summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/fa/iqk_fa_templates.h
blob: 6de2acea357dcbd3e291210a5f843da986db0d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp fenc=utf-8 :vi
//
//
// Copyright (C) 2024 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//

#pragma once

#include "iqk/iqk_config.h"

#if defined IQK_IMPLEMENT && defined GGML_IQK_FLASH_ATTENTION

#include <cstring>
#include <type_traits>
#include <vector>

#include "ggml-impl.h"
#include "ggml-quants.h"
#include "iqk/iqk_quantize.h"
#include "iqk/iqk_gemm_floats.h"
#include "iqk/iqk_gemm_kquants.h"
#include "iqk/iqk_gemm_legacy_quants.h"
#include "iqk/iqk_utils.h"

#define GGML_COMMON_IMPL_C
#include "ggml-common.h"

// clang-format off

namespace {

struct BaseHelper {
    BaseHelper(const char * data, int stride) : data(data), block(data), stride(stride) {}

    //inline void set_block(int k1) { block = data + k1*k_step*stride; }
    inline void reset_block() { block = data; }
    inline void next_block(int step) { block += step*stride; }
    inline const char * lblock(int l1) const { return block + l1*stride; }

    const char * data;
    const char * block;
    int stride;

};

struct F16 {
#ifdef __AVX512F__
    using Data = __m512;
    constexpr static int block_size = 16;
    constexpr static int num_registers = 32;
    constexpr static int q_step = 8;
    static inline Data zero() { return _mm512_setzero_ps(); }
    static inline Data load(const char * ptr, int i) { return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)ptr + i)); }
    static inline Data set1(float val) { return _mm512_set1_ps(val); }
    static inline Data mul(Data v1, Data v2) { return _mm512_mul_ps(v1, v2); }
    static inline Data sub(Data v1, Data v2) { return _mm512_sub_ps(v1, v2); }
    static inline Data load(const float * ptr) { return _mm512_loadu_ps(ptr); }
    static inline void store(float * ptr, Data data) { _mm512_storeu_ps(ptr, data); }
    static inline Data fmadd(Data prev, Data v1, Data v2) { return _mm512_fmadd_ps(v1, v2, prev); }
    static inline float reduce_max(Data data) { return _mm512_reduce_max_ps(data); }
    static inline float reduce_add(Data data) { return _mm512_reduce_add_ps(data); }
    static inline Data max(Data v1, Data v2) { return _mm512_max_ps(v1, v2); }
    static inline Data add(Data v1, Data v2) { return _mm512_add_ps(v1, v2); }
    static inline Data set4(const float * ptr) {
        auto v128 = _mm_loadu_ps(ptr);
        auto v256 = _mm256_set_m128(v128, v128);
        return _mm512_insertf32x8(_mm512_castps256_ps512(v256), v256, 1);
    }
    static inline void set4(const float * ptr, Data * vs) {
        auto v = set4(ptr);
        vs[0] = _mm512_shuffle_ps(v, v, 0x00);
        vs[1] = _mm512_shuffle_ps(v, v, 0x55);
        vs[2] = _mm512_shuffle_ps(v, v, 0xaa);
        vs[3] = _mm512_shuffle_ps(v, v, 0xff);
    }
    static inline Data fmadd_lane0(Data prev, Data v1, Data v2) { return _mm512_fmadd_ps(v1, _mm512_shuffle_ps(v2, v2, 0x00), prev); }
    static inline Data fmadd_lane1(Data prev, Data v1, Data v2) { return _mm512_fmadd_ps(v1, _mm512_shuffle_ps(v2, v2, 0x55), prev); }
    static inline Data fmadd_lane2(Data prev, Data v1, Data v2) { return _mm512_fmadd_ps(v1, _mm512_shuffle_ps(v2, v2, 0xaa), prev); }
    static inline Data fmadd_lane3(Data prev, Data v1, Data v2) { return _mm512_fmadd_ps(v1, _mm512_shuffle_ps(v2, v2, 0xff), prev); }
#elif defined __AVX2__
    using Data = __m256;
    constexpr static int block_size = 8;
    constexpr static int num_registers = 16;
    constexpr static int q_step = 8;
    static inline Data zero() { return _mm256_setzero_ps(); }
    static inline Data load(const char * ptr, int i) { return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)ptr + i)); }
    static inline Data set1(float val) { return _mm256_set1_ps(val); }
    static inline Data mul(Data v1, Data v2) { return _mm256_mul_ps(v1, v2); }
    static inline Data load(const float * ptr) { return _mm256_loadu_ps(ptr); }
    static inline Data sub(Data v1, Data v2) { return _mm256_sub_ps(v1, v2); }
    static inline void store(float * ptr, Data data) { _mm256_storeu_ps(ptr, data); }
    static inline Data fmadd(Data prev, Data v1, Data v2) { return _mm256_fmadd_ps(v1, v2, prev); }
    static inline float reduce_max(Data data) { return hmax_float_8(data); }
    static inline float reduce_add(Data data) { return hsum_float_8(data); }
    static inline Data max(Data v1, Data v2) { return _mm256_max_ps(v1, v2); }
    static inline Data add(Data v1, Data v2) { return _mm256_add_ps(v1, v2); }
    static inline Data set4(const float * ptr) {
        auto v128 = _mm_loadu_ps(ptr);
        return _mm256_set_m128(v128, v128);
    }
    static inline void set4(const float * ptr, Data * vs) {
        auto v = set4(ptr);
        vs[0] = _mm256_shuffle_ps(v, v, 0x00);
        vs[1] = _mm256_shuffle_ps(v, v, 0x55);
        vs[2] = _mm256_shuffle_ps(v, v, 0xaa);
        vs[3] = _mm256_shuffle_ps(v, v, 0xff);
    }
    static inline Data fmadd_lane0(Data prev, Data v1, Data v2) { return _mm256_fmadd_ps(v1, _mm256_shuffle_ps(v2, v2, 0x00), prev); }
    static inline Data fmadd_lane1(Data prev, Data v1, Data v2) { return _mm256_fmadd_ps(v1, _mm256_shuffle_ps(v2, v2, 0x55), prev); }
    static inline Data fmadd_lane2(Data prev, Data v1, Data v2) { return _mm256_fmadd_ps(v1, _mm256_shuffle_ps(v2, v2, 0xaa), prev); }
    static inline Data fmadd_lane3(Data prev, Data v1, Data v2) { return _mm256_fmadd_ps(v1, _mm256_shuffle_ps(v2, v2, 0xff), prev); }
#else
    using Data = float16x8_t;
    constexpr static int block_size = 8;
    //constexpr static int num_registers = 32;
    //constexpr static int q_step = 8;
    static inline Data zero() { return vdupq_n_f16(0); }
    static inline Data load(const char * ptr, int i) { return vld1q_f16((const float16_t *)ptr + block_size*i); }
    static inline Data load(const float16_t * ptr, int i) { return vld1q_f16(ptr + block_size*i); }
    static inline Data load(const float16_t * ptr) { return vld1q_f16(ptr); }
    static inline Data load(const float * ptr) {
        auto val1 = vld1q_f32(ptr);
        auto val2 = vld1q_f32(ptr+4);
        return vcombine_f16(vcvt_f16_f32(val1), vcvt_f16_f32(val2));
    }
    static inline Data set1(float val) { return vdupq_n_f16(val); }
    static inline Data mul(Data v1, Data v2) { return vmulq_f16(v1, v2); }
    static inline Data sub(Data v1, Data v2) { return vsubq_f16(v1, v2); }
    static inline void store(float * ptr, Data data) {
        vst1q_f32(ptr+0, vcvt_f32_f16(vget_low_f16(data)));
        vst1q_f32(ptr+4, vcvt_f32_f16(vget_high_f16(data)));
    }
    static inline void store(float16_t * ptr, Data data) { vst1q_f16(ptr, data); }
    static inline void store(float * ptr, float32x4_t data) { vst1q_f32(ptr, data); }
    static inline Data fmadd(Data prev, Data v1, Data v2) { return vfmaq_f16(prev, v1, v2); }
    static inline float reduce_max(Data data) { return vmaxvq_f16(data); }
    static inline float reduce_add(Data data) {
        auto sum = vadd_f16(vget_low_f16(data), vget_high_f16(data));
        return vaddvq_f32(vcvt_f32_f16(sum));
    }
    static inline Data max(Data v1, Data v2) { return vmaxq_f16(v1, v2); }
    static inline Data add(Data v1, Data v2) { return vaddq_f16(v1, v2); }
    static inline float16x4_t set4(const float * ptr) {
        auto val32 = vld1q_f32(ptr);
        return vcvt_f16_f32(val32);
    }
    static inline Data fmadd_lane0(Data prev, Data v1, float16x4_t v2) { return vfmaq_lane_f16(prev, v1, v2, 0); }
    static inline Data fmadd_lane1(Data prev, Data v1, float16x4_t v2) { return vfmaq_lane_f16(prev, v1, v2, 1); }
    static inline Data fmadd_lane2(Data prev, Data v1, float16x4_t v2) { return vfmaq_lane_f16(prev, v1, v2, 2); }
    static inline Data fmadd_lane3(Data prev, Data v1, float16x4_t v2) { return vfmaq_lane_f16(prev, v1, v2, 3); }
#endif
    template <int k_step> static inline float reduce_max(const Data * data) {
        return reduce_T<k_step, &F16::max, &F16::reduce_max>(data);
    }
    template <int k_step> static inline float reduce_add(const Data * data) {
        return reduce_T<k_step, &F16::add, &F16::reduce_add>(data);
    }
    template <int k_step, Data (*Op_combine)(Data, Data), float (*Op)(Data)>
    static float reduce_T(const Data * data) {
        float result;
        if constexpr (k_step/block_size == 1) {
            result = Op(data[0]);
        }
        else if constexpr (k_step/block_size == 2) {
            result = Op(Op_combine(data[0], data[1]));
        }
        else {
            auto vmax = Op_combine(data[0], data[1]);
            for (int l = 2; l < k_step/block_size; ++l) vmax = Op_combine(vmax, data[l]);
            result = Op(vmax);
        }
        return result;
    }
};

struct HelperF16 final : public BaseHelper {
    using Base = BaseHelper;
    HelperF16(const char * data, int stride) : Base(data, stride) {}

    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        //auto dr = (const ggml_half *)Base::lblock(l1);
        auto dr = Base::lblock(l1);
        v1 = F16::load(dr, i + 0);
        v2 = F16::load(dr, i + 1);
    }
};

template <int D> struct block_q8_KV {
    float d;
    int   s;
    int8_t qs[D];
};

template <int D>
struct HelperQ8KV final : public BaseHelper {
    using Base = BaseHelper;
    using block_q8 = block_q8_KV<D>;
    constexpr static ggml_type type = GGML_TYPE_Q8_KV;
    constexpr static int block_size_q = D;
    HelperQ8KV(const char * data, int stride) : Base(data, stride) {}

    // Needed for v * softmax(k * q)
    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        auto q8 = (const block_q8_KV<D> *)Base::lblock(l1);
#ifdef __aarch64__
        auto vd = F16::set1(q8->d);
        auto qs = vld1_s8_x2(q8->qs + 8*i);
        v1 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(qs.val[0])));
        v2 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(qs.val[1])));
#else
        auto vd = F16::set1(q8->d);
#ifdef __AVX512F__
        v1 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)q8->qs+i+0))));
        v2 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)q8->qs+i+1))));
#else
        v1 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(q8->qs+8*i+0)))));
        v2 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(q8->qs+8*i+8)))));
#endif
#endif
    }
};

struct HelperQ80 final : public BaseHelper {
    using Base = BaseHelper;
    constexpr static ggml_type type = GGML_TYPE_Q8_0;
#ifdef HAVE_FANCY_SIMD
    using block_q8 = block_q8_2;
    constexpr static int block_size_q = QK8_2;
#else
    using block_q8 = block_q8_0;
    constexpr static int block_size_q = QK8_0;
#endif
    HelperQ80(const char * data, int stride) : Base(data, stride) {}

