// // Copyright (C) 2024 Iwan Kawrakow // MIT license // SPDX-License-Identifier: MIT // #if GGML_USE_IQK_MULMAT #include "iqk_mul_mat.h" #endif #include "ggml-quants.h" #include "ggml-impl.h" #define GGML_COMMON_IMPL_C #include "ggml-common.h" #include "iqk_quantize.h" #include #include #include #include #include #include #include namespace { inline int nearest_int(float fval) { assert(fval <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } float make_qx_quants(int n, int nmax, const float * x, int8_t * L, const float * qw) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { float ax = fabsf(x[i]); if (ax > amax) { amax = ax; max = x[i]; } } if (!amax) { // all zero for (int i = 0; i < n; ++i) L[i] = 0; return 0.f; } float iscale = -nmax / max; float sumlx = 0; float suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = std::max(-nmax, std::min(nmax-1, l)); L[i] = l + nmax; sumlx += qw[i]*x[i]*l; suml2 += qw[i]*l*l; } float scale = suml2 ? sumlx/suml2 : 0.0f; float best = scale * sumlx; for (int is = -9; is <= 9; ++is) { if (is == 0) continue; iscale = -(nmax + 0.1f*is) / max; sumlx = suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = std::max(-nmax, std::min(nmax-1, l)); sumlx += qw[i]*x[i]*l; suml2 += qw[i]*l*l; } if (suml2 > 0 && sumlx*sumlx > best*suml2) { for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); L[i] = nmax + std::max(-nmax, std::min(nmax-1, l)); } scale = sumlx/suml2; best = scale*sumlx; } } return scale; } struct IQ1BNQuantizer { int8_t L[QK_IQ1BN]; void quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix); void quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix); static inline float row_max(int n_per_row, const float * src) { float max_in_row = 0; for (int j = 0; j < n_per_row; ++j) { float ax = fabsf(src[j]); max_in_row = std::max(max_in_row, ax); } return max_in_row; } // The Makefile has issues dwaling with this? //static constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1}; static const uint8_t k_mult[5]; }; const uint8_t IQ1BNQuantizer::k_mult[5] = {81, 27, 9, 3, 1}; void IQ1BNQuantizer::quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix) { static const int k_nb[6] = {1, 3, 9, 27, 81, 243}; (void)imatrix; const int nblock = n_per_row/QK_IQ1BN; for (int ib = 0; ib < nblock; ++ib) { std::memset(&y[ib], 0, sizeof(block_iq1_bn)); auto xb = src + ib*QK_IQ1BN; int v13 = 0; for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) { for (int k = 0; k < 3; ++k) { int idx = 0; for (int j = 0; j < 5; ++j) { float v = xb[16*i16 + 5*k + j]; int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2; idx += k_nb[j]*q; } idx = (256*idx + k_nb[5] - 1)/k_nb[5]; y[ib].ql[3*i16 + k] = idx; } float v = xb[16*i16 + 15]; int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2; v13 += k_nb[i16]*q; } y[ib].extra = (256*v13 + k_nb[5] - 1)/k_nb[5]; } } void IQ1BNQuantizer::quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix) { (void)imatrix; const int nblock = n_per_row/QK_IQ1BN; constexpr int Nj = QK_IQ1BN/4; for (int ib = 0; ib < nblock; ++ib) { auto xb = src + QK_IQ1BN*ib; for (int j = 0; j < QK_IQ1BN; ++j) { L[j] = fabsf(xb[j]) < 1e-6f ? 1 : xb[j] < 0 ? 0 : 2; } for (int j = 0; j < Nj; ++j) { y[ib].qs[j] = L[j] | (L[j + Nj] << 2) | (L[j + 2*Nj] << 4) | (L[j + 3*Nj] << 6); } } } } size_t quantize_iq1_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { IQ1BNQuantizer iq1bn; int nblock = n_per_row/QK_IQ1BN; block_iq1_bn * y = (block_iq1_bn *)dst; for (int row = 0; row < nrows; ++row) { iq1bn.quantize_one_row_1bn(src + row*n_per_row, y, n_per_row, imatrix); y += nblock; } return sizeof(block_iq1_bn)*nblock*nrows; } void quantize_row_iq1_bn_ref(const float * x, block_iq1_bn * y, int64_t k) { quantize_iq1_bn(x, y, 1, k, nullptr); } void quantize_row_iq1_bn(const float * x, void * y, int64_t k) { quantize_iq1_bn(x, y, 1, k, nullptr); } void quantize_row_iq1_tn_ref(const float * x, block_iq1_tn * y, int64_t k) { quantize_iq1_tn(x, (void *)y, 1, k, nullptr); } void quantize_row_iq1_tn(const float * x, void * y, int64_t k) { quantize_iq1_tn(x, y, 1, k, nullptr); } size_t quantize_iq1_tn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row >= 2*QK_K); // so we have space for the scale int nblock = n_per_row/QK_IQ1BN; float tmp[QK_IQ1BN]; char * qrow = (char *)dst; auto row_size = ggml_row_size(GGML_TYPE_IQ1_TN, n_per_row); IQ1BNQuantizer iq1bn; for (int row = 0; row < nrows; ++row) { float max = fabsf(src[0]); for (int j = 1; j < n_per_row; ++j) max = std::max(max, fabsf(src[j])); if (!(max > 0)) printf("%s: found max = %g?\n", __func__, max); //GGML_ASSERT(max > 0); *(ggml_half *)qrow = GGML_FP32_TO_FP16(max); block_iq1_bn * y = (block_iq1_bn *)(qrow + sizeof(ggml_half)); const float * xb = src; for (int ib = 0; ib < nblock; ++ib) { for (int j = 0; j < QK_IQ1BN; ++j) tmp[j] = xb[j] < -0.5f*max ? -1 : xb[j] <= 0.5f*max ? 0 : 1; iq1bn.quantize_one_row_1bn(tmp, y, QK_IQ1BN, imatrix); ++y; xb += QK_IQ1BN; } src += n_per_row; qrow += row_size; } return nrows*row_size; } void dequantize_row_iq1_tn(const block_iq1_tn * x, float * y, int64_t k) { float scale = GGML_FP16_TO_FP32(*(const ggml_half *)x); const block_iq1_bn * iq1bn = (const block_iq1_bn *)((const char *)x + sizeof(ggml_half)); dequantize_row_iq1_bn(iq1bn, y, k); for (int j = 0; j < int(k); ++j) y[j] *= scale; } void vec_dot_iq1_tn_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { float scale = GGML_FP16_TO_FP32(*(const ggml_half *)vx); ggml_vec_dot_iq1_bn_q8_K64(n, s, bs, (const void *)((const char *)vx + sizeof(ggml_half)), bx, vy, by, nrc); *s *= scale; } void dequantize_row_iq1_bn(const block_iq1_bn * x, float * y, int64_t k) { assert(k%QK_IQ1BN == 0); int nblock = k / QK_IQ1BN; for (int i = 0; i < nblock; ++i) { uint8_t extra = x[i].extra; auto ql = x[i].ql; for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) { for (int k = 0; k < 3; ++k) { for (int j = 0; j < 5; ++j) { uint8_t v = ql[k]*IQ1BNQuantizer::k_mult[j]; int8_t vs = ((v + (v >> 1)) >> 7); *y++ = vs - 1; } } ql += 3; uint8_t v = extra*IQ1BNQuantizer::k_mult[i16]; int8_t vs = ((v + (v >> 1)) >> 7); *y++ = vs - 1; } } } size_t quantize_iq2_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { IQ1BNQuantizer iq1bn; int nblock = n_per_row/QK_IQ1BN; block_iq2_bn * y = (block_iq2_bn *)dst; for (int row = 0; row < nrows; ++row) { iq1bn.quantize_one_row_2bn(src + row*n_per_row, y, n_per_row, imatrix); y += nblock; } return sizeof(block_iq2_bn)*nblock*nrows; } void quantize_row_iq2_bn_ref(const float * x, block_iq2_bn * y, int64_t k) { quantize_iq2_bn(x, y, 1, k, nullptr); } void quantize_row_iq2_bn(const float * x, void * y, int64_t k) { quantize_iq2_bn(x, y, 1, k, nullptr); } void dequantize_row_iq2_bn(const block_iq2_bn * x, float * y, int64_t k) { assert(k%QK_IQ1BN == 0); int nblock = k / QK_IQ1BN; auto d1 = 1.f, d2 = 0.25f, d3 = d2*0.25f, d4 = d3*0.25f; auto m = -1.f; constexpr int Nj = QK_IQ1BN/4; for (int i = 0; i < nblock; ++i) { for (int j = 0; j < Nj; ++j) { y[j+ 0] = d1*(x[i].qs[j] & 0x03) + m; y[j+1*Nj] = d2*(x[i].qs[j] & 0x0c) + m; y[j+2*Nj] = d3*(x[i].qs[j] & 0x30) + m; y[j+3*Nj] = d4*(x[i].qs[j] & 0xc0) + m; } y += QK_IQ1BN; } } namespace { inline int8_t iq1bn_dequant(uint8_t q, int i) { uint8_t v = IQ1BNQuantizer::k_mult[i]*q; //int8_t vs = (v + (v << 1)) >> 8; int8_t vs = 3*v >> 8; return vs - 1; } } static const int8_t iq1bn_values[1280] = { -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 0, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, 0, -1, -1, 1, -1, 0, -1, -1, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 1, 0, 0, -1, -1, -1, 1, 0, -1, -1, 0, 1, 0, -1, -1, 1, 1, 0, -1, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 0, 1, -1, -1, 0, 0, 1, -1, -1, 1, 0, 1, -1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 0, -1, 0, -1, -1, 0, -1, 1, -1, -1, 0, -1, -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 1, 0, -1, 0, -1, -1, 1, -1, 0, -1, 0, 1, -1, 0, -1, 1, 1, -1, 0, -1, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, -1, 1, 0, 0, -1, 0, 1, 0, 0, -1, 1, 1, 0, 0, -1, -1, -1, 1, 0, -1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, -1, 0, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, 1, 0, -1, -1, 1, 1, 0, -1, 0, 1, 1, 0, -1, 1, 1, 1, 0, -1, -1, -1, -1, 1, -1, 0, -1, -1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 1, -1, 0, 0, -1, 1, -1, 1, 0, -1, 1, -1, -1, 1, -1, 1, -1, 0, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 0, 1, -1, 0, -1, 0, 1, -1, 1, -1, 0, 1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 1, -1, 0, 1, 0, 1, -1, 1, 1, 0, 1, -1, -1, -1, 1, 1, -1, 0, -1, 1, 1, -1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, 0, 0, 1, 1, -1, 1, 0, 1, 1, -1, -1, 1, 1, 1, -1, 0, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, 0, 1, -1, -1, -1, 0, -1, 0, -1, -1, 0, 0, 0, -1, -1, 0, 1, 0, -1, -1, 0, -1, 1, -1, -1, 0, 0, 1, -1, -1, 0, 1, 1, -1, -1, 0, -1, -1, 0, -1, 0, 0, -1, 0, -1, 0, 1, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, -1, 0, -1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, -1, -1, 1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, -1, 0, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 1, 0, 1, -1, 0, -1, 1, 1, -1, 0, 0, 1, 1, -1, 0, 1, 1, 1, -1, 0, -1, -1, -1, 0, 0, 0, -1, -1, 0, 0, 1, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, 1, -1, 0, 0, 0, 1, -1, 0, 0, 1, 1, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 1, 0, 0, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 