#version 450 #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; shared FLOAT_TYPE sccache1[2][BLOCK_SIZE/16][16]; shared FLOAT_TYPE sccache2[2][BLOCK_SIZE/16][16]; FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; uint csel = 0; void calc_superblock(const uint a_offset, const uint b_offset, const uint itid, const uint v_im, const uint ix, const uint q_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) { const uint y_idx = i * QUANT_K + y_offset; [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; csel ^= 1; if (!all_threads) { // when we don't have enough blocks to use all threads if (i < num_blocks_per_row) { const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]); sccache1[csel][ix][itid] = FLOAT_TYPE(scale & 0xF); sccache2[csel][ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF); } barrier(); if (i >= num_blocks_per_row) continue; } else { const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]); sccache1[csel][ix][itid] = FLOAT_TYPE(scale & 0xF); sccache2[csel][ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF); barrier(); } const uint32_t qs_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16); const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303)); const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303)); const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303)); const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303)); vec2 d = vec2(data_a[ib0 + i].d); const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]); vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]); vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]); vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]); vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]); vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]); vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]); vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]); FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 2; ++l) { sum1 = fma(FLOAT_TYPE(b0[l]), sccache1[csel][ix][ 8*v_im] * qs_u32_0[l ], fma(FLOAT_TYPE(b16[l]), sccache1[csel][ix][1 + 8*v_im] * qs_u32_0[l+2], fma(FLOAT_TYPE(b32[l]), sccache1[csel][ix][2 + 8*v_im] * qs_u32_2[l ], fma(FLOAT_TYPE(b48[l]), sccache1[csel][ix][3 + 8*v_im] * qs_u32_2[l+2], fma(FLOAT_TYPE(b64[l]), sccache1[csel][ix][4 + 8*v_im] * qs_u32_4[l ], fma(FLOAT_TYPE(b80[l]), sccache1[csel][ix][5 + 8*v_im] * qs_u32_4[l+2], fma(FLOAT_TYPE(b96[l]), sccache1[csel][ix][6 + 8*v_im] * qs_u32_6[l ], fma(FLOAT_TYPE(b112[l]), sccache1[csel][ix][7 + 8*v_im] * qs_u32_6[l+2], sum1)))))))); sum2 = fma(FLOAT_TYPE(b0[l]), sccache2[csel][ix][ 8*v_im], fma(FLOAT_TYPE(b16[l]), sccache2[csel][ix][1 + 8*v_im], fma(FLOAT_TYPE(b32[l]), sccache2[csel][ix][2 + 8*v_im], fma(FLOAT_TYPE(b48[l]), sccache2[csel][ix][3 + 8*v_im], fma(FLOAT_TYPE(b64[l]), sccache2[csel][ix][4 + 8*v_im], fma(FLOAT_TYPE(b80[l]), sccache2[csel][ix][5 + 8*v_im], fma(FLOAT_TYPE(b96[l]), sccache2[csel][ix][6 + 8*v_im], fma(FLOAT_TYPE(b112[l]), sccache2[csel][ix][7 + 8*v_im], sum2)))))))); } temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n])); } } } void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; const uint tid = gl_LocalInvocationID.x; const uint itid = tid%16; // 0...15 const uint ix = tid/16; const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128... const uint v_in = itid - 8*v_im; // 0...7 const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint y_offset = 128*v_im + l0; [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { temp[j][i] = FLOAT_TYPE(0); } } const uint nbr_par_th = num_blocks_per_row%it_size; const uint nbr_all_th = num_blocks_per_row - nbr_par_th; uint i0 = 0; [[unroll]] for (; i0 < nbr_all_th; i0 += it_size) calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, true); calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, false); reduce_result(temp, d_offset, first_row, num_rows, tid); } void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { if (first_row >= p.stride_d) { return; } compute_outputs(first_row, p.stride_d - first_row); } }