summaryrefslogtreecommitdiff
path: root/examples/imatrix/imatrix.cpp
blob: 1461bc96376a7c3436086366d027da13392c094a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include "common.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>
#include <fstream>
#include <unordered_map>
#include <algorithm>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

struct Stats {
    std::vector<float> values;
    int ncall = 0;
};

struct StatParams {
    std::string ofile = "imatrix.dat";
    int         n_output_frequency = 10;
    int         verbosity = 1;
    bool        collect_output_weight = false;
};

class IMatrixCollector {
public:
    IMatrixCollector() = default;
    void set_parameters(StatParams&& params) { m_params = std::move(params); }
    void collect_imatrix(const struct ggml_tensor * src0, const struct ggml_tensor * src1);
    void save_imatrix() const;
private:
    std::unordered_map<std::string, Stats> m_stats;
    StatParams                             m_params;
    std::mutex                             m_mutex;
    int                                    m_last_call = 0;
};

void IMatrixCollector::collect_imatrix(const struct ggml_tensor * src0, const struct ggml_tensor * src1) {
    if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return;
    if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return;
    std::lock_guard<std::mutex> lock(m_mutex);
    auto& e = m_stats[src0->name];
    if (e.values.empty()) {
        e.values.resize(src1->ne[0], 0);
    }
    else if (e.values.size() != (size_t)src1->ne[0]) {
        fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
        exit(1); //GGML_ASSERT(false);
    }
    ++e.ncall;
    if (m_params.verbosity > 1) {
        printf("%s[%d]: %s, %d x %d, %d\n",__func__,m_last_call,src0->name,(int)src1->ne[0],(int)src1->ne[1],(int)src1->type);
    }
    for (int row = 0; row < (int)src1->ne[1]; ++row) {
        const float * x = (const float *)src1->data + row * src1->ne[0];
        for (int j = 0; j < (int)src1->ne[0]; ++j) {
            e.values[j] += x[j]*x[j];
        }
    }
    if (e.ncall > m_last_call) {
        m_last_call = e.ncall;
        if (m_last_call % m_params.n_output_frequency == 0) {
            save_imatrix();
        }
    }
}

void IMatrixCollector::save_imatrix() const {
    const char * fname = m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str();
    std::ofstream out(fname, std::ios::binary);
    int n_entries = m_stats.size();
    out.write((const char*)&n_entries, sizeof(n_entries));
    for (auto& p : m_stats) {
        int len = p.first.size();
        out.write((const char*)&len, sizeof(len));
        out.write(p.first.c_str(), len);
        out.write((const char*)&p.second.ncall, sizeof(p.second.ncall));
        int nval = p.second.values.size();
        out.write((const char*)&nval, sizeof(nval));
        if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float));
    }
    if (m_params.verbosity > 0) {
        fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname);
    }
}

static IMatrixCollector g_collector;

static void ik_collect_imatrix(const struct ggml_tensor * src0, const struct ggml_tensor * src1) {
    g_collector.collect_imatrix(src0, src1);
}


struct results_log_softmax {
    double log_softmax;
    float  logit;
    float  prob;
};

static std::vector<float> softmax(const std::vector<float>& logits) {
    std::vector<float> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) {
        max_logit = std::max(max_logit, v);
    }
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        const float logit = logits[i] - max_logit;
        const float exp_logit = expf(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) {
        probs[i] /= sum_exp;
    }
    return probs;
}

static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
    float max_logit = logits[0];
    for (int i = 1; i < n_vocab; ++i) {
        max_logit = std::max(max_logit, logits[i]);
    }
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}

static void process_logits(
    int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
    double & nll, double & nll2, float * logit_history, float * prob_history
) {
    std::mutex mutex;
    int counter = 0;
    auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
        double local_nll  = 0;
        double local_nll2 = 0;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                nll += local_nll; nll2 += local_nll2;
                break;
            }
            lock.unlock();
            const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
            const double v = -results.log_softmax;
            local_nll += v;
            local_nll2 += v*v;

