summaryrefslogtreecommitdiff
path: root/examples/quantize/quantize.cpp
blob: 0a91b537ac72dbeb0dc56ae4a986629685f37ce0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
//
// Copyright (C) 2023-2025 The llama.cpp authors
// Copyright (C) 2024-2025 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//

#include "common.h"
#include "llama.h"

#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <unordered_map>
#include <fstream>
#include <cmath>

struct quant_option {
    std::string name;
    llama_ftype ftype;
    std::string desc;
};

static const std::vector<struct quant_option> QUANT_OPTIONS = {
    { "Q4_0",     LLAMA_FTYPE_MOSTLY_Q4_0,     " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
    { "Q4_1",     LLAMA_FTYPE_MOSTLY_Q4_1,     " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
    { "Q5_0",     LLAMA_FTYPE_MOSTLY_Q5_0,     " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
    { "Q5_1",     LLAMA_FTYPE_MOSTLY_Q5_1,     " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
    { "Q6_0",     LLAMA_FTYPE_MOSTLY_Q6_0,     " 6.5 bpw quantization",             },
    { "IQ2_XXS",  LLAMA_FTYPE_MOSTLY_IQ2_XXS,  " 2.06 bpw quantization",            },
    { "IQ2_XXS_R4",LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4,"IQ2_XXS repacked",            },
    { "IQ2_XS",   LLAMA_FTYPE_MOSTLY_IQ2_XS,   " 2.31 bpw quantization",            },
    { "IQ2_XS_R4",LLAMA_FTYPE_MOSTLY_IQ2_XS_R4,"IQ2_XS repacked",            },
    { "IQ2_S",    LLAMA_FTYPE_MOSTLY_IQ2_S,    " 2.5  bpw quantization",            },
    { "IQ2_M",    LLAMA_FTYPE_MOSTLY_IQ2_M,    " 2.7  bpw quantization",            },
    { "IQ2_M_R4", LLAMA_FTYPE_MOSTLY_IQ2_M_R4, " 2.7  bpw quantization",            },
    { "IQ1_S",    LLAMA_FTYPE_MOSTLY_IQ1_S,    " 1.56 bpw quantization",            },
    { "IQ1_S_R4", LLAMA_FTYPE_MOSTLY_IQ1_S_R4, " 1.5 bpw quantization",             },
    { "IQ1_M_R4", LLAMA_FTYPE_MOSTLY_IQ1_M_R4, " 1.75 bpw quantization",            },
    { "IQ1_M",    LLAMA_FTYPE_MOSTLY_IQ1_M,    " 1.75 bpw quantization",            },
    { "IQ1_BN",   LLAMA_FTYPE_MOSTLY_IQ1_BN,   " 1.62 bpw quantization (Bitnet)",   },
    { "IQ2_BN",   LLAMA_FTYPE_MOSTLY_IQ2_BN,   " 2.00 bpw quantization (Bitnet)",   },
    { "IQ2_BN_R4",LLAMA_FTYPE_MOSTLY_IQ2_BN_R4," 2.00 bpw quantization (Bitnet)",   },
    { "Q2_K",     LLAMA_FTYPE_MOSTLY_Q2_K,     " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
