1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
|
//
// Copyright (C) 2023-2025 The llama.cpp authors
// Copyright (C) 2024-2025 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
#define LLAMA_API_INTERNAL
#include "common.h"
#include "ggml.h"
#include "llama.h"
#define GGML_COMMON_DECL_C
#define GGML_COMMON_IMPL_C
#include "../ggml/src/ggml-common.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <numeric>
#include <regex>
#include <string>
#include <unordered_map>
#include <vector>
#include <thread>
#include <mutex>
#include <array>
#include <random>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#include <intrin.h>
#include <ammintrin.h>
#include <nmmintrin.h>
#include <immintrin.h>
#include <stdlib.h>
inline int popcount(uint8_t x) { return __popcnt(x); }
inline int popcount(uint16_t x) { return __popcnt(x); }
inline int popcount(uint32_t x) { return __popcnt(x); }
inline int popcount(uint64_t x) { return _mm_popcnt_u64(x); }
#else
constexpr int popcount(uint8_t x) { return __builtin_popcount(x); }
constexpr int popcount(uint16_t x) { return __builtin_popcount(x); }
constexpr int popcount(uint32_t x) { return __builtin_popcount(x); }
constexpr int popcount(uint64_t x) { return __builtin_popcountll(x); }
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
struct quantize_stats_params {
std::string model = DEFAULT_MODEL_PATH;
bool verbose = false;
bool per_layer_stats = false;
bool print_histogram = false;
bool reference = false;
std::vector<std::string> include_layers;
std::vector<std::string> exclude_layers;
std::vector<enum ggml_type> include_types;
};
constexpr size_t HISTOGRAM_BUCKETS = 150;
constexpr double HISTOGRAM_RANGE = 0.03;
struct error_stats {
size_t num_samples;
double total_error;
double max_error;
double sum_x2;
uint64_t error_histogram[HISTOGRAM_BUCKETS];
};
static void quantize_stats_print_usage(int /*argc*/, char ** argv) {
quantize_stats_params params;
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -r, --reference\n");
fprintf(stderr, " use reference implementation (default: false)\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " verbose output (default: false)\n");
fprintf(stderr, " -p, --per-layer-stats\n");
fprintf(stderr, " print stats per layer (default: false)\n");
fprintf(stderr, " --histogram\n");
fprintf(stderr, " print error histogram (default: false)\n");
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
fprintf(stderr, " only test layers matching pattern\n");
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
fprintf(stderr, " exclude layers matching pattern\n");
fprintf(stderr, " -t TYPE, --type TYPE\n");
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
fprintf(stderr, "\n");
}
// Check if a layer is included/excluded by command line
static bool layer_included(const quantize_stats_params & params, const std::string & layer) {
for (const auto& excluded : params.exclude_layers) {
if (std::regex_search(layer, std::regex(excluded))) {
return false;
}
}
for (const auto& included : params.include_layers) {
if (std::regex_search(layer, std::regex(included))) {
return true;
}
}
return params.include_layers.empty();
}
// Update error statistics given vectors with the before/after result of quantization
static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
for (int64_t i = 0; i < nelements; i++) {
double diff = input[i] - output[i];
stats.total_error += diff * diff;
stats.max_error = fmax(fabs(diff), stats.max_error);
stats.sum_x2 += input[i]*input[i];
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
}
stats.num_samples += nelements;
}
static void combine_error_stats(error_stats & into, const error_stats & from) {
into.num_samples += from.num_samples;
into.total_error += from.total_error;
into.sum_x2 += from.sum_x2;
if (from.max_error > into.max_error) into.max_error = from.max_error;
for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
}
static double find_quantile(const error_stats & stats, double quantile) {
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
double accum = 0;
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
accum += stats.error_histogram[i];
if (accum >= sum*quantile) {
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
}
}
return INFINITY;
}
static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
double av_x = sqrt(stats.sum_x2 / (double) stats.num_samples);
double median = find_quantile(stats, .5);