    // Needed for v * softmax(k * q)
    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        int j = F16::block_size*i;
        auto dl = (const block_q8_0 *)Base::lblock(l1) + j/QK8_0;
#ifdef __aarch64__
        auto vd = F16::set1(GGML_FP16_TO_FP32(dl->d));
        int ii = j%QK8_0;
        auto qs = vld1_s8_x2(dl->qs + ii);
        v1 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(qs.val[0])));
        v2 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(qs.val[1])));
#else
        auto vd = F16::set1(GGML_FP16_TO_FP32(dl->d));
#ifdef __AVX512F__
        v1 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)dl->qs+0))));
        v2 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)dl->qs+1))));
#else
        int ii = j%QK8_0;
        v1 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(dl->qs+ii+0)))));
        v2 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(dl->qs+ii+8)))));
#endif
#endif
    }

    template <int D>
    static inline void convert(int nq, int stride_q, const float * q, block_q8_0 * y) {
        for (int i = 0; i < nq; ++i) {
            quantize_row_q8_0_x4(q, y, D);
            q += stride_q;
            y += D/QK8_0;
        }
    }

    template <int D>
    static inline void convert(int nq, int stride_q, const float * q, block_q8_1 * y) {
        for (int i = 0; i < nq; ++i) {
            quantize_row_q8_1_x4(q, y, D);
            q += stride_q;
            y += D/QK8_1;
        }
    }

    template <int D>
    static inline void convert(int nq, int stride_q, const float * q, block_q8_2 * y) {
        for (int i = 0; i < nq; ++i) {
            quantize_row_q8_2_x4(q, y, D);
            q += stride_q;
            y += D/QK8_2;
        }
    }

    template <int D>
    static inline void convert(int nq, int stride_q, const float * q, block_q8_KV<D> * y) {
        for (int i = 0; i < nq; ++i) {
            quantize_row_q8_KV(q, y, D);
            q += stride_q;
            ++y;
        }
    }
};

template <int D>
struct HelperQ80R8 : public BaseHelper {
    using Base = BaseHelper;
    constexpr static ggml_type type = GGML_TYPE_Q8_0_R8;
#ifdef __AVX2__
    constexpr static int block_size_q = QK8_2;
    using block_q8 = block_q8_2;
#else
    constexpr static int block_size_q = QK8_0;
    using block_q8 = block_q8_0;
#endif
    HelperQ80R8(const char * data, int stride) : Base(data, stride) {}
    HelperQ80R8(int nk, const HelperQ80& q8) : Base(q8.data, q8.stride) {
        r4 = repack(nk, q8);
        Base::data = (const char *)r4.data();
        Base::stride = (D/QK8_0)*sizeof(block_q8_0);
    }

    static void repack(int nk, const char * q8_data, int q8_stride, block_q8_0_r8 * y) {
        constexpr int nblock = D/QK8_0;
        const block_q8_0 * x8[8];
#ifdef __ARM_NEON
        int8x16x2_t m0, m1, m2, m3;
#endif
        for (int row = 0; row < nk; row += 8) {
            for (int k = 0; k < 8; ++k) x8[k] = (const block_q8_0 *)(q8_data + (row + k)*q8_stride);
            for (int ib = 0; ib < nblock; ++ib) {
                for (int k = 0; k < 8; ++k) y[ib].d[k] = x8[k][ib].d;
#ifdef __AVX2__
                auto m0 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[4][ib].qs), _mm_loadu_si128((const __m128i *)x8[0][ib].qs));
                auto m1 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[5][ib].qs), _mm_loadu_si128((const __m128i *)x8[1][ib].qs));
                auto m2 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[6][ib].qs), _mm_loadu_si128((const __m128i *)x8[2][ib].qs));
                auto m3 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[7][ib].qs), _mm_loadu_si128((const __m128i *)x8[3][ib].qs));
                auto t0 = _mm256_unpacklo_epi32(m0, m1);
                auto t1 = _mm256_unpacklo_epi32(m2, m3);
                auto t2 = _mm256_unpackhi_epi32(m0, m1);
                auto t3 = _mm256_unpackhi_epi32(m2, m3);
                m0 = _mm256_unpacklo_epi64(t0, t1);
                m1 = _mm256_unpackhi_epi64(t0, t1);
                m2 = _mm256_unpacklo_epi64(t2, t3);
                m3 = _mm256_unpackhi_epi64(t2, t3);
//#ifdef HAVE_FANCY_SIMD
//                m0 = _mm256_add_epi8(m0, _mm256_set1_epi8(127));
//                m1 = _mm256_add_epi8(m1, _mm256_set1_epi8(127));
//                m2 = _mm256_add_epi8(m2, _mm256_set1_epi8(127));
//                m3 = _mm256_add_epi8(m3, _mm256_set1_epi8(127));
//#endif
                _mm256_storeu_si256((__m256i *)y[ib].qs + 0, m0);
                _mm256_storeu_si256((__m256i *)y[ib].qs + 1, m1);
                _mm256_storeu_si256((__m256i *)y[ib].qs + 2, m2);
                _mm256_storeu_si256((__m256i *)y[ib].qs + 3, m3);
                m0 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[4][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[0][ib].qs+1));
                m1 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[5][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[1][ib].qs+1));
                m2 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[6][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[2][ib].qs+1));
                m3 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[7][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[3][ib].qs+1));
                t0 = _mm256_unpacklo_epi32(m0, m1);
                t1 = _mm256_unpacklo_epi32(m2, m3);
                t2 = _mm256_unpackhi_epi32(m0, m1);
                t3 = _mm256_unpackhi_epi32(m2, m3);
                m0 = _mm256_unpacklo_epi64(t0, t1);
                m1 = _mm256_unpackhi_epi64(t0, t1);
                m2 = _mm256_unpacklo_epi64(t2, t3);
                m3 = _mm256_unpackhi_epi64(t2, t3);
//#ifdef HAVE_FANCY_SIMD
//                m0 = _mm256_add_epi8(m0, _mm256_set1_epi8(127));
//                m1 = _mm256_add_epi8(m1, _mm256_set1_epi8(127));
//                m2 = _mm256_add_epi8(m2, _mm256_set1_epi8(127));
//                m3 = _mm256_add_epi8(m3, _mm256_set1_epi8(127));
//#endif
                _mm256_storeu_si256((__m256i *)y[ib].qs + 4, m0);
                _mm256_storeu_si256((__m256i *)y[ib].qs + 5, m1);
                _mm256_storeu_si256((__m256i *)y[ib].qs + 6, m2);
                _mm256_storeu_si256((__m256i *)y[ib].qs + 7, m3);
#elif defined __ARM_NEON
                for (int l = 0; l < 2; ++l) {
                    m0.val[0] = vld1q_s8(x8[0][ib].qs+16*l); m0.val[1] = vld1q_s8(x8[4][ib].qs+16*l);
                    m1.val[0] = vld1q_s8(x8[1][ib].qs+16*l); m1.val[1] = vld1q_s8(x8[5][ib].qs+16*l);
                    m2.val[0] = vld1q_s8(x8[2][ib].qs+16*l); m2.val[1] = vld1q_s8(x8[6][ib].qs+16*l);
                    m3.val[0] = vld1q_s8(x8[3][ib].qs+16*l); m3.val[1] = vld1q_s8(x8[7][ib].qs+16*l);
                    auto row01 = vtrnq_s32(vreinterpretq_s32_s8(m0.val[0]), vreinterpretq_s32_s8(m1.val[0]));
                    auto row23 = vtrnq_s32(vreinterpretq_s32_s8(m2.val[0]), vreinterpretq_s32_s8(m3.val[0]));
                    m0.val[0] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                    m1.val[0] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                    m2.val[0] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                    m3.val[0] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                    row01 = vtrnq_s32(vreinterpretq_s32_s8(m0.val[1]), vreinterpretq_s32_s8(m1.val[1]));
                    row23 = vtrnq_s32(vreinterpretq_s32_s8(m2.val[1]), vreinterpretq_s32_s8(m3.val[1]));
                    m0.val[1] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                    m1.val[1] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                    m2.val[1] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                    m3.val[1] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                    vst1q_s8_x2(y[ib].qs +  0 + 128*l, m0);
                    vst1q_s8_x2(y[ib].qs + 32 + 128*l, m1);
                    vst1q_s8_x2(y[ib].qs + 64 + 128*l, m2);
                    vst1q_s8_x2(y[ib].qs + 96 + 128*l, m3);
                }
#else
                for (int l = 0; l < 4; ++l) {
                    for (int k = 0; k < 8; ++k) for (int i = 0; i < 4; ++i) {
                        y[ib].qs[32*l+4*k+i+  0] = x8[k][ib].qs[i+4*l+ 0];
                        y[ib].qs[32*l+4*k+i+128] = x8[k][ib].qs[i+4*l+16];
                    }
                }
#endif
            }
            y += nblock;
        }
    }

    static std::vector<block_q8_0_r8> repack(int nk, const HelperQ80& q8) {
        static_assert(D%QK8_0 == 0);
        GGML_ASSERT(nk%8 == 0);
        constexpr int nblock = D/QK8_0;
        std::vector<block_q8_0_r8> result(nblock * nk/8);
        auto y = result.data();
        repack(nk, q8.data, q8.stride, y);
        return result;
    }

    std::vector<block_q8_0_r8> r4;
};

// TODO: unite this with the above
template <int D>
struct HelperQ8KVR8 : public BaseHelper {
    using Base = BaseHelper;
    constexpr static ggml_type type = GGML_TYPE_Q8_KV_R8;
    constexpr static int block_size_q = D;
    using block_q8 = block_q8_KV<D>;

    struct block_q8_KV_r8 {
        float  d[8];
        int8_t qs[8*D];
    };

    HelperQ8KVR8(int nk, const HelperQ8KV<D>& q8) : Base(q8.data, q8.stride) {
        r4 = repack(nk, q8);
        Base::data = (const char *)r4.data();
        Base::stride = sizeof(block_q8_KV_r8)/8;
    }

    static std::vector<block_q8_KV_r8> repack(int nk, const HelperQ8KV<D>& q8) {
        static_assert(D%32 == 0);
        GGML_ASSERT(nk%8 == 0);
        std::vector<block_q8_KV_r8> result(nk/8);
        auto y = result.data();
#ifdef __ARM_NEON
        int8x16x2_t m0, m1, m2, m3;
#endif
        const int8_t * x8[8];
        for (int ix = 0; ix < nk/8; ++ix) {
            for (int k = 0; k < 8; ++k) {
                auto dptr = (const float *)(q8.data + (8*ix + k)*q8.stride);
                y[ix].d[k] = dptr[0];
                x8[k] = (const int8_t *)(dptr + 2);
            }
            for (int ib = 0; ib < D/16; ++ib) {
#ifdef __AVX2__
                auto m0 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[4]+ib), _mm_loadu_si128((const __m128i *)x8[0]+ib));
                auto m1 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[5]+ib), _mm_loadu_si128((const __m128i *)x8[1]+ib));
                auto m2 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[6]+ib), _mm_loadu_si128((const __m128i *)x8[2]+ib));
                auto m3 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[7]+ib), _mm_loadu_si128((const __m128i *)x8[3]+ib));
                auto t0 = _mm256_unpacklo_epi32(m0, m1);
                auto t1 = _mm256_unpacklo_epi32(m2, m3);
                auto t2 = _mm256_unpackhi_epi32(m0, m1);
                auto t3 = _mm256_unpackhi_epi32(m2, m3);
                m0 = _mm256_unpacklo_epi64(t0, t1);
                m1 = _mm256_unpackhi_epi64(t0, t1);
                m2 = _mm256_unpacklo_epi64(t2, t3);
                m3 = _mm256_unpackhi_epi64(t2, t3);
//#ifdef HAVE_FANCY_SIMD
//                m0 = _mm256_add_epi8(m0, _mm256_set1_epi8(127));
//                m1 = _mm256_add_epi8(m1, _mm256_set1_epi8(127));
//                m2 = _mm256_add_epi8(m2, _mm256_set1_epi8(127));
//                m3 = _mm256_add_epi8(m3, _mm256_set1_epi8(127));
//#endif
                _mm256_storeu_si256((__m256i *)y[ix].qs + 4*ib+0, m0);
                _mm256_storeu_si256((__m256i *)y[ix].qs + 4*ib+1, m1);
                _mm256_storeu_si256((__m256i *)y[ix].qs + 4*ib+2, m2);
                _mm256_storeu_si256((__m256i *)y[ix].qs + 4*ib+3, m3);
#elif defined __ARM_NEON
                // TODO
                m0.val[0] = vld1q_s8(x8[0]+16*ib); m0.val[1] = vld1q_s8(x8[4]+16*ib);
                m1.val[0] = vld1q_s8(x8[1]+16*ib); m1.val[1] = vld1q_s8(x8[5]+16*ib);
                m2.val[0] = vld1q_s8(x8[2]+16*ib); m2.val[1] = vld1q_s8(x8[6]+16*ib);
                m3.val[0] = vld1q_s8(x8[3]+16*ib); m3.val[1] = vld1q_s8(x8[7]+16*ib);
                auto row01 = vtrnq_s32(vreinterpretq_s32_s8(m0.val[0]), vreinterpretq_s32_s8(m1.val[0]));
                auto row23 = vtrnq_s32(vreinterpretq_s32_s8(m2.val[0]), vreinterpretq_s32_s8(m3.val[0]));
                m0.val[0] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                m1.val[0] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                m2.val[0] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                m3.val[0] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                row01 = vtrnq_s32(vreinterpretq_s32_s8(m0.val[1]), vreinterpretq_s32_s8(m1.val[1]));
                row23 = vtrnq_s32(vreinterpretq_s32_s8(m2.val[1]), vreinterpretq_s32_s8(m3.val[1]));
                m0.val[1] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                m1.val[1] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                m2.val[1] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
                m3.val[1] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
                vst1q_s8_x2(y[ix].qs +  0 + 128*ib, m0);
                vst1q_s8_x2(y[ix].qs + 32 + 128*ib, m1);
                vst1q_s8_x2(y[ix].qs + 64 + 128*ib, m2);
                vst1q_s8_x2(y[ix].qs + 96 + 128*ib, m3);
#else
                // TODO
                for (int l = 0; l < 4; ++l) {
                    for (int k = 0; k < 8; ++k) for (int i = 0; i < 4; ++i) {
                        y[ib].qs[32*l+4*k+i+  0] = x8[k][ib].qs[i+4*l+ 0];
                        y[ib].qs[32*l+4*k+i+128] = x8[k][ib].qs[i+4*l+16];
                    }
                }
#endif
            }
        }
        return result;
    }

    std::vector<block_q8_KV_r8> r4;
};

struct HelperQ40 final : public BaseHelper {
    using Base = BaseHelper;
    constexpr static ggml_type type = GGML_TYPE_Q4_0;
#if defined __AVX2__
    using block_q8 = block_q8_2;
    constexpr static int block_size_q = QK8_2;
#else
    using block_q8 = block_q8_0;
    constexpr static int block_size_q = QK8_0;
#endif
    HelperQ40(const char * data, int stride) : Base(data, stride) {}