    { "Q2_K_R4",  LLAMA_FTYPE_MOSTLY_Q2_K_R4,  "Q2_K_S repacked", },
    { "Q2_K_S",   LLAMA_FTYPE_MOSTLY_Q2_K_S,   " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
    { "IQ3_XXS",  LLAMA_FTYPE_MOSTLY_IQ3_XXS,  " 3.06 bpw quantization",            },
    { "IQ3_XXS_R4",LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4,"IQ3_XXS repacked",            },
    { "IQ3_S",    LLAMA_FTYPE_MOSTLY_IQ3_S,    " 3.44 bpw quantization",            },
    { "IQ3_S_R4", LLAMA_FTYPE_MOSTLY_IQ3_S_R4, "IQ3_S repacked",            },
    { "IQ3_M",    LLAMA_FTYPE_MOSTLY_IQ3_M,    " 3.66 bpw quantization mix",        },
    { "Q3_K",     LLAMA_FTYPE_MOSTLY_Q3_K_M,   "alias for Q3_K_M" },
    { "Q3_K_R4",  LLAMA_FTYPE_MOSTLY_Q3_K_R4,  "Q3_K_S repacked" },
    { "IQ3_XS",   LLAMA_FTYPE_MOSTLY_IQ3_XS,   " 3.3 bpw quantization"   ,          },
    { "Q3_K_S",   LLAMA_FTYPE_MOSTLY_Q3_K_S,   " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
    { "Q3_K_M",   LLAMA_FTYPE_MOSTLY_Q3_K_M,   " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
    { "Q3_K_L",   LLAMA_FTYPE_MOSTLY_Q3_K_L,   " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
    { "IQ4_NL",   LLAMA_FTYPE_MOSTLY_IQ4_NL,   " 4.50 bpw non-linear quantization", },
    { "IQ4_NL_R4",LLAMA_FTYPE_MOSTLY_IQ4_NL_R4," 4.50 bpw non-linear quantization", },
    { "IQ4_XS_R8",LLAMA_FTYPE_MOSTLY_IQ4_XS_R8," 4.25 bpw non-linear quantization", },
    { "Q4_0_R8",  LLAMA_FTYPE_MOSTLY_Q4_0_R8,  " 4.50 bpw quantization",            },
    { "Q5_0_R4",  LLAMA_FTYPE_MOSTLY_Q5_0_R4,  " 5.50 bpw quantization",            },
    { "Q6_0_R4",  LLAMA_FTYPE_MOSTLY_Q6_0_R4,  " 6.50 bpw quantization",            },
    { "Q8_0_R8",  LLAMA_FTYPE_MOSTLY_Q8_0_R8,  " 8.50 bpw quantization",            },
    { "Q8_KV",    LLAMA_FTYPE_MOSTLY_Q8_KV,    " 8.00 bpw quantization",            },
    { "IQ4_XS",   LLAMA_FTYPE_MOSTLY_IQ4_XS,   " 4.25 bpw non-linear quantization", },
    { "IQ4_KS",   LLAMA_FTYPE_MOSTLY_IQ4_KS,   " 4.25 bpw non-linear quantization", },
    { "IQ4_KS_R4",LLAMA_FTYPE_MOSTLY_IQ4_KS_R4,"IQ4_KS repacked", },
    { "IQ4_KSS",  LLAMA_FTYPE_MOSTLY_IQ4_KSS,  " 4.0 bpw non-linear quantization",  },
    { "IQ2_K",    LLAMA_FTYPE_MOSTLY_IQ2_K,    " 2.375 bpw non-linear quantization",},
    { "IQ2_K_R4", LLAMA_FTYPE_MOSTLY_IQ2_K_R4, "IQ2_K repacked",},
    { "IQ2_KS",   LLAMA_FTYPE_MOSTLY_IQ2_KS,   " 2.1875 bpw non-linear quantization",},
    { "IQ3_K",    LLAMA_FTYPE_MOSTLY_IQ3_K,    " 3.44 bpw non-linear quantization", },
    { "IQ3_K_R4", LLAMA_FTYPE_MOSTLY_IQ3_K_R4, "IQ3_K repacked", },
    { "IQ3_KL",   LLAMA_FTYPE_MOSTLY_IQ3_KL,   " 4 bpw non-linear quantization mix",},
    { "IQ4_K",    LLAMA_FTYPE_MOSTLY_IQ4_K,    " 4.5 bpw non-linear quantization",  },
    { "IQ4_K_R4", LLAMA_FTYPE_MOSTLY_IQ4_K_R4, "IQ4_K repacked",  },
    { "IQ5_K",    LLAMA_FTYPE_MOSTLY_IQ5_K,    " 5.5 bpw non-linear quantization",  },
    { "IQ5_K_R4", LLAMA_FTYPE_MOSTLY_IQ5_K_R4, "IQ5_K repacked",  },
    { "IQ6_K",    LLAMA_FTYPE_MOSTLY_IQ6_K,    " 6.6 bpw non-linear quantization",  },
    { "Q4_K",     LLAMA_FTYPE_MOSTLY_Q4_K_M,   "alias for Q4_K_M", },
    { "Q4_K_R4",  LLAMA_FTYPE_MOSTLY_Q4_K_R4,  "Q4_K_S repacked", },
    { "Q4_K_S",   LLAMA_FTYPE_MOSTLY_Q4_K_S,   " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
    { "Q4_K_M",   LLAMA_FTYPE_MOSTLY_Q4_K_M,   " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
    { "Q5_K",     LLAMA_FTYPE_MOSTLY_Q5_K_M,   "alias for Q5_K_M", },
    { "Q5_K_R4",  LLAMA_FTYPE_MOSTLY_Q5_K_R4,  "Q5_K_S repacked", },
    { "Q5_K_S",   LLAMA_FTYPE_MOSTLY_Q5_K_S,   " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
    { "Q5_K_M",   LLAMA_FTYPE_MOSTLY_Q5_K_M,   " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
    { "Q6_K",     LLAMA_FTYPE_MOSTLY_Q6_K,     " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
    { "Q6_K_R4",  LLAMA_FTYPE_MOSTLY_Q6_K_R4,  "Q6_K repacked", },
    { "Q8_K_R8",  LLAMA_FTYPE_MOSTLY_Q8_K_R8,  "Q8_K repacked", },
    { "Q8_KV_R8", LLAMA_FTYPE_MOSTLY_Q8_KV_R8, "Q8_KV repacked", },
    { "Q8_0",     LLAMA_FTYPE_MOSTLY_Q8_0,     " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
    { "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B",  },
    { "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B",  },
    { "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B",  },
    { "F16",      LLAMA_FTYPE_MOSTLY_F16,      "14.00G, -0.0020 ppl @ Mistral-7B", },
    { "BF16",     LLAMA_FTYPE_MOSTLY_BF16,     "14.00G, -0.0050 ppl @ Mistral-7B", },
    { "BF16_R16", LLAMA_FTYPE_MOSTLY_BF16_R16, "14.00G, -0.0050 ppl @ Mistral-7B", },
    { "F32",      LLAMA_FTYPE_ALL_F32,         "26.00G              @ 7B", },
    // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
    { "COPY",     LLAMA_FTYPE_ALL_F32,         "only copy tensors, no quantizing",  },
};