double pct95 = find_quantile(stats, .95);
printf("%-40s: rmse %.8f, %.6f maxerr %.8f, %.6f 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, rmse/av_x,
stats.max_error, stats.max_error/av_x, pct95, median);
if (print_histogram) {
printf("Error distribution:\n");
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
}
}
}
// copied from ggml.h - verify that we can access this as a flat array
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static void test_roundtrip_on_chunk(
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference,
float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats
) {
if (layer->type == GGML_TYPE_F16) {
for (int i = 0; i < chunk_size; i++) {
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
}
} else {
input_scratch = ggml_get_data_f32(layer) + offset;
}
if (use_reference) {
qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size);
} else {
qfns.from_float(input_scratch, quantized_scratch, chunk_size);
}
qfns.to_float(quantized_scratch, output_scratch, chunk_size);
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
}
// Run quantization function for a single layer and update error stats
static void test_roundtrip_on_layer(
std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference,
const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0
) {
assert(tensor_is_contiguous(layer));
error_stats layer_error {};
uint64_t nelements = ggml_nelements(layer);
float* input_scratch_ptr = nullptr;
if (layer->type == GGML_TYPE_F16) {
if (input_scratch.size() < nelements) input_scratch.resize(nelements);
input_scratch_ptr = input_scratch.data();
}
if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
if (output_scratch.size() < nelements) output_scratch.resize(nelements);
if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
int chunk_size = 32*512;
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
if (num_chunks < 2 || max_thread < 2) {
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
output_scratch.data(), print_layer_stats ? layer_error : total_error);
} else {
auto & stats = print_layer_stats ? layer_error : total_error;
std::mutex mutex;
uint64_t counter = 0;
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
&quantized_scratch, &output_scratch, chunk_size] () {
error_stats local_stats {};
while (true) {
std::unique_lock<std::mutex> lock(mutex);
uint64_t offset = counter; counter += chunk_size;
if (offset >= nelements) {
combine_error_stats(stats, local_stats);
break;
}
lock.unlock();
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
}
};
int nthread = std::min(num_chunks, max_thread);
std::vector<std::thread> workers(nthread-1);
for (auto& w : workers) w = std::thread(compute);
compute();
for (auto& w : workers) w.join();
}
if (print_layer_stats) {
print_error_stats(name, layer_error, false);
combine_error_stats(total_error, layer_error);
}
}
static inline int nearest_int(float fval) {
assert(fval <= 4194303.f);
float val = fval + 12582912.f;
int i; memcpy(&i, &val, sizeof(int));
return (i & 0x007fffff) - 0x00400000;
}
static const int8_t scale_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
static std::vector<float> make_values(int nval, int n_per_val, float scale = 16.f) {
std::vector<float> result(nval*n_per_val);
uint16_t m16 = ggml_fp32_to_fp16(0.922f);
uint32_t m32 = (uint32_t(m16) << 16) | m16;
const uint32_t a = 89226354, b = 64248484;
float * data = result.data();
for (int i = 0; i < nval; ++i) {
uint32_t x = i + 4096;
for (int k = 0; k < n_per_val; ++k) {
x = a*x + b;
uint32_t s = (x & 0b10001111111111111000111111111111) ^ m32;
float val = ggml_fp16_to_fp32(s & 65535) + ggml_fp16_to_fp32(s >> 16);
int ival = nearest_int(scale*val);
data[k] = ival;
}
data += n_per_val;
}
return result;
}
#ifdef __AVX2__
static inline float hsum_float_4(__m128 x) {
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
x = _mm_add_ss(x, _mm_movehdup_ps(x));
return _mm_cvtss_f32(x);
}
static inline float hsum_float_8(__m256 x) {
return hsum_float_4(_mm_add_ps(_mm256_castps256_ps128(x), _mm256_extractf128_ps(x, 1)));
}
static __m256 hsum_float_8x8(__m256 * accm) {
for (int i = 0; i < 4; ++i) {
accm[i] = _mm256_set_m128(_mm_add_ps(_mm256_castps256_ps128(accm[i+4]), _mm256_extractf128_ps(accm[i+4], 1)),
_mm_add_ps(_mm256_castps256_ps128(accm[i+0]), _mm256_extractf128_ps(accm[i+0], 1)));
}
for (int i = 0; i < 2; ++i) accm[i] = _mm256_add_ps(_mm256_unpacklo_ps(accm[i], accm[i+2]), _mm256_unpackhi_ps(accm[i], accm[i+2]));