    // Needed for v * softmax(k * q)
    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        int j = F16::block_size*i;
        auto dl = (const block_q4_0 *)Base::lblock(l1) + j/QK4_0;
#ifdef __aarch64__
        auto vd = F16::set1(*(const float16_t *)&dl->d);
        auto q  = vld1q_u8(dl->qs);
        q = j%QK4_0 ? vshrq_n_u8(q, 4) : vandq_u8(q, mask);
        q = vaddq_s8(q, m8);
        v1 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(vget_low_s8(q))));
        v2 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(vget_high_s8(q))));
#else
        auto vd = F16::set1(GGML_FP16_TO_FP32(dl->d));
        auto q  = _mm_loadu_si128((const __m128i *)dl->qs);
#ifdef __AVX512F__
        auto ql = _mm_add_epi8(_mm_and_si128(q, mask), m8);
        auto qh = _mm_add_epi8(_mm_and_si128(_mm_srli_epi16(q, 4), mask), m8);
        v1 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(ql)));
        v2 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(qh)));
#else
        if (j%QK4_0) q = _mm_srli_epi16(q, 4);
        auto q16 = _mm256_cvtepi8_epi16(_mm_add_epi8(_mm_and_si128(q, mask), m8));
        v1 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_castsi256_si128(q16))));
        v2 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(q16, 1))));
#endif
#endif
    }

#ifdef __AVX2__
    const __m128i mask = _mm_set1_epi8(0xf);
    const __m128i m8   = _mm_set1_epi8(-8);
#else
    const uint8x16_t mask = vdupq_n_u8(0xf);
    const  int8x16_t m8   = vdupq_n_s8(-8);
#endif
};

struct HelperQ41 final : public BaseHelper {
    using Base = BaseHelper;
    using block_q8 = block_q8_2;
    constexpr static ggml_type type = GGML_TYPE_Q4_1;
    constexpr static int block_size_q = QK8_2;
    HelperQ41(const char * data, int stride) : Base(data, stride) {}

    // Needed for v * softmax(k * q)
    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        int j = F16::block_size*i;
        auto dl = (const block_q4_1 *)Base::lblock(l1) + j/QK4_1;
#ifdef __aarch64__
        auto vd = F16::set1(*(const float16_t *)&dl->d);
        auto vm = F16::set1(*(const float16_t *)&dl->m);
        auto q  = vld1q_u8(dl->qs);
        q = (j%QK4_1) ? vshrq_n_u8(q, 4) : vandq_u8(q, mask);
        v1 = vfmaq_f16(vm, vd, vcvtq_f16_u16(vmovl_u8(vget_low_u8(q))));
        v2 = vfmaq_f16(vm, vd, vcvtq_f16_u16(vmovl_u8(vget_high_u8(q))));
#else
        auto vd = F16::set1(GGML_FP16_TO_FP32(dl->d));
        auto vm = F16::set1(GGML_FP16_TO_FP32(dl->m));
        auto q  = _mm_loadu_si128((const __m128i *)dl->qs);
#ifdef __AVX512F__
        auto ql = _mm_and_si128(q, mask);
        auto qh = _mm_and_si128(_mm_srli_epi16(q, 4), mask);
        v1 = _mm512_fmadd_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(ql)), vm);
        v2 = _mm512_fmadd_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(qh)), vm);
#else
        if (j%QK4_1) q = _mm_srli_epi16(q, 4);
        auto q16 = _mm256_cvtepi8_epi16(_mm_and_si128(q, mask));
        v1 = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_castsi256_si128(q16))), vm);
        v2 = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(q16, 1))), vm);
#endif
#endif
    }

#ifdef __aarch64__
    const uint8x16_t mask = vdupq_n_u8(0xf);
#else
    const __m128i mask = _mm_set1_epi8(0xf);
#endif
};

struct HelperIQ4nl final : public BaseHelper {
    using Base = BaseHelper;
    constexpr static ggml_type type = GGML_TYPE_IQ4_NL;
#ifdef __aarch64__
    using block_q8 = block_q8_0;
    HelperIQ4nl(const char * data, int stride) : Base(data, stride), values(vld1q_s8(iq4k_values)) {}
    constexpr static int block_size_q = QK8_0;
#else
    HelperIQ4nl(const char * data, int stride) : Base(data, stride) {}
#ifdef HAVE_FANCY_SIMD
    using block_q8 = block_q8_2;
    constexpr static int block_size_q = QK8_2;
#else
    using block_q8 = block_q8_0;
    constexpr static int block_size_q = QK8_0;
#endif
#endif

    // Needed for v * softmax(k * q)
    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        int j = F16::block_size*i;
        auto dl = (const block_iq4_nl *)Base::lblock(l1) + j/QK4_0;
#ifdef __aarch64__
        auto vd = F16::set1(*(const float16_t *)&dl->d);
        auto q  = vld1q_u8(dl->qs);
        q = j%QK4_0 ? vshrq_n_u8(q, 4) : vandq_u8(q, mask);
        q = vqtbl1q_s8(values, q);
        v1 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(vget_low_s8(q))));
        v2 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(vget_high_s8(q))));
#else
        auto vd = F16::set1(GGML_FP16_TO_FP32(dl->d));
        auto q  = _mm_loadu_si128((const __m128i *)dl->qs);
#ifdef __AVX512F__
        auto ql = _mm_shuffle_epi8(values, _mm_and_si128(q, mask));
        auto qh = _mm_shuffle_epi8(values, _mm_and_si128(_mm_srli_epi16(q, 4), mask));
        v1 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(ql)));
        v2 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(qh)));
#else
        if (j%QK4_0) q = _mm_srli_epi16(q, 4);
        auto q16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(values, _mm_and_si128(q, mask)));
        v1 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_castsi256_si128(q16))));
        v2 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(q16, 1))));
#endif
#endif
    }

#ifdef __aarch64__
    const uint8x16_t mask = vdupq_n_u8(0xf);
    const int8x16_t values;
#else
    const __m128i mask = _mm_set1_epi8(0xf);
    const __m128i values = _mm_loadu_si128((const __m128i *)iq4k_values);
#endif
};

struct HelperQ60 final : public BaseHelper {
    constexpr static ggml_type type = GGML_TYPE_Q6_0;
#ifdef __aarch64__
    using block_q8 = block_q8_0;
    constexpr static int block_size_q = QK8_0;
#else
    using block_q8 = block_q8_2;
    constexpr static int block_size_q = QK8_2;
#endif
    using Base = BaseHelper;
    HelperQ60(const char * data, int stride) : Base(data, stride) {}

    // Needed for v * softmax(k * q)
    inline void load(int l1, int i, F16::Data& v1, F16::Data& v2) const {
        int j = F16::block_size*i;
        auto dl = (const block_q6_0 *)Base::lblock(l1) + j/QK6_0;
#ifdef __aarch64__
        // TODO
        const float16_t * d16 = (const float16_t *)&dl->d;
        auto vd = F16::set1(d16[0]);
        //auto vd = F16::set1(*(const float16_t *)&dl->d);
        auto qh8 = vld1_u8(dl->qh);
        auto qh  = vcombine_u8(vshl_n_u8(qh8, 4), qh8);
        auto qs  = vld1q_u8(dl->qs);
        qs = j%QK4_0 ? vshrq_n_u8(qs, 4) : vandq_u8(qs, mask_l);
        qs = vorrq_u8(qs, vandq_u8(mask_h, j%QK4_0 ? vshrq_n_u8(qh, 2) : qh));
        qs = vaddq_s8(qs, m32);
        v1 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(vget_low_s8(qs))));
        v2 = vmulq_f16(vd, vcvtq_f16_s16(vmovl_s8(vget_high_s8(qs))));
#else
        auto vd = F16::set1(GGML_FP16_TO_FP32(dl->d));
        auto bl = _mm_loadu_si128((const __m128i *)dl->qs);
        uint64_t aux64; std::memcpy(&aux64, dl->qh, 8);
        auto bh = _mm_set_epi64x(aux64, aux64 << 4);
#ifdef __AVX512F__
        auto ql = _mm_add_epi8(_mm_or_si128(_mm_and_si128(bl, mask_l), _mm_and_si128(bh, mask_h)), m32);
        auto qh = _mm_add_epi8(_mm_or_si128(_mm_and_si128(_mm_srli_epi16(bl, 4), mask_l), _mm_and_si128(_mm_srli_epi16(bh, 2), mask_h)), m32);
        v1 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(ql)));
        v2 = _mm512_mul_ps(vd, _mm512_cvtepi32_ps(_mm512_cvtepi8_epi32(qh)));
#else
        if (j%QK4_0) {
            bl = _mm_srli_epi16(bl, 4);
            bh = _mm_srli_epi16(bh, 2);
        }
        auto q16 = _mm256_cvtepi8_epi16(_mm_add_epi8(_mm_or_si128(_mm_and_si128(bl, mask_l), _mm_and_si128(bh, mask_h)), m32));
        v1 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_castsi256_si128(q16))));
        v2 = _mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(q16, 1))));
#endif
#endif
    }

#ifdef __AVX2__
    const __m128i mask_l = _mm_set1_epi8(0x0f);
    const __m128i mask_h = _mm_set1_epi8(0x30);
    const __m128i m32    = _mm_set1_epi8(-32);
#else
    const uint8x16_t mask_l = vdupq_n_u8(0x0f);
    const uint8x16_t mask_h = vdupq_n_u8(0x30);
    const  int8x16_t m32    = vdupq_n_s8(-32);
#endif
};

template <int q_step_in, int k_step_in>
struct FlashMS {
    constexpr static int q_step = q_step_in;
    constexpr static int k_step = k_step_in;
// Something goes wrong when storing and manipulating K*Q as fp16.
// It works for some models (e.g., Gemma-2), but not for others (e.g., LLaMA-3.1-8B).
// As I wasn't able to find where we lose precision, let's comment this out
// for now and do the K*Q part in fp32.
//#ifdef __aarch64__
//    using cache_t = float16_t;
//#else
//    using cache_t = float;
//#endif
    using cache_t = float;

    FlashMS(float scale, float softcap) : vscale(F16::set1(scale)), softcap(softcap), h_inf(GGML_FP32_TO_FP16(-INFINITY)) {}

    inline void init_qstep() {
        for (int j = 0; j < q_step; ++j) {
            S[j] = 0; M[j] = -INFINITY;
        }
    }

    inline void update_M(int j, float smax) {
        if (smax == -INFINITY) {
            std::memset(cache + k_step*j, 0, k_step*sizeof(float));
            need_scaling[j] = M[j] == -INFINITY ? 2 : 0;
            return;
        }
        need_scaling[j] = 0;
        if (smax > M[j]) {
            if (M[j] > -INFINITY) {
                float m = expf(M[j] - smax);
                vms[j] = m;
                need_scaling[j] = 1;
                S[j] *= m;
            } else {
                need_scaling[j] = 2;
                S[j] = 0;
            }
            M[j] = smax;
        }
    }

#ifdef __aarch64__
    inline void update_S(int j, float32x4_t * vk) {
        auto vm = vdupq_n_f32(M[j]);
        auto vsum = vdupq_n_f32(0);
        for (int l = 0; l < k_step/4; ++l) {
            vk[l] = v_expf(vsubq_f32(vk[l], vm));
            vsum = vaddq_f32(vsum, vk[l]);
            F16::store(cache + k_step*j + 4*l, vk[l]);
        }
        S[j] += vaddvq_f32(vsum);
    }
#else
    inline void update_S(int j, F16::Data * vk) {
        auto vm = F16::set1(M[j]);
        for (int l = 0; l < k_step/F16::block_size; ++l) {
            vk[l] = v_expf(F16::sub(vk[l], vm));
            F16::store(cache + k_step*j + F16::block_size*l, vk[l]);
        }
        S[j] += F16::reduce_add<k_step>(vk);
    }
#endif

