summaryrefslogtreecommitdiff
path: root/common/common.h
blob: c50a6edfc4124728e7facde01ef91221aba05dec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Various helper functions and utilities

#pragma once

#include "llama.h"

#include <string>
#include <vector>
#include <random>
#include <thread>
#include <unordered_map>
#include <tuple>

//
// CLI argument parsing
//
int32_t get_num_physical_cores();

struct gpt_params {
    uint32_t seed                           = -1;   // RNG seed
    int32_t n_threads                       = get_num_physical_cores();
    int32_t n_predict                       = -1;   // new tokens to predict
    int32_t n_ctx                           = 512;  // context size
    int32_t n_batch                         = 512;  // batch size for prompt processing (must be >=32 to use BLAS)
    int32_t n_keep                          = 0;    // number of tokens to keep from initial prompt
    int32_t n_chunks                        = -1;   // max number of chunks to process (-1 = unlimited)
    int32_t n_gpu_layers                    = 0;    // number of layers to store in VRAM
    int32_t main_gpu                        = 0;    // the GPU that is used for scratch and small tensors
    float   tensor_split[LLAMA_MAX_DEVICES] = {0};  // how split tensors should be distributed across GPUs
    int32_t n_probs                         = 0;    // if greater than 0, output the probabilities of top n_probs tokens.
    float   rope_freq_base                  = 10000.0f; // RoPE base frequency
    float   rope_freq_scale                 = 1.0f;     // RoPE frequency scaling factor

    // sampling parameters
    int32_t top_k             = 40;    // <= 0 to use vocab size
    float   top_p             = 0.95f; // 1.0 = disabled
    float   tfs_z             = 1.00f; // 1.0 = disabled
    float   typical_p         = 1.00f; // 1.0 = disabled
    float   temp              = 0.80f; // 1.0 = disabled
    float   repeat_penalty    = 1.10f; // 1.0 = disabled
    int32_t repeat_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
    float   frequency_penalty = 0.00f; // 0.0 = disabled
    float   presence_penalty  = 0.00f; // 0.0 = disabled
    int32_t mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
    float   mirostat_tau      = 5.00f; // target entropy
    float   mirostat_eta      = 0.10f; // learning rate

    std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens

    // Classifier-Free Guidance
    // https://arxiv.org/abs/2306.17806
    std::string cfg_negative_prompt;       // string to help guidance
    float       cfg_scale         = 1.f;   // How strong is guidance

    std::string model             = "models/7B/ggml-model-f16.gguf"; // model path
    std::string model_alias       = "unknown"; // model alias
    std::string prompt            = "";
    std::string path_prompt_cache = "";  // path to file for saving/loading prompt eval state
    std::string input_prefix      = "";  // string to prefix user inputs with
    std::string input_suffix      = "";  // string to suffix user inputs with
    std::string grammar           = "";  // optional BNF-like grammar to constrain sampling
    std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted

    std::string lora_adapter = "";  // lora adapter path
    std::string lora_base    = "";  // base model path for the lora adapter

    bool hellaswag         = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
    size_t hellaswag_tasks = 400;   // number of tasks to use when computing the HellaSwag score

    bool low_vram          = false; // if true, reduce VRAM usage at the cost of performance
    bool mul_mat_q         = false; // if true, use experimental mul_mat_q kernels
    bool memory_f16        = true;  // use f16 instead of f32 for memory kv
    bool random_prompt     = false; // do not randomize prompt if none provided
    bool use_color         = false; // use color to distinguish generations and inputs
    bool interactive       = false; // interactive mode
    bool prompt_cache_all  = false; // save user input and generations to prompt cache
    bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it

    bool embedding         = false; // get only sentence embedding
    bool interactive_first = false; // wait for user input immediately
    bool multiline_input   = false; // reverse the usage of `\`
    bool simple_io         = false; // improves compatibility with subprocesses and limited consoles

    bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
    bool ignore_eos        = false; // ignore generated EOS tokens
    bool instruct          = false; // instruction mode (used for Alpaca models)
    bool penalize_nl       = true;  // consider newlines as a repeatable token
    bool perplexity        = false; // compute perplexity over the prompt
    bool use_mmap          = true;  // use mmap for faster loads
    bool use_mlock         = false; // use mlock to keep model in memory
    bool mem_test          = false; // compute maximum memory usage
    bool numa              = false; // attempt optimizations that help on some NUMA systems
    bool export_cgraph     = false; // export the computation graph
    bool verbose_prompt    = false; // print prompt tokens before generation
};

bool gpt_params_parse(int argc, char ** argv, gpt_params & params);

void gpt_print_usage(int argc, char ** argv, const gpt_params & params);

std::string gpt_random_prompt(std::mt19937 & rng);

//
// Model utils
//

std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);

//
// Vocab utils
//

std::vector<llama_token> llama_tokenize(
        struct llama_context * ctx,
           const std::string & text,
                        bool   add_bos);

std::vector<llama_token> llama_tokenize_bpe(
        struct llama_context * ctx,
           const std::string & text,
                        bool   add_bos);

std::string llama_token_to_str(
        const struct llama_context * ctx,
                       llama_token   token);

std::string llama_token_to_str_bpe(
    const struct llama_context * ctx,
                   llama_token   token);