0, -1, 1, 0, 0, 0, -1, 1, 0, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, 0, 1, -1, 1, 0, 1, 1, -1, 1, 0, -1, -1, 0, 1, 0, 0, -1, 0, 1, 0, 1, -1, 0, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, -1, -1, 1, 1, 0, 0, -1, 1, 1, 0, 1, -1, 1, 1, 0, -1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 0, -1, -1, 1, 0, 0, -1, -1, 1, 1, 0, -1, -1, 1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 0, -1, 1, 0, -1, 0, -1, 1, 1, -1, 0, -1, 1, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 1, 0, 0, -1, 1, -1, 1, 0, -1, 1, 0, 1, 0, -1, 1, 1, 1, 0, -1, 1, -1, -1, 1, -1, 1, 0, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 1, 0, 1, -1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 0, 1, 0, -1, -1, 0, 1, 1, -1, -1, 0, 1, -1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 1, 0, -1, 0, 1, -1, 1, -1, 0, 1, 0, 1, -1, 0, 1, 1, 1, -1, 0, 1, -1, -1, 0, 0, 1, 0, -1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, -1, -1, 1, 0, 1, 0, -1, 1, 0, 1, 1, -1, 1, 0, 1, -1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, -1, -1, -1, 1, 1, 0, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 0, -1, 1, 1, 0, 0, -1, 1, 1, 1, 0, -1, 1, 1, -1, 1, -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, -1, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 1, 0, -1, 0, 1, 1, 1, -1, 0, 1, 1, -1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, -1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, 1, 0, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, }; void ggml_vec_dot_iq1_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { GGML_UNUSED(bs); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(nrc); static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64"); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ1_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) { return; } #endif const block_iq1_bn * x = (const block_iq1_bn *)vx; const float * d8 = (const float *)vy; const int8_t * q8 = (const int8_t *)(d8 + 4); int nblock = n / QK_IQ1BN; int sumi[8] = {}; int8_t q1[16]; for (int ii = 0; ii < nblock; ii += 32) { int16_t sum16[8] = {}; int nb = std::min(ii + 32, nblock); for (int i = ii; i < nb; ++i) { auto ql = x[i].ql; const int8_t * extra = iq1bn_values + 5*x[i].extra; for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) { for (int k = 0; k < 3; ++k) { uint8_t q = *ql++; const int8_t * vs = iq1bn_values + 5*q; for (int j = 0; j < 5; ++j) q1[5*k+j] = vs[j]; } q1[15] = extra[i16]; // We collect 8 q8 values per block into each element of sum16 // => 32 x 8 = 256 values in each loop over i, so this cannot overflow the int16_t range // (q8 is in -127...127, and hence the sum is in -32512...32512 for (int j = 0; j < 8; ++j) sum16[j] += q8[2*j+0]*q1[2*j+0] + q8[2*j+1]*q1[2*j+1]; q8 += 16; } } for (int j = 0; j < 8; ++j) sumi[j] += sum16[j]; } *s = d8[0] * (sumi[0] + sumi[1]) + d8[1] * (sumi[2] + sumi[3]) + d8[2] * (sumi[4] + sumi[5]) + d8[3] * (sumi[6] + sumi[7]); } void ggml_vec_dot_iq2_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { GGML_ASSERT(nrc == 1); GGML_UNUSED(bs); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(nrc); static_assert(QK_IQ1BN == 64, "This dot product implementation for iq2_bn requires a block size of 64"); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) { return; } #endif constexpr int Nj = QK_IQ1BN/4; const block_iq2_bn * x = (const block_iq2_bn *)vx; int nblock = n / QK_IQ1BN; const float * d = (const float *)vy; const int8_t * q8 = (const int8_t *)(d + 4); int sum[16] = { }; int sum0[4] = { }; for (int i = 0; i < nblock; ++i) { for (int j = 0; j < Nj/4; ++j) { for (int l = 0; l < 4; ++l) { sum[4*j + 0] += q8[4*j + l + 0] * (x[i].qs[4*j+l] & 0x03); sum[4*j + 1] += q8[4*j + l + 1*Nj] * (x[i].qs[4*j+l] & 0x0c); sum[4*j + 2] += q8[4*j + l + 2*Nj] * (x[i].qs[4*j+l] & 0x30); sum[4*j + 3] += q8[4*j + l + 3*Nj] * (x[i].qs[4*j+l] & 0xc0); sum0[j] += q8[4*j + l] + q8[4*j + l + 1*Nj] + q8[4*j + l + 2*Nj] + q8[4*j + l + 3*Nj]; } } q8 += QK_IQ1BN; } float sumf = 0; for (int j = 0; j < 4; ++j) { sumf += d[j] * (sum[4*j + 0] + 0.25f*sum[4*j + 1] + 0.0625*sum[4*j + 2] + 0.015625*sum[4*j + 3] - sum0[j]); } *s = sumf; } void quantize_row_q8_K64_ref(const float * x, block_q8_K64 * y, int64_t k) { GGML_ASSERT(k >= 8*QK_IQ1BN); float * dptr = (float *)y; auto qs = (int8_t *)(dptr + 8); #ifdef __ARM_NEON static const uint8_t k_shuffle[16] = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}; auto shuffle = vld1q_u8(k_shuffle); float32x4_t max[4] = { }; for (int j = 0; j < k; j += 16) { for (int i = 0; i < 4; ++i) { auto val = vld1q_f32(x + j + 4*i); val = vabsq_f32(val); max[i] = vmaxq_f32(max[i], val); } } float32x4_t vid[4]; for (int i = 0; i < 4; ++i) { dptr[i] = vmaxvq_f32(max[i])/127; float id = dptr[i] > 0 ? 1/dptr[i] : 0.f; vid[i] = vdupq_n_f32(id); } int8x16x4_t q; int32x4_t qsum = {}; const int8x16_t m1 = vdupq_n_s8(1); for (int j = 0; j < k; j += 16) { for (int i = 0; i < 4; ++i) { auto val = vld1q_f32(x + j + 4*i); val = vmulq_f32(vid[i], val); auto ival = vcvtnq_s32_f32(val); q.val[i] = vreinterpretq_s8_s32(ival); } auto qi = vqtbl4q_s8(q, shuffle); qsum = ggml_vdotq_s32(qsum, qi, m1); vst1q_s8(qs, qi); qs += 16; } auto sumf = vmulq_f32(vld1q_f32(dptr), vcvtq_f32_s32(qsum)); vst1q_f32(dptr + 4, sumf); #elif defined __AVX__ __m128 max[4] = {}; __m128 sign_bit = _mm_set1_ps(-0.f); for (int j = 0; j < k; j += 16) { for (int i = 0; i < 4; ++i) { auto val = _mm_loadu_ps(x + j + 4*i); val = _mm_andnot_ps(sign_bit, val); max[i] = _mm_max_ps(max[i], val); } } __m128 vid[4]; for (int i = 0; i < 4; ++i) { max[i] = _mm_max_ps(max[i], _mm_movehl_ps(max[i], max[i])); max[i] = _mm_max_ss(max[i], _mm_movehdup_ps(max[i])); float maxi = _mm_cvtss_f32(max[i]); dptr[i] = maxi/127; float id = dptr[i] > 0 ? 1/dptr[i] : 0.f; vid[i] = _mm_set1_ps(id); } __m128i q[4]; __m128i sums = _mm_setzero_si128(); __m128i m1_8 = _mm_set1_epi8(1); __m128i m1_16 = _mm_set1_epi16(1); for (int j = 0; j < k; j += 16) { for (int i = 0; i < 4; ++i) { auto val = _mm_loadu_ps(x + j + 4*i); val = _mm_round_ps(_mm_mul_ps(vid[i], val), _MM_ROUND_NEAREST); q[i] = _mm_cvtps_epi32(val); } auto q1 = _mm_packs_epi32(q[0], q[1]); auto q2 = _mm_packs_epi32(q[2], q[3]); auto qi = _mm_packs_epi16(q1, q2); auto aux = _mm_maddubs_epi16(m1_8, qi); sums = _mm_add_epi32(sums, _mm_madd_epi16(m1_16, aux)); _mm_storeu_si128((__m128i *)qs, qi); qs += 16; } auto minus = _mm_mul_ps(_mm_loadu_ps(dptr), _mm_cvtepi32_ps(sums)); _mm_storeu_ps(dptr + 4, minus); #else float aux[4] = {0.f, 0.f, 0.f, 0.f}; for (int j = 0; j < k; j += 16) { for (int i = 0; i < 4; ++i) { for (int l = 0; l < 4; ++l) { float ax = fabsf(x[j+4*i+l]); aux[i] = std::max(aux[i], ax); } } } for (int i = 0; i < 4; ++i) { dptr[i] = aux[i]/127; aux[i] = dptr[i] > 0 ? 1/dptr[i] : 0.f; } int32_t sum[4] = {}; for (int j = 0; j < k; j += 16) { for (int i = 0; i < 4; ++i) { for (int l = 0; l < 4; ++l) { qs[j+4*i+l] = nearest_int(aux[i]*x[j+4*i+l]); sum[i] += qs[j+4*i+l]; } } } for (int i = 0; i < 4; ++i) dptr[4+i] = dptr[i]*sum[i]; #endif } void quantize_row_q8_K64(const float * x, void * y, int64_t k) { quantize_row_q8_K64_ref(x, (block_q8_K64 *)y, k); } // // ============================================== iq2_K // namespace { inline int best_index_iq2nl(const int8_t * values, float x) { int idx = x < values[1] ? 0 : x > values[2] ? 2 : 1; return x - values[idx] < values[idx+1] - x ? idx : idx + 1; } void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { constexpr int kBlockSize = 16; block_iq2_k * y = (block_iq2_k *)vy; float scales[QK_K/kBlockSize]; float weight[kBlockSize]; float sumx[kBlockSize+1], sumw[kBlockSize+1]; float sw[QK_K/kBlockSize]; int8_t Ls[QK_K/kBlockSize]; std::array, kBlockSize> pairs; const int8_t * shifted_values = iq2nl_values + 4; for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { memset(&y[ibl], 0, sizeof(block_iq2_k)); y[ibl].d = GGML_FP32_TO_FP16(0.f); const float * xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; const float sigma2 = 1.5f*sumx2/QK_K; uint16_t extra = 0; float max_abs_scale = 0, max_scale = 0; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { const float * xb = xbl + kBlockSize*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } sw[ib] = 0; for (int j = 0; j < kBlockSize; ++j) { sw[ib] += weight[j]; pairs[j] = {xb[j], j}; } std::sort(pairs.begin(), pairs.end()); sumx[0] = sumw[0] = 0; for (int j = 0; j < kBlockSize; ++j) { int jj = pairs[j].second; sumw[j+1] = sumw[j] + weight[jj]; sumx[j+1] = sumx[j] + weight[jj]*xb[jj]; } float best = 0, d = 0; bool is_shifted = false; float sumqx, sumq2; for (int i1 = 0; i1 < kBlockSize; ++i1) { for (int i2 = i1; i2 < kBlockSize; ++i2) { for (int i3 = i2; i3 < kBlockSize; ++i3) { sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[0] + (sumx[i2] - sumx[i1])*iq2nl_values[1] + (sumx[i3] - sumx[i2])*iq2nl_values[2] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[3]; sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[0]*iq2nl_values[0] + (sumw[i2] - sumw[i1])*iq2nl_values[1]*iq2nl_values[1] + (sumw[i3] - sumw[i2])*iq2nl_values[2]*iq2nl_values[2] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[3]*iq2nl_values[3]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = false; } sumqx = (sumx[i1] - sumx[ 