#ifdef __aarch64__
    inline float load_and_scale(int j, float32x4_t * vk) {
        float32x4_t vmax = vdupq_n_f32(-INFINITY);
        // Something goes wrong when storing and manipulating K*Q as fp16.
        // It works for some models (e.g., Gemma-2), but not for others (e.g., LLaMA-3.1-8B).
        // As I wasn't able to find where we lose precision, let's comment this out
        // for now and do the K*Q part in fp32.
        //if (softcap <= 0.0f) {
        //    for (int l = 0; l < k_step/F16::block_size; ++l) {
        //        auto val = F16::mul(vscale, F16::load(cache + k_step*j + F16::block_size*l));
        //        vk[2*l+0] = vcvt_f32_f16(vget_low_f16(val));
        //        vk[2*l+1] = vcvt_f32_f16(vget_high_f16(val));
        //        vmax = vmaxq_f32(vmax, vmaxq_f32(vk[2*l+0], vk[2*l+1]));
        //    }
        //} else {
        //    auto v_softcap = vdupq_n_f32(softcap);
        //    for (int l = 0; l < k_step/F16::block_size; ++l) {
        //        auto val = F16::mul(vscale, F16::load(cache + k_step*j + F16::block_size*l));
        //        vk[2*l+0] = vcvt_f32_f16(vget_low_f16(val));
        //        vk[2*l+1] = vcvt_f32_f16(vget_high_f16(val));
        //        vk[2*l+0] = vmulq_f32(v_softcap, v_tanh(vk[2*l+0]));
        //        vk[2*l+1] = vmulq_f32(v_softcap, v_tanh(vk[2*l+1]));
        //        vmax = vmaxq_f32(vmax, vmaxq_f32(vk[2*l+0], vk[2*l+1]));
        //    }
        //}
        auto vscale32 = vcvt_f32_f16(vget_low_f16(vscale));
        if (softcap <= 0.0f) {
            for (int l = 0; l < k_step/4; ++l) {
                vk[l] = vmulq_f32(vscale32, vld1q_f32(cache + k_step*j + 4*l));
                vmax = vmaxq_f32(vmax, vk[l]);
            }
        } else {
            auto v_softcap = vdupq_n_f32(softcap);
            for (int l = 0; l < k_step/4; ++l) {
                vk[l] = vmulq_f32(vscale32, vld1q_f32(cache + k_step*j + 4*l));
                vk[l] = vmulq_f32(v_softcap, v_tanh(vk[l]));
                vmax = vmaxq_f32(vmax, vk[l]);
            }
        }
        return vmaxvq_f32(vmax);
    }
    inline float load_apply_mask_and_scale(int j, float32x4_t * vk, const char * mask) {
        auto vzero = vdupq_n_f16(0);
        auto vinf  = vdupq_n_f32(-INFINITY);
        for (int l = 0; l < k_step/8; ++l) {
            auto vm = vceqq_f16(vzero, vld1q_f16((const float16_t *)mask + 8*l));
            auto vm1 = vzip1q_u16(vm, vm);
            auto vm2 = vzip2q_u16(vm, vm);
            auto kq  = vld1q_f32_x2(cache + k_step*j + 8*l);
            vk[2*l+0] = vreinterpretq_f32_u32(vorrq_u32(vandq_u32(vreinterpretq_u32_f32(kq.val[0]), vm1),
                                                        vbicq_u32(vreinterpretq_u32_f32(vinf), vm1)));
            vk[2*l+1] = vreinterpretq_f32_u32(vorrq_u32(vandq_u32(vreinterpretq_u32_f32(kq.val[1]), vm2),
                                                        vbicq_u32(vreinterpretq_u32_f32(vinf), vm2)));
        }
        float32x4_t vmax = vdupq_n_f32(-INFINITY);
        auto vscale32 = vcvt_f32_f16(vget_low_f16(vscale));
        if (softcap <= 0.0f) {
            for (int l = 0; l < k_step/4; ++l) {
                vk[l] = vmulq_f32(vscale32, vk[l]);
                vmax = vmaxq_f32(vmax, vk[l]);
            }
        } else {
            auto v_softcap = vdupq_n_f32(softcap);
            for (int l = 0; l < k_step/4; ++l) {
                vk[l] = vmulq_f32(vscale32, vk[l]);
                vk[l] = vmulq_f32(v_softcap, v_tanh(vk[l]));
                vmax = vmaxq_f32(vmax, vk[l]);
            }
        }
        return vmaxvq_f32(vmax);
    }
#else
    inline float load_and_scale(int j, F16::Data * vk) {
        if (softcap <= 0.0f) {
            for (int l = 0; l < k_step/F16::block_size; ++l) vk[l] = F16::mul(vscale, F16::load(cache + k_step*j + F16::block_size*l));
        } else {
            auto v_softcap = F16::set1(softcap);
            for (int l = 0; l < k_step/F16::block_size; ++l) {
                auto val = F16::load(cache + k_step*j + F16::block_size*l);
                vk[l] = F16::mul(v_softcap, v_tanh(F16::mul(vscale, val)));
            }
        }
        return F16::reduce_max<k_step>(vk);
    }
    static inline __m256 apply_mask(int l, const char * mask, __m256 val, [[maybe_unused]] __m256 vinf) {
        return _mm256_add_ps(val, _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)mask+l)));
        //auto m128 = _mm_loadu_si128((const __m128i *)mask+l);
        //m128 = _mm_cmpeq_epi16(m128, _mm_setzero_si128());
        //auto m256 = _mm256_cvtepi16_epi32(m128);
        //auto mf = _mm256_castsi256_ps(_mm256_or_si256(m256, _mm256_slli_epi32(m256, 16)));
        //return _mm256_or_ps(_mm256_and_ps(mf, val), _mm256_andnot_ps(mf, vinf));
    }
#ifdef __AVX512F__
    static inline __m512 apply_mask(int l, const char * mask, __m512 val, __m512 vinf) {
        auto m256 = _mm256_loadu_si256((const __m256i *)mask+l);
        m256 = _mm256_cmpeq_epi16(m256, _mm256_setzero_si256());
        auto m512 = _mm512_cvtepi16_epi32(m256);
        auto mf = _mm512_castsi512_ps(_mm512_or_si512(m512, _mm512_slli_epi32(m512, 16)));
        return _mm512_or_ps(_mm512_and_ps(mf, val), _mm512_andnot_ps(mf, vinf));
    }
#endif
    inline float load_apply_mask_and_scale(int j, F16::Data * vk, const char * mask) {
#ifdef HAVE_FANCY_SIMD
        auto vzero = _mm256_set1_epi16(0);
        auto vinf  = _mm512_set1_ps(-INFINITY);
        if (softcap <= 0) {
            for (int l = 0; l < k_step/F16::block_size; ++l) {
                auto m16 = _mm256_cmpeq_epi16_mask(_mm256_loadu_si256((const __m256i *)mask + l), vzero);
                vk[l] = _mm512_mask_mul_ps(vinf, m16, vscale, F16::load(cache + k_step*j + F16::block_size*l));
            }
        } else {
            auto v_softcap = F16::set1(softcap);
            for (int l = 0; l < k_step/F16::block_size; ++l) {
                auto m16 = _mm256_cmpeq_epi16_mask(_mm256_loadu_si256((const __m256i *)mask + l), vzero);
                vk[l] = _mm512_mask_mul_ps(vinf, m16, v_softcap, v_tanh(F16::mul(vscale, F16::load(cache + k_step*j + F16::block_size*l))));
            }
        }
#else
        auto vinf  = F16::set1(-INFINITY);
        for (int l = 0; l < k_step/F16::block_size; ++l) {
            vk[l] = apply_mask(l, mask, F16::load(cache + k_step*j + F16::block_size*l), vinf);
        }
        if (softcap <= 0) {
            for (int l = 0; l < k_step/F16::block_size; ++l) vk[l] = F16::mul(vscale, vk[l]);
        } else {
            auto v_softcap = F16::set1(softcap);
            for (int l = 0; l < k_step/F16::block_size; ++l) vk[l] = F16::mul(v_softcap, v_tanh(F16::mul(vscale, vk[l])));
        }
#endif
        return F16::reduce_max<k_step>(vk);
    }
#endif

#ifdef __aarch64__
    inline void update_M_S(int j, float32x4_t * vk) {
        float smax = load_and_scale(j, vk);
        update_M(j, smax);
        if (M[j] > -INFINITY) update_S(j, vk);
    }
    inline void update_M_S(int j, float32x4_t * vk, const char * mask) {
        float smax = load_apply_mask_and_scale(j, vk, mask);
        update_M(j, smax);
        if (M[j] > -INFINITY) update_S(j, vk);
    }
#else
    inline void update_M_S(int j, F16::Data * vk) {
        float smax = load_and_scale(j, vk);
        update_M(j, smax);
        if (M[j] > -INFINITY) update_S(j, vk);
    }
    inline void update_M_S(int j, F16::Data * vk, const char * mask) {
        float smax = load_apply_mask_and_scale(j, vk, mask);
        update_M(j, smax);
        if (M[j] > -INFINITY) update_S(j, vk);
    }
#endif

    cache_t cache[q_step*k_step];
    float S[q_step], M[q_step];
    int need_scaling[q_step];
    float vms[q_step];
    const F16::Data vscale;
    const float  softcap;
    const ggml_half h_inf;

};

template <int D, int q_step, int k_step>
struct FlashQKV {

#ifdef __aarch64__
    using qkv_cache_t = float16_t;
#else
    using qkv_cache_t = float;
#endif

    template <typename VHelper, typename FMS>
    inline void accumulate_qkv_1(const VHelper& vh, const FMS& fms) {
        static_assert(q_step == FMS::q_step);
        F16::Data vq[D/F16::block_size];
        if (fms.need_scaling[0] == 2) {
            for (int i = 0; i < D/F16::block_size; ++i) vq[i] = F16::zero();
        } else {
            for (int i = 0; i < D/F16::block_size; ++i) vq[i] = F16::load(qkv_cache + F16::block_size*i);
            if (fms.need_scaling[0] == 1) {
                auto vms = F16::set1(fms.vms[0]);
                for (int i = 0; i < D/F16::block_size; ++i) vq[i] = F16::mul(vms, vq[i]);
            }
        }
        F16::Data v0, v1;
        for (int l = 0; l < k_step; l += 4) {
            auto vs0 = F16::set1(fms.cache[l + 0]);
            auto vs1 = F16::set1(fms.cache[l + 1]);
            auto vs2 = F16::set1(fms.cache[l + 2]);
            auto vs3 = F16::set1(fms.cache[l + 3]);
            for (int i = 0; i < D/F16::block_size; i += 2) {
                vh.load(l+0, i, v0, v1);
                vq[i+0] = F16::fmadd(vq[i+0], v0, vs0);
                vq[i+1] = F16::fmadd(vq[i+1], v1, vs0);
                vh.load(l+1, i, v0, v1);
                vq[i+0] = F16::fmadd(vq[i+0], v0, vs1);
                vq[i+1] = F16::fmadd(vq[i+1], v1, vs1);
                vh.load(l+2, i, v0, v1);
                vq[i+0] = F16::fmadd(vq[i+0], v0, vs2);
                vq[i+1] = F16::fmadd(vq[i+1], v1, vs2);
                vh.load(l+3, i, v0, v1);
                vq[i+0] = F16::fmadd(vq[i+0], v0, vs3);
                vq[i+1] = F16::fmadd(vq[i+1], v1, vs3);
            }
        }
        for (int i = 0; i < D/F16::block_size; ++i) F16::store(qkv_cache + F16::block_size*i, vq[i]);
    }

