summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_k_r4.cu
blob: e40d55a0b464e29b3c86e1ce8094a9d391948743 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// This file has been autogenerated by generate_cu_files.py, do not edit manually.

#include "../mmq.cuh"

template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_k_r4(
    const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {

#ifdef INT8_MMA_AVAILABLE
    int   * x_qs = (int   *)  x_tile;
    float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
    constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
    int   * x_qs = (int   *)  x_tile;
    float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE

    const int * all_values = (const int *)iq2k_table;

    const int kqsx = threadIdx.x/4;  // 0...7 -> block of 32

#pragma unroll
    for (int i0 = 0; i0 < mmq_y; i0 += 4*nwarps) {
        int i = i0 + 4*threadIdx.y + threadIdx.x%4;

        if (need_check) {
            i = min(i, i_max);
        }
        int i4 = i/4;
        int ir = i%4;

        const block_iq2_k_r4 * bxi = (const block_iq2_k_r4 *)(x + 4*i4*stride) + kbx0;

        const float d = __half2float(bxi->d[ir]);

    #pragma unroll
        for (int l = 0; l < 2; ++l) {

            auto values_l = all_values + (((bxi->extra[ir+4*l] >> kqsx) & 1) << 8);

            const int ql = get_int_b4(bxi->qs, 8*kqsx + ir + 4*l);

#ifdef INT8_MMA_AVAILABLE
            x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + 4*l + 0] = int_from_table_4((ql >> 0) & 0x03030303, values_l);
            x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + 4*l + 1] = int_from_table_4((ql >> 2) & 0x03030303, values_l);
            x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + 4*l + 2] = int_from_table_4((ql >> 4) & 0x03030303, values_l);
            x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + 4*l + 3] = int_from_table_4((ql >> 6) & 0x03030303, values_l);
#else
            x_qs[i*(2*WARP_SIZE + 1)     + 8*kqsx + 4*l + 0] = int_from_table_4((ql >> 0) & 0x03030303, values_l);
            x_qs[i*(2*WARP_SIZE + 1)     + 8*kqsx + 4*l + 1] = int_from_table_4((ql >> 2) & 0x03030303, values_l);
            x_qs[i*(2*WARP_SIZE + 1)     + 8*kqsx + 4*l + 2] = int_from_table_4((ql >> 4) & 0x03030303, values_l);
            x_qs[i*(2*WARP_SIZE + 1)     + 8*kqsx + 4*l + 3] = int_from_table_4((ql >> 6) & 0x03030303, values_l);
#endif // INT8_MMA_AVAILABLE
        }

        int is = 8*kqsx + ir;
        float dl1 = d * (((bxi->scales[is%32] >> 4*(is/32)) & 0xf) - 8);
        is += 4;
        float dl2 = d * (((bxi->scales[is%32] >> 4*(is/32)) & 0xf) - 8);

#ifdef INT8_MMA_AVAILABLE
        x_df[i*MMQ_MMA_TILE_X_K_Q3_K               + 2*kqsx+0] = dl1;
        x_df[i*MMQ_MMA_TILE_X_K_Q3_K               + 2*kqsx+1] = dl2;
#else
        x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = dl1;
        x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = dl2;
#endif // INT8_MMA_AVAILABLE
    }
}

template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_K_R4> {
    static constexpr load_tiles_mmq_t load_tiles   = load_tiles_iq2_k_r4<mmq_y, nwarps, need_check>;
    static constexpr vec_dot_mmq_t    vec_dot_mma  = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
    static constexpr vec_dot_mmq_t    vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};

DECL_MMQ_CASE(GGML_TYPE_IQ2_K_R4);