0])*shifted_values[0] + (sumx[i2] - sumx[i1])*shifted_values[1] + (sumx[i3] - sumx[i2])*shifted_values[2] + (sumx[kBlockSize] - sumx[i3])*shifted_values[3]; sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[0]*shifted_values[0] + (sumw[i2] - sumw[i1])*shifted_values[1]*shifted_values[1] + (sumw[i3] - sumw[i2])*shifted_values[2]*shifted_values[2] + (sumw[kBlockSize] - sumw[i3])*shifted_values[3]*shifted_values[3]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = true; } sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[3] + (sumx[i2] - sumx[i1])*iq2nl_values[2] + (sumx[i3] - sumx[i2])*iq2nl_values[1] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[0]; sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[3]*iq2nl_values[3] + (sumw[i2] - sumw[i1])*iq2nl_values[2]*iq2nl_values[2] + (sumw[i3] - sumw[i2])*iq2nl_values[1]*iq2nl_values[1] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[0]*iq2nl_values[0]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = false; } sumqx = (sumx[i1] - sumx[ 0])*shifted_values[3] + (sumx[i2] - sumx[i1])*shifted_values[2] + (sumx[i3] - sumx[i2])*shifted_values[1] + (sumx[kBlockSize] - sumx[i3])*shifted_values[0]; sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[3]*shifted_values[3] + (sumw[i2] - sumw[i1])*shifted_values[2]*shifted_values[2] + (sumw[i3] - sumw[i2])*shifted_values[1]*shifted_values[1] + (sumw[kBlockSize] - sumw[i3])*shifted_values[0]*shifted_values[0]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = true; } } } } scales[ib] = d; if (is_shifted) extra |= (1 << ib); float abs_scale = fabsf(scales[ib]); if (abs_scale > max_abs_scale) { max_abs_scale = abs_scale; max_scale = scales[ib]; } } if (!max_abs_scale) continue; float d = make_qx_quants(QK_K/kBlockSize, 8, scales, Ls, sw); if (!d) continue; //float d = -max_scale/8; y[ibl].extra = extra; float id = 1/d; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { int ls = nearest_int(id*scales[ib]); ls = std::max(-8, std::min(7, ls)); y[ibl].scales[ib/2] |= ((ls + 8) << 4*(ib%2)); float dl = d * ls; if (dl) { const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; const float * xb = xbl + kBlockSize*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float idl = 1/dl; int ib32 = ib/2; int offset = 16*(ib%2); uint8_t * qs = y[ibl].qs + 32*(ib32/4) + offset; for (int j = 0; j < 16; ++j) { const float al = idl*xb[j]; int ibest = best_index_iq2nl(block_values, al); qs[j] |= (ibest << 2*(ib32%4)); float w = weight[j]; float q = block_values[ibest]*ls; sumqx += w*q*xb[j]; sumq2 += w*q*q; } } } y[ibl].d = GGML_FP32_TO_FP16(1.030f*(sumq2 > 0 ? sumqx/sumq2 : d)); } } } void quantize_row_iq2_k_ref(const float * GGML_RESTRICT x, block_iq2_k * GGML_RESTRICT y, int64_t k) { assert(k % QK_K == 0); quantize_iq2_k(x, (void *)y, 1, k, nullptr); } void quantize_row_iq2_k(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { assert(k % QK_K == 0); block_iq2_k * y = (block_iq2_k *)vy; quantize_row_iq2_k_ref(x, y, k); } size_t quantize_iq2_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int64_t row = 0; row < nrows; ++row) { quantize_row_iq2_k_impl(src, (void *)qrow, n_per_row, imatrix); src += n_per_row; qrow += nblock*sizeof(block_iq2_k); } return nrows * nblock * sizeof(block_iq2_k); } void dequantize_row_iq2_k(const block_iq2_k * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * qs = x[i].qs; uint16_t extra = x[i].extra; int shift = 0; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { float dl1 = d * ((x[i].scales[ib32] & 0xf) - 8); float dl2 = d * ((x[i].scales[ib32] >> 4) - 8); const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; extra >>= 2; for (int j = 0; j < 16; ++j) { y[j+ 0] = dl1 * values1[(qs[j+ 0] >> shift) & 3]; y[j+16] = dl2 * values2[(qs[j+16] >> shift) & 3]; } y += 32; shift += 2; if (shift == 8) { qs += 32; shift = 0; } } } } void vec_dot_iq2_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif GGML_ABORT("not implemented"); } namespace { void quantize_row_iq2_ks_impl(const float * x, void * vy, int n_per_row, const float * quant_weights, float * all_scales, float * all_sw, int8_t * all_Ls) { constexpr int kBlockSize = 32; constexpr int kMax_i1 = 3*kBlockSize/4; constexpr int kMin_i3 = kBlockSize/4; //constexpr int kNtry = 5; //constexpr float kStep = 1.f; ggml_half * dptr = (ggml_half *)vy; *dptr = GGML_FP32_TO_FP16(0.f); block_iq2_ks * y = (block_iq2_ks *)(dptr + 1); float weight[kBlockSize]; float sumx[kBlockSize+1], sumw[kBlockSize+1]; std::array, kBlockSize> pairs; float val [4] = {float(iq2nl_values[0]), float(iq2nl_values[1]), float(iq2nl_values[2]), float(iq2nl_values[3])}; float sval[4] = {float(iq2nl_values[4]), float(iq2nl_values[5]), float(iq2nl_values[6]), float(iq2nl_values[7])}; const int8_t * shifted_values = iq2nl_values + 4; const int nblock = n_per_row/QK_K; for (int ibl = 0; ibl < nblock; ++ibl) { memset(&y[ibl], 0, sizeof(block_iq2_ks)); auto scales = all_scales + ibl*(QK_K/kBlockSize); auto sw = all_sw + ibl*(QK_K/kBlockSize); const float * xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; const float sigma2 = 1.5f*sumx2/QK_K; uint16_t extra = 0; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { const float * xb = xbl + kBlockSize*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } sw[ib] = 0; for (int j = 0; j < kBlockSize; ++j) { sw[ib] += weight[j]; pairs[j] = {xb[j], j}; } //float amax = 0, max = 0; //for (int j = 0; j < kBlockSize; ++j) { // float ax = fabsf(xb[j]); // if (ax > amax) { // amax = ax; max = xb[j]; // } //} //if (!amax) { // scales[ib] = 0; // continue; //} //float d = kNtry > 0 ? -max/iq2nl_values[0] : max/iq2nl_values[0]; //float id = 1/d; //float sumqx_p = 0, sumq2_p = 0; //float sumqx_m = 0, sumq2_m = 0; //for (int j = 0; j < kBlockSize; ++j) { // float w = weight[j]; // float al = id*xb[j]; // int l = best_index_iq2nl(iq2nl_values, al); // float q = iq2nl_values[l]; // sumqx_p += w*q*xb[j]; // sumq2_p += w*q*q; // l = best_index_iq2nl(iq2nl_values, -al); // q = iq2nl_values[l]; // sumqx_m += w*q*xb[j]; // sumq2_m += w*q*q; //} //d = sumqx_p/sumq2_p; //float best = d*sumqx_p; //if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { // d = sumqx_m/sumq2_m; best = d*sumqx_m; //} //bool is_shifted = false; //for (int itry = -kNtry; itry <= kNtry; ++itry) { // id = (kStep*itry + iq2nl_values[0])/max; // sumqx_p = sumq2_p = 0; // sumqx_m = sumq2_m = 0; // for (int j = 0; j < kBlockSize; ++j) { // float w = weight[j]; // float al = id*xb[j]; // int l = best_index_iq2nl(iq2nl_values, al); // float q = iq2nl_values[l]; // sumqx_p += w*q*xb[j]; // sumq2_p += w*q*q; // l = best_index_iq2nl(iq2nl_values, -al); // q = iq2nl_values[l]; // sumqx_m += w*q*xb[j]; // sumq2_m += w*q*q; // } // if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { // d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; // } // if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { // d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; // } // id = (kStep*itry + shifted_values[0])/max; // sumqx_p = sumq2_p = 0; // sumqx_m = sumq2_m = 0; // for (int j = 0; j < kBlockSize; ++j) { // float w = weight[j]; // float al = id*xb[j]; // int l = best_index_iq2nl(shifted_values, al); // float q = shifted_values[l]; // sumqx_p += w*q*xb[j]; // sumq2_p += w*q*q; // l = best_index_iq2nl(shifted_values, -al); // q = shifted_values[l]; // sumqx_m += w*q*xb[j]; // sumq2_m += w*q*q; // } // if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { // d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; // } // if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { // d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; // } //} std::sort(pairs.begin(), pairs.end()); sumx[0] = sumw[0] = 0; for (int j = 0; j < kBlockSize; ++j) { int jj = pairs[j].second; sumw[j+1] = sumw[j] + weight[jj]; sumx[j+1] = sumx[j] + weight[jj]*xb[jj]; } float best = 0, d = 0; bool is_shifted = false; float sumqx, sumq2; for (int i1 = 0; i1 < kMax_i1; ++i1) { for (int i2 = i1; i2 < kBlockSize; ++i2) { for (int i3 = std::max(i2, kMin_i3); i3 < kBlockSize; ++i3) { sumqx = (sumx[i1] - sumx[ 0])*val[0] + (sumx[i2] - sumx[i1])*val[1] + (sumx[i3] - sumx[i2])*val[2] + (sumx[kBlockSize] - sumx[i3])*val[3]; sumq2 = (sumw[i1] - sumw[ 0])*val[0]*val[0] + (sumw[i2] - sumw[i1])*val[1]*val[1] + (sumw[i3] - sumw[i2])*val[2]*val[2] + (sumw[kBlockSize] - sumw[i3])*val[3]*val[3]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = false; } sumqx = (sumx[i1] - sumx[ 0])*sval[0] + (sumx[i2] - sumx[i1])*sval[1] + (sumx[i3] - sumx[i2])*sval[2] + (sumx[kBlockSize] - sumx[i3])*sval[3]; sumq2 = (sumw[i1] - sumw[ 0])*sval[0]*sval[0] + (sumw[i2] - sumw[i1])*sval[1]*sval[1] + (sumw[i3] - sumw[i2])*sval[2]*sval[2] + (sumw[kBlockSize] - sumw[i3])*sval[3]*sval[3]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = true; } sumqx = (sumx[i1] - sumx[ 0])*val[3] + (sumx[i2 ] - sumx[i1])*val[2] + (sumx[i3] - sumx[i2])*val[1] + (sumx[kBlockSize] - sumx[i3])*val[0]; sumq2 = (sumw[i1] - sumw[ 0])*val[3]*val[3] + (sumw[i2 ] - sumw[i1])*val[2]*val[2] + (sumw[i3] - sumw[i2])*val[1]*val[1] + (sumw[kBlockSize] - sumw[i3])*val[0]*val[0]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = false; } sumqx = (sumx[i1] - sumx[ 0])*sval[3] + (sumx[i2 ] - sumx[i1])*sval[2] + (sumx[i3] - sumx[i2])*sval[1] + (sumx[kBlockSize] - sumx[i3])*sval[0]; sumq2 = (sumw[i1] - sumw[ 0])*sval[3]*sval[3] + (sumw[i2 ] - sumw[i1])*sval[2]*sval[2] + (sumw[i3] - sumw[i2])*sval[1]*sval[1] + (sumw[kBlockSize] - sumw[i3])*sval[0]*sval[0]; if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { d = sumqx/sumq2; best = d*sumqx; is_shifted = true; } } } } scales[ib] = d; if (is_shifted) extra |= (1 << ib); } y[ibl].extra = extra; } float d = make_qx_quants(nblock*(QK_K/kBlockSize), 16, all_scales, all_Ls, all_sw); if (!d) return; float sumqx = 0, sumq2 = 0; for (int ibl = 0; ibl < nblock; ++ibl) { auto xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; const float sigma2 = 1.5f*sumx2/QK_K; auto Ls = all_Ls + ibl*(QK_K/kBlockSize); for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { int ls = Ls[ib]; y[ibl].scales[ib/2] |= ((ls & 0xf) << 4*(ib%2)); y[ibl].extra |= ((ls >> 4) << (8 + ib)); ls -= 16; float dl = d * ls; if (dl) { const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; const float * xb = xbl + kBlockSize*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float idl = 1/dl; uint8_t * qs = y[ibl].qs + 32*(ib/4); for (int j = 0; j < 32; ++j) { const float al = idl*xb[j]; int ibest = best_index_iq2nl(block_values, al); qs[j] |= (ibest << 2*(ib%4)); float w = weight[j]; float q = block_values[ibest]*ls; sumqx += w*q*xb[j]; sumq2 += w*q*q; } } } } *dptr = GGML_FP32_TO_FP16(1.030f*(sumq2 > 0 ? sumqx/sumq2 : d)); } } void quantize_row_iq2_ks_ref(const float * GGML_RESTRICT x, block_iq2_ks * GGML_RESTRICT y, int64_t k) { assert(k % QK_K == 0); quantize_iq2_ks(x, (void *)y, 1, k, nullptr); } void quantize_row_iq2_ks(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { assert(k % QK_K == 0); block_iq2_ks * y = (block_iq2_ks *)vy; quantize_row_iq2_ks_ref(x, y, k); } size_t quantize_iq2_ks(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { constexpr int kBlockSize = 32; GGML_ASSERT(n_per_row%QK_K == 0); auto row_size = ggml_row_size(GGML_TYPE_IQ2_KS, n_per_row); int nblock = n_per_row/QK_K; std::vector all_scales(nblock*(QK_K/kBlockSize)), all_sw(nblock*(QK_K/kBlockSize)); std::vector all_Ls(nblock*(QK_K/kBlockSize)); char * qrow = (char *)dst; for (int64_t row = 0; row < nrows; ++row) { quantize_row_iq2_ks_impl(src, (void *)qrow, n_per_row, imatrix, all_scales.data(), all_sw.data(), all_Ls.data()); src += n_per_row; qrow += row_size; } return nrows * row_size; } void dequantize_row_iq2_ks(const block_iq2_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; const ggml_half * dptr = (const ggml_half *)x; const float d = GGML_FP16_TO_FP32(*dptr); x = (const block_iq2_ks *)(dptr + 1); for (int i = 0; i < nb; i++) { const uint8_t * qs = x[i].qs; uint16_t extra = x[i].extra; int shift = 0; for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { float dl1 = d * (((x[i].scales[ib64] & 0xf) | ((extra >> 4) & 0x10)) - 16); float dl2 = d * (((x[i].scales[ib64] >> 4) | ((extra >> 5) & 0x10)) - 16); const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; extra >>= 2; for (int j = 0; j < 32; ++j) { y[j+ 0] = dl1 * values1[(qs[j] >> (shift+0)) & 3]; y[j+32] = dl2 * values2[(qs[j] >> (shift+2)) & 3]; } y += 64; shift += 4; if (shift == 8) { qs += 32; shift = 0; } } } } void vec_dot_iq2_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_KS, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif const ggml_half * dptr = (const ggml_half *)vx; const float d = GGML_FP16_TO_FP32(*dptr); const block_iq2_ks * x = (const block_iq2_ks *)(dptr + 1); const block_q8_K * y = (const block_q8_K *)vy; const int nb = n / QK_K; float sumf = 0; for (int i = 0; i < nb; i++) { const uint8_t * qs = x[i].qs; const int8_t * q8 = y[i].qs; uint16_t extra = x[i].extra; int sumi = 0; for (int ib128 = 0; ib128 < QK_K/128; ++ib128) { int d1 = (((x[i].scales[2*ib128+0] & 0xf) | ((extra >> 4) & 0x10)) - 16); int d2 = (((x[i].scales[2*ib128+0] >> 4) | ((extra >> 5) & 0x10)) - 16); int d3 = (((x[i].scales[2*ib128+1] & 0xf) | ((extra >> 6) & 0x10)) - 16); int d4 = (((x[i].scales[2*ib128+1] >> 4) | ((extra >> 7) & 0x10)) - 16); const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; const int8_t * values3 = extra & 4 ? iq2nl_values + 4 : iq2nl_values; const int8_t * values4 = extra & 8 ? iq2nl_values + 4 : iq2nl_values; extra >>= 4; int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0; for (int j = 0; j < 32; ++j) { sumi1 += q8[j+ 0] * values1[(qs[j] >> 0) & 3]; sumi2 += q8[j+32] * values2[(qs[j] >> 2) & 3]; sumi3 += q8[j+64] * values3[(qs[j] >> 4) & 3]; sumi4 += q8[j+96] * values4[(qs[j] >> 6) & 3]; } sumi += d1*sumi1 + d2*sumi2 + d3*sumi3 + d4*sumi4; q8 += 128; qs += 32; } sumf += y[i].d * sumi; } *s = d * sumf; } // // ============================================== iq3_k // namespace { const int8_t iq3nl_index[111] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 11, 11, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 13, 13, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; inline int best_index_iq3nl(const int8_t * values, float x) { int ix = (int)x - values[0]; if (ix < 0 || ix >= 111) return ix < 0 ? 0 : 7; ix = iq3nl_index[ix]; return ix < 8 ? ix : x - values[ix-8] < values[ix-7] - x ? ix-8 : ix-7; } static void quantize_row_iq3_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { const int ntry = 5; block_iq3_k * y = (block_iq3_k *)vy; float scales[QK_K/16]; float weight[16]; const int8_t * shifted_values = iq3nl_values + 8; for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { memset(&y[ibl], 0, sizeof(block_iq3_k)); y[ibl].d = GGML_FP32_TO_FP16(0.f); const float * xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; const float sigma2 = sumx2/QK_K; uint16_t extra = 0; float max_abs_scale = 0; for (int ib = 0; ib < QK_K/16; ++ib) { const float * xb = xbl + 16*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*16; for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float amax = 0, max = 0; for (int j = 0; j < 16; ++j) { float ax = fabsf(xb[j]); if (ax > amax) { amax = ax; max = xb[j]; } } if (!amax) { scales[ib] = 0; continue; } float d = ntry > 0 ? -max/iq3nl_values[0] : max/iq3nl_values[0]; float id = 1/d; float sumqx_p = 0, sumq2_p = 0; float sumqx_m = 0, sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq3nl(iq3nl_values, al); float q = iq3nl_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq3nl(iq3nl_values, -al); q = iq3nl_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } d = sumqx_p/sumq2_p; float best = d*sumqx_p; if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d*sumqx_m; } bool is_shifted = false; for (int itry = -ntry; itry <= ntry; ++itry) { id = (itry + iq3nl_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq3nl(iq3nl_values, al); float q = iq3nl_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq3nl(iq3nl_values, -al); q = iq3nl_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; } id = (itry + shifted_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq3nl(shifted_values, al); float q = shifted_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq3nl(shifted_values, -al); q = shifted_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; } } if (d) { const int8_t * block_values = is_shifted ? shifted_values : iq3nl_values; float sumqx = 0, sumq2 = 0; id = 1/d; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq3nl(block_values, al); float q = block_values[l]; sumqx += w*q*xb[j]; sumq2 += w*q*q; } if (sumq2 > 0) d = sumqx/sumq2; } scales[ib] = d; if (is_shifted) extra |= (1 << ib); float abs_scale = fabsf(scales[ib]); max_abs_scale = MAX(max_abs_scale, abs_scale); } if (!max_abs_scale) continue; float d = max_abs_scale/31; y[ibl].extra = extra; float id = 1/d; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/16; ++ib) { int ls = nearest_int(0.5f*(id*fabsf(scales[ib])-1)); ls = MAX(0, MIN(15, ls)); y[ibl].scales_l[ib/2] |= (ls << 4*(ib%2)); if (scales[ib] < 0) y[ibl].scales_h |= (1 << ib); ls = (2*ls + 1) * (scales[ib] < 0 ? -1 : 1); float dl = d * ls; if (dl) { const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq3nl_values; const float * xb = xbl + 16*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*16; for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float idl = 1/dl; int ib32 = ib/2; int offset = 16*(ib%2); uint8_t * qs = y[ibl].qs + 32*(ib32/4) + offset; uint8_t * qh = y[ibl].qh + 32*(ib32/8) + offset; for (int j = 0; j < 16; ++j) { const float al = idl*xb[j]; int ibest = best_index_iq3nl(block_values, al); qs[j] |= ((ibest & 3) << 2*(ib32%4)); qh[j] |= ((ibest >> 2) << (ib32%8)); float w = weight[j]; float q = block_values[ibest]*ls; sumqx += w*q*xb[j]; sumq2 += w*q*q; } } } y[ibl].d = GGML_FP32_TO_FP16(1.01f*(sumq2 > 0 ? sumqx/sumq2 : d)); } } } void quantize_row_iq3_k_ref(const float * x, block_iq3_k * y, int64_t k) { assert(k % QK_K == 0); quantize_iq3_k(x, (void *)y, 1, k, nullptr); } void quantize_row_iq3_k(const float * x, void * vy, int64_t k) { assert(k % QK_K == 0); block_iq3_k * y = (block_iq3_k *)vy; quantize_row_iq3_k_ref(x, y, k); } size_t quantize_iq3_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int64_t row = 0; row < nrows; ++row) { quantize_row_iq3_k_impl(src, (void *)qrow, n_per_row, imatrix); src += n_per_row; qrow += nblock*sizeof(block_iq3_k); } return nrows * nblock * sizeof(block_iq3_k); } void dequantize_row_iq3_k(const block_iq3_k * x, float * y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * qs = x[i].qs; const uint8_t * qh = x[i].qh; uint16_t sh = x[i].scales_h; uint16_t extra = x[i].extra; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { float dl1 = d * ((2*(x[i].scales_l[ib32] & 0xf) + 1) * ((sh & 1) ? -1 : 1)); float dl2 = d * ((2*(x[i].scales_l[ib32] >> 4) + 1) * ((sh & 2) ? -1 : 1)); sh >>= 2; const int8_t * values1 = extra & 1 ? iq3nl_values + 8 : iq3nl_values; const int8_t * values2 = extra & 2 ? iq3nl_values + 8 : iq3nl_values; extra >>= 2; int shift_l = 2*(ib32%4); int shift_h = ib32%8; for (int j = 0; j < 16; ++j) { y[j+ 0] = dl1 * values1[((qs[j+ 0] >> shift_l) & 3) | (((qh[j+ 0] >> shift_h) & 1) << 2)]; y[j+16] = dl2 * values2[((qs[j+16] >> shift_l) & 3) | (((qh[j+16] >> shift_h) & 1) << 2)]; } y += 32; if (shift_l == 6) qs += 32; } } } void vec_dot_iq3_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ3_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif GGML_ABORT("not implemented"); } // // ============================================== iq4_K // void dequantize_row_iq4_k(const block_iq4_k * x, float * y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const uint8_t * qs = x[i].qs; const float d = GGML_FP16_TO_FP32(x[i].d); uint16_t extra = x[i].extra; for (int ib = 0; ib < QK_K/32; ++ib) { const uint8_t sh = x[i].scales_h[ib/2] >> 4*(ib%2); const float dl1 = d * (((x[i].scales_l[ib] & 0xf) | ((sh << 4) & 0x30)) - 32); const float dl2 = d * (((x[i].scales_l[ib] >> 4) | ((sh << 2) & 0x30)) - 32); const int8_t * values1 = extra & 1 ? iq4k_values + 16 : iq4k_values; const int8_t * values2 = extra & 2 ? iq4k_values + 16 : iq4k_values; extra >>= 2; for (int j = 0; j < 16; ++j) { y[j+ 0] = dl1 * values1[qs[j] & 0xf]; y[j+16] = dl2 * values2[qs[j] >> 4]; } y += 32; qs += 16; } } } void vec_dot_iq4_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ4_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif const int nb = n / QK_K; const block_iq4_k * x = (const block_iq4_k *)vx; const block_q8_K * y = (const block_q8_K *)vy; float sumf = 0; for (int ibl = 0; ibl < nb; ++ibl) { const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d; uint16_t extra = x[ibl].extra; uint32_t h = *((const uint32_t *)x[ibl].scales_h); const uint8_t * qs = x[ibl].qs; const int8_t * q8 = y[ibl].qs; int32_t sum = 0; for (int ib = 0; ib < QK_K/32; ++ib) { const int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32; const int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32; h >>= 4; const int8_t * values1 = iq4k_values + 16*(extra & 1); const int8_t * values2 = iq4k_values + 8*(extra & 2); extra >>= 2; int sumi1 = 0, sumi2 = 0; for (int j = 0; j < 16; ++j) { sumi1 += q8[j+ 0] * values1[qs[j] & 0xf]; sumi2 += q8[j+16] * values2[qs[j] >> 4]; } sum += ls1*sumi1 + ls2*sumi2; qs += 16; q8 += 32; } sumf += d4d8 * sum; } *s = sumf; } namespace { const int8_t iq4nl_index[241] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 18, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 20, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 21, 21, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 22, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 23, 23, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 24, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 25, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 26, 26, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 27, 27, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 28, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 29, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 30, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 }; inline int best_index_iq4nl(const int8_t * values, float x) { int ix = (int)x - values[0]; if (ix < 0 || ix >= 241) return ix < 0 ? 0 : 15; ix = iq4nl_index[ix]; return ix < 16 ? ix : x - values[ix-16] < values[ix-15] - x ? ix-16 : ix-15; } static void quantize_row_iq4_k_impl_bs16(const int super_block_size, const int block_size, const float * x, block_iq4_k * y, float * scales, float * weight, uint8_t * L, const int8_t * values, const float * quant_weights, const int ntry) { GGML_ASSERT(super_block_size == 256 && block_size == 16); float sigma2 = 0; for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j]; sigma2 *= 2.f/super_block_size; memset(y, 0, sizeof(block_iq4_k)); y->d = GGML_FP32_TO_FP16(0.f); uint16_t * scales_h = (uint16_t *)y->scales_h; const int8_t * shifted_values = values + 16; float max_scale = 0, amax_scale = 0; uint16_t extra = 0; for (int ib = 0; ib < super_block_size/block_size; ++ib) { const float * xb = x + ib*block_size; if (quant_weights) { const float * qw = quant_weights + ib*block_size; for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; } float amax = 0, max = 0; for (int j = 0; j < block_size; ++j) { float ax = fabsf(xb[j]); if (ax > amax) { amax = ax; max = xb[j]; } } if (!amax) { scales[ib] = 0; continue; } float d = ntry > 0 ? -max/values[0] : max/values[0]; float id = 1/d; float sumqx_p = 0, sumq2_p = 0; float sumqx_m = 0, sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } d = sumqx_p/sumq2_p; bool is_shifted = false; float best = d*sumqx_p; if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d*sumqx_m; } for (int itry = -ntry; itry <= ntry; ++itry) { id = (itry + values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; } id = (itry + shifted_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(shifted_values, al); float q = shifted_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(shifted_values, -al); q = shifted_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; } } if (is_shifted) extra |= (1 << ib); scales[ib] = d; float abs_d = fabsf(d); if (abs_d > amax_scale) { amax_scale = abs_d; max_scale = d; } } float d = -max_scale/32; y->d = GGML_FP32_TO_FP16(d); y->extra = extra; float id = d ? 1/d : 0.f; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < super_block_size/block_size; ++ib) { const int8_t * block_values = extra & (1 << ib) ? shifted_values : values; int l = nearest_int(id*scales[ib]); l = MAX(-32, MIN(31, l)); float dl = d * l; float idl = dl ? 1/dl : 0.f; uint8_t * Lb = L + ib*block_size; const float * xb = x + ib*block_size; if (quant_weights) { const float * qw = quant_weights + ib*block_size; for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; } for (int j = 0; j < block_size; ++j) { Lb[j] = best_index_iq4nl(block_values, idl*xb[j]); float w = weight[j]; float q = block_values[Lb[j]]*l; sumqx += w*q*xb[j]; sumq2 += w*q*q; } l += 32; uint8_t l_l = l & 0xf; uint8_t l_h = l >> 4; if (ib%2 == 0) y->scales_l[ib/2] = l_l; else y->scales_l[ib/2] |= (l_l << 4); scales_h[ib/8] |= (l_h << 2*(ib%8)); } if (sumq2 > 0) y->d = GGML_FP32_TO_FP16(sumqx/sumq2); for (int i = 0; i < super_block_size/32; ++i) { for (int j = 0; j < 16; ++j) { y->qs[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4); } } } } void quantize_row_iq4_k_ref(const float * x, block_iq4_k * y, int64_t k) { assert(k % QK_K == 0); quantize_iq4_k(x, (void *)y, 1, k, nullptr); } void quantize_row_iq4_k(const float * x, void * vy, int64_t k) { assert(k % QK_K == 0); block_iq4_k * y = (block_iq4_k *)vy; quantize_row_iq4_k_ref(x, y, k); } size_t quantize_iq4_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; uint8_t L[QK_K]; float weight[16]; float scales[QK_K/16]; for (int64_t row = 0; row < nrows; ++row) { block_iq4_k * iq4 = (block_iq4_k *)qrow; for (int ibl = 0; ibl < nblock; ++ibl) { const float * qw = imatrix ? imatrix + QK_K*ibl : NULL; quantize_row_iq4_k_impl_bs16(QK_K, 16, src + QK_K*ibl, iq4 + ibl, scales, weight, L, iq4k_values, qw, 7); } src += n_per_row; qrow += nblock*sizeof(block_iq4_k); } return nrows * nblock * sizeof(block_iq4_k); } // // ============================================== iq5_K // void dequantize_row_iq5_k(const block_iq5_k * x, float * y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * qs = x[i].qs; const uint8_t * qh = x[i].qh; const uint8_t * sl = x[i].scales_l; const uint8_t * sh = x[i].scales_h; uint16_t extra = x[i].extra; int shift = 0; for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { float dl1 = d * (((sl[2*ib64+0] & 0xf) | ((sh[ib64] << 4) & 0x30)) - 32); float dl2 = d * (((sl[2*ib64+0] >> 4) | ((sh[ib64] << 2) & 0x30)) - 32); float dl3 = d * (((sl[2*ib64+1] & 0xf) | ((sh[ib64] >> 0) & 0x30)) - 32); float dl4 = d * (((sl[2*ib64+1] >> 4) | ((sh[ib64] >> 2) & 0x30)) - 32); const int8_t * values1 = iq5nl_values + ((extra & 1) << 5); const int8_t * values2 = iq5nl_values + ((extra & 2) << 4); const int8_t * values3 = iq5nl_values + ((extra & 4) << 3); const int8_t * values4 = iq5nl_values + ((extra & 8) << 2); for (int j = 0; j < 16; ++j) { y[j+ 0] = dl1 * values1[(qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 1) << 4)]; y[j+16] = dl2 * values2[(qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 1) << 4)]; y[j+32] = dl3 * values3[(qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 2) << 3)]; y[j+48] = dl4 * values4[(qs[j+16] >> 4) | (((qh[j+16] >> shift) & 2) << 3)]; } y += 64; qs += 32; extra >>= 4; shift += 2; if (shift == 8) { qh += 32; shift = 0; } } } } void vec_dot_iq5_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ5_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif const int nb = n / QK_K; const block_iq5_k * x = (const block_iq5_k *)vx; const block_q8_K * y = (const block_q8_K *)vy; float sumf = 0; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * qs = x[i].qs; const uint8_t * qh = x[i].qh; const uint8_t * sl = x[i].scales_l; const uint8_t * sh = x[i].scales_h; const int8_t * q8 = y[i].qs; uint16_t extra = x[i].extra; int shift = 0; int sumb = 0; for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { int dl1 = (((sl[2*ib64+0] & 0xf) | ((sh[ib64] << 4) & 0x30)) - 32); int dl2 = (((sl[2*ib64+0] >> 4) | ((sh[ib64] << 2) & 0x30)) - 32); int dl3 = (((sl[2*ib64+1] & 0xf) | ((sh[ib64] >> 0) & 0x30)) - 32); int dl4 = (((sl[2*ib64+1] >> 4) | ((sh[ib64] >> 2) & 0x30)) - 32); const int8_t * values1 = iq5nl_values + ((extra & 1) << 5); const int8_t * values2 = iq5nl_values + ((extra & 2) << 4); const int8_t * values3 = iq5nl_values + ((extra & 4) << 3); const int8_t * values4 = iq5nl_values + ((extra & 8) << 2); int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0; for (int j = 0; j < 16; ++j) { sumi1 += q8[j+ 0] * values1[(qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 1) << 4)]; sumi2 += q8[j+16] * values2[(qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 1) << 4)]; sumi3 += q8[j+32] * values3[(qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 2) << 3)]; sumi4 += q8[j+48] * values4[(qs[j+16] >> 4) | (((qh[j+16] >> shift) & 2) << 3)]; } sumb += dl1 * sumi1 + dl2 * sumi2 + dl3 * sumi3 + dl4 * sumi4; q8 += 64; qs += 32; extra >>= 4; shift += 2; } sumf += d * sumb; } *s = sumf; } namespace { const int8_t iq5nl_index[248] = { 0, 0, 0, 0, 0, 0, 32, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 33, 33, 2, 2, 2, 2, 2, 2, 2, 2, 2, 34, 34, 3, 3, 3, 3, 3, 3, 3, 3, 35, 35, 4, 4, 4, 4, 4, 4, 4, 36, 36, 5, 5, 5, 5, 5, 5, 5, 37, 37, 6, 6, 6, 6, 6, 6, 6, 38, 7, 7, 7, 7, 7, 7, 39, 39, 8, 8, 8, 8, 8, 40, 40, 9, 9, 9, 9, 9, 41, 41, 10, 10, 10, 10, 10, 42, 11, 11, 11, 11, 11, 43, 12, 12, 12, 12, 12, 44, 13, 13, 13, 13, 13, 45, 14, 14, 14, 14, 14, 46, 15, 15, 15, 15, 47, 47, 16, 16, 16, 16, 48, 17, 17, 17, 17, 17, 49, 18, 18, 18, 18, 18, 50, 19, 19, 19, 19, 19, 51, 20, 20, 20, 20, 20, 52, 21, 21, 21, 21, 21, 53, 53, 22, 22, 22, 22, 22, 54, 54, 23, 23, 23, 23, 23, 23, 55, 24, 24, 24, 24, 24, 24, 24, 56, 25, 25, 25, 25, 25, 25, 25, 57, 57, 26, 26, 26, 26, 26, 26, 26, 58, 58, 27, 27, 27, 27, 27, 27, 27, 27, 59, 28, 28, 28, 28, 28, 28, 28, 28, 28, 60, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 61, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 62, 31, 31, 31, 31, 31, 31 }; inline int best_index_iq5nl(const int8_t * values, float x) { int ix = (int)x - values[0]; if (ix < 0 || ix >= 247) return ix < 0 ? 0 : 31; ix = iq5nl_index[ix]; return ix < 32 ? ix : x - values[ix-32] < values[ix-31] - x ? ix-32 : ix-31; } void quantize_row_iq5_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { const int ntry = 5; const float step = 1.f; block_iq5_k * y = (block_iq5_k *)vy; float scales[QK_K/16]; float weight[16]; const int8_t * shifted_values = iq5nl_values + 32; for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { memset(&y[ibl], 0, sizeof(block_iq5_k)); y[ibl].d = GGML_FP32_TO_FP16(0.f); const float * xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; const float sigma2 = 2*sumx2/QK_K; float max_scale = 0, max_abs_scale = 0; uint16_t extra = 0; for (int ib = 0; ib < QK_K/16; ++ib) { const float * xb = xbl + 16*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*16; for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float amax = 0, max = 0; for (int j = 0; j < 16; ++j) { float ax = fabsf(xb[j]); if (ax > amax) { amax = ax; max = xb[j]; } } if (!amax) { scales[ib] = 0; continue; } float d = ntry > 0 ? -max/iq5nl_values[0] : max/iq5nl_values[0]; float id = 1/d; float sumqx_p = 0, sumq2_p = 0; float sumqx_m = 0, sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq5nl(iq5nl_values, al); float q = iq5nl_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq5nl(iq5nl_values, -al); q = iq5nl_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } d = sumqx_p/sumq2_p; float best = d*sumqx_p; if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d*sumqx_m; } bool is_shifted = false; for (int itry = -ntry; itry <= ntry; ++itry) { id = (itry*step + iq5nl_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq5nl(iq5nl_values, al); float q = iq5nl_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq5nl(iq5nl_values, -al); q = iq5nl_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; } id = (itry*step + shifted_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq5nl(shifted_values, al); float q = shifted_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq5nl(shifted_values, -al); q = shifted_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; } } if (d) { const int8_t * block_values = is_shifted ? shifted_values : iq5nl_values; float sumqx = 0, sumq2 = 0; id = 1/d; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq5nl(block_values, al); float q = block_values[l]; sumqx += w*q*xb[j]; sumq2 += w*q*q; } if (sumq2 > 0) d = sumqx/sumq2; } scales[ib] = d; if (is_shifted) extra |= (1 << ib); float abs_scale = fabsf(scales[ib]); if (abs_scale > max_abs_scale) { max_abs_scale = abs_scale; max_scale = scales[ib]; } } if (!max_abs_scale) continue; float d = -max_scale/32; y[ibl].d = GGML_FP32_TO_FP16(d); y[ibl].extra = extra; float id = 1/d; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/16; ++ib) { int ls = nearest_int(id*scales[ib]); ls = MAX(-32, MIN(31, ls)); int uls = ls + 32; y[ibl].scales_l[ib/2] |= ((uls & 0xf) << 4*(ib%2)); y[ibl].scales_h[ib/4] |= ((uls >> 4) << 2*(ib%4)); float dl = d * ls; if (dl) { const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq5nl_values; const float * xb = xbl + 16*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*16; for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float idl = 1/dl; int ib32 = ib/2; int offset = 16*(ib%2); uint8_t * qs = y[ibl].qs + 32*(ib32/2) + offset; uint8_t * qh = y[ibl].qh + 32*(ib32/8) + offset; for (int j = 0; j < 16; ++j) { const float al = idl*xb[j]; int ibest = best_index_iq5nl(block_values, al); qs[j] |= ((ibest & 0xf) << 4*(ib32%2)); qh[j] |= ((ibest >> 4) << (ib32%8)); float w = weight[j]; float q = block_values[ibest]*ls; sumqx += w*q*xb[j]; sumq2 += w*q*q; } } } if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(sumqx/sumq2); } } } void quantize_row_iq5_k_ref(const float * x, block_iq5_k * y, int64_t k) { assert(k % QK_K == 0); quantize_iq5_k(x, (void *)y, 1, k, nullptr); } void quantize_row_iq5_k(const float * x, void * vy, int64_t k) { assert(k % QK_K == 0); block_iq5_k * y = (block_iq5_k *)vy; quantize_row_iq5_k_ref(x, y, k); } size_t quantize_iq5_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int64_t row = 0; row < nrows; ++row) { quantize_row_iq5_k_impl(src, (void *)qrow, n_per_row, imatrix); src += n_per_row; qrow += nblock*sizeof(block_iq5_k); } return nrows * nblock * sizeof(block_iq5_k); } // // ============================================== iq6_K // #define A_IQ6K -127.f #define B_IQ6K 6.2568f #define C_IQ6K 0.11218f #define D_IQ6K 0.0011972f #define S_IQ6K 1.f void dequantize_row_iq6_k(const block_iq6_k * x, float * y, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * qs = x[i].qs; const uint8_t * qh = x[i].qh; const int8_t * sl = x[i].scales; uint16_t extra = x[i].extra; int shift = 0; for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { float dl1 = d * sl[4*ib64 + 0]; float dl2 = d * sl[4*ib64 + 1]; float dl3 = d * sl[4*ib64 + 2]; float dl4 = d * sl[4*ib64 + 3]; float m1 = extra & 1 ? S_IQ6K : 0; float m2 = extra & 2 ? S_IQ6K : 0; float m3 = extra & 4 ? S_IQ6K : 0; float m4 = extra & 8 ? S_IQ6K : 0; for (int j = 0; j < 16; ++j) { float q1 = ((qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 0x03) << 4)); float q2 = ((qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 0x03) << 4)); float q3 = ((qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 0x0c) << 2)); float q4 = ((qs[j+16] >> 4) | (((qh[j+16] >> shift) & 0x0c) << 2)); y[j+ 0] = dl1 * (A_IQ6K + q1*(B_IQ6K + q1*(-C_IQ6K + q1*D_IQ6K)) + m1); y[j+16] = dl2 * (A_IQ6K + q2*(B_IQ6K + q2*(-C_IQ6K + q2*D_IQ6K)) + m2); y[j+32] = dl3 * (A_IQ6K + q3*(B_IQ6K + q3*(-C_IQ6K + q3*D_IQ6K)) + m3); y[j+48] = dl4 * (A_IQ6K + q4*(B_IQ6K + q4*(-C_IQ6K + q4*D_IQ6K)) + m4); } y += 64; qs += 32; extra >>= 4; shift += 4; if (shift == 8) { qh += 32; shift = 0; } } } } void vec_dot_iq6_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ6_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif GGML_ABORT("not implemented"); // TODO //const int nb = n / QK_K; //const block_iq5_k * x = (const block_iq5_k *)vx; //const block_q8_K * y = (const block_q8_K *)vy; //float sumf = 0; //for (int i = 0; i < nb; i++) { // const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; // const uint8_t * qs = x[i].qs; // const uint8_t * qh = x[i].qh; // const uint8_t * sl = x[i].scales_l; // const uint8_t * sh = x[i].scales_h; // const int8_t * q8 = y[i].qs; // uint16_t extra = x[i].extra; // int shift = 0; // int sumb = 0; // for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { // int dl1 = (((sl[2*ib64+0] & 0xf) | ((sh[ib64] << 4) & 0x30)) - 32); // int dl2 = (((sl[2*ib64+0] >> 4) | ((sh[ib64] << 2) & 0x30)) - 32); // int dl3 = (((sl[2*ib64+1] & 0xf) | ((sh[ib64] >> 0) & 0x30)) - 32); // int dl4 = (((sl[2*ib64+1] >> 4) | ((sh[ib64] >> 2) & 0x30)) - 32); // const int8_t * values1 = iq5nl_values + ((extra & 1) << 5); // const int8_t * values2 = iq5nl_values + ((extra & 2) << 4); // const int8_t * values3 = iq5nl_values + ((extra & 4) << 3); // const int8_t * values4 = iq5nl_values + ((extra & 8) << 2); // int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0; // for (int j = 0; j < 16; ++j) { // sumi1 += q8[j+ 0] * values1[(qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 1) << 4)]; // sumi2 += q8[j+16] * values2[(qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 1) << 4)]; // sumi3 += q8[j+32] * values3[(qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 2) << 3)]; // sumi4 += q8[j+48] * values4[(qs[j+16] >> 