#include "ggml.h" #include "llama.h" #include "common.h" #include "llama-vocab.h" #ifdef _WIN32 #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #endif #include #include #include #include #include static void print_usage(int, char ** argv) { LOG_TEE("\nexample usage:\n"); LOG_TEE("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]); LOG_TEE("\n"); } int main(int argc, char ** argv) { gpt_params params; if (!gpt_params_parse(argc, argv, params)) { print_usage(argc, argv); return 1; } // init LLM llama_backend_init(); llama_numa_init(params.numa); // initialize the model llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } llama_context_params ctx_params = llama_context_params_from_gpt_params(params); llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } const unsigned int n_kv_max = llama_n_ctx(ctx); const llama_vocab * vocab = llama_get_vocab(ctx); llama_token bos = llama_token_bos_impl(*vocab); //llama_token eos = llama_token_eos_impl(*vocab); const unsigned int n_vocab = llama_n_vocab(model); // decode in batches of ctx_params.n_batch tokens auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); return false; } llama_synchronize(ctx); } return true; }; const unsigned int pp = params.n_ubatch; const unsigned int tg = params.n_ubatch / 4; if (!params.sweep_bench_output_jsonl) { LOG_TEE("\n"); LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG_TEE("\n"); LOG_TEE("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s"); LOG_TEE("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------"); } llama_batch batch = llama_batch_init(n_kv_max, 0, 1); // warm up if (params.warmup) { llama_batch_add(batch, bos, 0, { 0 }, false); if (!decode_helper(ctx, batch, ctx_params.n_batch)) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } } if (params.batch_warmup) { // clean up KV cache after generation llama_kv_cache_seq_rm(ctx, 0, params.n_ubatch, -1); // prepare batch of pp size for prompt processing performance measurement llama_batch_clear(batch); for (unsigned int i = 0; i < params.n_ubatch; ++i) { llama_batch_add(batch, std::rand() % n_vocab, i, { 0 }, false); } if (!decode_helper(ctx, batch, ctx_params.n_ubatch)) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } } llama_batch_clear(batch); llama_kv_cache_clear(ctx); for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) { // clean up KV cache before generation llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); // first measure token generation performance at this context size const auto t_tg_start = ggml_time_us(); for (unsigned int i = 0; i < tg; ++i) { llama_batch_clear(batch); llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true); if (!decode_helper(ctx, batch, ctx_params.n_batch)) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } } const auto t_tg_end = ggml_time_us(); // clean up KV cache after generation llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); // prepare batch of pp size for prompt processing performance measurement llama_batch_clear(batch); for (unsigned int i = 0; i < pp; ++i) { llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false); } batch.logits[batch.n_tokens - 1] = true; // measure prompt processing performance const auto t_pp_start = ggml_time_us(); if (!decode_helper(ctx, batch, ctx_params.n_batch)) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } const auto t_pp_end = ggml_time_us(); // calculate and print metrics const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; const float speed_pp = pp / t_pp; const float speed_tg = tg / t_tg; if(params.sweep_bench_output_jsonl) { LOG_TEE( "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " "\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n", n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg ); } else { LOG_TEE("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg); } } llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }