; if (points.empty()) { printf("Oops: empty cluster %d\n", jbest); auto vc = clusters.data() + kGroupSize*jbest; printf("Cluster:\n"); for (int j = 0; j < kGroupSize; ++j) printf("%d %g %g\n", j, vc[j], xl[j]); GGML_ASSERT(false); } int jbest_cluster = jbest; vbest = _mm256_set1_ps(INFINITY); best_index = _mm256_set1_epi32(-1); best = INFINITY; jbest = -1; for (int j = 0; j < int(points.size()); j += 8) { auto idx = _mm256_loadu_si256((const __m256i*)(points.data() + j)); for (int i = 0; i < 8; ++i) { auto vq = _mm256_loadu_ps(codes.data() + kGroupSize*points[j+i]); auto vdiff = _mm256_sub_ps(vq, vx); sqx[i] = _mm256_mul_ps(vw, _mm256_mul_ps(vdiff, vdiff)); } auto score = hsum_float_8x8(sqx); auto mask = _mm256_cmp_ps(score, vbest, _CMP_LT_OQ); best_index = _mm256_or_si256(_mm256_and_si256(_mm256_castps_si256(mask), idx), _mm256_andnot_si256(_mm256_castps_si256(mask), best_index)); vbest = _mm256_min_ps(vbest, score); } _mm256_store_ps(sx, vbest); _mm256_store_si256((__m256i *)index, best_index); for (int i = 0; i < 8; ++i) { if (sx[i] < best) { best = sx[i]; jbest = index[i]; } } if (jbest < 0) { printf("Oops: jbest = %d for cluster %d with %d points\n", jbest, jbest_cluster, int(points.size())); GGML_ASSERT(false); } GGML_ASSERT(jbest >= 0); best_idx[ib*kNg + l] = jbest; } auto vqx = _mm256_setzero_ps(); auto vq2 = _mm256_setzero_ps(); for (int l = 0; l < kNg; ++l) { auto vx = _mm256_loadu_ps(xb+8*l); auto vw = _mm256_loadu_ps(weight.data() + 8*l); auto vq = _mm256_loadu_ps(codes.data() + kGroupSize*best_idx[ib*kNg + l]); auto vqw = _mm256_mul_ps(vq, vw); vqx = _mm256_fmadd_ps(vqw, vx, vqx); vq2 = _mm256_fmadd_ps(vqw, vq, vq2); } auto sumqx = hsum_float_8(vqx); auto sumq2 = hsum_float_8(vq2); scales[ib] = sumq2 > 0 ? sumqx/sumq2 : 0.f; #else #endif } float amax_scale = std::abs(scales[0]); float max_scale = scales[0]; for (int ib = 1; ib < n_per_row/kBlockSize; ++ib) { float ax = std::abs(scales[ib]); if (ax > amax_scale) { amax_scale = ax; max_scale = scales[ib]; } } float d = max_scale/scale_values[0]; float id = d ? 1/d : 0.f; for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) { int ls = best_index_scale(scale_values, id*scales[ib]); float dl = d * scale_values[ls]; auto xb = xr + kBlockSize*ib; for (int l = 0; l < kNg; ++l) { auto q = codes.data() + kGroupSize*best_idx[ib*kNg+l]; for (int k = 0; k < kGroupSize; ++k) { float diff1 = xb[kGroupSize*l + k] - scales[ib]*q[k]; float diff2 = xb[kGroupSize*l + k] - dl*q[k]; lmse += diff1*diff1; lmse_q += diff2*diff2; } } } } } }; std::vector workers(nthread-1); for (auto& w : workers) w = std::thread(compute); compute(); for (auto& w : workers) w.join(); tot_mse += mse; tot_mse_q += mse_q; tot_elements += n_per_row*nrows; printf("%s: %g %g %g %g\n", name, sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements), sqrt(mse_q/(n_per_row*nrows)), sqrt(tot_mse_q/tot_elements)); } static void analyze_x(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_mse_q, float& tot_elements) { constexpr int kNumVal = 1 << 12; constexpr int kBlockSize = 8; constexpr int kSuperBlockSize = 256; static_assert(kNumVal%8 == 0); auto codes = make_values(kNumVal, kBlockSize); std::vector sumq2i(kNumVal); for (int j = 0; j < kNumVal; ++j) { auto data = codes.data() + kBlockSize*j; float sum = 0; for (int k = 0; k < kBlockSize; ++k) sum += data[k]*data[k]; sumq2i[j] = sum > 0 ? 1/sum : 0.f;; } int nthread = std::max(1, int(std::thread::hardware_concurrency()/2)); int chunk = (nrows + 8*nthread - 1)/(8*nthread); std::mutex mutex; int counter = 0; float mse = 0, mse_q = 0; auto compute = [&mutex, &counter, &mse, &mse_q, &codes, &sumq2i, values, nrows, n_per_row, chunk] () { float lmse = 0, lmse_q = 0; std::vector scales(n_per_row/kBlockSize); std::vector best_idx(n_per_row/kBlockSize); while (true) { std::unique_lock lock(mutex); int first = counter; counter += chunk; if (first >= nrows) { mse += lmse; mse_q += lmse_q; return; } lock.unlock(); int last = std::min(first + chunk, nrows); #ifdef __AVX2__ __m256 vx[kBlockSize/8]; __m256 sqx[8]; __m256i add_idx = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); float sx[8]; int index[8]; #endif for (int row = first; row < last; ++row) { auto xr = values + row*n_per_row; for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) { float best = 0, d = 0; int jbest = -1; auto xb = xr + kBlockSize*ib; #ifdef __AVX2__ for (int l = 0; l < kBlockSize/8; ++l) { vx[l] = _mm256_loadu_ps(xb+8*l); } auto vbest = _mm256_set1_ps(0.f); auto best_index = _mm256_set1_epi32(-1); for (int j = 0; j < kNumVal; j += 8) { auto idx = _mm256_add_epi32(_mm256_set1_epi32(j), add_idx); for (int i = 0; i < 8; ++i) { sqx[i] = _mm256_setzero_ps(); for (int l = 0; l < kBlockSize/8; ++l) { auto qv = _mm256_loadu_ps(codes.data() + kBlockSize*(j+i) + 8*l); sqx[i] = _mm256_fmadd_ps(vx[l], qv, sqx[i]); } } auto sumqx = hsum_float_8x8(sqx); auto score = _mm256_mul_ps(_mm256_mul_ps(sumqx, sumqx), _mm256_loadu_ps(sumq2i.data() + j)); auto mask = _mm256_cmp_ps(score, vbest, _CMP_GT_OQ); best_index = _mm256_or_si256(_mm256_and_si256(idx, _mm256_castps_si256(mask)), _mm256_andnot_si256(_mm256_castps_si256(mask), best_index)); vbest = _mm256_max_ps(vbest, score); } _mm256_store_ps(sx, vbest); _mm256_store_si256((__m256i *)index, best_index); best = sx[0]; jbest = index[0]; for (int j = 1; j < 8; ++j) { if (sx[j] > best) { best = sx[j]; jbest = index[j]; } } auto qv = codes.data() + kBlockSize*jbest; float sumqx = 0; for (int k = 0; k < kBlockSize; ++k) sumqx += xb[k]*qv[k]; d = sumqx*sumq2i[jbest]; #else for (int j = 0; j < kNumVal; ++j) { if (!sumq2i[j]) continue; auto qv = codes.data() + kBlockSize*j; float sumqx = 0; for (int k = 0; k < kBlockSize; ++k) sumqx += qv[k]*xb[k]; if (sumqx*sumqx*sumq2i[j] > best]) { d = sumqx*sumq2i[j]; best = d*sumqx; jbest = j; } } auto qv = codes.data() + kBlockSize*jbest; #endif scales[ib] = d; best_idx[ib] = jbest; for (int k = 0; k < kBlockSize; ++k) { float diff = xb[k] - d*qv[k]; lmse += diff*diff; } } float amax_scale = std::abs(scales[0]); float max_scale = scales[0]; for (int ib = 1; ib < n_per_row/kBlockSize; ++ib) { float ax = std::abs(scales[ib]); if (ax > amax_scale) { amax_scale = ax; max_scale = scales[ib]; } } float d = max_scale/scale_values[0]; float id = d ? 1/d : 0.f; for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) { int ls = best_index_scale(scale_values, id*scales[ib]); float dl = d * scale_values[ls]; auto xb = xr + kBlockSize*ib; auto qv = codes.data() + kBlockSize*best_idx[ib]; for (int k = 0; k < kBlockSize; ++k) { float diff = xb[k] - dl*qv[k]; lmse_q += diff*diff; } } } } }; std::vector workers(nthread-1); for (auto& w : workers) w = std::thread(compute); compute(); for (auto& w : workers) w.join(); tot_mse += mse; tot_mse_q += mse_q; tot_elements += n_per_row*nrows; printf("%s: %g %g %g %g\n", name, sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements), sqrt(mse_q/(n_per_row*nrows)), sqrt(tot_mse_q/tot_elements)); } static void analyze_iq4ks(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_elements) { int row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row); int nblock = n_per_row/QK_K; int nthread = std::max(1, int(std::thread::hardware_concurrency()/2)); int chunk = (nrows + 8*nthread - 1)/(8*nthread); std::mutex mutex; int counter = 0; float mse0 = 0, mse = 0; auto compute = [&mutex, &counter, &mse0, &mse, values, row_size, nblock, nrows, n_per_row, chunk] () { std::vector Q(row_size); float diff[4]; float xv[4]; float lmse0 = 0, lmse = 0; while (true) { std::unique_lock lock(mutex); int first = counter; counter += chunk; if (first >= nrows) { mse += lmse; mse0 += lmse0; return; } lock.unlock(); int last = std::min(first + chunk, nrows); for (int row = first; row < last; ++row) { auto xr = values + row*n_per_row; ggml_quantize_chunk(GGML_TYPE_IQ4_KS, xr, (void *)Q.data(), 0, 1, n_per_row, nullptr); const float * dptr = (const float *)Q.data(); const float d = *dptr; const block_iq4_ks * iq4 = (const block_iq4_ks *)(dptr + 1); for (int ibl = 0; ibl < nblock; ++ibl) { const float * xbl = xr + ibl*QK_K; auto qs = iq4[ibl].qs; for (int ib = 0; ib < QK_K/32; ++ib) { const float * xb = xbl + 32*ib; const float dl = d * ((iq4[ibl].scales[ib] & 254) - 127); const int8_t * values = iq4k_values + ((iq4[ibl].scales[ib] & 1) << 4); for (int j = 0; j < 16; j += 2) { uint16_t v0 = *(const uint16_t *)(qs + j); int non = popcount(v0); xv[0] = xb[j+ 0]; xv[1] = xb[j+16]; xv[2] = xb[j+ 1]; xv[3] = xb[j+17]; diff[0] = xv[0] - dl*values[qs[j+0] & 0xf]; diff[1] = xv[1] - dl*values[qs[j+0] >> 4]; diff[2] = xv[2] - dl*values[qs[j+1] & 0xf]; diff[3] = xv[3] - dl*values[qs[j+1] >> 4]; float diff4 = diff[0]*diff[0] + diff[1]*diff[1] + diff[2]*diff[2] + diff[3]*diff[3]; lmse0 += diff4; if (non%2 == 0) { lmse += diff4; } else { float best = std::numeric_limits::max(); for (int k = 0; k < 4; ++k) { uint16_t v = (v0 >> 4*k) & 0xf; auto pc = popcount(v); if (v > 0 && popcount(v-1u) != pc) { float this_diff = xv[k] - dl*values[v-1u]; float score = diff4 - diff[k]*diff[k] + this_diff*this_diff; if (score < best) best = score; } if (v < 15 && popcount(v + 1u) != pc) { float this_diff = xv[k] - dl*values[v+1u]; float score = diff4 - diff[k]*diff[k] + this_diff*this_diff; if (score < best) best = score; } } lmse += best; } } qs += 16; } } } } }; std::vector workers(nthread-1); for (auto& w : workers) w = std::thread(compute); compute(); for (auto& w : workers) w.join(); tot_mse += mse; tot_elements += n_per_row*nrows; printf("%s: %g %g %g\n", name, sqrt(mse0/(n_per_row*nrows)), sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements)); } static void analyze_iq4ks(const ggml_tensor * t, float& tot_mse, float& tot_mse_q, float& tot_elements) { if (!ggml_is_contiguous(t) || (t->type != GGML_TYPE_F32 && t->type != GGML_TYPE_F16 && t->type != GGML_TYPE_BF16)) { return; } if (t->type == GGML_TYPE_F32) { analyze_x_v2(t->name, t->ne[1], t->ne[0], (const float *)t->data, tot_mse, tot_mse_q, tot_elements); } else { std::vector aux(t->ne[0]*t->ne[1]); if (t->type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((const ggml_fp16_t *)t->data, aux.data(), aux.size()); } else { ggml_bf16_to_fp32_row((const ggml_bf16_t *)t->data, aux.data(), aux.size()); } analyze_x_v2(t->name, t->ne[1], t->ne[0], aux.data(), tot_mse, tot_mse_q, tot_elements); } } static void print_fp_stats(const char * msg, const uint64_t * counts) { printf("===== %s\n", msg); uint64_t tot = 0; for (int i = 0; i < 32; ++i) tot += counts[i]; double norm = 1./tot; for (int i = 0; i < 32; ++i) { if (!counts[i]) continue; uint16_t val = i << 10; float f = ggml_fp16_to_fp32(val); printf("%2d %f %g\n", i, norm*counts[i], f); } } static void analyze_tensor_fp(const ggml_tensor * t, uint64_t * H) { if (t->type != GGML_TYPE_F16) return; if (!ggml_is_contiguous(t)) return; int n = ggml_nelements(t); const uint16_t * x = (const uint16_t *)t->data; std::array counts = {}; for (int j = 0; j < n; ++j) { ++counts[(x[j] >> 10) & 31]; } for (int i = 0; i < 32; ++i) H[i] += counts[i]; print_fp_stats(t->name, counts.data()); } int main(int argc, char ** argv) { ggml_time_init(); quantize_stats_params params; // read command line int max_thread = 0; bool invalid_param = false; bool analyze_fp = false; bool analyze = false; std::string arg; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "-h" || arg == "--help") { quantize_stats_print_usage(argc, argv); exit(0); } else if (arg == "-r" || arg == "--reference") { params.reference = true; } else if (arg == "-v") { params.verbose = true; } else if (arg == "-p" || arg == "--per-layer-stats") { params.per_layer_stats = true; } else if (arg == "-afp" || arg == "--analyze-fp") { analyze_fp = true; } else if (arg == "-a" || arg == "--analyze") { analyze = true; } else if (arg == "--histogram") { params.print_histogram = true; } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } params.model = argv[i]; } else if (arg == "-l" || arg == "--include-layer") { if (++i >= argc) { invalid_param = true; break; } params.include_layers.emplace_back(argv[i]); } else if (arg == "-L" || arg == "--exclude-layer") { if (++i >= argc) { invalid_param = true; break; } params.exclude_layers.emplace_back(argv[i]); } else