4) | (((qh[j+16] >> shift) & 2) << 3)]; // } // sumb += dl1 * sumi1 + dl2 * sumi2 + dl3 * sumi3 + dl4 * sumi4; // q8 += 64; // qs += 32; // extra >>= 4; // shift += 2; // } // sumf += d * sumb; //} //*s = sumf; } namespace { inline int best_index(int n, const float * val, float x) { if (x <= val[0]) return 0; if (x >= val[n-1]) return n-1; int ml = 0, mu = n-1; while (mu-ml > 1) { int mav = (ml+mu)/2; if (x < val[mav]) mu = mav; else ml = mav; } return x - val[mu-1] < val[mu] - x ? mu-1 : mu; } uint8_t iq6nl_index[249] = { 0, 0, 0, 64, 1, 1, 1, 1, 1, 65, 2, 2, 2, 2, 2, 66, 3, 3, 3, 3, 67, 67, 4, 4, 4, 4, 68, 5, 5, 5, 5, 69, 69, 6, 6, 6, 70, 70, 7, 7, 7, 71, 8, 8, 8, 72, 72, 9, 9, 9, 73, 73, 10, 10, 10, 74, 11, 11, 11, 75, 12, 12, 12, 76, 13, 13, 13, 77, 14, 14, 14, 78, 15, 15, 79, 79, 16, 16, 80, 17, 17, 81, 81, 18, 18, 82, 19, 19, 83, 83, 20, 84, 84, 21, 85, 85, 22, 86, 86, 23, 87, 87, 24, 88, 88, 25, 89, 89, 26, 90, 90, 27, 91, 91, 28, 92, 29, 93, 93, 30, 94, 94, 31, 95, 95, 32, 96, 33, 97, 97, 34, 98, 98, 35, 99, 99, 36, 100, 100, 37, 101, 38, 102, 102, 39, 103, 103, 40, 104, 104, 41, 41, 105, 42, 42, 106, 106, 43, 107, 107, 44, 108, 108, 45, 45, 109, 46, 46, 46, 110, 47, 47, 111, 111, 48, 48, 112, 49, 49, 49, 113, 50, 50, 50, 114, 51, 51, 51, 115, 52, 52, 52, 116, 116, 53, 53, 53, 117, 54, 54, 54, 118, 118, 55, 55, 55, 119, 119, 56, 56, 56, 120, 120, 57, 57, 57, 121, 121, 58, 58, 58, 58, 122, 59, 59, 59, 59, 123, 123, 60, 60, 60, 60, 124, 61, 61, 61, 61, 61, 125, 62, 62, 62, 62, 62, 126, 63, 63, 63, }; inline int best_index_iq6nl(const float * values, float x) { int ix = (int)(x - values[0]); if (ix < 0 || ix >= 249) return ix < 0 ? 0 : 63; ix = iq6nl_index[ix]; return ix < 64 ? ix : x - values[ix-64] < values[ix-63] - x ? ix-64 : ix-63; //if (x <= val[0]) return 0; //if (x >= val[63]) return 63; //int index = iq6nl_index[int(x - val[0])]; //return index < 64 ? index : x - val[index-64] < val[index-63] - x ? index - 64 : index - 63; } void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights, const float * values, const float * shifted_values) { const int ntry = 5; const float step = 1.f; block_iq6_k * y = (block_iq6_k *)vy; float scales[QK_K/16]; float weight[16]; for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { memset(&y[ibl], 0, sizeof(block_iq6_k)); y[ibl].d = GGML_FP32_TO_FP16(0.f); const float * xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; const float sigma2 = 2*sumx2/QK_K; float max_scale = 0, max_abs_scale = 0; uint16_t extra = 0; for (int ib = 0; ib < QK_K/16; ++ib) { const float * xb = xbl + 16*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*16; for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float amax = 0, max = 0; for (int j = 0; j < 16; ++j) { float ax = fabsf(xb[j]); if (ax > amax) { amax = ax; max = xb[j]; } } if (!amax) { scales[ib] = 0; continue; } float d = ntry > 0 ? -max/values[0] : max/values[0]; float id = 1/d; float sumqx_p = 0, sumq2_p = 0; float sumqx_m = 0, sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; //int l = best_index(64, values, al); int l = best_index_iq6nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; //l = best_index(64, values, -al); l = best_index_iq6nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } d = sumqx_p/sumq2_p; float best = d*sumqx_p; if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d*sumqx_m; } bool is_shifted = false; for (int itry = -ntry; itry <= ntry; ++itry) { id = (itry*step + values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; //int l = best_index(64, values, al); int l = best_index_iq6nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; //l = best_index(64, values, -al); l = best_index_iq6nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; } id = (itry*step + shifted_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; //int l = best_index(64, shifted_values, al); int l = best_index_iq6nl(shifted_values, al); float q = shifted_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; //l = best_index(64, shifted_values, -al); l = best_index_iq6nl(shifted_values, -al); q = shifted_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; } } if (d) { const float * block_values = is_shifted ? shifted_values : values; float sumqx = 0, sumq2 = 0; id = 1/d; for (int j = 0; j < 16; ++j) { float w = weight[j]; float al = id*xb[j]; //int l = best_index(64, block_values, al); int l = best_index_iq6nl(block_values, al); float q = block_values[l]; sumqx += w*q*xb[j]; sumq2 += w*q*q; } if (sumq2 > 0) d = sumqx/sumq2; } scales[ib] = d; if (is_shifted) extra |= (1 << ib); float abs_scale = fabsf(scales[ib]); if (abs_scale > max_abs_scale) { max_abs_scale = abs_scale; max_scale = scales[ib]; } } if (!max_abs_scale) continue; float d = -max_scale/127; y[ibl].d = GGML_FP32_TO_FP16(d); y[ibl].extra = extra; float id = 1/d; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/16; ++ib) { int ls = nearest_int(id*scales[ib]); ls = MAX(-127, MIN(127, ls)); y[ibl].scales[ib] |= ls; float dl = d * ls; if (dl) { const float * block_values = y[ibl].extra & (1 << ib) ? shifted_values : values; const float * xb = xbl + 16*ib; if (quant_weights) { const float * qw = quant_weights + ibl*QK_K + ib*16; for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float idl = 1/dl; int ib32 = ib/2; int offset = 16*(ib%2); uint8_t * qs = y[ibl].qs + 32*(ib32/2) + offset; uint8_t * qh = y[ibl].qh + 32*(ib32/4) + offset; for (int j = 0; j < 16; ++j) { const float al = idl*xb[j]; //int ibest = best_index(64, block_values, al); int ibest = best_index_iq6nl(block_values, al); qs[j] |= ((ibest & 0xf) << 4*(ib32%2)); qh[j] |= ((ibest >> 4) << 2*(ib32%4)); float w = weight[j]; float q = block_values[ibest]*ls; sumqx += w*q*xb[j]; sumq2 += w*q*q; } } } if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(sumqx/sumq2); } } } void quantize_row_iq6_k_ref(const float * x, block_iq6_k * y, int64_t k) { assert(k % QK_K == 0); quantize_iq6_k(x, (void *)y, 1, k, nullptr); } void quantize_row_iq6_k(const float * x, void * vy, int64_t k) { assert(k % QK_K == 0); block_iq6_k * y = (block_iq6_k *)vy; quantize_row_iq6_k_ref(x, y, k); } size_t quantize_iq6_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; float values[128]; for (int i = 0; i < 64; ++i) { values[i] = iq6nl_values[i]; values[i+64] = values[i] + S_IQ6K; } for (int64_t row = 0; row < nrows; ++row) { quantize_row_iq6_k_impl(src, (void *)qrow, n_per_row, imatrix, values, values + 64); src += n_per_row; qrow += nblock*sizeof(block_iq6_k); } return nrows * nblock * sizeof(block_iq6_k); } // // ========================== IQ2_TN // void quantize_row_iq2_tn_ref(const float * x, block_iq2_tn * y, int64_t k) { GGML_ASSERT(k%QK_K == 0); int nb = k/QK_K; auto quantize = [] (float xmax, float x) { return x < -0.5f*xmax ? 0 : x < 0.5f*xmax ? 1 : 2; }; int n = k; float max = x[0]; for (int j = 1; j < n; ++j) max = std::max(max, fabsf(x[j])); *(float *)y = max; y = (block_iq2_tn *)((float *)y + 1); for (int ibl = 0; ibl < nb; ++ibl) { auto xb = x + QK_K*ibl; auto qs = y[ibl].qs; for (int l = 0; l < QK_K/128; ++l) { for (int j = 0; j < 32; ++j) { qs[j] = quantize(max, xb[j]) | (quantize(max, xb[j+32]) << 2) | (quantize(max, xb[j+64]) << 4) | (quantize(max, xb[j+96]) << 6); } xb += 128; qs += 32; } } } void quantize_row_iq2_tn(const float * x, void * y, int64_t k) { quantize_row_iq2_tn_ref(x, (block_iq2_tn *)y, k); } size_t quantize_iq2_tn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * /*imatrix*/) { auto row_size = ggml_row_size(GGML_TYPE_IQ2_TN, n_per_row); char * qrow = (char *)dst; for (int row = 0; row < nrows; ++row) { quantize_row_iq2_tn_ref(src, (block_iq2_tn *)qrow, n_per_row); qrow += row_size; src += n_per_row; } return row_size*nrows; } void dequantize_row_iq2_tn(const block_iq2_tn * x, float * y, int64_t k) { GGML_ASSERT(k%QK_K == 0); const float * dptr = (const float *)x; float d = *dptr; x = (const block_iq2_tn *)(dptr + 1); int nb = k/QK_K; for (int ibl = 0; ibl < nb; ++ibl) { auto qs = x[ibl].qs; for (int l = 0; l < QK_K/128; ++l) { for (int j = 0; j < 32; ++j) { y[j+ 0] = d*((qs[j] >> 0) & 3) - d; y[j+32] = d*((qs[j] >> 2) & 3) - d; y[j+64] = d*((qs[j] >> 4) & 3) - d; y[j+96] = d*((qs[j] >> 6) & 3) - d; } y += 128; qs += 32; } } } void vec_dot_iq2_tn_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { GGML_UNUSED(bs); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(nrc); #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_TN, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif const int nb = n / QK_K; const float * dptr = (const float *)vx; const float d = *dptr; const block_iq2_tn * x = (const block_iq2_tn *)(dptr + 1); const block_q8_K * y = (const block_q8_K *)vy; float sumf = 0; for (int i = 0; i < nb; i++) { auto qs = x[i].qs; auto q8 = y[i].qs; int sumi1 = 0, sumi2 = 0, sumi3 = 0,sumi4 = 0; for (int j = 0; j < QK_K/16; ++j) sumi1 -= y[i].bsums[j]; for (int l = 0; l < QK_K/128; ++l) { for (int j = 0; j < 32; ++j) { sumi1 += q8[j+ 0] * (qs[j] & 0x03); sumi2 += q8[j+32] * (qs[j] & 0x0c); sumi3 += q8[j+64] * (qs[j] & 0x30); sumi4 += q8[j+96] * (qs[j] & 0xc0); } q8 += 128; qs += 32; } sumf += d * (sumi1 + 0.25f*sumi2 + 0.0625f*sumi3 + 0.015625f*sumi4); } *s = sumf; } #ifdef __AVX2__ namespace { inline int hsum_i32_8(const __m256i a) { const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); const __m128i sum64 = _mm_add_epi32(hi64, sum128); const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); } inline