    // This fails for head sizes of 80 and 112 as D/16 is odd, so we cannot do steps of 2
    // Hence, for now, we will not handle head sizes of 80 and 112
    template <typename VHelper, typename FMS>
    inline void accumulate_qkv(const VHelper& vh, const FMS& fms) {
        static_assert(q_step == FMS::q_step);
        if constexpr (q_step == 1) {
            accumulate_qkv_1(vh, fms);
            return;
        }
        for (int j = 0; j < q_step; ++j) {
            auto R = qkv_cache + D*j;
            if (fms.need_scaling[j] == 2) {
                std::memset(R, 0, D*sizeof(qkv_cache_t));
            }
            else if (fms.need_scaling[j] == 1) {
                auto vms = F16::set1(fms.vms[j]);
                for (int i = 0; i < D/F16::block_size; ++i) {
                    F16::store(R + F16::block_size*i, F16::mul(vms, F16::load(R + F16::block_size*i)));
                }
            }
        }
#ifdef __AVX512F__
        if constexpr ((D/F16::block_size)%4 == 0) {
            F16::Data v[16];
            F16::Data vs[4];
            for (int i = 0; i < D/F16::block_size; i += 4) {
                for (int l = 0; l < k_step; l += 4) {
                    for (int k = 0; k < 4; ++k) {
                        vh.load(l+k, i+0, v[4*k+0], v[4*k+1]);
                        vh.load(l+k, i+2, v[4*k+2], v[4*k+3]);
                    }
                    for (int j = 0; j < q_step; ++j) {
                        auto R = qkv_cache + D*j;
                        auto s1 = F16::load(R + F16::block_size*(i+0));
                        auto s2 = F16::load(R + F16::block_size*(i+1));
                        auto s3 = F16::load(R + F16::block_size*(i+2));
                        auto s4 = F16::load(R + F16::block_size*(i+3));
                        F16::set4(fms.cache + k_step*j + l, vs);
                        for (int k = 0; k < 4; ++k) {
                            s1 = F16::fmadd(s1, v[4*k+0], vs[k]);
                            s2 = F16::fmadd(s2, v[4*k+1], vs[k]);
                            s3 = F16::fmadd(s3, v[4*k+2], vs[k]);
                            s4 = F16::fmadd(s4, v[4*k+3], vs[k]);
                        }
                        F16::store(R + F16::block_size*(i+0), s1);
                        F16::store(R + F16::block_size*(i+1), s2);
                        F16::store(R + F16::block_size*(i+2), s3);
                        F16::store(R + F16::block_size*(i+3), s4);
                    }
                }
            }
            return;
        }
#endif
        F16::Data v[8];
#ifdef __AVX2__
        F16::Data vs[4];
#endif
        for (int i = 0; i < D/F16::block_size; i += 2) {
            for (int l = 0; l < k_step; l += 4) {
                vh.load(l+0, i, v[0], v[4]);
                vh.load(l+1, i, v[1], v[5]);
                vh.load(l+2, i, v[2], v[6]);
                vh.load(l+3, i, v[3], v[7]);
                for (int j = 0; j < q_step; ++j) {
                    auto R = qkv_cache + D*j;
                    auto s1 = F16::load(R + F16::block_size*(i+0));
                    auto s2 = F16::load(R + F16::block_size*(i+1));
#ifdef __AVX2__
                    F16::set4(fms.cache + k_step*j + l, vs);
                    for (int k = 0; k < 4; ++k) {
                        s1 = F16::fmadd(s1, v[k+0], vs[k]);
                        s2 = F16::fmadd(s2, v[k+4], vs[k]);
                    }
#else
                    auto vs = F16::set4(fms.cache + k_step*j + l);
                    s1 = F16::fmadd_lane0(s1, v[0], vs);
                    s2 = F16::fmadd_lane0(s2, v[4], vs);
                    s1 = F16::fmadd_lane1(s1, v[1], vs);
                    s2 = F16::fmadd_lane1(s2, v[5], vs);
                    s1 = F16::fmadd_lane2(s1, v[2], vs);
                    s2 = F16::fmadd_lane2(s2, v[6], vs);
                    s1 = F16::fmadd_lane3(s1, v[3], vs);
                    s2 = F16::fmadd_lane3(s2, v[7], vs);
#endif
                    F16::store(R + F16::block_size*(i+0), s1);
                    F16::store(R + F16::block_size*(i+1), s2);
                }
            }
        }
    }

    template <typename VHelper, typename FMS>
    inline void accumulate_qkv(int nq1, const VHelper& vh, const FMS& fms) {
        static_assert(q_step == FMS::q_step);
        if (nq1 == 1) {
            accumulate_qkv_1(vh, fms);
            return;
        }
        F16::Data v[8];
        for (int j = 0; j < nq1; ++j) {
            auto R = qkv_cache + D*j;
            if (fms.need_scaling[j] == 2) {
                std::memset(R, 0, D*sizeof(qkv_cache_t));
            }
            else if (fms.need_scaling[j] == 1) {
                auto vms = F16::set1(fms.vms[j]);
                for (int i = 0; i < D/F16::block_size; ++i) {
                    F16::store(R + F16::block_size*i, F16::mul(vms, F16::load(R + F16::block_size*i)));
                }
            }
        }
        for (int i = 0; i < D/F16::block_size; i += 2) {
            for (int l = 0; l < k_step; l += 4) {
                vh.load(l+0, i, v[0], v[4]);
                vh.load(l+1, i, v[1], v[5]);
                vh.load(l+2, i, v[2], v[6]);
                vh.load(l+3, i, v[3], v[7]);
                for (int j = 0; j < nq1; ++j) {
                    auto R = qkv_cache + D*j;
                    auto s1 = F16::load(R + F16::block_size*(i+0));
                    auto s2 = F16::load(R + F16::block_size*(i+1));
                    auto vs = F16::set4(fms.cache + k_step*j + l);
                    s1 = F16::fmadd_lane0(s1, v[0], vs);
                    s2 = F16::fmadd_lane0(s2, v[4], vs);
                    s1 = F16::fmadd_lane1(s1, v[1], vs);
                    s2 = F16::fmadd_lane1(s2, v[5], vs);
                    s1 = F16::fmadd_lane2(s1, v[2], vs);
                    s2 = F16::fmadd_lane2(s2, v[6], vs);
                    s1 = F16::fmadd_lane3(s1, v[3], vs);
                    s2 = F16::fmadd_lane3(s2, v[7], vs);
                    F16::store(R + F16::block_size*(i+0), s1);
                    F16::store(R + F16::block_size*(i+1), s2);
                }
            }
        }
    }

    template <typename FMS>
    inline void normalize_and_store_1row(const FMS& fms, int j, const qkv_cache_t * R, float * qkv) const {
        static_assert(q_step == FMS::q_step);
        GGML_ASSERT(fms.S[j] > 0);
        auto norm = F16::set1(1/fms.S[j]);
        //auto norm = F16::set1(fms.S[j] > 0 ? 1/fms.S[j] : 0.f);
        for (int i = 0; i < D/F16::block_size; ++i) {
            auto r = F16::load(R + F16::block_size*i);
            F16::store(qkv + F16::block_size*i, F16::mul(norm, r));
        }
    }

    template <typename FMS>
    inline void normalize_and_store(const FMS& fms, int nq1, int stride_qkv, float * qkv, float * M, float * S) const {
        static_assert(q_step == FMS::q_step);
        if (M && S) {
            std::memcpy(M, fms.M, nq1*sizeof(float));
            std::memcpy(S, fms.S, nq1*sizeof(float));
            auto R = qkv_cache;
            for (int j = 0; j < nq1; ++j) {
#ifdef __aarch64__
                for (int i = 0; i < D/F16::block_size; ++i) {
                    F16::store(qkv + F16::block_size*i, F16::load(R + F16::block_size*i));
                }
#else
                std::memcpy(qkv, R, D*sizeof(float));
#endif
                qkv += stride_qkv;
                R   += D;
            }
        } else {
            auto R = qkv_cache;
            for (int j = 0; j < nq1; ++j) {
                normalize_and_store_1row(fms, j, R, qkv);
                qkv += stride_qkv;
                R   += D;
            }
        }
    }

    template <typename FMS>
    inline void normalize_and_store(const FMS& fms, int stride_qkv, float * qkv, float * M, float * S) const {
        static_assert(q_step == FMS::q_step);
        if (M && S) {
            std::memcpy(M, fms.M, q_step*sizeof(float));
            std::memcpy(S, fms.S, q_step*sizeof(float));
            auto R = qkv_cache;
            for (int j = 0; j < q_step; ++j) {
#ifdef __aarch64__
                for (int i = 0; i < D/F16::block_size; ++i) {
                    F16::store(qkv + F16::block_size*i, F16::load(R + F16::block_size*i));
                }
#else
                std::memcpy(qkv, R, D*sizeof(float));
#endif
                qkv += stride_qkv;
                R   += D;
            }
        } else {
            auto R = qkv_cache;
            for (int j = 0; j < q_step; ++j) {
                normalize_and_store_1row(fms, j, R, qkv);
                qkv += stride_qkv;
                R   += D;
            }
        }
    }

    // qkv_cache_t qkv_cache[D*q_step];
    // The initializer is not actually required. But the compiler cannot figure out that when qkv_cache is
    // first used for q_step rows, fms.need_scaling[j] is always 2, which zeroes the content of qkv_cache.
    // As a result, we get an infinite stream of warnings about uninitialized variable use (one for each
    // combination of D, q_step, k_step), which is extremely annoying. Hence, I succumb to the trend of
    // constantly being saved by others (the compiler in this case), and add this 100% unnecessary initialization.
    qkv_cache_t qkv_cache[D*q_step]; // = {};
    //qkv_cache_t * qkv_cache;
};

template <int D, int q_step, int k_step>
struct FlashQKfp32 {
    static_assert(D%F16::block_size == 0 && D <= 576);
    static_assert(k_step%F16::block_size == 0);
    static_assert(q_step <= 4 || q_step%4 == 0);

    template <typename KHelper, typename q_float>
    static inline void multiply_mask_kq(const KHelper& kh, int stride_q, int stride_m, const q_float * q, const char * mask,
            FlashMS<q_step, k_step>& fms) {
#ifdef __AVX2__
        constexpr int nrc_k = 8;
        static_assert(k_step%nrc_k == 0);
#endif
        DataInfo info{fms.cache, (const char *)q, k_step, stride_q*sizeof(q_float), 0, 1, nullptr};
        iqk_gemm_default_floats(D, q_step, kh.block, kh.stride, info, k_step);
#ifdef __AVX2__
        F16::Data vk[k_step/F16::block_size];
#else
        float32x4_t vk[k_step/4];
#endif
        for (int j = 0; j < q_step; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
    }

    template <typename KHelper, typename q_float>
    static inline void multiply_mask_kq(int nq, const KHelper& kh, int stride_q, int stride_m, const q_float * q, const char * mask,
            FlashMS<q_step, k_step>& fms) {
#ifdef __AVX2__
        constexpr int nrc_k = 8;
        static_assert(k_step%nrc_k == 0);
#endif
        DataInfo info{fms.cache, (const char *)q, k_step, stride_q*sizeof(q_float), 0, 1, nullptr};
        iqk_gemm_default_floats(D, nq, kh.block, kh.stride, info, k_step);
#ifdef __AVX2__
        F16::Data vk[k_step/F16::block_size];
#else
        float32x4_t vk[k_step/4];
#endif
        for (int j = 0; j < nq; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
    }

#ifdef __aarch64__
    static inline void convert(int nq, int stride_q, const float * q, float16_t * q_f16) {
        for (int i = 0; i < nq; ++i) {
            for (int j = 0; j < D; j += 8) {
                auto val1_f32 = vld1q_f32(q + j + 0);
                auto val2_f32 = vld1q_f32(q + j + 4);
                auto val_f16  = vcombine_f16(vcvt_f16_f32(val1_f32), vcvt_f16_f32(val2_f32));
                vst1q_f16(q_f16 + j, val_f16);
            }
            q += stride_q;
            q_f16 += D;
        }
    }
#endif

    template <typename KHelper, typename block_q8>
    static inline void mul_mask_kq(const KHelper& kh, int stride_m,
            const block_q8 * q, const char * mask, FlashMS<q_step, k_step>& fms) {
        constexpr int kMaxQ = 8;
        static_assert(q_step < kMaxQ || q_step%kMaxQ == 0);
        DataInfo info{fms.cache, (const char *)q, k_step, (D/KHelper::block_size_q)*sizeof(block_q8), 0, 1, nullptr};
        if constexpr (std::is_same_v<KHelper, HelperQ8KVR8<D>> ||
                      std::is_same_v<KHelper, HelperQ8KV<D>>) {
            iqk_gemm_q8kv_fa(D, q_step, kh.type, kh.block, kh.stride, info, k_step);
        } else {
            iqk_gemm_legacy_fa(D, q_step, kh.type, kh.block, kh.stride, info, k_step);
        }
#ifdef __aarch64__
        float32x4_t vk[k_step/4];
        for (int j = 0; j < q_step; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
#else
        F16::Data vk[k_step/F16::block_size];
        for (int j = 0; j < q_step; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
#endif
    }

    template <typename KHelper, typename block_q8>
    static inline void mul_mask_kq(int nq, const KHelper& kh, int stride_m,
            const block_q8 * q, const char * mask, FlashMS<q_step, k_step>& fms) {
        GGML_ASSERT(nq < q_step);
        DataInfo info{fms.cache, (const char *)q, k_step, (D/KHelper::block_size_q)*sizeof(block_q8), 0, 1, nullptr};
        if constexpr (std::is_same_v<KHelper, HelperQ8KVR8<D>> ||
                      std::is_same_v<KHelper, HelperQ8KV<D>>) {
            iqk_gemm_q8kv_fa(D, nq, kh.type, kh.block, kh.stride, info, k_step);
        } else {
            iqk_gemm_legacy_fa(D, nq, kh.type, kh.block, kh.stride, info, k_step);
        }
#ifdef __aarch64__
        float32x4_t vk[k_step/4];
        for (int j = 0; j < nq; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
#else
        F16::Data vk[k_step/F16::block_size];
        for (int j = 0; j < nq; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
#endif
    }
};