return _mm256_add_ps(_mm256_unpacklo_ps(accm[0], accm[1]), _mm256_unpackhi_ps(accm[0], accm[1]));
}
#endif
const int8_t scale_index[241] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 17, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 18, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 19, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 20, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 21, 21, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 22, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 23, 23, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 24, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 25, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 26, 26,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 27, 27, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 28, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 29, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 30, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15
};
inline int best_index_scale(const int8_t * values, float x) {
int ix = (int)x - values[0];
if (ix < 0 || ix >= 241) return ix < 0 ? 0 : 15;
ix = scale_index[ix];
return ix < 16 ? ix : x - values[ix-16] < values[ix-15] - x ? ix-16 : ix-15;
}
inline int best_index_iq4nl(const int8_t * values, float x) { return best_index_scale(values, x); }
static float find_best_scale(int block_size, const float * xb, const float * weight, const int8_t * values, int ntry) {
float amax = 0, max = 0;
for (int j = 0; j < block_size; ++j) {
float ax = fabsf(xb[j]);
if (ax > amax) {
amax = ax; max = xb[j];
}
}
return amax/96.f; //120.f; //127.f;
if (!amax) return 0.f;
float d = ntry > 0 ? -max/values[0] : max/values[0];
float id = 1/d;
float sumqx_p = 0, sumq2_p = 0;
float sumqx_m = 0, sumq2_m = 0;
for (int j = 0; j < block_size; ++j) {
float w = weight[j];
float al = id*xb[j];
int l = best_index_iq4nl(values, al);
float q = values[l];
sumqx_p += w*q*xb[j];
sumq2_p += w*q*q;
l = best_index_iq4nl(values, -al);
q = values[l];
sumqx_m += w*q*xb[j];
sumq2_m += w*q*q;
}
d = sumqx_p/sumq2_p;
float best = d*sumqx_p;
if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
d = sumqx_m/sumq2_m; best = d*sumqx_m;
}
for (int itry = -ntry; itry <= ntry; ++itry) {
id = (itry + values[0])/max;
sumqx_p = sumq2_p = 0;
sumqx_m = sumq2_m = 0;
for (int j = 0; j < block_size; ++j) {
float w = weight[j];
float al = id*xb[j];
int l = best_index_iq4nl(values, al);
float q = values[l];
sumqx_p += w*q*xb[j];
sumq2_p += w*q*q;
l = best_index_iq4nl(values, -al);
q = values[l];
sumqx_m += w*q*xb[j];
sumq2_m += w*q*q;
}
if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) {
d = sumqx_p/sumq2_p; best = d * sumqx_p;
}
if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
d = sumqx_m/sumq2_m; best = d * sumqx_m;
}
}
return d;
}
static std::vector<float> cluster_points(const std::vector<float>& points, int ndim, int ncluster, int niter) {
if (points.size() % ndim != 0) {
printf("%s: bad input\n", __func__); return {};
}
int npoint = points.size() / ndim;
if (npoint < 2*ncluster) {
printf("%s: bad input\n", __func__); return {};
}
std::vector<std::pair<float, float>> range(ndim, std::make_pair(INFINITY, -INFINITY));
double Fo = 0;
for (int i = 0; i < npoint; ++i) {
auto v = points.data() + i*ndim;
for (int k = 0; k < ndim; ++k) {
Fo += v[k]*v[k];
range[k].first = std::min(range[k].first, v[k]);
range[k].second = std::max(range[k].second, v[k]);
}
}
printf("%s (ndim = %d, npoint = %d): Fo = %g\n", __func__, ndim, npoint, Fo/points.size());
std::mt19937 rndm(1234);
float scale = 1.f/4294967296.f;
std::vector<float> result(ncluster*ndim);
for (int i = 0; i < ncluster; ++i) {
auto v = result.data() + i*ndim;
for (int k = 0; k < ndim; ++k) v[k] = range[k].first + (range[k].second - range[k].first)*scale*rndm();
}
std::vector<float> sump(ncluster*ndim);
std::vector<int> counts(ncluster);
std::vector<int> which_cluster(npoint, -1);
double Flast = Fo;
for (int iter = 0; iter < niter; ++iter) {
std::memset(sump.data(), 0, sump.size()*sizeof(float));
std::memset(counts.data(), 0, counts.size()*sizeof(int));
int nchanged = 0;
double F = 0;
for (int ip = 0; ip < npoint; ++ip) {
auto vp = points.data() + ndim*ip;
float best = INFINITY; int ibest = -1;
for (int ic = 0; ic < ncluster; ++ic) {
auto vc = result.data() + ndim*ic;
float dist2 = 0;
for (int k = 0; k < ndim; ++k) {