static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE       = "quantize.imatrix.file";
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET    = "quantize.imatrix.dataset";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES  = "quantize.imatrix.entries_count";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS   = "quantize.imatrix.chunks_count";

static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
    std::string ftype_str;

    for (auto ch : ftype_str_in) {
        ftype_str.push_back(std::toupper(ch));
    }
    for (auto & it : QUANT_OPTIONS) {
        if (it.name == ftype_str) {
            ftype = it.ftype;
            ftype_str_out = it.name;
            return true;
        }
    }
    try {
        int ftype_int = std::stoi(ftype_str);
        for (auto & it : QUANT_OPTIONS) {
            if (it.ftype == ftype_int) {
                ftype = it.ftype;
                ftype_str_out = it.name;
                return true;
            }
        }
    }
    catch (...) {
        // stoi failed
    }
    return false;
}

// usage:
//  ./llama-quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
[[noreturn]]
static void usage(const char * executable) {
    printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--attn-q-type] [--attn-k-type] [--attn-v-type] [--attn-qkv-type] [--attn-output-type] [--ffn-gate-type] [--ffn-down-type] [--ffn-up-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
    printf("  --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
    printf("  --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
    printf("  --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
    printf("  --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
    printf("  --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
    printf("  --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
    printf("  --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor.\n");
    printf("  --token-embedding-type ggml_type: use this ggml_type for the token_embd.weight tensor.\n\n");
    printf("  --custom-q regex1=type1,regex2=type2...: use this to specify custom quantization type rules.\n\n");
    printf("  --repack Repack all tensors to the corresponding _r4/8 variant if available.\n\n");
    printf("  --repack-pattern Comma separated list of regexs to use for matching tensor names to be repacked.\n\n");
    printf("Additional specific tensor quantization types used in the custom quant scheme 'CQS (default is Q2_K):\n");
    printf("      --attn-q-type ggml_type: use this ggml_type for the attn_q.weight tensor.\n");
    printf("      --attn-k-type ggml_type: use this ggml_type for the attn_k.weight tensor.\n");
    printf("      --attn-v-type ggml_type: use this ggml_type for the attn_v.weight tensor.\n");
    printf("      --attn-qkv-type ggml_type: use this ggml_type for the attn_qkv.weight tensor.\n");
    printf("      --attn-output-type ggml_type: use this ggml_type for the attn_output.weight tensor.\n");
    printf("      --ffn-gate-type ggml_type: use this ggml_type for the ffn_gate tensor.\n");
    printf("      --ffn-down-type ggml_type: use this ggml_type for the ffn_down tensor.\n");
    printf("      --ffn-up-type ggml_type: use this ggml_type for the ffn_up tensor.\n\n");
    printf("  --keep-split: will generate quantized model in the same shards as input\n");
    printf("  --override-kv KEY=TYPE:VALUE\n");
    printf("      Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n\n");
    printf("Note: --include-weights and --exclude-weights cannot be used together\n");
    printf("Note: The token embeddings tensor is loaded in system RAM, even in case of full GPU/VRAM offload.\n");
    printf("Note: The recommanded type for the output tensor is q6_K for the ffn types > iq3_xxs and < q8_0.\n\n");
    printf("Note for the Custom Quant Scheme FTYPE:\n");
    printf("    Write the specific tensor legacy quants as qN_N, the K-Quants as qN_K, the IQ-Quants as iqN_xx.\n");
    printf("    Usually, attn-q-type can be one type below the chosen ffn type, and attn-v-type should be one type above.\n");
    printf("    attn-qkv-type replaces the types attn-q, attn-k and attn-v on some models.\n");
    //TODO: - eventually - harmonize the CAPS writing of the FTYPEs, and non CAPS writing of the GGML_TYPEs.
    printf("\nAllowed quantization types:\n");
    for (auto & it : QUANT_OPTIONS) {
        if (it.name != "COPY") {
            printf("  %2d  or  ", it.ftype);
        } else {
            printf("          ");
        }
        printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
    }
    exit(1);
}

static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
    std::ifstream in(imatrix_file.c_str(), std::ios::binary);
    if (!in) {
        printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
        exit(1);
    }
    int n_entries;
    in.read((char *)&n_entries, sizeof(n_entries));
    if (in.fail() || n_entries < 1) {
        printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
        exit(1);
    }
    for (int i = 0; i < n_entries; ++i) {
        int len; in.read((char *)&len, sizeof(len));
        std::vector<char> name_as_vec(len+1);
        in.read((char *)name_as_vec.data(), len);
        if (in.fail()) {
            printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
            exit(1);
        }
        name_as_vec[len] = 0;
        std::string name{name_as_vec.data()};
        auto & e = imatrix_data[name];
        int ncall;
        in.read((char *)&ncall, sizeof(ncall));
        int nval;
        in.read((char *)&nval, sizeof(nval));
        if (in.fail() || nval < 1) {
            printf("%s: failed reading number of values for entry %d\n", __func__, i);
            imatrix_data = {};
            exit(1);
        }
        e.resize(nval);
        in.read((char *)e.data(), nval*sizeof(float));
        if (in.fail()) {
            printf("%s: failed reading data for entry %d\n", __func__, i);
            imatrix_data = {};
            exit(1);
        }
        if (ncall > 0) {
            for (auto& v : e) v /= ncall;
        }

        if (getenv("LLAMA_TRACE")) {
            printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
        }
    }

    // latest imatrix version contains the dataset filename at the end of the file
    int m_last_call = 0;
    if (in.peek() != EOF) {
        in.read((char *)&m_last_call, sizeof(m_last_call));
        int dataset_len;
        in.read((char *)&dataset_len, sizeof(dataset_len));
        std::vector<char> dataset_as_vec(dataset_len);
        in.read(dataset_as_vec.data(), dataset_len);
        imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
        printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
    }
    printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
    return m_last_call;
}