template <int Dk, int Dv, int q_step, int k_step, typename KHelper, typename VHelper, typename KQHelper>
void compute_helper(KHelper& kh, VHelper& vh, int nq1, int nk1, int stride_q, int stride_m, int stride_qkv,
        FlashMS<q_step, k_step>& fms,
        FlashQKV<Dv, q_step, k_step>& fqkv,
        const float * q, const char * mask, float * qkv,
        float * M, float * S) {
#ifdef __aarch64__
    float16_t q_f16[Dk*q_step];
#endif

    for (int i1 = 0; i1 < nq1/q_step; ++i1) {
        fms.init_qstep();
        kh.reset_block();
        vh.reset_block();
#ifdef __aarch64__
        KQHelper::convert(q_step, stride_q, q, q_f16);
#endif
        auto mr = mask;
        for (int k1 = 0; k1 < nk1/k_step; ++k1) {
#ifdef __aarch64__
            KQHelper::multiply_mask_kq(kh, Dk, stride_m, q_f16, mr, fms);
#else
            KQHelper::multiply_mask_kq(kh, stride_q, stride_m, q, mr, fms);
#endif
            fqkv.accumulate_qkv(vh, fms);
            kh.next_block(k_step);
            vh.next_block(k_step);
            mr += k_step*sizeof(ggml_half);
        }
        fqkv.normalize_and_store(fms, stride_qkv, qkv, M, S);

        q    += q_step*stride_q;
        mask += q_step*stride_m;
        qkv  += q_step*stride_qkv;
        if (M && S) { M += q_step; S += q_step; }
    }
    int n_left = nq1 - q_step*(nq1/q_step);
    if (n_left > 0) {
        fms.init_qstep();
        kh.reset_block();
        vh.reset_block();
#ifdef __aarch64__
        KQHelper::convert(n_left, stride_q, q, q_f16);
#endif
        auto mr = mask;
        for (int k1 = 0; k1 < nk1/k_step; ++k1) {
#ifdef __aarch64__
            KQHelper::multiply_mask_kq(n_left, kh, Dk, stride_m, q_f16, mr, fms);
#else
            KQHelper::multiply_mask_kq(n_left, kh, stride_q, stride_m, q, mr, fms);
#endif
            fqkv.accumulate_qkv(n_left, vh, fms);
            kh.next_block(k_step);
            vh.next_block(k_step);
            mr += k_step*sizeof(ggml_half);
        }
        fqkv.normalize_and_store(fms, n_left, stride_qkv, qkv, M, S);
    }
}

template <int Dk, int Dv, int q_step, int k_step, typename KHelper, typename VHelper, typename KQHelper>
void compute_helper_q(KHelper& kh, VHelper& vh, int nq1, int nk1, int stride_q, int stride_m, int stride_qkv,
        FlashMS<q_step, k_step>& fms,
        FlashQKV<Dv, q_step, k_step>& fqkv,
        const float * q, const char * mask, float * qkv,
        float * M, float * S, char * qptr) {
    auto q8 = (typename KHelper::block_q8 *)qptr;
    if constexpr (q_step > 1 && std::is_same_v<KHelper, HelperQ80>) {
        if (nq1 == q_step) {
            fms.init_qstep();
            kh.reset_block();
            vh.reset_block();
            block_q8_0_r8 q8r8[Dk/QK8_0 * k_step/8];
            HelperQ80R8<Dk> khr8((const char *)q8r8, Dk/QK8_0*sizeof(block_q8_0));
            auto q8r = (typename HelperQ80R8<Dk>::block_q8 *)qptr;
            HelperQ80::convert<Dk>(q_step, stride_q, q, q8r);
            auto mr = mask;
            for (int k1 = 0; k1 < nk1/k_step; ++k1) {
                HelperQ80R8<Dk>::repack(k_step, kh.block, kh.stride, q8r8);
                KQHelper::mul_mask_kq(khr8, stride_m, q8r, mr, fms);
                fqkv.accumulate_qkv(vh, fms);
                kh.next_block(k_step);
                vh.next_block(k_step);
                mr += k_step*sizeof(ggml_half);
            }
            fqkv.normalize_and_store(fms, stride_qkv, qkv, M, S);
            return;
        }
    }
#if FA_TIMING
    Perf perf(false);
#endif
    for (int i1 = 0; i1 < nq1/q_step; ++i1) {
#if FA_TIMING
        auto t1 = Perf::cur_time();
#endif
        fms.init_qstep();
        kh.reset_block();
        vh.reset_block();
        HelperQ80::convert<Dk>(q_step, stride_q, q, q8);
#if FA_TIMING
        perf.accum_nolock(0, t1);
#endif
        auto mr = mask;
        for (int k1 = 0; k1 < nk1/k_step; ++k1) {
#if FA_TIMING
            t1 = Perf::cur_time();
            KQHelper::mul_mask_kq(kh, stride_m, q8, mr, fms);
            perf.accum_nolock(1, t1);
            t1 = Perf::cur_time();
            fqkv.accumulate_qkv(vh, fms);
            perf.accum_nolock(2, t1);
#else
            KQHelper::mul_mask_kq(kh, stride_m, q8, mr, fms);
            fqkv.accumulate_qkv(vh, fms);
#endif
            kh.next_block(k_step);
            vh.next_block(k_step);
            mr += k_step*sizeof(ggml_half);
        }
#if FA_TIMING
        t1 = Perf::cur_time();
        fqkv.normalize_and_store(fms, stride_qkv, qkv, M, S);
        perf.accum_nolock(3, t1);
#else
        fqkv.normalize_and_store(fms, stride_qkv, qkv, M, S);
#endif

        q    += q_step*stride_q;
        mask += q_step*stride_m;
        qkv  += q_step*stride_qkv;
        if (M && S) { M += q_step; S += q_step; }
    }
    int n_left = nq1 - q_step*(nq1/q_step);
    if (n_left > 0) {
        fms.init_qstep();
        kh.reset_block();
        vh.reset_block();
        HelperQ80::convert<Dk>(n_left, stride_q, q, q8);
        auto mr = mask;
        for (int k1 = 0; k1 < nk1/k_step; ++k1) {
            KQHelper::mul_mask_kq(n_left, kh, stride_m, q8, mr, fms);
            fqkv.accumulate_qkv(n_left, vh, fms);
            kh.next_block(k_step);
            vh.next_block(k_step);
            mr += k_step*sizeof(ggml_half);
        }
        fqkv.normalize_and_store(fms, n_left, stride_qkv, qkv, M, S);
    }
#if FA_TIMING
    Perf::instance().add(perf);
#endif
}

char * get_q_storage(size_t size) {
    thread_local std::vector<char> q_storage;
    if (q_storage.size() < size) q_storage.resize(size);
    return q_storage.data();
}

// Some of the methods in FlashAttn have two identical implementations that only differ by
// one version using a loop over the template parameter q_step, while the other using a loop
// over an input parameter nq (these are loops over the rows of q^T). I dislike this a lot,
// but performance drops signficantly if I remove the version with fixed q_step iterations.
// We only instantiate FlashAttn with q_step = 1 and q_step = 4 or 8 (depending on head size D),
// so when we have to process Nq rows, we process q_step*(Nq/q_step) using fixed q_step loops,
// and use the variable nq version (with lower performance) only for the remaining i1...q_step-1
// rows (if Nq is not a multiple of q_step). One could have made the number of q^T rows to
// process template parameter of such functions, but this would result in the compiler generating
// q_step-1 versions of these functions for us, which I though was too much with q_step = 8.
template <int Dk, int Dv, int q_step, int k_step>
struct FlashAttn {
    static_assert(Dk%F16::block_size == 0 && Dk <= 576);
    static_assert(Dv%F16::block_size == 0 && Dv <= 512);
    static_assert(k_step%F16::block_size == 0);
    static_assert(q_step <= 4 || q_step%4 == 0);

    FlashAttn(float scale, float softcap) : fms(scale, softcap) {}

    template <typename KHelper, typename VHelper>
    void compute(KHelper& kh, VHelper& vh, int nq1, int nk1, int stride_q, int stride_m, int stride_qkv,
            const float * q, const char * mask, float * qkv, [[maybe_unused]] float * M, [[maybe_unused]] float * S) {
        if constexpr (std::is_same_v<KHelper, HelperQ40> ||
                      std::is_same_v<KHelper, HelperQ41> ||
                      std::is_same_v<KHelper, HelperIQ4nl> ||
                      std::is_same_v<KHelper, HelperQ60> ||
                      std::is_same_v<KHelper, HelperQ80R8<Dk>> ||
                      std::is_same_v<KHelper, HelperQ80> ||
                      std::is_same_v<KHelper, HelperQ8KV<Dk>> ||
                      std::is_same_v<KHelper, HelperQ8KVR8<Dk>>) {
            constexpr size_t kMaxOnStackSize = 576;
            //auto q_size = q_step*(Dk/KHelper::block_size_q)*sizeof(typename KHelper::block_q8);
            auto q_size = q_step*(Dk/QK8_2*sizeof(block_q8_2));
            q_size = GGML_PAD(q_size, 64);
            if (q_size > kMaxOnStackSize) {
                auto qptr = get_q_storage(q_size);
                if (false && nq1 >= 8) {
                    if constexpr (std::is_same_v<KHelper, HelperQ80>) {
#if FA_TIMING
                        auto t1 = Perf::cur_time();
                        HelperQ80R8<Dk, k_step> khr4(nk1, kh);
                        Perf::instance().accum(4, t1);
#else
                        HelperQ80R8<Dk> khr4(nk1, kh);
#endif
                        compute_helper_q<Dk, Dv, q_step, k_step, HelperQ80R8<Dk>, VHelper, FlashQKfp32<Dk, q_step, k_step>>(
                                khr4, vh, nq1, nk1, stride_q, stride_m, stride_qkv, fms, fqkv, q, mask, qkv, M, S, qptr);
                        return;

                    }
#if GGML_IQK_FA_ALL_QUANTS
                    if constexpr (std::is_same_v<KHelper, HelperQ8KV<Dk>>) {
#if FA_TIMING
                        auto t1 = Perf::cur_time();
                        HelperQ8KVR8<Dk, k_step> khr4(nk1, kh);
                        Perf::instance().accum(4, t1);
#else
                        HelperQ8KVR8<Dk> khr4(nk1, kh);
#endif
                        compute_helper_q<Dk, Dv, q_step, k_step, HelperQ8KVR8<Dk>, VHelper, FlashQKfp32<Dk, q_step, k_step>>(
                                khr4, vh, nq1, nk1, stride_q, stride_m, stride_qkv, fms, fqkv, q, mask, qkv, M, S, qptr);
                        return;
                    }
#endif
                }
                compute_helper_q<Dk, Dv, q_step, k_step, KHelper, VHelper, FlashQKfp32<Dk, q_step, k_step>>(
                        kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, fms, fqkv, q, mask, qkv, M, S, qptr);

            }
            else {
                typename KHelper::block_q8 q8[q_step*(Dk/KHelper::block_size_q)];
                compute_helper_q<Dk, Dv, q_step, k_step, KHelper, VHelper, FlashQKfp32<Dk, q_step, k_step>>(
                        kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, fms, fqkv, q, mask, qkv, M, S, (char *)q8);
            }
        }
        else {
            compute_helper<Dk, Dv, q_step, k_step, KHelper, VHelper, FlashQKfp32<Dk, q_step, k_step>>(
                    kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, fms, fqkv, q, mask, qkv, M, S);
        }
    }

    FlashMS<q_step, k_step>      fms;
    FlashQKV<Dv, q_step, k_step> fqkv;

};