float d = vp[k] - vc[k]; dist2 += d*d;
}
if (dist2 < best) {
best = dist2; ibest = ic;
}
}
if (ibest < 0) { printf("Oops.\n"); exit(1); }
F += best;
if (which_cluster[ip] != ibest) ++nchanged;
which_cluster[ip] = ibest;
++counts[ibest];
auto vc = sump.data() + ndim*ibest;
for (int k = 0; k < ndim; ++k) vc[k] += vp[k];
}
if (nchanged == 0) break;
for (int ic = 0; ic < ncluster; ++ic) {
float norm = counts[ic] > 0 ? 1.f/counts[ic] : 0.f;
auto vc = sump.data() + ndim*ic;
auto r = result.data() + ndim*ic;
for (int k = 0; k < ndim; ++k) r[k] = vc[k]*norm;
}
printf("%s(iteration %d): F = %g, nchanged = %d\n", __func__, iter+1, F/points.size(), nchanged);
if (iter > 1 && Flast/F - 1 < 1e-6) break;
Flast = F;
}
return result;
}
static void analyze_x_v2(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_mse_q, float& tot_elements) {
constexpr int kNumVal = 1 << 15;
constexpr int kBlockSize = 32;
constexpr int kGroupSize = 8;
constexpr int kNg = kBlockSize/kGroupSize;
constexpr int kSuperBlockSize = 256;
static_assert(kNumVal%8 == 0);
static std::vector<float> codes, clusters;
static std::vector<std::vector<int>> p_in_cluster;
if (codes.empty()) {
codes = make_values(kNumVal, kGroupSize, 31.75f);
clusters = cluster_points(codes, kGroupSize, kNumVal/512, 200);
if (clusters.empty()) { printf("Oops\n"); exit(1); }
int ncluster = clusters.size()/kGroupSize;
p_in_cluster.resize(ncluster);
std::vector<int> which_cluster(4*kNumVal);
GGML_ASSERT(ncluster%8 == 0);
for (int ip = 0; ip < kNumVal; ++ip) {
auto vp = codes.data() + ip*kGroupSize;
float best[4] = {INFINITY, INFINITY, INFINITY, INFINITY};
int ibest[4] = {-1, -1, -1, -1};
for (int ic = 0; ic < ncluster; ++ic) {
auto vc = clusters.data() + ic*kGroupSize;
float dist2 = 0;
for (int k = 0; k < kGroupSize; ++k) {
float d = vp[k] - vc[k]; dist2 += d*d;
}
if (dist2 < best[0]) {
best[3] = best[2]; ibest[3] = ibest[2];
best[2] = best[1]; ibest[2] = ibest[1];
best[1] = best[0]; ibest[1] = ibest[0];
best[0] = dist2; ibest[0] = ic;
}
else if (dist2 < best[1]) {
best[3] = best[2]; ibest[3] = ibest[2];
best[2] = best[1]; ibest[2] = ibest[1];
best[1] = dist2; ibest[1] = ic;
}
else if (dist2 < best[2]) {
best[3] = best[2]; ibest[3] = ibest[2];
best[2] = dist2; ibest[2] = ic;
}
else if (dist2 < best[3]) {
best[3] = dist2; ibest[3] = ic;
}
}
GGML_ASSERT(ibest[0] >= 0 && ibest[1] >= 0 && ibest[2] >= 0 && ibest[3] >= 0);
p_in_cluster[ibest[0]].push_back(ip);
p_in_cluster[ibest[1]].push_back(ip);
p_in_cluster[ibest[2]].push_back(ip);
p_in_cluster[ibest[3]].push_back(ip);
std::memcpy(which_cluster.data() + 4*ip, ibest, 4*sizeof(int));
}
std::vector<std::pair<float, int>> extra;
extra.reserve(kNumVal);
for (int ic = 0; ic < ncluster; ++ic) {
auto& points = p_in_cluster[ic];
if (!points.empty() && points.size()%8 == 0) continue;
extra.clear();
auto vc = clusters.data() + ic*kGroupSize;
for (int ip = 0; ip < kNumVal; ++ip) {
if (which_cluster[4*ip] == ic || which_cluster[4*ip+1] == ic || which_cluster[4*ip+2] == ic || which_cluster[4*ip+3] == ic) continue;
auto vp = codes.data() + ip*kGroupSize;
float dist2 = 0;
for (int k = 0; k < kGroupSize; ++k) {
float d = vp[k] - vc[k]; dist2 += d*d;
}
extra.push_back(std::make_pair(dist2, ip));
}
std::sort(extra.begin(), extra.end());
int nadd = 8*((points.size()+7)/8) - points.size();
for (int i = 0; i < nadd; ++i) points.push_back(extra[i].second);
GGML_ASSERT(points.size()%8 == 0);
}
auto min = p_in_cluster.front().size(), max = p_in_cluster.front().size();
int nzero = 0;
for (auto& points : p_in_cluster) {
min = std::min(min, points.size());
max = std::max(max, points.size());
if (points.empty()) ++nzero;
}
printf("%s: prepared %d clusters\n", __func__, ncluster);
printf(" min number of points in a cluster: %d\n", int(min));
printf(" max number of points in a cluster: %d\n", int(max));
if (nzero > 0) {
printf(" there are %d empty clusters\n", nzero);
for (auto& points : p_in_cluster) {
if (!points.empty()) continue;
points.reserve(kNumVal);
for (int j = 0; j < kNumVal; ++j) points.push_back(j); // i.e., if we end iup picking an empty cluster, we just check all points
}
}
}
int nthread = std::max(1, int(std::thread::hardware_concurrency()/2));
int chunk = (nrows + 8*nthread - 1)/(8*nthread);
std::mutex mutex;
int counter = 0;
float mse = 0, mse_q = 0;
auto compute = [&mutex, &counter, &mse, &mse_q, values, nrows, n_per_row, chunk] () {
constexpr int kNumVal = 1 << 15;
constexpr int kBlockSize = 32;
