#include "llama-sampling.h" #include "llama-vocab.h" #include "llama-grammar.h" #include #include #include #include #include #include static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } smpl->rng.seed(seed); } void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { GGML_ASSERT(candidates->size > 0); const int64_t t_start_sample_us = ggml_time_us(); // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } float max_l = candidates->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float p = expf(candidates->data[i].logit - max_l); candidates->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) { // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast // if (k >= (int32_t)candidates->size) { // return; // } const int64_t t_start_sample_us = ggml_time_us(); if (k <= 0) { k = candidates->size; } k = std::max(k, (int) min_keep); k = std::min(k, (int) candidates->size); // Sort scores in descending order if (!candidates->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k <= 128) { std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } else { constexpr int nbuckets = 128; constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); constexpr float bucker_inter = -bucket_low * bucket_scale; std::vector bucket_idx(candidates->size); std::vector histo(nbuckets, 0); for (int i = 0; i < (int)candidates->size; ++i) { const float val = candidates->data[i].logit; int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets-1, ib)); bucket_idx[i] = ib; ++histo[ib]; } int nhave = 0; int ib = nbuckets - 1; for ( ; ib >= 0; --ib) { nhave += histo[ib]; if (nhave >= k) break; } std::vector tmp_tokens(nhave); auto ptr = tmp_tokens.data(); std::vector bucket_ptrs; bucket_ptrs.reserve(nbuckets - ib); for (int j = nbuckets - 1; j >= ib; --j) { bucket_ptrs.push_back(ptr); ptr += histo[j]; } for (int i = 0; i < (int)candidates->size; ++i) { int j = bucket_idx[i]; if (j >= ib) { *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; } } ptr = tmp_tokens.data(); int ndone = 0; for (int j = nbuckets-1; j > ib; --j) { std::sort(ptr, ptr + histo[j], comp); ptr += histo[j]; ndone += histo[j]; } std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); } candidates->sorted = true; } candidates->size = k; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { if (p >= 1.0f) { return; } llama_sample_softmax_impl(smpl, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= p && i + 1 >= min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens candidates->size = last_idx; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { if (p <= 0.0f || !candidates->size) { return; } const int64_t t_start_sample_us = ggml_time_us(); bool min_p_applied = false; // if the candidates aren't sorted, try the unsorted implementation first if (!candidates->sorted) { std::vector filtered_tokens; float max_logit = -FLT_MAX; for (size_t i = 0; i < candidates->size; ++i) { max_logit = std::max(max_logit, candidates->data[i].logit); } const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max for (size_t i = 0; i < candidates->size; ++i) { if (candidates->data[i].logit >= min_logit) { filtered_tokens.push_back(candidates->data[i]); } } // if we have enough values the operation was a success if (filtered_tokens.size() >= min_keep) { memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); candidates->size = filtered_tokens.size(); min_p_applied = true; } } // if the candidates are sorted or the unsorted implementation failed, use this implementation if (!min_p_applied) { // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max size_t i = 1; // first token always matches for (; i < candidates->size; ++i) { if (candidates->data[i].logit < min_logit && i >= min_keep) { break; // prob too small } } // Resize the output vector to keep only the matching tokens candidates->size = i; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) { if (z >= 1.0f || candidates->size <= 2) { return; } llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); std::vector second_derivatives(candidates->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = std::abs(second_derivatives[i]); } // Normalize the second derivatives { const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); if (second_derivatives_sum > 1e-6f) { for (float & value : second_derivatives) { value /= second_derivatives_sum; } } else { for (float & value : second_derivatives) { value = 1.0f / second_derivatives.size(); } } } float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location candidates->size = last_idx; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < candidates->size; ++i) { float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(candidates->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += candidates->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector new_candidates; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; new_candidates.push_back(candidates->data[idx]); } // Replace the data in candidates with the new_candidates data std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); candidates->size = new_candidates.size(); candidates->sorted = false; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) { const int64_t t_start_sample_us = ggml_time_us(); // no need to do anything if there is only one (or zero) candidates if(candidates->size <= 1) { return; } // Calculate maximum possible entropy float max_entropy = -logf(1.0f / candidates->size); llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); // Calculate entropy of the softmax probabilities float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float prob = candidates->data[i].p; if (prob > 