#ifdef __AVX512BF16__

template <int D, int step>
struct HelperBF16 final : public BaseHelper {
    using Base = BaseHelper;
    HelperBF16(const char * data, int stride) : Base(data, stride) {}
    inline void load(int l1, __m512bh * vk) const {
        auto dr = Base::lblock(l1);
        for (int i = 0; i < D/32; ++i) vk[i] = __m512bh(_mm512_loadu_si512((const __m512i*)dr + i));
    }

    inline void load(int l1, int i, __m512& v1, __m512& v2) const {
        auto dr = Base::lblock(l1);
        v1 = _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)dr + i + 0)), 16));
        v2 = _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)dr + i + 1)), 16));
    }

    inline void load_2(int l1, __m512bh * vk) const {
        load(l1+0, vk+0);
        load(l1+1, vk+D/32);
    }

    inline void load_4(int l1, __m512bh * vk) const {
        load(l1+0, vk+0);
        load(l1+1, vk+1*D/32);
        load(l1+2, vk+2*D/32);
        load(l1+3, vk+3*D/32);
    }

    inline void load_8(int l1, __m512bh * vk) const {
        for (int k = 0; k < 8; ++k) load(l1 + k, vk + k*D/32);
    }
};

template <int D, int q_step, int k_step>
struct FlashQKbf16 {
    //static_assert(D%32 == 0 && D <= 256);
    static_assert(D%32 == 0 && D <= 576);
    static_assert(k_step%32 == 0);
    static_assert(q_step <= 4 || q_step%4 == 0);

    static inline void mult_mask_kq_one(int l1, int m1, int stride_q, int stride_m, const float * q, const char * mask,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        // q index is q_step*i1 + m1
        // k index is k_step*k1 + l1
        const ggml_half * mp = (const ggml_half *)(mask + stride_m*m1);
        fms.cache[k_step*m1 + l1 + 0] = fms.cache[k_step*m1 + l1 + 1] = -INFINITY;
        if (mp[l1+0] == fms.h_inf && mp[l1+1] == fms.h_inf) {
            return;
        }
        auto qr = q + m1*stride_q;
        for (int i = 0; i < D/32; ++i) {
            auto val1 = _mm512_loadu_ps(qr + 32*i);
            auto val2 = _mm512_loadu_ps(qr + 32*i + 16);
            qv[i] = _mm512_cvtne2ps_pbh(val2, val1);
        }
        if (mp[l1+0] != fms.h_inf) {
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i], qv[i]);
            fms.cache[k_step*m1 + l1 + 0] = _mm512_reduce_add_ps(vsum);
        }
        if (mp[l1+1] != fms.h_inf) {
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+D/32], qv[i]);
            fms.cache[k_step*m1 + l1 + 1] = _mm512_reduce_add_ps(vsum);
        }
    }

    static inline void mult_mask_kq_one(int l1, int m1, int stride_m, const ggml_bf16_t * q, const char * mask,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        // q index is q_step*i1 + m1
        // k index is k_step*k1 + l1
        const ggml_half * mp = (const ggml_half *)(mask + stride_m*m1);
        fms.cache[k_step*m1 + l1 + 0] = fms.cache[k_step*m1 + l1 + 1] = -INFINITY;
        if (mp[l1+0] == fms.h_inf && mp[l1+1] == fms.h_inf) {
            return;
        }
        auto qr = q + m1*D;
        for (int i = 0; i < D/32; ++i) qv[i] = __m512bh(_mm512_loadu_si512((const __m512i*)qr + i));
        if (mp[l1+0] != fms.h_inf) {
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i], qv[i]);
            fms.cache[k_step*m1 + l1 + 0] = _mm512_reduce_add_ps(vsum);
        }
        if (mp[l1+1] != fms.h_inf) {
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+D/32], qv[i]);
            fms.cache[k_step*m1 + l1 + 1] = _mm512_reduce_add_ps(vsum);
        }
    }

    static inline void mult_mask_kq_4(int l1, int m1, int stride_q, int stride_m, const float * q, const char * mask,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        // q index is q_step*i1 + m1
        // k index is k_step*k1 + l1
        const ggml_half * mp = (const ggml_half *)(mask + stride_m*m1);
        fms.cache[k_step*m1 + l1 + 0] = fms.cache[k_step*m1 + l1 + 1] =
        fms.cache[k_step*m1 + l1 + 2] = fms.cache[k_step*m1 + l1 + 3] = -INFINITY;
        if (mp[l1+0] == fms.h_inf && mp[l1+1] == fms.h_inf && mp[l1+2] == fms.h_inf && mp[l1+3] == fms.h_inf) {
            return;
        }
        auto qr = q + m1*stride_q;
        for (int i = 0; i < D/32; ++i) {
            auto val1 = _mm512_loadu_ps(qr + 32*i);
            auto val2 = _mm512_loadu_ps(qr + 32*i + 16);
            qv[i] = _mm512_cvtne2ps_pbh(val2, val1);
        }
        for (int k = 0; k < 4; ++k) {
            if (mp[l1+k] == fms.h_inf) continue;
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+k*(D/32)], qv[i]);
            fms.cache[k_step*m1 + l1 + k] = _mm512_reduce_add_ps(vsum);
        }
    }

    static inline void mult_mask_kq_4(int l1, int m1, int stride_m, const ggml_bf16_t * q, const char * mask,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        // q index is q_step*i1 + m1
        // k index is k_step*k1 + l1
        const ggml_half * mp = (const ggml_half *)(mask + stride_m*m1);
        fms.cache[k_step*m1 + l1 + 0] = fms.cache[k_step*m1 + l1 + 1] =
        fms.cache[k_step*m1 + l1 + 2] = fms.cache[k_step*m1 + l1 + 3] = -INFINITY;
        if (mp[l1+0] == fms.h_inf && mp[l1+1] == fms.h_inf && mp[l1+2] == fms.h_inf && mp[l1+3] == fms.h_inf) {
            return;
        }
        auto qr = q + m1*D;
        for (int i = 0; i < D/32; ++i) qv[i] = __m512bh(_mm512_loadu_si512((const __m512i *)qr + i));
        for (int k = 0; k < 4; ++k) {
            if (mp[l1+k] == fms.h_inf) continue;
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+k*(D/32)], qv[i]);
            fms.cache[k_step*m1 + l1 + k] = _mm512_reduce_add_ps(vsum);
        }
    }

    static inline __m128 hsum_float_4x4(__m128 * a) {
        for (int i = 0; i < 2; ++i) a[i] = _mm_add_ps(_mm_unpacklo_ps(a[i], a[i+2]), _mm_unpackhi_ps(a[i], a[i+2]));
        return _mm_add_ps(_mm_unpacklo_ps(a[0], a[1]), _mm_unpackhi_ps(a[0], a[1]));
    }

    template <typename KHelper>
    static inline void multiply_mask_kq(const KHelper& kh, int stride_q, int stride_m, const float * q,
            const char * mask, FlashMS<q_step, k_step>& fms) {
        {
            __m512bh qv[D/32];
            if constexpr (D <= 128) {
                __m512bh vkh[D/8];
                for (int l1 = 0; l1 < k_step; l1 += 4) {
                    kh.load_4(l1, vkh);
                    for (int j = 0; j < q_step; ++j) {
                        mult_mask_kq_4(l1, j, stride_q, stride_m, q, mask, qv, vkh, fms);
                    }
                }
            } else {
                __m512bh vkh[D/16];
                for (int l1 = 0; l1 < k_step; l1 += 2) {
                    kh.load_2(l1, vkh);
                    for (int j = 0; j < q_step; ++j) {
                        mult_mask_kq_one(l1, j, stride_q, stride_m, q, mask, qv, vkh, fms);
                    }
                }
            }
        }
        __m512 vk[k_step/16];
        for (int j = 0; j < q_step; ++j) {
            fms.update_M_S(j, vk);
        }
    }

    static inline void mult_mask_kq_4(int l1, int m1, const ggml_bf16_t * q,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        auto qr = q + m1*D;
        for (int i = 0; i < D/32; ++i) qv[i] = __m512bh(_mm512_loadu_si512((const __m512i *)qr + i));
        __m128 sum[4];
        for (int k = 0; k < 4; ++k) {
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+k*(D/32)], qv[i]);
            auto aux = _mm256_add_ps(_mm512_castps512_ps256(vsum), _mm512_extractf32x8_ps(vsum, 1));
            sum[k] = _mm_add_ps(_mm256_castps256_ps128(aux), _mm256_extractf128_ps(aux, 1));
        }
        //auto sum4 = _mm_mask_blend_ps(m8, hsum_float_4x4(sum), _mm_set1_ps(-INFINITY));
        //_mm_storeu_ps(fms.cache + k_step*m1 + l1, sum4);
        _mm_storeu_ps(fms.cache + k_step*m1 + l1, hsum_float_4x4(sum));
    }

    static IQK_ALWAYS_INLINE __m256 hsum_float_8x8(__m256 * accm) {
        for (int i = 0; i < 4; ++i) {
            accm[i] = _mm256_add_ps(_mm256_permute2f128_ps(accm[i], accm[i+4], 0x20), _mm256_permute2f128_ps(accm[i], accm[i+4], 0x31));
            //accm[i] = _mm256_set_m128(_mm_add_ps(_mm256_castps256_ps128(accm[i+4]), _mm256_extractf128_ps(accm[i+4], 1)),
            //                          _mm_add_ps(_mm256_castps256_ps128(accm[i+0]), _mm256_extractf128_ps(accm[i+0], 1)));
        }
        for (int i = 0; i < 2; ++i) accm[i] = _mm256_add_ps(_mm256_unpacklo_ps(accm[i], accm[i+2]), _mm256_unpackhi_ps(accm[i], accm[i+2]));
        return _mm256_add_ps(_mm256_unpacklo_ps(accm[0], accm[1]), _mm256_unpackhi_ps(accm[0], accm[1]));
    }

    static inline void mult_mask_kq_8(int l1, int m1, const ggml_bf16_t * q,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        auto qr = q + m1*D;
        for (int i = 0; i < D/32; ++i) qv[i] = __m512bh(_mm512_loadu_si512((const __m512i *)qr + i));
        __m256 sum[8];
        for (int k = 0; k < 8; ++k) {
            auto vsum = _mm512_setzero_ps();
            for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+k*(D/32)], qv[i]);
            sum[k] = _mm256_add_ps(_mm512_castps512_ps256(vsum), _mm512_extractf32x8_ps(vsum, 1));
        }
        _mm256_storeu_ps(fms.cache + k_step*m1 + l1, hsum_float_8x8(sum));
    }

    static inline void mult_mask_kq_one(int l1, int m1, const ggml_bf16_t * q,
            __m512bh * qv, const __m512bh * vkh, FlashMS<q_step, k_step>& fms) {
        auto qr = q + m1*D;
        for (int i = 0; i < D/32; ++i) qv[i] = __m512bh(_mm512_loadu_si512((const __m512i*)qr + i));
        auto vsum = _mm512_setzero_ps();
        for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i], qv[i]);
        fms.cache[k_step*m1 + l1 + 0] = _mm512_reduce_add_ps(vsum);
        vsum = _mm512_setzero_ps();
        for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vkh[i+D/32], qv[i]);
        fms.cache[k_step*m1 + l1 + 1] = _mm512_reduce_add_ps(vsum);
    }

#if FA_TIMING
    template <typename KHelper>
    static inline void multiply_mask_kq(const KHelper& kh, int stride_m, const ggml_bf16_t * q,
            const char * mask, FlashMS<q_step, k_step>& fms, Perf& perf) {
        auto t1 = Perf::cur_time();
#else
    template <typename KHelper>
    static inline void multiply_mask_kq(const KHelper& kh, int stride_m, const ggml_bf16_t * q,
            const char * mask, FlashMS<q_step, k_step>& fms) {
#endif
        if constexpr (q_step == 1) {
            __m512bh vq[D/32];
            __m512bh vk[D/32];
            __m256   sum[8];
            for (int i = 0; i < D/32; ++i) vq[i] = __m512bh(_mm512_loadu_si512((const __m512i *)q + i));
            for (int l = 0; l < k_step; l += 8) {
                for (int k = 0; k < 8; ++k) {
                    kh.load(l+k, vk);
                    auto vsum = _mm512_setzero_ps();
                    for (int i = 0; i < D/32; ++i) vsum = _mm512_dpbf16_ps(vsum, vk[i], vq[i]);
                    sum[k] = _mm256_add_ps(_mm512_castps512_ps256(vsum), _mm512_extractf32x8_ps(vsum, 1));
                }
                _mm256_storeu_ps(fms.cache + l, hsum_float_8x8(sum));
            }
        }
        else {
            __m512bh qv[D/32];
            if constexpr (D <= 128) {
                __m512bh vkh[D/4];
                for (int l1 = 0; l1 < k_step; l1 += 8) {
                    kh.load_8(l1, vkh);
                    for (int j = 0; j < q_step; ++j) mult_mask_kq_8(l1, j, q, qv, vkh, fms);
                }
            } else {
                __m512bh vkh[D/16];
                for (int l1 = 0; l1 < k_step; l1 += 2) {
                    kh.load_2(l1, vkh);
                    for (int j = 0; j < q_step; ++j) mult_mask_kq_one(l1, j, q, qv, vkh, fms);
                }
            }
        }
#if FA_TIMING
        perf.accum_nolock(1, t1);
        t1 = Perf::cur_time();
#endif
        F16::Data vk[k_step/16];
        for (int j = 0; j < q_step; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
#if FA_TIMING
        perf.accum_nolock(2, t1);
#endif
    }