constexpr int kGroupSize = 8;
constexpr int kNg = kBlockSize/kGroupSize;
double lmse = 0, lmse_q = 0;
std::vector<float> scales(n_per_row/kBlockSize);
std::vector<int> best_idx(n_per_row/kGroupSize);
std::vector<float> weight(kBlockSize, 1.f);
int ncluster = clusters.size() / kGroupSize;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int first = counter; counter += chunk;
if (first >= nrows) {
mse += lmse; mse_q += lmse_q;
return;
}
lock.unlock();
int last = std::min(first + chunk, nrows);
#ifdef __AVX2__
__m256 sqx[8];
__m256i add_idx = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
float sx[8];
int index[8];
#endif
for (int row = first; row < last; ++row) {
auto xr = values + row*n_per_row;
float sigma2 = 0;
for (int j = 0; j < n_per_row; ++j) sigma2 += xr[j]*xr[j];
sigma2 /= n_per_row;
for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) {
auto xb = xr + kBlockSize*ib;
//for (int i = 0; i < kBlockSize; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
float d = find_best_scale(kBlockSize, xb, weight.data(), iq4k_values, 5);
float id = d ? 1/d : 0.f;
#ifdef __AVX2__
auto vid = _mm256_set1_ps(id);
for (int l = 0; l < kNg; ++l) {
auto xl = xb + 8*l;
auto wl = weight.data() + 8*l;
auto vx = _mm256_mul_ps(vid, _mm256_loadu_ps(xl));
auto vw = _mm256_loadu_ps(wl);
auto vbest = _mm256_set1_ps(INFINITY);
auto best_index = _mm256_set1_epi32(-1);
float best = INFINITY; int jbest = -1;
for (int j = 0; j < ncluster; j += 8) {
auto idx = _mm256_add_epi32(_mm256_set1_epi32(j), add_idx);
for (int i = 0; i < 8; ++i) {
auto vq = _mm256_loadu_ps(clusters.data() + kGroupSize*(j+i));
auto vdiff = _mm256_sub_ps(vq, vx);
sqx[i] = _mm256_mul_ps(vw, _mm256_mul_ps(vdiff, vdiff));
}
auto score = hsum_float_8x8(sqx);
auto mask = _mm256_cmp_ps(score, vbest, _CMP_LT_OQ);
best_index = _mm256_or_si256(_mm256_and_si256(_mm256_castps_si256(mask), idx),
_mm256_andnot_si256(_mm256_castps_si256(mask), best_index));
vbest = _mm256_min_ps(vbest, score);
}
_mm256_store_ps(sx, vbest);
_mm256_store_si256((__m256i *)index, best_index);
for (int i = 0; i < 8; ++i) {
if (sx[i] < best) { best = sx[i]; jbest = index[i]; }
}
auto& points = p_in_cluster[jbest];
if (points.empty()) {
printf("Oops: empty cluster %d\n", jbest);
auto vc = clusters.data() + kGroupSize*jbest;
printf("Cluster:\n");
for (int j = 0; j < kGroupSize; ++j) printf("%d %g %g\n", j, vc[j], xl[j]);
GGML_ASSERT(false);
}
int jbest_cluster = jbest;
vbest = _mm256_set1_ps(INFINITY);
best_index = _mm256_set1_epi32(-1);
best = INFINITY; jbest = -1;
for (int j = 0; j < int(points.size()); j += 8) {
auto idx = _mm256_loadu_si256((const __m256i*)(points.data() + j));
for (int i = 0; i < 8; ++i) {
auto vq = _mm256_loadu_ps(codes.data() + kGroupSize*points[j+i]);
auto vdiff = _mm256_sub_ps(vq, vx);
sqx[i] = _mm256_mul_ps(vw, _mm256_mul_ps(vdiff, vdiff));
}
auto score = hsum_float_8x8(sqx);
auto mask = _mm256_cmp_ps(score, vbest, _CMP_LT_OQ);
best_index = _mm256_or_si256(_mm256_and_si256(_mm256_castps_si256(mask), idx),
_mm256_andnot_si256(_mm256_castps_si256(mask), best_index));
vbest = _mm256_min_ps(vbest, score);
}
_mm256_store_ps(sx, vbest);
_mm256_store_si256((__m256i *)index, best_index);
for (int i = 0; i < 8; ++i) {
if (sx[i] < best) { best = sx[i]; jbest = index[i]; }
}
if (jbest < 0) {
printf("Oops: jbest = %d for cluster %d with %d points\n", jbest, jbest_cluster, int(points.size()));
GGML_ASSERT(false);
}
GGML_ASSERT(jbest >= 0);
best_idx[ib*kNg + l] = jbest;
}
auto vqx = _mm256_setzero_ps();
auto vq2 = _mm256_setzero_ps();
for (int l = 0; l < kNg; ++l) {
auto vx = _mm256_loadu_ps(xb+8*l);
auto vw = _mm256_loadu_ps(weight.data() + 8*l);
auto vq = _mm256_loadu_ps(codes.data() + kGroupSize*best_idx[ib*kNg + l]);
auto vqw = _mm256_mul_ps(vq, vw);
vqx = _mm256_fmadd_ps(vqw, vx, vqx);
vq2 = _mm256_fmadd_ps(vqw, vq, vq2);
}
auto sumqx = hsum_float_8(vqx);
auto sumq2 = hsum_float_8(vq2);
scales[ib] = sumq2 > 0 ? sumqx/sumq2 : 0.f;
#else
#endif
}
float amax_scale = std::abs(scales[0]);
float max_scale = scales[0];
for (int ib = 1; ib < n_per_row/kBlockSize; ++ib) {
float ax = std::abs(scales[ib]);
if (ax > amax_scale) {
amax_scale = ax;
max_scale = scales[ib];
}
}
float d = max_scale/scale_values[0];
float id = d ? 1/d : 0.f;
for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) {
int ls = best_index_scale(scale_values, id*scales[ib]);
float dl = d * scale_values[ls];
auto xb = xr + kBlockSize*ib;
