#include "ggml-quants.h" #include "ggml-impl.h" #define GGML_COMMON_IMPL_C #include "ggml-common.h" #include #include #include #include #include #include #include #include namespace { inline int nearest_int(float fval) { assert(fval <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } struct IQ1BNData { IQ1BNData(); std::vector> map; std::vector rmap; }; const IQ1BNData& get_iq1bn_data() { static std::mutex mutex; std::lock_guard lock(mutex); static IQ1BNData iq1bn; return iq1bn; } IQ1BNData::IQ1BNData() { map.resize(1 << 16, {int16_t(-1), false}); uint64_t aux64; uint8_t * aux8 = (uint8_t *)&aux64; std::vector values; values.reserve(6561); rmap.reserve(6561); for (int i = 0; i < (1 << 16); ++i) { bool is_good = true; for (int j = 0; j < 8; ++j) { aux8[j] = (i >> 2*j) & 3; if (aux8[j] == 3u) { is_good = false; break; } } if (!is_good) continue; auto orig = aux64; for (int j = 0; j < 8; ++j) aux8[j] = 2 - aux8[j]; int k = 0; for (; k < int(values.size()); ++k) { if (values[k] == aux64) break; } if (k < int(values.size())) { map[i] = {k, true}; } else { map[i].first = values.size(); values.push_back(orig); rmap.push_back(i); } } printf("==================== %s: initialized %d grid points\n", __func__, int(rmap.size())); } struct IQ1BNQuantizer { typedef union { float f; uint32_t i; } scale_t; constexpr static int block_size = QK_IQ1BN; int8_t L[QK_IQ1BN]; void quantize_one_row(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix); }; void IQ1BNQuantizer::quantize_one_row(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix) { (void)imatrix; constexpr int Nk = block_size/8; const int nblock = n_per_row/QK_IQ1BN; const auto& iq1bn = get_iq1bn_data(); float max_in_row = 0; for (int j = 0; j < n_per_row; ++j) { float ax = fabsf(src[j]); max_in_row = std::max(max_in_row, ax); } max_in_row *= 1.03125f; // i.e., round to nearest in our fp8 representation scale_t s; uint8_t u = 0; if (max_in_row > 1.9074e-06f && max_in_row < 0.12109f) { s.f = max_in_row; u = ((((s.i >> 23) + 132) & 0xf) << 4) | ((s.i >> 19) & 0xf); s.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); } else { // outside the allowed range. Small values we can habdle via quants set to zero, so we only warn about too large values if (max_in_row >= 0.12109f) { u = 255; fprintf(stderr, "%s: found scale %g, which is outside the range of out fp8 representation\n", __func__, max_in_row); } else{ u = 0; } } for (int ib = 0; ib < nblock; ++ib) { std::memset(&y[ib], 0, sizeof(block_iq1_bn)); auto xb = src + QK_IQ1BN*ib; for (int j = 0; j < QK_IQ1BN; ++j) { L[j] = fabsf(xb[j]) < 1e-6f ? 1 : xb[j] < 0 ? 0 : 2; } auto ql = y[ib].ql; auto qh = y[ib].qh; uint16_t extra = 0; for (int k = 0; k < Nk; ++k) { auto Lk = L + 8*k; uint16_t u = 0; for (int j = 0; j < 8; ++j) u |= (Lk[j] << 2*j); auto& val = iq1bn.map[u]; GGML_ASSERT(val.first >= 0); ql[k] = val.first & 255; qh[k/2] |= (val.first >> 8) << 4*(k%2); if (val.second) extra |= (1 << k); } y[ib].extra = u | (extra << 8); } } } void iq1bn_init_impl(void) { get_iq1bn_data(); } size_t quantize_iq1_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { IQ1BNQuantizer iq1bn; int nblock = n_per_row/QK_IQ1BN; block_iq1_bn * y = (block_iq1_bn *)dst; for (int row = 0; row < nrows; ++row) { iq1bn.quantize_one_row(src + row*n_per_row, y, n_per_row, imatrix); y += nblock; } return sizeof(block_iq1_bn)*nblock*nrows; } void quantize_row_iq1_bn_reference(const float * x, block_iq1_bn * y, int64_t k) { quantize_iq1_bn(x, y, 1, k, nullptr); } void quantize_row_iq1_bn(const float * x, void * y, int64_t k) { quantize_iq1_bn(x, y, 1, k, nullptr); } void dequantize_row_iq1_bn(const block_iq1_bn * x, float * y, int64_t k) { assert(k%QK_IQ1BN == 0); int nblock = k / QK_IQ1BN; IQ1BNQuantizer::scale_t s; for (int i = 0; i < nblock; ++i) { uint16_t u = x[i].extra & 0xff; s.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); float d = s.f; uint8_t extra = x[i].extra >> 8; auto qh = x[i].qh; auto ql = x[i].ql; for (int k = 0; k < QK_IQ1BN/8; ++k) { uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); uint16_t val = iq1bn_grid_u16[idx]; float dls = extra & (1 << k) ? -d : d; for (int j = 0; j < 8; ++j) y[j] = dls * (((val >> 2*j) & 3) - 1); y += 8; } } } #if __AVX__ || __AVX2__ || __AVX512F__ // horizontally add 8 floats static inline float hsum_float_8(const __m256 x) { __m128 res = _mm256_extractf128_ps(x, 1); res = _mm_add_ps(res, _mm256_castps256_ps128(x)); res = _mm_add_ps(res, _mm_movehl_ps(res, res)); res = _mm_add_ss(res, _mm_movehdup_ps(res)); return _mm_cvtss_f32(res); } #endif void ggml_vec_dot_iq1_bn_q8_0 (int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { GGML_UNUSED(bs); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(nrc); static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64"); const block_iq1_bn * x = (const block_iq1_bn *)vx; const block_q8_0 * y = (const block_q8_0 *)vy; int nblock = n / QK_IQ1BN; float sumf = 0; IQ1BNQuantizer::scale_t scale; #if defined __AVX2__ const auto m1_8 = _mm256_set1_epi8(1); const auto shuff1 = _mm256_set_epi64x(0x0808080808080808, 0x0000000000000000, 0x0808080808080808, 0x0000000000000000); const auto shuff2 = _mm256_add_epi8(shuff1, m1_8); const auto shuff3 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); const auto shuff4 = _mm256_set_epi64x(0x0707070707070707, 0x0606060606060606, 0x0505050505050505, 0x0404040404040404); const auto mask1 = _mm256_set1_epi64x(0x8040201008040201); #if !