    template <typename KHelper>
    static inline void multiply_mask_kq(int nq, const KHelper& kh, int stride_m, const ggml_bf16_t * q,
            const char * mask, FlashMS<q_step, k_step>& fms) {
        {
            __m512bh qv[D/32];
            if constexpr (D <= 128) {
                __m512bh vkh[D/8];
                for (int l1 = 0; l1 < k_step; l1 += 4) {
                    kh.load_4(l1, vkh);
                    for (int j = 0; j < nq; ++j) mult_mask_kq_4(l1, j, q, qv, vkh, fms);
                }
            } else {
                __m512bh vkh[D/16];
                for (int l1 = 0; l1 < k_step; l1 += 2) {
                    kh.load_2(l1, vkh);
                    for (int j = 0; j < nq; ++j) mult_mask_kq_one(l1, j, q, qv, vkh, fms);
                }
            }
        }
        F16::Data vk[k_step/16];
        for (int j = 0; j < nq; ++j) {
            fms.update_M_S(j, vk, mask + stride_m*j);
        }
    }

    template <typename KHelper>
    static inline void multiply_mask_kq(int nq, const KHelper& kh, int stride_q, int stride_m, const float * q,
            const char * mask, FlashMS<q_step, k_step>& fms) {
        {
            __m512bh qv[D/32];
            __m512bh vkh[D/16];
            for (int l1 = 0; l1 < k_step; l1 += 2) {
                kh.load_2(l1, vkh);
                for (int m1 = 0; m1 < nq; ++m1) {
                    mult_mask_kq_one(l1, m1, stride_q, stride_m, q, mask, qv, vkh, fms);
                }
            }
        }
        __m512 vk[k_step/16];
        for (int j = 0; j < nq; ++j) {
            fms.update_M_S(j, vk);
        }
    }

    static inline void convert(int stride_q, const float * q, ggml_bf16_t * bf16) {
        auto qr = q;
        for (int j = 0; j < q_step; ++j) {
            for (int i = 0; i < D/32; ++i) {
                auto val1 = _mm512_loadu_ps(qr + 32*i);
                auto val2 = _mm512_loadu_ps(qr + 32*i + 16);
                _mm512_storeu_si512((__m512i *)bf16 + i, (__m512i)_mm512_cvtne2ps_pbh(val2, val1));
            }
            qr   += stride_q;
            bf16 += D;
        }
    }

    static inline void convert(int nq, int stride_q, const float * q, ggml_bf16_t * bf16) {
        auto qr = q;
        for (int j = 0; j < nq; ++j) {
            for (int i = 0; i < D/32; ++i) {
                auto val1 = _mm512_loadu_ps(qr + 32*i);
                auto val2 = _mm512_loadu_ps(qr + 32*i + 16);
                _mm512_storeu_si512((__m512i *)bf16 + i, (__m512i)_mm512_cvtne2ps_pbh(val2, val1));
            }
            qr   += stride_q;
            bf16 += D;
        }
    }
};

template <int Dk, int Dv, int q_step, int k_step>
struct FlashAttnBF16 {
    //static_assert(Dk%32 == 0 && Dk <= 256);
    //static_assert(Dv%32 == 0 && Dv <= 256);
    static_assert(Dk%32 == 0 && Dk <= 576);
    static_assert(Dv%32 == 0 && Dv <= 512);
    static_assert(k_step%32 == 0);
    static_assert(q_step <= 4 || q_step%4 == 0);

    FlashAttnBF16(float scale, float softcap) : fms(scale, softcap) {}

    template <typename KHelper, typename VHelper>
    void compute(KHelper& kh, VHelper& vh, int nq1, int nk1, int stride_q, int stride_m, int stride_qkv,
            const float * q, const char * mask, float * qkv, [[maybe_unused]] float * M, [[maybe_unused]] float * S) {
        ggml_bf16_t q_bf16[q_step*Dk];
#if FA_TIMING
        Perf perf(false);
#endif
        for (int i1 = 0; i1 < nq1/q_step; ++i1) {
#if FA_TIMING
            auto t1 = Perf::cur_time();
#endif
            fms.init_qstep();
            kh.reset_block();
            vh.reset_block();
            FlashQKbf16<Dk, q_step, k_step>::convert(stride_q, q, q_bf16);
#if FA_TIMING
            perf.accum_nolock(0, t1);
#endif
            auto mr = mask;
            for (int k1 = 0; k1 < nk1/k_step; ++k1) {
#if FA_TIMING
                //t1 = Perf::cur_time();
                FlashQKbf16<Dk, q_step, k_step>::multiply_mask_kq(kh, stride_m, q_bf16, mr, fms, perf);
                //perf.accum_nolock(1, t1);
                t1 = Perf::cur_time();
                fqkv.accumulate_qkv(vh, fms);
                perf.accum_nolock(3, t1);
#else
                FlashQKbf16<Dk, q_step, k_step>::multiply_mask_kq(kh, stride_m, q_bf16, mr, fms);
                fqkv.accumulate_qkv(vh, fms);
#endif
                kh.next_block(k_step);
                vh.next_block(k_step);
                mr += k_step*sizeof(ggml_half);
            }
#if FA_TIMING
            t1 = Perf::cur_time();
#endif
            fqkv.normalize_and_store(fms, stride_qkv, qkv, M, S);
#if FA_TIMING
            perf.accum_nolock(4, t1);
#endif

            q    += q_step*stride_q;
            mask += q_step*stride_m;
            qkv  += q_step*stride_qkv;
        }
        int n_left = nq1 - q_step*(nq1/q_step);
        if (n_left > 0) {
            fms.init_qstep();
            kh.reset_block();
            vh.reset_block();
            FlashQKbf16<Dk, q_step, k_step>::convert(n_left, stride_q, q, q_bf16);
            auto mr = mask;
            for (int k1 = 0; k1 < nk1/k_step; ++k1) {
                FlashQKbf16<Dk, q_step, k_step>::multiply_mask_kq(n_left, kh, stride_m, q_bf16, mr, fms);
                fqkv.accumulate_qkv(n_left, vh, fms);
                kh.next_block(k_step);
                vh.next_block(k_step);
                mr += k_step*sizeof(ggml_half);
            }
            fqkv.normalize_and_store(fms, n_left, stride_qkv, qkv, M, S);
        }
#if FA_TIMING
        Perf::instance().add(perf);
#endif
    }

    FlashMS<q_step, k_step>      fms;
    FlashQKV<Dv, q_step, k_step> fqkv;
};
#endif

template <int Dk, int Dv, int k_step, typename KHelper, typename VHelper>
inline void iqk_flash_helper(KHelper& kh, VHelper& vh, int nq1, int nk1, int stride_q, int stride_m, int stride_qkv,
                        const float * q, const char * mask, float scale, float softcap, float * qkv, float * M, float * S) {

    auto update = [&nq1, &mask, &q, &qkv, &M, &S, stride_q, stride_m, stride_qkv] (int n) {
        nq1 -= n;
        if (nq1 == 0) return true;
        q    += n*stride_q;
        mask += n*stride_m;
        qkv  += n*stride_qkv;
        if (M && S) { M += n; S += n; }
        return false;
    };
    if (nk1 >= 512) {
        if (nq1 >= 128) {
            int n_step = nq1/128;
            FlashAttn<Dk, Dv, 64, k_step> fa(scale, softcap);
            fa.compute(kh, vh, 128*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
            if (update(128*n_step)) return;
        }
        if (nq1 >= 64) {
            int n_step = nq1/64;
            FlashAttn<Dk, Dv, 64, k_step> fa(scale, softcap);
            fa.compute(kh, vh, 64*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
            if (update(64*n_step)) return;
        }
        if (nq1 >= 32) {
            int n_step = nq1/32;
            FlashAttn<Dk, Dv, 32, k_step> fa(scale, softcap);
            fa.compute(kh, vh, 32*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
            if (update(32*n_step)) return;
        }
        if (nq1 >= 16) {
            int n_step = nq1/16;
            FlashAttn<Dk, Dv, 16, k_step> fa(scale, softcap);
            fa.compute(kh, vh, 16*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
            if (update(16*n_step)) return;
        }
    }
    if (nq1 >= 8) {
        int n_step = nq1/8;
        FlashAttn<Dk, Dv, 8, k_step> fa(scale, softcap);
        fa.compute(kh, vh, 8*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
        if (update(8*n_step)) return;
    }
    else if (nq1 >= 4) {
        int n_step = nq1/4;
        FlashAttn<Dk, Dv, 4, k_step> fa(scale, softcap);
        fa.compute(kh, vh, 4*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
        if (update(4*n_step)) return;
    }
    else if (nq1 >= 2) {
        int n_step = nq1/2;
        FlashAttn<Dk, Dv, 2, k_step> fa(scale, softcap);
        fa.compute(kh, vh, 2*n_step, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
        if (update(2*n_step)) return;
    }
    FlashAttn<Dk, Dv, 1, k_step> fa(scale, softcap);
    fa.compute(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
}

#ifdef __AVX512BF16__
template <int Dk, int Dv, int k_step>
inline void iqk_flash_helper_T(int nq1, int nk1, int stride_q, int stride_k, int stride_v, int stride_m, int stride_qkv,
                        const float * q, const char * k, const char * v, const char * mask,
                        float scale, float softcap, float * qkv, float * M, float * S) {
    HelperBF16<Dk, k_step> kh(k, stride_k);
    HelperBF16<Dv, k_step> vh(v, stride_v);
    if (nk1 >= 4096) {
        if (nq1 >= 64) {
            FlashAttnBF16<Dk, Dv, 64, k_step> fa(scale, softcap);
            fa.compute(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
            return;
        }
        else if (nq1 >= 16) {
            FlashAttnBF16<Dk, Dv, 16, k_step> fa(scale, softcap);
            fa.compute(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
            return;
        }
    }
    if (nq1 >= 8) {
        FlashAttnBF16<Dk, Dv, 8, k_step> fa(scale, softcap);
        fa.compute(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
    } else {
        FlashAttnBF16<Dk, Dv, 1, k_step> fa(scale, softcap);
        fa.compute(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, (const char *)mask, qkv, M, S);
    }
}
#endif

template <int Dk, int Dv, int k_step, typename KHelper>
inline bool iqk_flash_helper_T(KHelper& kh, ggml_type type_v,
                        int nq1, int nk1, int stride_q, int stride_v, int stride_m, int stride_qkv,
                        const float * q, const char * v, const char * mask,
                        float scale, float softcap, float * qkv, float * M, float * S) {

    switch (type_v) {
        case GGML_TYPE_F16: {
            HelperF16 vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
#ifdef __AVX512BF16__
        case GGML_TYPE_BF16: {
            HelperBF16<Dv, k_step> vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
#endif
        case GGML_TYPE_Q8_0: {
            HelperQ80 vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q8_KV: {
            HelperQ8KV<Dv> vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q6_0: {
            HelperQ60 vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
#if GGML_IQK_FA_ALL_QUANTS
        case GGML_TYPE_Q4_0: {
            HelperQ40 vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q4_1: {
            HelperQ41 vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_IQ4_NL: {
            HelperIQ4nl vh(v, stride_v);
            iqk_flash_helper<Dk, Dv, k_step>(kh, vh, nq1, nk1, stride_q, stride_m, stride_qkv, q, mask, scale, softcap, qkv, M, S);
        } break;
#endif
        default: return false;
    }
    return true;
}

template <int Dk, int Dv, int k_step>
inline bool iqk_flash_helper_T(ggml_type type_k, ggml_type type_v,
                        int nq1, int nk1, int stride_q, int stride_k, int stride_v, int stride_m, int stride_qkv,
                        const float * q, const char * k, const char * v, const char * mask,
                        float scale, float softcap, float * qkv, float * M, float * S) {

    bool result = false;
    switch (type_k) {
        case GGML_TYPE_F16: {
            HelperF16 kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q8_0: {
            HelperQ80 kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q8_0_R8: {
            HelperQ80R8<Dk> kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q6_0: {
            HelperQ60 kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
#if GGML_IQK_FA_ALL_QUANTS
        case GGML_TYPE_Q8_KV: {
            HelperQ8KV<Dk> kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q4_0: {
            HelperQ40 kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_Q4_1: {
            HelperQ41 kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
        case GGML_TYPE_IQ4_NL: {
            HelperIQ4nl kh(k, stride_k);
            result = iqk_flash_helper_T<Dk, Dv, k_step>(kh, type_v, nq1, nk1, stride_q, stride_v, stride_m, stride_qkv, q, v, mask, scale, softcap, qkv, M, S);
        } break;
#endif
        default: break;
    }

    return result;
}

}

#define IQK_FA_CASE(name) bool name(int int_type_k, int int_type_v,int nq,int nk,\
                         int stride_q, int stride_k, int stride_v, int stride_m, int stride_qkv,\
                         const float * q, const void * k, const void * v, const void * mask,\
                         float scale, float softcap,\
                         float       * qkv, float * M, float * S)

IQK_FA_CASE(iqk_fa_576_512);
IQK_FA_CASE(iqk_fa_192_128);
IQK_FA_CASE(iqk_fa_256_256);
IQK_FA_CASE(iqk_fa_128_128);
IQK_FA_CASE(iqk_fa_96_96);
IQK_FA_CASE(iqk_fa_64_64);

#endif