for (int l = 0; l < kNg; ++l) {
auto q = codes.data() + kGroupSize*best_idx[ib*kNg+l];
for (int k = 0; k < kGroupSize; ++k) {
float diff1 = xb[kGroupSize*l + k] - scales[ib]*q[k];
float diff2 = xb[kGroupSize*l + k] - dl*q[k];
lmse += diff1*diff1;
lmse_q += diff2*diff2;
}
}
}
}
}
};
std::vector<std::thread> workers(nthread);
for (auto& w : workers) w = std::thread(compute);
for (auto& w : workers) w.join();
tot_mse += mse;
tot_mse_q += mse_q;
tot_elements += n_per_row*nrows;
printf("%s: %g %g %g %g\n", name, sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements),
sqrt(mse_q/(n_per_row*nrows)), sqrt(tot_mse_q/tot_elements));
}
static void analyze_x(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_mse_q, float& tot_elements) {
constexpr int kNumVal = 1 << 12;
constexpr int kBlockSize = 8;
constexpr int kSuperBlockSize = 256;
static_assert(kNumVal%8 == 0);
auto codes = make_values(kNumVal, kBlockSize);
std::vector<float> sumq2i(kNumVal);
for (int j = 0; j < kNumVal; ++j) {
auto data = codes.data() + kBlockSize*j;
float sum = 0; for (int k = 0; k < kBlockSize; ++k) sum += data[k]*data[k];
sumq2i[j] = sum > 0 ? 1/sum : 0.f;;
}
int nthread = std::max(1, int(std::thread::hardware_concurrency()/2));
int chunk = (nrows + 8*nthread - 1)/(8*nthread);
std::mutex mutex;
int counter = 0;
float mse = 0, mse_q = 0;
auto compute = [&mutex, &counter, &mse, &mse_q, &codes, &sumq2i, values, nrows, n_per_row, chunk] () {
constexpr int kBlockSize = 8;
constexpr int kNumVal = 1 << 12;
float lmse = 0, lmse_q = 0;
std::vector<float> scales(n_per_row/kBlockSize);
std::vector<int> best_idx(n_per_row/kBlockSize);
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int first = counter; counter += chunk;
if (first >= nrows) {
mse += lmse; mse_q += lmse_q;
return;
}
lock.unlock();
int last = std::min(first + chunk, nrows);
#ifdef __AVX2__
__m256 vx[kBlockSize/8];
__m256 sqx[8];
__m256i add_idx = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
float sx[8];
int index[8];
#endif
for (int row = first; row < last; ++row) {
auto xr = values + row*n_per_row;
for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) {
float best = 0, d = 0; int jbest = -1;
auto xb = xr + kBlockSize*ib;
#ifdef __AVX2__
for (int l = 0; l < kBlockSize/8; ++l) {
vx[l] = _mm256_loadu_ps(xb+8*l);
}
auto vbest = _mm256_set1_ps(0.f);
auto best_index = _mm256_set1_epi32(-1);
for (int j = 0; j < kNumVal; j += 8) {
auto idx = _mm256_add_epi32(_mm256_set1_epi32(j), add_idx);
for (int i = 0; i < 8; ++i) {
sqx[i] = _mm256_setzero_ps();
for (int l = 0; l < kBlockSize/8; ++l) {
auto qv = _mm256_loadu_ps(codes.data() + kBlockSize*(j+i) + 8*l);
sqx[i] = _mm256_fmadd_ps(vx[l], qv, sqx[i]);
}
}
auto sumqx = hsum_float_8x8(sqx);
auto score = _mm256_mul_ps(_mm256_mul_ps(sumqx, sumqx), _mm256_loadu_ps(sumq2i.data() + j));
auto mask = _mm256_cmp_ps(score, vbest, _CMP_GT_OQ);
best_index = _mm256_or_si256(_mm256_and_si256(idx, _mm256_castps_si256(mask)), _mm256_andnot_si256(_mm256_castps_si256(mask), best_index));
vbest = _mm256_max_ps(vbest, score);
}
_mm256_store_ps(sx, vbest);
_mm256_store_si256((__m256i *)index, best_index);
best = sx[0]; jbest = index[0];
for (int j = 1; j < 8; ++j) {
if (sx[j] > best) { best = sx[j]; jbest = index[j]; }
}
auto qv = codes.data() + kBlockSize*jbest;
float sumqx = 0;
for (int k = 0; k < kBlockSize; ++k) sumqx += xb[k]*qv[k];
d = sumqx*sumq2i[jbest];
#else
for (int j = 0; j < kNumVal; ++j) {
if (!sumq2i[j]) continue;
auto qv = codes.data() + kBlockSize*j;
float sumqx = 0;
for (int k = 0; k < kBlockSize; ++k) sumqx += qv[k]*xb[k];
if (sumqx*sumqx*sumq2i[j] > best) {
d = sumqx*sumq2i[j]; best = d*sumqx; jbest = j;
}
}
auto qv = codes.data() + kBlockSize*jbest;
#endif
scales[ib] = d;
best_idx[ib] = jbest;
for (int k = 0; k < kBlockSize; ++k) {
float diff = xb[k] - d*qv[k];
lmse += diff*diff;
}
}
float amax_scale = std::abs(scales[0]);
float max_scale = scales[0];
for (int ib = 1; ib < n_per_row/kBlockSize; ++ib) {
float ax = std::abs(scales[ib]);
if (ax > amax_scale) {
amax_scale = ax;
max_scale = scales[ib];
}
}
float d = max_scale/scale_values[0];
float id = d ? 1/d : 0.f;
for (int ib = 0; ib < n_per_row/kBlockSize; ++ib) {
int ls = best_index_scale(scale_values, id*scales[ib]);
float dl = d * scale_values[ls];
auto xb = xr + kBlockSize*ib;
auto qv = codes.data() + kBlockSize*best_idx[ib];
for (int k = 0; k < kBlockSize; ++k) {
float diff = xb[k] - dl*qv[k];
lmse_q += diff*diff;