0.0f) { // Ensure no log(0) entropy -= prob * logf(prob); } } // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above) float normalized_entropy = entropy / max_entropy; // Map the normalized entropy to the desired temperature range using the power function float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); #ifdef DEBUG LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); LLAMA_LOG_INFO("Entropy: %f\n", entropy); LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); #endif // Apply the dynamically calculated temperature scaling for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].logit /= dyn_temp; } // Re-compute softmax probabilities after scaling logits with dynamic temperature double max_l_double = candidates->data[0].logit; double cum_sum_double = 0.0; for (size_t i = 0; i < candidates->size; ++i) { double p = exp(candidates->data[i].logit - max_l_double); candidates->data[i].p = p; // Store the scaled probability cum_sum_double += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities } #ifdef DEBUG // Print the updated top 25 probabilities after temperature scaling LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); for (size_t i = 0; i < 25 && i < candidates->size; ++i) { LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f); } #endif if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].logit /= temp; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_xtc_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float probability, float threshold, size_t min_keep) { if (probability <= 0 || threshold > 0.5f || candidates->size < 2) { return; } GGML_ASSERT(smpl); const int64_t t_start_sample_us = ggml_time_us(); if (probability < 1) { std::uniform_real_distribution distribution(0.0f, 1.0f); float chance = distribution(smpl->rng); if (chance > probability) return; } llama_sample_softmax_impl(nullptr, candidates); auto cur_size = candidates->size; int pos_last = 0; for (size_t i = 0; i < candidates->size; ++i) { if (candidates->data[i].p >= threshold) { pos_last = i; } else break; } if (candidates->size - pos_last >= min_keep && pos_last > 0) { candidates->data += pos_last; candidates->size -= pos_last; } smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->n_sample++; } void llama_sample_top_n_sigma_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float top_n_sigma) { if (top_n_sigma <= 0.0f || candidates->size < 4) { // top_n_sigma <= 0: disabled // candidates->size < 4: no point in applying the transformation for fewer than 4 logits. return; } const int64_t t_start_sample_us = ggml_time_us(); float max = candidates->data[0].logit; float mean = 0; size_t count = 0; for (int i = 0; i < (int)candidates->size; ++i) { // Only count non-negative infinity values if (candidates->data[i].logit != -INFINITY) { max = std::max(max, candidates->data[i].logit); mean += candidates->data[i].logit; ++count; } } if (count < 4) { return; // again, tandard deviation is not well defined for so few logits (4 is actually pushing it) } mean /= count; float sigma2 = 0; for (int i = 0; i < (int)candidates->size; ++i) { if (candidates->data[i].logit != -INFINITY) { float delta = candidates->data[i].logit - mean; sigma2 += delta*delta; } } float sigma = sqrtf(sigma2/count); float thresh = max - top_n_sigma*sigma; int n_masked = 0; for (int i = 0; i < (int)candidates->size; ++i) { if (candidates->data[i].logit != -INFINITY && candidates->data[i].logit < thresh) { candidates->data[i].logit = -INFINITY; ++n_masked; } } // do we really want to compute softmax unconditionally? // The following coresponds to mainline implementation with the minor optimization // that we only call the relativly expensive softmax if we masked away some tokens. if (n_masked > 0 || !candidates->sorted) { llama_sample_softmax_impl(nullptr, candidates); } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->n_sample++; } } void llama_sample_repetition_penalties_impl( struct llama_sampling * smpl, llama_token_data_array * candidates, const llama_token * last_tokens, size_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present) { if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Create a frequency map to count occurrences of each token in last_tokens std::unordered_map token_count; for (size_t i = 0; i < penalty_last_n; ++i) { token_count[last_tokens[i]]++; } // Apply frequency and presence penalties to the candidates for (size_t i = 0; i < candidates->size; ++i) { const auto token_iter = token_count.find(candidates->data[i].id); if (token_iter == token_count.end()) { continue; } const int count = token_iter->second; // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (candidates->data[i].logit <= 0) { candidates->data[i].logit *= penalty_repeat; } else { candidates->data[i].logit /= penalty_repeat; } candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; } candidates->sorted = false; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_apply_guidance_impl( struct llama_sampling * smpl, float * logits, float * logits_guidance, float scale) { GGML_ASSERT(smpl); const auto t_start_sample_us = ggml_time_us(); const auto n_vocab = smpl->n_vocab; llama_log_softmax(logits, n_vocab); llama_log_softmax(logits_guidance, n_vocab); for (int i = 0; i < n_vocab; ++i) { auto & l = logits[i]; const auto & g = logits_guidance[i]; l = scale * (l - g) + g; } smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { GGML_ASSERT(smpl); const int32_t n_vocab = float(smpl->n_vocab); int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat); // Sample the next word X using top-k sampling llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1); smpl->t_sample_us += ggml_time_us() - t_start_sample_us; llama_token X = llama_sample_token_impl(smpl, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; smpl->t_sample_us += ggml_time_us() - t_start_sample_us; return X; } llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) { int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax_impl(smpl, candidates); // Truncate the words with surprise values greater than mu candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > *mu; })); if (candidates->size == 0) { candidates->size = 1; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } // Normalize the probabilities of the remaining words llama_sample_softmax_impl(smpl, candidates); // Sample the next word X from the remaining words llama_token X = llama_sample_token_impl(smpl, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { const int64_t t_start_sample_us = ggml_time_us(); // Find max element auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); llama_token result = max_iter->id; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->n_sample++; } return result; } llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) { GGML_ASSERT(smpl); const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); std::vector probs; probs.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { probs.push_back(candidates->data[i].p); } std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); llama_token result = candidates->data[idx].id; smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->n_sample++; return result; } llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng); } // DRY // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) static void get_overlapping_token_sequences(const llama_vocab& vocab, const std::string& str, std::unordered_multimap>& token_sequences, int max_tail_len = -1) { for (llama_token token_id = 0; token_id < (llama_token)vocab.n_tokens(); token_id++) { std::string word = llama_detokenize(vocab, { token_id }, true); if (word.find(str) != std::string::npos) { token_sequences.emplace(token_id, std::vector()); } else { size_t word_len = word.size(), str_len = str.size(); size_t pos = -1; while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { bool match = true; size_t i; for (i = 1; i < str_len && i + pos < word_len; ++i) { if (word[pos + i] != str[i]) { match = false; break; } } if (match) { std::vector tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false); if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) { tokenization.resize(max_tail_len); } // Ensure we don't already have a duplicate matching tokenization auto its = token_sequences.equal_range(token_id); bool found = false; for (auto it = its.first; it != its.second; ++it) { if (tokenization == it->second) { found = true; break; } } if (!found) { token_sequences.emplace(token_id, tokenization); } } } } } } static const char* llama_sampler_dry_name(const struct llama_sampler* /*smpl*/) { return "dry"; } // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) void llama_sampler_dry_apply(struct llama_sampler_dry* smpl, llama_token_data_array* cur_p) { if (smpl->dry_multiplier == 0.0f || smpl->dry_base < 1.0f || smpl->dry_penalty_last_n == 0) { return; } int32_t effective_dry_penalty_last_n = (smpl->dry_penalty_last_n == -1) ? smpl->total_context_size : std::max(smpl->dry_penalty_last_n, 0); int last_n_repeat = std::min(std::min((int)smpl->last_tokens.size(), effective_dry_penalty_last_n), smpl->total_context_size); if (last_n_repeat <= smpl->dry_allowed_length) { return; } smpl->dry_repeat_count.assign(last_n_repeat, 0); smpl->dry_max_token_repeat.clear(); // Step 1: Look for restart sequences to limit the maximum repetition length. // Work backwards through the context looking for any token that begins a restart sequence. // // The collection `restart_sequences` is a mapping from a "head" token to all "tail" // sequences that together comprise a restart sequence. This allows us to quickly check // whether each token is the head of a complete sequence. Most restart sequences are actually // a single token, and for these the "tail" is an empty vector. // // If the token is a "head", test all restart sequences that begin with this token // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The // longest matching sequence (if any) is used to limit the maximum repetition length. // // Note that in the case case of a short sequence contained in a longer one, this might fail to // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare. // // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we // have already clamped the maximum tail sequence length when generating `restart_sequences`. // With clamping, this scan is O(N) in the context length. int rep_limit = last_n_repeat; for (int i = 0; i < last_n_repeat; ++i) { llama_token token = smpl->last_tokens.rat(i); auto its = smpl->dry_processed_breakers.equal_range(token); if (its.first == smpl->dry_processed_breakers.end()) { continue; } int longest_match = -1; for (auto it = its.first; it != its.second; ++it) { // Note that (*it) does not contain the head character, so seq_len will be // the restart sequence length minus 1. // In the common case of a single-token restart sequence, (*it) will be empty // and we will trivially match. int seq_len = (int)it->second.size(); if (seq_len > longest_match && seq_len <= (int)i) { bool match = true; for (int offset = 0; offset < seq_len; ++offset) { // The -1 when indexing `last_tokens` is because we already matched the head. if (it->second[offset] != smpl->last_tokens.rat(i - offset - 1)) { match = false; break; } } if (match) { longest_match = seq_len; } } } if (longest_match >= 0) { // We found a restart sequence starting `i` tokens from the end and continuing for // `longest_match` tokens. rep_limit = i - longest_match; break; } } if (rep_limit < smpl->dry_allowed_length) { return; } // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences. // // This algorithm is not currently documented on Wikipedia, but there is a clear description here: // https://ivanyu.me/blog/2014/10/15/z-algorithm/ // // The code below is adapted from the public domain implementation by the same author here: // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py // // Example: // Last N tokens: a b c c b c y a b c // Repeat counts: 0 0 3 1 0 2 0 0 0 0 // ^ // This `3` means that the last three tokens of the context (a b c) also appear here. // // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables // ensure that the inner while loops only examine each token in the context once as the outer // for loop iterates over the context. { const int last = last_n_repeat - 1; int rt = 0, lt = 0; for (int k = 1; k < last_n_repeat; ++k) { if (k > rt) { // If k is outside the current Z-box, do naive computation. int n = 0; while (n + k < last_n_repeat && smpl->last_tokens.rat(n) == smpl->last_tokens.rat(n + k)) { ++n; } smpl->dry_repeat_count[last - k] = std::min(n, rep_limit); if (n > 0) { lt = k; rt = k + n - 1; } } else { // If k is inside the current Z-box, consider two cases. int p = k - lt; // Pair index. int right_part_len = rt - k + 1; if (smpl->dry_repeat_count[last - p] < right_part_len) { int n = std::min(smpl->dry_repeat_count[last - p], rep_limit); smpl->dry_repeat_count[last - k] = n; } else { int i = rt + 1; while (i < last_n_repeat && smpl->last_tokens.rat(i) == smpl->last_tokens.rat(i - k)) { i += 1; } int n = std::min(i - k, rep_limit); smpl->dry_repeat_count[last - k] = n; lt = k; rt = i - 1; } } } } // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length // that would be generated by emitting each new token that would extend a sequence. // // Following the same example as above: // Last N tokens: a b c c b c y a b c // Repeat counts: 0 0 3 1 0 2 0 0 0 0 // // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition. // c: 3 -> 4 (from `a b c` to `a b c c`) // b: 1 -> 2 (from `c` to `c b`) // y: 2 -> 3 (from `b c` to `b c y`) for (int i = 0; i < last_n_repeat - 1; ++i) { int repeat_len = smpl->dry_repeat_count[i]; if (repeat_len >= smpl->dry_allowed_length) { // This token ends a repeat, so the next token would continue one. // By convention, the value of `repeat_len` only includes the tokens currently // in the context, not the new token that would be added. llama_token token = smpl->last_tokens.rat(last_n_repeat - 2 - i); // Track the maximum sequence ending in this token. const auto& it = smpl->dry_max_token_repeat.find(token); if (it == smpl->dry_max_token_repeat.end() || it->second < repeat_len) { smpl->dry_max_token_repeat[token] = repeat_len; } } } // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens. // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`. // Compute it from `penalty_base` and the approximate log of `std::numeric_limits::max()` const float FLOAT_MAX_LOG = 88.7228391f; int max_exponent = 0; if (smpl->dry_base > 1.000001f) { max_exponent = FLOAT_MAX_LOG / std::log(smpl->dry_base); } for (size_t i = 0; i < cur_p->size; ++i) { const auto& af_kvp = smpl->dry_max_token_repeat.find(cur_p->data[i].id); if (af_kvp != smpl->dry_max_token_repeat.end()) { // Check all sequence breakers starting with this token auto range = smpl->dry_processed_breakers.equal_range(cur_p->data[i].id); bool is_single_token_breaker = false; for (auto it = range.first; it != range.second; ++it) { if (it->second.empty()) { is_single_token_breaker = true; break; } } // Apply penalty only if it's not a single-token sequence breaker if (!is_single_token_breaker) { int repeat_exp = af_kvp->second - smpl->dry_allowed_length; if (max_exponent > 0 && repeat_exp > max_exponent) { repeat_exp = max_exponent; } float penalty = smpl->dry_multiplier * std::pow(smpl->dry_base, repeat_exp); cur_p->data[i].logit -= penalty; } } } cur_p->sorted = false; } struct llama_sampler_dry* llama_sampler_init_dry_impl(const struct llama_vocab& vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0); std::unordered_multimap> processed_breakers; const int MAX_CHAR_LEN = 40; const int MAX_SEQ_LEN = 20; const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0); if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) { // Process sequence breakers for (size_t i = 0; i < num_breakers; ++i) { if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) { LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i); continue; } std::string sequence_break(seq_breakers[i]); if (sequence_break.empty()) { LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n"); continue; } if (sequence_break.size() > MAX_CHAR_LEN) { LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN); sequence_break.resize(MAX_CHAR_LEN); } get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN); } } return new llama_sampler_dry { /* .total_context_size = */ context_size, /* .dry_multiplier = */ dry_multiplier, /* .dry_base = */ dry_base, /* .dry_allowed_length = */ dry_allowed_length, /* .dry_penalty_last_n = */ dry_penalty_last_n, /* .dry_processed_breakers = */ std::move(processed_breakers), /* .dry_repeat_count = */ dry_enabled ? std::vector(effective_dry_penalty_last_n, 0) : std::vector{}, /* .dry_max_token_repeat = */ {}, /* .last_tokens = */ dry_enabled ? ring_buffer(effective_dry_penalty_last_n) : ring_buffer(0), }; }