            logit_history[i] = results.logit;
            prob_history[i]  = results.prob;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
}

static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {

    const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
    const int n_ctx = llama_n_ctx(ctx);

    auto tim1 = std::chrono::high_resolution_clock::now();
    fprintf(stderr, "%s: tokenizing the input ..\n", __func__);

    std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);

    auto tim2 = std::chrono::high_resolution_clock::now();
    fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());

    if (int(tokens.size()) < 2*n_ctx) {
        fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
                n_ctx);
        fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
        return false;
    }

    std::vector<float> logit_history;
    logit_history.resize(tokens.size());

    std::vector<float> prob_history;
    prob_history.resize(tokens.size());

    const int n_chunk_max = tokens.size() / n_ctx;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
    const int n_batch = params.n_batch;

    int count = 0;
    double nll = 0.0;
    double nll2 = 0.0;

    fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);

    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * n_ctx;
        const int end   = start + n_ctx;

        const int num_batches = (n_ctx + n_batch - 1) / n_batch;

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_clear(ctx);

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
            }

            if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
                fprintf(stderr, "%s : failed to eval\n", __func__);
                return false;
            }

            // restore the original token in case it was set to BOS
            tokens[batch_start] = token_org;

            const auto * batch_logits = llama_get_logits(ctx);
            logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
        }

        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
                total_seconds = total_seconds % (60*60);
            }
            fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
        }

        const int first = n_ctx/2;
        process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
                       workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
        count += n_ctx - first - 1;

        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
        fflush(stdout);
    }
    printf("\n");

    nll2 /= count;
    nll /= count;
    const double ppl = exp(nll);
    nll2 -= nll * nll;
    if (nll2 > 0) {
        nll2 = sqrt(nll2/(count-1));
        printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
    } else {
        printf("Unexpected negative standard deviation of log(prob)\n");
    }

    return true;
}

int main(int argc, char ** argv) {

    StatParams sparams;
    std::vector<char*> args;
    args.push_back(argv[0]);
    int iarg = 1;
    for (; iarg < argc-1; ++iarg) {
        std::string arg{argv[iarg]};
        if (arg == "-o" || arg == "--output-file") {
            sparams.ofile = argv[++iarg];
        }
        else if (arg == "-ofreq" || arg == "--output-frequency") {
            sparams.n_output_frequency = std::stoi(argv[++iarg]);
        }
        else if (arg == "-ow" || arg == "--output-weight") {
            sparams.collect_output_weight = std::stoi(argv[++iarg]);
        }
        else if (arg == "--verbosity") {
            sparams.verbosity = std::stoi(argv[++iarg]);
        } else {
            args.push_back(argv[iarg]);
        }
    }
    if (iarg < argc) {
        args.push_back(argv[iarg]);
    }

    gpt_params params;
    params.n_batch = 512;
    if (!gpt_params_parse(args.size(), args.data(), params)) {
        return 1;
    }

    g_collector.set_parameters(std::move(sparams));

    ggml_set_imatrix_collection(ik_collect_imatrix);

    params.logits_all = true;
    params.n_batch = std::min(params.n_batch, params.n_ctx);

    print_build_info();

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }

    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);

    std::mt19937 rng(params.seed);
    if (params.random_prompt) {
        params.prompt = gpt_random_prompt(rng);
    }

    llama_backend_init(params.numa);

    llama_model * model;
    llama_context * ctx;

    // load the model and apply lora adapter, if any
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
    if (model == NULL) {
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    if (params.n_ctx > n_ctx_train) {
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, params.n_ctx);
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "%s\n", get_system_info(params).c_str());
    }

    bool OK = compute_imatrix(ctx, params);
    if (!OK) {
        return 1;
    }

    g_collector.save_imatrix();

    llama_print_timings(ctx);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}