#version 450 #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #define BLOCK_SIZE 32 #define FLOAT_TYPE float layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE dst[];}; layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];}; layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; layout (push_constant) uniform parameter { uint ncols_x; uint nrows_x; uint row_stride_x; uint channel_stride_x; uint channel_stride_y; uint channel_x_divisor; uint ne12; uint b_offset; uint d_offset; } p; shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { const uint tid = gl_LocalInvocationID.x; const uint row_x = gl_GlobalInvocationID.y; const uint channel = gl_GlobalInvocationID.z; const uint channel_x = channel / p.channel_x_divisor; const uint channel_y = channel % p.ne12; const uint nrows_y = p.ncols_x; const uint nrows_dst = p.nrows_x; const uint row_dst = row_x; const uint idst = channel*nrows_dst + row_dst; FLOAT_TYPE temp = 0.0f; // Detect alignment for vector loads bool is_aligned = (p.ncols_x % 4) == 0 && (p.row_stride_x % 4) == 0 && (p.channel_stride_x % 4) == 0; for (uint col_x0 = 0; col_x0 < p.ncols_x;) { // Unroll 2x and do vec4 loads if aligned const uint unroll_count = 2; if (col_x0 + unroll_count * 4 * BLOCK_SIZE <= p.ncols_x && is_aligned) { [[unroll]] for (uint i = 0; i < unroll_count; ++i) { const uint col_x = col_x0 + 4*tid; const uint row_y = col_x; const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x; const uint iy = channel_y*p.channel_stride_y + row_y; const vec4 av4 = vec4(data_a_v4[ix / 4]); const vec4 bv4 = vec4(data_b_v4[iy / 4]); temp += dot(av4, bv4); col_x0 += 4*BLOCK_SIZE; } // do vec4 loads if aligned } else if (col_x0 + 4*BLOCK_SIZE <= p.ncols_x && is_aligned) { const uint col_x = col_x0 + 4*tid; const uint row_y = col_x; const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x; const uint iy = channel_y*p.channel_stride_y + row_y; const vec4 av4 = vec4(data_a_v4[ix / 4]); const vec4 bv4 = vec4(data_b_v4[iy / 4]); temp += dot(av4, bv4); col_x0 += 4*BLOCK_SIZE; } else { const uint col_x = col_x0 + tid; if (col_x >= p.ncols_x) { break; } const uint row_y = col_x; const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x; const uint iy = channel_y*p.channel_stride_y + row_y; const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]); temp = fma(xi, FLOAT_TYPE(data_b[iy]), temp); col_x0 += BLOCK_SIZE; } } tmp[tid] = temp; // sum up partial sums and write back result barrier(); [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { dst[idst] = tmp[0]; } }