}
}
}
}
};
std::vector<std::thread> workers(nthread);
for (auto& w : workers) w = std::thread(compute);
for (auto& w : workers) w.join();
tot_mse += mse;
tot_mse_q += mse_q;
tot_elements += n_per_row*nrows;
printf("%s: %g %g %g %g\n", name, sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements),
sqrt(mse_q/(n_per_row*nrows)), sqrt(tot_mse_q/tot_elements));
}
static void analyze_iq4ks(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_elements) {
int row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row);
int nblock = n_per_row/QK_K;
int nthread = std::max(1, int(std::thread::hardware_concurrency()/2));
int chunk = (nrows + 8*nthread - 1)/(8*nthread);
std::mutex mutex;
int counter = 0;
float mse0 = 0, mse = 0;
auto compute = [&mutex, &counter, &mse0, &mse, values, row_size, nblock, nrows, n_per_row, chunk] () {
std::vector<char> Q(row_size);
float diff[4];
float xv[4];
float lmse0 = 0, lmse = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int first = counter; counter += chunk;
if (first >= nrows) {
mse += lmse; mse0 += lmse0;
return;
}
lock.unlock();
int last = std::min(first + chunk, nrows);
for (int row = first; row < last; ++row) {
auto xr = values + row*n_per_row;
ggml_quantize_chunk(GGML_TYPE_IQ4_KS, xr, (void *)Q.data(), 0, 1, n_per_row, nullptr);
const float * dptr = (const float *)Q.data();
const float d = *dptr;
const block_iq4_ks * iq4 = (const block_iq4_ks *)(dptr + 1);
for (int ibl = 0; ibl < nblock; ++ibl) {
const float * xbl = xr + ibl*QK_K;
auto qs = iq4[ibl].qs;
for (int ib = 0; ib < QK_K/32; ++ib) {
const float * xb = xbl + 32*ib;
const float dl = d * ((iq4[ibl].scales[ib] & 254) - 127);
const int8_t * values = iq4k_values + ((iq4[ibl].scales[ib] & 1) << 4);
for (int j = 0; j < 16; j += 2) {
uint16_t v0 = *(const uint16_t *)(qs + j);
int non = popcount(v0);
xv[0] = xb[j+ 0]; xv[1] = xb[j+16]; xv[2] = xb[j+ 1]; xv[3] = xb[j+17];
diff[0] = xv[0] - dl*values[qs[j+0] & 0xf];
diff[1] = xv[1] - dl*values[qs[j+0] >> 4];
diff[2] = xv[2] - dl*values[qs[j+1] & 0xf];
diff[3] = xv[3] - dl*values[qs[j+1] >> 4];
float diff4 = diff[0]*diff[0] + diff[1]*diff[1] + diff[2]*diff[2] + diff[3]*diff[3];
lmse0 += diff4;
if (non%2 == 0) {
lmse += diff4;
} else {
float best = std::numeric_limits<float>::max();
for (int k = 0; k < 4; ++k) {
uint16_t v = (v0 >> 4*k) & 0xf;
auto pc = popcount(v);
if (v > 0 && popcount(v-1u) != pc) {
float this_diff = xv[k] - dl*values[v-1u];
float score = diff4 - diff[k]*diff[k] + this_diff*this_diff;
if (score < best) best = score;
}
if (v < 15 && popcount(v + 1u) != pc) {
float this_diff = xv[k] - dl*values[v+1u];
float score = diff4 - diff[k]*diff[k] + this_diff*this_diff;
if (score < best) best = score;
}
}
lmse += best;
}
}
qs += 16;
}
}
}
}
};
std::vector<std::thread> workers(nthread-1);
for (auto& w : workers) w = std::thread(compute);
compute();
for (auto& w : workers) w.join();
tot_mse += mse;
tot_elements += n_per_row*nrows;
printf("%s: %g %g %g\n", name, sqrt(mse0/(n_per_row*nrows)), sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements));
}
static void analyze_iq4ks(const ggml_tensor * t, float& tot_mse, float& tot_mse_q, float& tot_elements) {
if (!ggml_is_contiguous(t) || (t->type != GGML_TYPE_F32 && t->type != GGML_TYPE_F16 && t->type != GGML_TYPE_BF16)) {
return;
}
if (t->type == GGML_TYPE_F32) {
analyze_x_v2(t->name, t->ne[1], t->ne[0], (const float *)t->data, tot_mse, tot_mse_q, tot_elements);
} else {
std::vector<float> aux(t->ne[0]*t->ne[1]);
if (t->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((const ggml_fp16_t *)t->data, aux.data(), aux.size());
} else {
ggml_bf16_to_fp32_row((const ggml_bf16_t *)t->data, aux.data(), aux.size());
}
analyze_x_v2(t->name, t->ne[1], t->ne[0], aux.data(), tot_mse, tot_mse_q, tot_elements);
}
}
static void print_fp_stats(const char * msg, const uint64_t * counts) {
printf("===== %s\n", msg);
uint64_t tot = 0; for (int i = 0; i < 32; ++i) tot += counts[i];
double norm = 1./tot;
for (int i = 0; i < 32; ++i) {
if (!counts[i]) continue;
uint16_t val = i << 10;
float f = ggml_fp16_to_fp32(val);
printf("%2d %f %g\n", i, norm*counts[i], f);
}
}
static void analyze_tensor_fp(const ggml_tensor * t, uint64_t * H) {
if (t->type != GGML_TYPE_F16) return;
if (!ggml_is_contiguous(t)) return;
int n = ggml_nelements(t);
const uint16_t * x = (const uint16_t *)t->data;
std::array<uint64_t, 32> counts = {};
for (int j = 0; j < n; ++j) {
