1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "llama-vocab.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#endif
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv);
return 1;
}
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
const unsigned int n_kv_max = llama_n_ctx(ctx);
const llama_vocab * vocab = llama_get_vocab(ctx);
llama_token bos = llama_token_bos_impl(*vocab);
//llama_token eos = llama_token_eos_impl(*vocab);
const unsigned int n_vocab = llama_n_vocab(model);
// decode in batches of ctx_params.n_batch tokens
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
llama_synchronize(ctx);
}
return true;
};
const unsigned int pp = params.n_ubatch;
const unsigned int tg = params.n_ubatch / 4;
if (!params.sweep_bench_output_jsonl) {
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s");
LOG_TEE("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------");
}
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
// warm up
if (params.warmup) {
llama_batch_add(batch, bos, 0, { 0 }, false);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
if (params.batch_warmup) {
// clean up KV cache after generation
llama_kv_cache_seq_rm(ctx, 0, params.n_ubatch, -1);
// prepare batch of pp size for prompt processing performance measurement
llama_batch_clear(batch);
for (unsigned int i = 0; i < params.n_ubatch; ++i) {
llama_batch_add(batch, std::rand() % n_vocab, i, { 0 }, false);
}
if (!decode_helper(ctx, batch, ctx_params.n_ubatch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
llama_batch_clear(batch);
llama_kv_cache_clear(ctx);
for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) {
// clean up KV cache before generation
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
// first measure token generation performance at this context size
const auto t_tg_start = ggml_time_us();
for (unsigned int i = 0; i < tg; ++i) {
llama_batch_clear(batch);
llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
const auto t_tg_end = ggml_time_us();
// clean up KV cache after generation
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
// prepare batch of pp size for prompt processing performance measurement
llama_batch_clear(batch);
for (unsigned int i = 0; i < pp; ++i) {
llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
}
batch.logits[batch.n_tokens - 1] = true;
// measure prompt processing performance
const auto t_pp_start = ggml_time_us();
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
const auto t_pp_end = ggml_time_us();
// calculate and print metrics
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
const float speed_pp = pp / t_pp;
const float speed_tg = tg / t_tg;
if(params.sweep_bench_output_jsonl) {
LOG_TEE(
"{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
"\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n",
n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg
);
} else {
LOG_TEE("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
}
}
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}
|