import pandas as pd import matplotlib.pyplot as plt import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('file', nargs='+') args = parser.parse_args() df = None #for jsonl_file in args.file: # # Read JSONL file into DataFrame # df_part = pd.read_json(jsonl_file, lines=True) # df_part['label'] = jsonl_file # if df is None: # df = df_part # else: # df = pd.concat([df, df_part]) # for md_file in args.file: # Read markdown table file into DataFrame df_part = pd.read_csv(md_file, sep=r'\s*\|\s*', engine='python', header=0, skiprows=[1]) # Clean up columns (remove empty columns from markdown formatting) df_part = df_part.iloc[:, 1:-1] df_part.columns = [col.strip() for col in df_part.columns] # Rename columns to match expected names df_part = df_part.rename(columns={ 'N_KV': 'n_kv', 'S_PP t/s': 'speed_pp', 'S_TG t/s': 'speed_tg' }) # Convert to numeric types df_part['n_kv'] = pd.to_numeric(df_part['n_kv']) df_part['speed_pp'] = pd.to_numeric(df_part['speed_pp']) df_part['speed_tg'] = pd.to_numeric(df_part['speed_tg']) # Add label and append to main DataFrame df_part['label'] = md_file df = pd.concat([df, df_part]) if df is not None else df_part # Group by label and n_kv, calculate mean and std for both speed metrics df_grouped = df.groupby(['label', 'n_kv']).agg({ 'speed_pp': ['mean', 'std'], 'speed_tg': ['mean', 'std'] }).reset_index() # Flatten multi-index columns df_grouped.columns = ['label', 'n_kv', 'speed_pp_mean', 'speed_pp_std', 'speed_tg_mean', 'speed_tg_std'] # Replace NaN with 0 (std for a single sample is NaN) df_grouped['speed_pp_std'] = df_grouped['speed_pp_std'].fillna(0) df_grouped['speed_tg_std'] = df_grouped['speed_tg_std'].fillna(0) # Prepare ticks values for X axis (prune for readability) x_ticks = df['n_kv'].unique() while len(x_ticks) > 16: x_ticks = x_ticks[::2] # Get unique labels and color map labels = df_grouped['label'].unique() colors = plt.cm.rainbow(np.linspace(0, 1, len(labels))) # Create prompt processing plot plt.figure(figsize=(10, 6)) ax1 = plt.gca() plt.grid() ax1.set_xticks(x_ticks) # Plot each label's data for label, color in zip(labels, colors): label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv') pp = ax1.errorbar(label_data['n_kv'], label_data['speed_pp_mean'], yerr=label_data['speed_pp_std'], color=color, marker='o', linestyle='-', label=label) # Add labels and title ax1.set_xlabel('Context Length (tokens)') ax1.set_ylabel('Prompt Processing Rate (t/s)') plt.title('Prompt Processing Performance Comparison') ax1.legend(loc='upper right') # Adjust layout and save plt.tight_layout() plt.savefig('performance_comparison_pp.png', bbox_inches='tight') plt.close() # Create token generation plot plt.figure(figsize=(10, 6)) ax1 = plt.gca() plt.grid() ax1.set_xticks(x_ticks) # Plot each model's data for label, color in zip(labels, colors): label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv') tg = ax1.errorbar(label_data['n_kv'], label_data['speed_tg_mean'], yerr=label_data['speed_tg_std'], color=color, marker='s', linestyle='-', label=label) # Add labels and title ax1.set_xlabel('Context Length (n_kv)') ax1.set_ylabel('Token Generation Rate (t/s)') plt.title('Token Generation Performance Comparison') ax1.legend(loc='upper right') # Adjust layout and save plt.tight_layout() plt.savefig('performance_comparison_tg.png', bbox_inches='tight') plt.close()