static int prepare_imatrix(const std::string & imatrix_file,
        std::string & imatrix_dataset,
        const std::vector<std::string> & included_weights,
        const std::vector<std::string> & excluded_weights,
        std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
    int m_last_call = -1;
    if (!imatrix_file.empty()) {
        m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
    }
    if (imatrix_data.empty()) {
        return m_last_call;
    }
    if (!excluded_weights.empty()) {
        for (auto& name : excluded_weights) {
            for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
                auto pos = it->first.find(name);
                if (pos != std::string::npos) it = imatrix_data.erase(it);
                else ++it;
            }
        }
    }
    if (!included_weights.empty()) {
        std::unordered_map<std::string, std::vector<float>> tmp;
        for (auto& name : included_weights) {
            for (auto& e : imatrix_data) {
                auto pos = e.first.find(name);
                if (pos != std::string::npos) {
                    tmp.emplace(std::move(e));
                }
            }
        }
        imatrix_data = std::move(tmp);
    }
    if (!imatrix_data.empty()) {
        printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
    }
    return m_last_call;
}

static ggml_type parse_ggml_type(const char * arg) {
    ggml_type result = GGML_TYPE_COUNT;
    for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
        auto type = ggml_type(j);
        const auto * name = ggml_type_name(type);
        if (name && strcmp(arg, name) == 0) {
            result = type; break;
        }
    }
    return result;
}

using CustomQ = std::pair<std::string, ggml_type>;

static bool parse_custom_quants(const std::string& arg, std::vector<CustomQ>& custom_quants) {
    for (const auto & item : string_split<std::string>(arg, ',')) {
        auto pos = item.find('=');
        if (pos == std::string::npos) {
            fprintf(stderr, "Invalid custom quantization input %s\n", arg.c_str());
            return false;
        }
        auto pattern = item.substr(0, pos);
        auto type_as_string = item.substr(pos + 1);
        auto type = parse_ggml_type(type_as_string.c_str());
        if (type == GGML_TYPE_COUNT) {
            fprintf(stderr, "Invalid quantization type '%s' in custom quantization input %s\n", type_as_string.c_str(), item.c_str());
            return false;
        }
        printf("Adding custom rule %s -> %s\n", pattern.c_str(), ggml_type_name(type));
        custom_quants.emplace_back(std::move(pattern), type);
    }
    return true;
}

int main(int argc, char ** argv) {
    if (argc < 3) {
        usage(argv[0]);
    }

    llama_model_quantize_params params = llama_model_quantize_default_params();

    int arg_idx = 1;
    std::string imatrix_file;
    std::vector<std::string> included_weights, excluded_weights;
    std::vector<llama_model_kv_override> kv_overrides;
    std::vector<CustomQ> custom_quants;

    std::vector<std::string> repack_patterns;

    for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
        if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
            params.quantize_output_tensor = false;
        } else if (strcmp(argv[arg_idx], "--ignore-imatrix-rules") == 0) {
            params.ignore_imatrix_rules = true;
        } else if (strcmp(argv[arg_idx], "--repack") == 0) {
            params.only_repack = true;
        } else if (strcmp(argv[arg_idx], "--repack-pattern") == 0) {
            if (arg_idx < argc-1) {
                auto p = string_split(argv[++arg_idx], ',');
                repack_patterns.insert(repack_patterns.end(), p.begin(), p.end());
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
            if (arg_idx < argc-1) {
                params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
            if (arg_idx < argc-1) {
                params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--attn-q-type") == 0) {
            if (arg_idx < argc-1) {
                params.attn_q_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--attn-k-type") == 0) {
            if (arg_idx < argc-1) {
                params.attn_k_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--attn-v-type") == 0) {
            if (arg_idx < argc-1) {
                params.attn_v_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--attn-qkv-type") == 0) {
            if (arg_idx < argc-1) {
                params.attn_qkv_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--attn-output-type") == 0) {
            if (arg_idx < argc-1) {
                params.attn_output_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--ffn-gate-type") == 0) {
            if (arg_idx < argc-1) {
                params.ffn_gate_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--ffn-down-type") == 0) {
            if (arg_idx < argc-1) {
                params.ffn_down_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--ffn-up-type") == 0) {
            if (arg_idx < argc-1) {
                params.ffn_up_type = parse_ggml_type(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
            if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--custom-q") == 0) {
            if (arg_idx == argc-1 || !parse_custom_quants(argv[++arg_idx], custom_quants)) {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
            params.allow_requantize = true;
        } else if (strcmp(argv[arg_idx], "--pure") == 0) {
            params.pure = true;
        } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
            if (arg_idx < argc-1) {
                imatrix_file = argv[++arg_idx];
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
            if (arg_idx < argc-1) {
                included_weights.emplace_back(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
            if (arg_idx < argc-1) {
                excluded_weights.emplace_back(argv[++arg_idx]);
            } else {
                usage(argv[0]);
            }
        } else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
            params.keep_split = true;
        } else {
            usage(argv[0]);
        }
    }