(defined __AVX512VNNI__ && defined __AVX512VL__) const auto m1_16 = _mm256_set1_epi16(1); #endif __m256 acc1 = _mm256_setzero_ps(); __m256 acc2 = _mm256_setzero_ps(); // All scales are the same in BitNet! uint16_t u = x[0].extra & 0xff; scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); for (int i = 0; i < nblock; ++i) { // We would uncomment this if we wanted to use this implementation for a model that has per block scales //uint16_t u = x[i].extra & 0xff; //scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); auto signs = _mm256_set1_epi8(x[i].extra >> 8); // signs for groups of 8 ordered as 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, ... // To use these to sign the q8 values we need // 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 amd the same for 4...7 signs = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, mask1), mask1), m1_8); auto q8_1 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[2*i+0].qs), _mm256_shuffle_epi8(signs, shuff3)); auto q8_2 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[2*i+1].qs), _mm256_shuffle_epi8(signs, shuff4)); auto ql = x[i].ql; auto qh = x[i].qh; auto aux1 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[3] | ((qh[1] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[2] | ((qh[1] << 8) & 0x0f00)], iq1bn_grid_xxx[ql[1] | ((qh[0] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[0] | ((qh[0] << 8) & 0x0f00)]); auto aux2 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[7] | ((qh[3] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[6] | ((qh[3] << 8) & 0x0f00)], iq1bn_grid_xxx[ql[5] | ((qh[2] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[4] | ((qh[2] << 8) & 0x0f00)]); auto v1_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff1), mask1), mask1); auto v1_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff2), mask1), mask1); auto v2_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff1), mask1), mask1); auto v2_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff2), mask1), mask1); auto dot1 = _mm256_sub_epi8(_mm256_sign_epi8(q8_1, v1_m), _mm256_sign_epi8(q8_1, v1_p)); auto dot2 = _mm256_sub_epi8(_mm256_sign_epi8(q8_2, v2_m), _mm256_sign_epi8(q8_2, v2_p)); #if defined __AVX512VNNI__ && defined __AVX512VL__ dot1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot1); dot2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot2); #else dot1 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot1)); dot2 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot2)); #endif // We would uncomment this if we wanted to use this implementation for a model that has per block scales //acc1 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+0].d)), _mm256_cvtepi32_ps(dot1), acc1); //acc2 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+1].d)), _mm256_cvtepi32_ps(dot2), acc2); // All scales are the same for BitNet! // This is slower //uint32_t aux32 = y[2*i+0].d | (y[2*i+1].d << 16); //auto d8 = _mm256_cvtph_ps(_mm_set1_epi32(aux32)); //acc1 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x00), _mm256_cvtepi32_ps(dot1), acc1); //acc2 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x55), _mm256_cvtepi32_ps(dot2), acc2); acc1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i+0].d)), _mm256_cvtepi32_ps(dot1), acc1); acc2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i+1].d)), _mm256_cvtepi32_ps(dot2), acc2); } //sumf = hsum_float_8(_mm256_add_ps(acc1, acc2)); sumf = scale.f * hsum_float_8(_mm256_add_ps(acc1, acc2)); #else for (int i = 0; i < nblock; ++i) { uint16_t u = x[i].extra & 0xff; scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); uint8_t extra = x[i].extra >> 8; auto qh = x[i].qh; auto ql = x[i].ql; auto q8 = y[2*i+0].qs; int16_t sumi1 = 0; for (int k = 0; k < 4; ++k) { uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); uint16_t val = iq1bn_grid_u16[idx]; int16_t sl = 0; for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); sumi1 += extra & (1 << k) ? -sl : sl; q8 += 8; } q8 = y[2*i+1].qs; int16_t sumi2 = 0; for (int k = 4; k < 8; ++k) { uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); uint16_t val = iq1bn_grid_u16[idx]; int16_t sl = 0; for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); sumi2 += extra & (1 << k) ? -sl : sl; q8 += 8; } sumf += scale.f * (GGML_FP16_TO_FP32(y[2*i+0].d) * sumi1 + GGML_FP16_TO_FP32(y[2*i+1].d) * sumi2); } #endif *s = sumf; } void