1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
#include "ggml.h"
#include "log.h"
#include "common.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void show_additional_info(int /*argc*/, char ** argv) {
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
LOG_TEE("%s", text);
}
static struct llama_model * llava_init(gpt_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
if (params->n_ctx < 2048) {
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
ctx_params.n_ctx = 2048;
} else {
ctx_params.n_ctx = params->n_ctx;
}
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
return NULL;
}
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_backend_free();
}
static struct clip_ctx * clip_init_context(gpt_params * params) {
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
return ctx_clip;
}
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
}
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
slice_embed->embed = image_embed;
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
llava_image_embed_free(slice_embed);
}
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
std::string system_prompt;
int idx = 0;
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (num_image_embeds > 1) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
}
static const char * sample(struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
auto ctx_clip = clip_init_context(params);
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
if (!embeds) {
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
return NULL;
}
// process the prompt
if (params->prompt.empty() && params->interactive == false) {
LOG_TEE("prompt should be given or interactive mode should be on");
return NULL;
}
auto model = llava_init(params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
return NULL;
}
const int64_t t_llava_init_start_us = ggml_time_us();
auto ctx_llava = llava_init_context(params, model);
ctx_llava->ctx_clip = ctx_clip;
const int64_t t_llava_init_end_us = ggml_time_us();
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
const int64_t t_process_image_start_us = ggml_time_us();
process_image(ctx_llava, embeds, params, n_past);
const int64_t t_process_image_end_us = ggml_time_us();
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
llava_image_embed_free(embeds);
return ctx_llava;
}
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
std::string user_prompt = prompt;
if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
// generate the response
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
return ctx_sampling;
}
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
return tmp;
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
}
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("llava", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
llama_log_set(llama_log_callback_logTee, nullptr);
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty())) {
gpt_params_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
for (auto & image : params.image) {
int n_past = 0;
auto ctx_llava = minicpmv_init(¶ms, image, n_past);
if (!params.prompt.empty()) {
LOG_TEE("<user>%s\n", params.prompt.c_str());
LOG_TEE("<assistant>");
auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response = "";
bool have_tmp = false;
for (int i = 0; i < max_tgt_len; i++) {
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0){
if(!have_tmp)continue;
else break;
}
if (strstr(tmp, "###")) break; // Yi-VL behavior
have_tmp = true;
printf("%s", tmp);
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
}else {
while (true) {
LOG_TEE("<user>");
std::string prompt;
std::getline(std::cin, prompt);
LOG_TEE("<assistant>");
auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
printf("%s", tmp);// mistral llava-1.6
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
}
}
printf("\n");
llama_print_timings(ctx_llava->ctx_llama);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
return 0;
}
|