    if (!repack_patterns.empty()) {
        params.repack_pattern = &repack_patterns;
    }

    if (argc - arg_idx < 2) {
        printf("%s: bad arguments\n", argv[0]);
        usage(argv[0]);
    }
    if (!included_weights.empty() && !excluded_weights.empty()) {
        usage(argv[0]);
    }

    std::string imatrix_dataset;
    std::unordered_map<std::string, std::vector<float>> imatrix_data;
    int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
    if (!imatrix_data.empty()) {
        params.imatrix = &imatrix_data;
        {
            llama_model_kv_override kvo;
            std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
            kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
            strncpy(kvo.val_str, imatrix_file.c_str(), 127);
            kvo.val_str[127] = '\0';
            kv_overrides.emplace_back(std::move(kvo));
        }
        if (!imatrix_dataset.empty()) {
            llama_model_kv_override kvo;
            std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
            kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
            strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
            kvo.val_str[127] = '\0';
            kv_overrides.emplace_back(std::move(kvo));
        }

        {
            llama_model_kv_override kvo;
            std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
            kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
            kvo.val_i64 = imatrix_data.size();
            kv_overrides.emplace_back(std::move(kvo));
        }

        if (m_last_call > 0) {
            llama_model_kv_override kvo;
            std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
            kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
            kvo.val_i64 = m_last_call;
            kv_overrides.emplace_back(std::move(kvo));
        }
    }
    if (!kv_overrides.empty()) {
        kv_overrides.emplace_back();
        kv_overrides.back().key[0] = 0;
        params.kv_overrides = &kv_overrides;
    }
    if (!custom_quants.empty()) {
        params.custom_quants = &custom_quants;
    }

    llama_backend_init();

    // parse command line arguments
    const std::string fname_inp = argv[arg_idx];
    arg_idx++;
    std::string fname_out;

    std::string ftype_str;
    std::string suffix = ".gguf";
    if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
        std::string fpath;
        const size_t pos = fname_inp.find_last_of("/\\");
        if (pos != std::string::npos) {
            fpath = fname_inp.substr(0, pos + 1);
        }

        // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
        fname_out = fpath + "ggml-model-" + ftype_str;
        if (!params.keep_split) {
            fname_out += suffix;
        }
        arg_idx++;
        if (ftype_str == "COPY") {
            params.only_copy = true;
        }
    } else {
        fname_out = argv[arg_idx];
        if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
            fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
        }
        arg_idx++;

        if (argc <= arg_idx) {
            fprintf(stderr, "%s: missing ftype\n", __func__);
            return 1;
        }
        if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
            fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
            return 1;
        }
        if (ftype_str == "COPY") {
           params.only_copy = true;
        }
        arg_idx++;
    }

    // parse nthreads
    if (argc > arg_idx) {
        try {
            params.nthread = std::stoi(argv[arg_idx]);
        }
        catch (const std::exception & e) {
            fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
            return 1;
        }
    }

    if (!params.ignore_imatrix_rules && imatrix_data.empty() &&
        (params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
         params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 ||
         params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 ||
         params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S  ||
         params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4 ||
         params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M_R4 ||
         params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M)) {
        fprintf(stderr, "\n==========================================================================================================\n");
        fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
        fprintf(stderr, "==========================================================================================================\n\n\n");
        return 1;
    }

    print_build_info();

    fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
    if (params.nthread > 0) {
        fprintf(stderr, " using %d threads", params.nthread);
    }
    fprintf(stderr, "\n");

    const int64_t t_main_start_us = llama_time_us();

    int64_t t_quantize_us = 0;

    // load the model
    {
        const int64_t t_start_us = llama_time_us();

        if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
            fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
            return 1;
        }

        t_quantize_us = llama_time_us() - t_start_us;
    }

    // report timing
    {
        const int64_t t_main_end_us = llama_time_us();

        printf("\n");
        printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
        printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
    }

    llama_backend_free();

    return 0;
}