if (arg == "-t" || arg == "--type") { if (++i >= argc) { invalid_param = true; break; } int j; for (j = 0; j < GGML_TYPE_COUNT; ++j) { const auto * name = ggml_type_name((ggml_type) j); if (name && strcmp(argv[i], name) == 0) break; } if (j < GGML_TYPE_COUNT) { params.include_types.push_back((ggml_type) j); } else { fprintf(stderr, "error: %s not in list of types\n", argv[i]); invalid_param = true; } } else if (arg == "-n" || arg == "--num-threads") { if (++i >= argc) { invalid_param = true; break; } max_thread = atoi(argv[i]); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); quantize_stats_print_usage(argc, argv); return 1; } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); quantize_stats_print_usage(argc, argv); return 1; } print_build_info(); // load the model fprintf(stderr, "Loading model\n"); const int64_t t_main_start_us = ggml_time_us(); llama_model * model; llama_context * ctx; { auto mparams = llama_model_default_params(); mparams.use_mlock = false; model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return 1; } auto cparams = llama_context_default_params(); cparams.n_ctx = 256; cparams.seed = 1; ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); return 1; } } const auto &tensors = llama_internal_get_tensor_map(ctx); // check layer tensors int included_layers = 0; int64_t max_nelements = 0; bool is_f16 = false; for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { continue; } if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) { // we never quantize those continue; } if (params.verbose) { printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second)); } if (kv_tensor.second->type == GGML_TYPE_F16) { is_f16 = true; } else if (kv_tensor.second->type != GGML_TYPE_F32) { fprintf(stderr, "%s: error: Quantization should be tested with a float model, " "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type); llama_free(ctx); llama_free_model(model); return 1; } included_layers++; max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second)); } if (is_f16) { printf("note: source model is f16\n"); } printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements); // allocate scratch space std::vector input_scratch; std::vector quantized_scratch; std::vector output_scratch; if (analyze) { float tot_mse = 0, tot_mse_q = 0, tot_elements = 0; for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { continue; } if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) { // we never quantize those continue; } analyze_iq4ks(kv_tensor.second, tot_mse, tot_mse_q, tot_elements); } return 0; } if (analyze_fp) { for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { continue; } if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) { // we never quantize those continue; } std::array H = {}; analyze_tensor_fp(kv_tensor.second, H.data()); print_fp_stats("Total", H.data()); } return 0; } // loop throught quantization types for (int i = 0; i < GGML_TYPE_COUNT; i++) { const ggml_type type = (ggml_type) i; if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { continue; } ggml_type_traits_t qfns = ggml_internal_get_type_traits(type); if (qfns.from_float && qfns.to_float) { if (params.verbose) { printf("testing %s ...\n", ggml_type_name(type)); } ggml_quantize_init(type); error_stats global_stats {}; for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { continue; } if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) { // we never quantize those continue; } if (params.verbose) { printf(" %s ...\n", kv_tensor.first.c_str()); } std::string layer_name { ggml_type_name(type) }; layer_name += "::" + kv_tensor.first; test_roundtrip_on_layer( layer_name, params.per_layer_stats, qfns, params.reference, kv_tensor.second, input_scratch, quantized_scratch, output_scratch, global_stats, max_thread ); } print_error_stats(ggml_type_name(type), global_stats, params.print_histogram); } } llama_free(ctx); llama_free_model(model); // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n"); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); } return 0; }