++counts[(x[j] >> 10) & 31];
}
for (int i = 0; i < 32; ++i) H[i] += counts[i];
print_fp_stats(t->name, counts.data());
}
int main(int argc, char ** argv) {
ggml_time_init();
quantize_stats_params params;
// read command line
int max_thread = 0;
bool invalid_param = false;
bool analyze_fp = false;
bool analyze = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-h" || arg == "--help") {
quantize_stats_print_usage(argc, argv);
exit(0);
} else if (arg == "-r" || arg == "--reference") {
params.reference = true;
} else if (arg == "-v") {
params.verbose = true;
} else if (arg == "-p" || arg == "--per-layer-stats") {
params.per_layer_stats = true;
} else if (arg == "-afp" || arg == "--analyze-fp") {
analyze_fp = true;
} else if (arg == "-a" || arg == "--analyze") {
analyze = true;
} else if (arg == "--histogram") {
params.print_histogram = true;
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-l" || arg == "--include-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.include_layers.emplace_back(argv[i]);
} else if (arg == "-L" || arg == "--exclude-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.exclude_layers.emplace_back(argv[i]);
} else if (arg == "-t" || arg == "--type") {
if (++i >= argc) {
invalid_param = true;
break;
}
int j;
for (j = 0; j < GGML_TYPE_COUNT; ++j) {
const auto * name = ggml_type_name((ggml_type) j);
if (name && strcmp(argv[i], name) == 0) break;
}
if (j < GGML_TYPE_COUNT) {
params.include_types.push_back((ggml_type) j);
} else {
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
invalid_param = true;
}
} else if (arg == "-n" || arg == "--num-threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
max_thread = atoi(argv[i]);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
print_build_info();
// load the model
fprintf(stderr, "Loading model\n");
const int64_t t_main_start_us = ggml_time_us();
llama_model * model;
llama_context * ctx;
{
auto mparams = llama_model_default_params();
mparams.use_mlock = false;
model = llama_load_model_from_file(params.model.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
cparams.seed = 1;
ctx = llama_new_context_with_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
return 1;
}
}
const auto &tensors = llama_internal_get_tensor_map(ctx);
// check layer tensors
int included_layers = 0;
int64_t max_nelements = 0;
bool is_f16 = false;
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) {
// we never quantize those
continue;
}
if (params.verbose) {
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
}
if (kv_tensor.second->type == GGML_TYPE_F16) {
is_f16 = true;
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
llama_free_model(model);
return 1;
}
included_layers++;
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
}
if (is_f16) {
printf("note: source model is f16\n");
}
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
// allocate scratch space
std::vector<float> input_scratch;
std::vector<char> quantized_scratch;
std::vector<float> output_scratch;
if (analyze) {
float tot_mse = 0, tot_mse_q = 0, tot_elements = 0;
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) {
// we never quantize those
continue;
}
analyze_iq4ks(kv_tensor.second, tot_mse, tot_mse_q, tot_elements);
}
return 0;
}
if (analyze_fp) {
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) {
// we never quantize those
continue;
}
std::array<uint64_t, 32> H = {};
analyze_tensor_fp(kv_tensor.second, H.data());
print_fp_stats("Total", H.data());
}
return 0;
}
// loop throught quantization types
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
const ggml_type type = (ggml_type) i;
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (qfns.from_float && qfns.to_float) {
if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type));
}
ggml_quantize_init(type);
error_stats global_stats {};
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) {
// we never quantize those
continue;
}
if (params.verbose) {
printf(" %s ...\n", kv_tensor.first.c_str());
}
std::string layer_name { ggml_type_name(type) };
layer_name += "::" + kv_tensor.first;
test_roundtrip_on_layer(
layer_name,
params.per_layer_stats,
qfns,
params.reference,
kv_tensor.second,
input_scratch,
quantized_scratch,
output_scratch,
global_stats,
max_thread
);
}
print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
}
}
llama_free(ctx);
llama_free_model(model);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
return 0;
}
|