ggml_vec_dot_iq1_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { GGML_UNUSED(bs); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(nrc); static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64"); const block_iq1_bn * x = (const block_iq1_bn *)vx; const block_q8_K64 * y = (const block_q8_K64 *)vy; int nblock = n / QK_IQ1BN; float sumf = 0; IQ1BNQuantizer::scale_t scale; #if defined __AVX2__ const auto m1_8 = _mm256_set1_epi8(1); const auto shuff1 = _mm256_set_epi64x(0x0808080808080808, 0x0000000000000000, 0x0808080808080808, 0x0000000000000000); const auto shuff2 = _mm256_add_epi8(shuff1, m1_8); const auto shuff3 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); const auto shuff4 = _mm256_set_epi64x(0x0707070707070707, 0x0606060606060606, 0x0505050505050505, 0x0404040404040404); const auto mask1 = _mm256_set1_epi64x(0x8040201008040201); #if !(defined __AVX512VNNI__ && defined __AVX512VL__) const auto m1_16 = _mm256_set1_epi16(1); #endif __m256 acc = _mm256_setzero_ps(); // All scales are the same in BitNet! uint16_t u = x[0].extra & 0xff; scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); for (int i = 0; i < nblock; ++i) { // We would uncomment this if we wanted to use this implementation for a model that has per block scales //uint16_t u = x[i].extra & 0xff; //scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); auto signs = _mm256_set1_epi8(x[i].extra >> 8); // signs for groups of 8 ordered as 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, ... // To use these to sign the q8 values we need // 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 amd the same for 4...7 signs = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, mask1), mask1), m1_8); auto q8_1 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[i].qs+0), _mm256_shuffle_epi8(signs, shuff3)); auto q8_2 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[i].qs+1), _mm256_shuffle_epi8(signs, shuff4)); auto ql = x[i].ql; auto qh = x[i].qh; auto aux1 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[3] | ((qh[1] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[2] | ((qh[1] << 8) & 0x0f00)], iq1bn_grid_xxx[ql[1] | ((qh[0] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[0] | ((qh[0] << 8) & 0x0f00)]); auto aux2 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[7] | ((qh[3] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[6] | ((qh[3] << 8) & 0x0f00)], iq1bn_grid_xxx[ql[5] | ((qh[2] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[4] | ((qh[2] << 8) & 0x0f00)]); auto v1_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff1), mask1), mask1); auto v1_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff2), mask1), mask1); auto v2_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff1), mask1), mask1); auto v2_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff2), mask1), mask1); auto dot1 = _mm256_sub_epi8(_mm256_sign_epi8(q8_1, v1_m), _mm256_sign_epi8(q8_1, v1_p)); auto dot2 = _mm256_sub_epi8(_mm256_sign_epi8(q8_2, v2_m), _mm256_sign_epi8(q8_2, v2_p)); #if defined __AVX512VNNI__ && defined __AVX512VL__ dot1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot1); dot2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot2); #else dot1 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot1)); dot2 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot2)); #endif // We would uncomment this if we wanted to use this implementation for a model that has per block scales //acc1 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+0].d)), _mm256_cvtepi32_ps(dot1), acc1); //acc2 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+1].d)), _mm256_cvtepi32_ps(dot2), acc2); // All scales are the same for BitNet! // This is slower //uint32_t aux32 = y[2*i+0].d | (y[2*i+1].d << 16); //auto d8 = _mm256_cvtph_ps(_mm_set1_epi32(aux32)); //acc1 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x00), _mm256_cvtepi32_ps(dot1), acc1); //acc2 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x55), _mm256_cvtepi32_ps(dot2), acc2); acc = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d), _mm256_cvtepi32_ps(_mm256_add_epi32(dot1, dot2)), acc); } sumf = scale.f * hsum_float_8(acc); #else uint16_t u = x[0].extra & 0xff; scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); for (int i = 0; i < nblock; ++i) { uint8_t extra = x[i].extra >> 8; auto qh = x[i].qh; auto ql = x[i].ql; auto q8 = y[i].qs; int sumi = 0; for (int k = 0; k < 4; ++k) { uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); uint16_t val = iq1bn_grid_u16[idx]; int16_t sl = 0; for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); sumi += extra & (1 << k) ? -sl : sl; q8 += 8; } for (int k = 4; k < 8; ++k) { uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); uint16_t val = iq1bn_grid_u16[idx]; int16_t sl = 0; for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); sumi += extra & (1 << k) ? -sl : sl; q8 += 8; } sumf += scale.f * (y[i].d) * sumi; } #endif *s = sumf; }