float hmax_f32_8(__m256 x) { __m128 max4 = _mm_max_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128(x)); max4 = _mm_max_ps( max4, _mm_movehl_ps(max4, max4)); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4)); return _mm_cvtss_f32(max4); } } #endif void iqk_quantize_row_q8_K(const float * x, void * vy, int64_t k) { assert(k % QK_K == 0); const int nb = k / QK_K; block_q8_K * y = (block_q8_K *)vy; #ifdef __AVX2__ const __m256 signBit = _mm256_set1_ps(-0.0f); const __m256i perm = _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7); for (int i = 0; i < nb; i++) { const float * xb = x + i*QK_K; __m256 maxAbs = _mm256_setzero_ps(); const float * xx = xb; for (int ib = 0; ib < QK_K/8; ++ib) { const __m256 v = _mm256_loadu_ps(xx); xx += 8; maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps(signBit, v)); } const float maxScalar = hmax_f32_8(maxAbs); const float d = maxScalar / 127.f; y[i].d = d; const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; const __m256 mul = _mm256_set1_ps( id ); xx = xb; int8_t * q8 = y[i].qs; for (int ib = 0; ib < QK_K/32; ++ib) { __m256 v0 = _mm256_mul_ps(mul, _mm256_loadu_ps(xx)); xx += 8; __m256 v1 = _mm256_mul_ps(mul, _mm256_loadu_ps(xx)); xx += 8; __m256 v2 = _mm256_mul_ps(mul, _mm256_loadu_ps(xx)); xx += 8; __m256 v3 = _mm256_mul_ps(mul, _mm256_loadu_ps(xx)); xx += 8; v0 = _mm256_round_ps(v0, _MM_ROUND_NEAREST); v1 = _mm256_round_ps(v1, _MM_ROUND_NEAREST); v2 = _mm256_round_ps(v2, _MM_ROUND_NEAREST); v3 = _mm256_round_ps(v3, _MM_ROUND_NEAREST); __m256i i0 = _mm256_cvtps_epi32(v0); __m256i i1 = _mm256_cvtps_epi32(v1); __m256i i2 = _mm256_cvtps_epi32(v2); __m256i i3 = _mm256_cvtps_epi32(v3); y[i].bsums[2*ib+0] = hsum_i32_8(_mm256_add_epi32(i0, i1)); y[i].bsums[2*ib+1] = hsum_i32_8(_mm256_add_epi32(i2, i3)); i0 = _mm256_packs_epi32( i0, i1 ); i2 = _mm256_packs_epi32( i2, i3 ); i0 = _mm256_packs_epi16( i0, i2 ); i0 = _mm256_permutevar8x32_epi32( i0, perm ); _mm256_storeu_si256((__m256i *)q8, i0); q8 += 32; } } #else for (int i = 0; i < nb; i++) { float max = 0; float amax = 0; for (int j = 0; j < QK_K; ++j) { float ax = fabsf(x[j]); if (ax > amax) { amax = ax; max = x[j]; } } if (!amax) { y[i].d = 0; memset(y[i].qs, 0, QK_K); x += QK_K; continue; } //const float iscale = -128.f/max; // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward const float iscale = -127.f/max; for (int j = 0; j < QK_K; ++j) { int v = nearest_int(iscale*x[j]); y[i].qs[j] = MIN(127, v); } for (int j = 0; j < QK_K/16; ++j) { int sum = 0; for (int ii = 0; ii < 16; ++ii) { sum += y[i].qs[j*16 + ii]; } y[i].bsums[j] = sum; } y[i].d = 1/iscale; x += QK_K; } #endif } namespace { static void quantize_row_iq4_k_impl_bs128(const int super_block_size, const int block_size, int n_per_row, const float * x, char * cy, float * all_scales, float * weight, const int8_t * values, const float * quant_weights, const int ntry) { //GGML_ASSERT(super_block_size == 256 && block_size == 128); float * dptr = (float *)cy; block_iq4_ks * y = (block_iq4_ks *)(dptr + 1); const int8_t * shifted_values = values + 16; float amax_scale = 0; for (int ibl = 0; ibl < n_per_row/super_block_size; ++ibl) { memset(&y[ibl], 0, sizeof(block_iq4_ks)); const float * xbl = x + ibl*super_block_size; auto scales = all_scales + ibl*(super_block_size/block_size); float sigma2 = 0; for (int j = 0; j < super_block_size; ++j) sigma2 += xbl[j]*xbl[j]; sigma2 *= 2.f/super_block_size; for (int ib = 0; ib < super_block_size/block_size; ++ib) { const float * xb = xbl + ib*block_size; if (quant_weights) { const float * qw = quant_weights + ibl*super_block_size + ib*block_size; for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; } float amax = 0, max = 0; for (int j = 0; j < block_size; ++j) { float ax = fabsf(xb[j]); if (ax > amax) { amax = ax; max = xb[j]; } } if (!amax) { scales[ib] = 0; continue; } float d = ntry > 0 ? -max/values[0] : max/values[0]; float id = 1/d; float sumqx_p = 0, sumq2_p = 0; float sumqx_m = 0, sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } d = sumqx_p/sumq2_p; bool is_shifted = false; float best = d*sumqx_p; if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d*sumqx_m; } for (int itry = -ntry; itry <= ntry; ++itry) { id = (itry + values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(values, al); float q = values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(values, -al); q = values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; } id = (itry + shifted_values[0])/max; sumqx_p = sumq2_p = 0; sumqx_m = sumq2_m = 0; for (int j = 0; j < block_size; ++j) { float w = weight[j]; float al = id*xb[j]; int l = best_index_iq4nl(shifted_values, al); float q = shifted_values[l]; sumqx_p += w*q*xb[j]; sumq2_p += w*q*q; l = best_index_iq4nl(shifted_values, -al); q = shifted_values[l]; sumqx_m += w*q*xb[j]; sumq2_m += w*q*q; } if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; } if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; } } if (is_shifted) y[ibl].scales[ib] = 0x01; scales[ib] = d; amax_scale = std::max(amax_scale, std::abs(d)); } } float d = amax_scale/127; *dptr = d; if (!d) return; float id = d ? 1/d : 0.f; float sumqx = 0, sumq2 = 0; //float mse = 0; for (int ibl = 0; ibl < n_per_row/super_block_size; ++ibl) { const float * xbl = x + ibl*super_block_size; float sigma2 = 0; for (int j = 0; j < super_block_size; ++j) sigma2 += xbl[j]*xbl[j]; sigma2 *= 2.f/super_block_size; auto scales = all_scales + (super_block_size/block_size)*ibl; for (int ib = 0; ib < super_block_size/block_size; ++ib) { const int8_t * block_values = y[ibl].scales[ib] & 0x01 ? shifted_values : values; int l = nearest_int(0.5f*(id*scales[ib]+127.f)); l = std::max(0, std::min(127, l)) << 1; //printf("d = %g, id = %g, scales = %g, l = %d, dl = %g\n", d, id, scales[ib], l, d*(l - 127)); y[ibl].scales[ib] |= l; l -= 127; float dl = d * l; float idl = dl ? 1/dl : 0.f; const float * xb = xbl + ib*block_size; if (quant_weights) { const float * qw = quant_weights + ibl*super_block_size + ib*block_size; for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; } auto qs = y[ibl].qs + ib*(block_size/2); for (int j = 0; j < block_size/2; ++j) { uint8_t i1 = best_index_iq4nl(block_values, idl*xb[j]); uint8_t i2 = best_index_iq4nl(block_values, idl*xb[j+block_size/2]); qs[j] = i1 | (i2 << 4); float w1 = weight[j]; float w2 = weight[j+block_size/2]; float q1 = block_values[i1]*l; float q2 = block_values[i2]*l; sumqx += w1*q1*xb[j] + w2*q2*xb[j+block_size/2]; sumq2 += w1*q1*q1 + w2*q2*q2; //float diff = xb[j] - d*q1; mse += diff*diff; //diff = xb[j+block_size/2] - d*q2; mse += diff*diff; } } } //printf("rmse = %g\n", sqrt(mse/n_per_row)); if (sumq2 > 0) *dptr = sumqx/sumq2; } } void quantize_row_iq4_ks_ref(const float * x, block_iq4_ks * y, int64_t k) { quantize_iq4_ks(x, (void *)y, 1, k, nullptr); } void quantize_row_iq4_ks(const float * x, void * y, int64_t k) { quantize_iq4_ks(x, (void *)y, 1, k, nullptr); } size_t quantize_iq4_ks(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { //printf("============ %s(%d, %d)\n", __func__, int(nrows), int(n_per_row)); constexpr int kBlockSize = 32; //128; GGML_ASSERT(n_per_row%QK_K == 0); auto row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row); char * qrow = (char *)dst; float weight[kBlockSize]; std::vector all_scales(n_per_row/kBlockSize); for (int64_t row = 0; row < nrows; ++row) { quantize_row_iq4_k_impl_bs128(QK_K, kBlockSize, n_per_row, src, qrow, all_scales.data(), weight, iq4k_values, imatrix, 7); src += n_per_row; qrow += row_size; } return nrows * row_size; } void dequantize_row_iq4_ks(const block_iq4_ks * x, float * y, int64_t k) { constexpr int kBlockSize = 32; //128; GGML_ASSERT(k%QK_K == 0); const float * dptr = (const float *)x; float d = *dptr; x = (const block_iq4_ks *)(dptr + 1); int nblock = k/QK_K; for (int ibl = 0; ibl < nblock; ++ibl) { auto qs = x[ibl].qs; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { float dl = d * ((int)(x[ibl].scales[ib] & 254) - 127); const int8_t * values = iq4k_values + ((x[ibl].scales[ib] & 1) << 4); for (int j = 0; j < kBlockSize/2; ++j) { y[j ] = dl * values[qs[j] & 0xf]; y[j+kBlockSize/2] = dl * values[qs[j] >> 4]; } y += kBlockSize; qs += kBlockSize/2; } } } void vec_dot_iq4_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { constexpr int kBlockSize = 32; #if GGML_USE_IQK_MULMAT if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ4_KS, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { return; } #endif GGML_ASSERT(n%QK_K == 0); GGML_ASSERT(nrc == 1); GGML_UNUSED(bs); GGML_UNUSED(bx); GGML_UNUSED(by); const float * dptr = (const float *)vx; const float d = *dptr; //printf("%s: n = %d, d = %g\n", __func__, n, d); const block_iq4_ks * x = (const block_iq4_ks *)(dptr + 1); const block_q8_K * y = (const block_q8_K *)vy; int nblock = n/QK_K; float sumf = 0; for (int ibl = 0; ibl < nblock; ++ibl) { //int sumi = 0; auto qy = y[ibl].qs; auto qx = x[ibl].qs; float db = d * y[ibl].d; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { float dl = db * ((x[ibl].scales[ib] & 254) - 127); //int ls = (x[ibl].scales[ib] & 254) - 127; const int8_t * values = iq4k_values + ((x[ibl].scales[ib] & 1) << 4); int suml = 0; for (int j = 0; j < kBlockSize/2; ++j) { suml += qy[j ] * values[qx[j] & 0xf] + qy[j + kBlockSize/2] * values[qx[j] >> 4]; } sumf += dl * suml; //sumi += ls * suml; qy += kBlockSize; qx += kBlockSize/2; } //sumf += d * y[ibl].d * sumi; } *s = sumf; }