summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_common.h
blob: 8d44c8f9899bccd269d40019863ee8c83676dfcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp fenc=utf-8 :vi
//
//
// Copyright (C) 2024 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//

#pragma once

#include "iqk_config.h"

#if defined IQK_IMPLEMENT

#include <cstring>
#include <type_traits>
#include <vector>
#include <cstdint>

#include "ggml-impl.h"
#include "ggml-quants.h"
#include "iqk_mul_mat.h"
#include "iqk_quantize.h"

#define GGML_COMMON_IMPL_C
#include "ggml-common.h"

#define FA_TIMING 0

#include <utility>
#include <array>
#if FA_TIMING
#include <chrono>
#include <mutex>
struct Perf {
    using TimePoint = std::chrono::time_point<std::chrono::high_resolution_clock>;
    std::array<double, 5> times = {};
    std::mutex mutex;
    bool report;
    static auto cur_time() { return std::chrono::high_resolution_clock::now(); }
    inline void accum(int what, const TimePoint& t1) {
        auto t2 = cur_time();
        auto dt = delta(t1, t2);
        std::lock_guard<std::mutex> lock(mutex);
        times[what] += dt;
    }
    inline void accum_nolock(int what, const TimePoint& t1) {
        auto t2 = cur_time();
        auto dt = delta(t1, t2);
        times[what] += dt;
    }
    inline void add(const Perf& other) {
        std::lock_guard<std::mutex> lock(mutex);
        for (int i = 0; i < int(times.size()); ++i) times[i] += other.times[i];
    }
    Perf(bool r) : report(r) {}
    ~Perf() {
        if (report) {
            double tot = 0;
            for (auto& t : times) tot += t;
            if (!tot) return;
            printf("======================= Timing: %g ms in total\n", tot);
            for (int i = 0; i < int(times.size()); ++i) {
                if (times[i]) {
                    printf("%d:  %g ms -> %g%c\n", i, times[i], 100*times[i]/tot, '%');
                }
            }
        }
    }
    static Perf& instance() {
        static Perf p(true);
        return p;
    }
    static double delta(const TimePoint& t1, const TimePoint& t2) {
        return 1e-6*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
    }
};
#endif

#ifdef __AVX2__
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
#endif

typedef struct {
    int32_t i1;
    int32_t i2;
} mmid_row_mapping;

struct DataInfo {
    float       * s;
    const char  * cy;
    size_t        bs;
    size_t        by;
    int           cur_y = 0;
    int           ne11;
    const mmid_row_mapping * row_mapping = nullptr;
    size_t        bs2 = 0;

    inline const char * src1_row(int iy) const {
        if (!row_mapping) return cy + (cur_y + iy)*by;
        int i11 = row_mapping[cur_y + iy].i1 % ne11;
        int i12 = row_mapping[cur_y + iy].i2;
        return cy + (i11 + i12*ne11)*by;
    }

    inline void store(int ix, int iy, float result) const {
        *(dst_row(iy) + ix) = result;
    }
#ifdef __AVX__
    inline void store(int ix, int iy, __m128 result) const {
        _mm_storeu_ps(dst_row(iy) + ix, result);
    }
    inline void store(int ix, int iy, __m256 result) const {
        _mm256_storeu_ps(dst_row(iy) + ix, result);
    }
#endif
#ifdef __AVX512F__
    inline void store(int ix, int iy, __m512 result) const {
        _mm512_storeu_ps(dst_row(iy) + ix, result);
    }
#endif
#ifdef __ARM_NEON
    inline void store(int ix, int iy, float32x4_t result) const {
        vst1q_f32(dst_row(iy) + ix, result);
    }
#endif
    inline float * dst_row(int iy) const {
        if (!row_mapping) return s + (cur_y + iy)*bs;
        int i12 = row_mapping[cur_y + iy].i2;
        int i1  = row_mapping[cur_y + iy].i1;
        int i2  = i12;
        return s + i1*bs + i2*bs2;
    }
};

typedef void (*mul_mat_t)(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x);

#define IQK_MAX_NY 8

#define IQK_SET_MUL_MAT_FUNCTIONS_T(kernel, Dequantizer, funcs) \
            funcs[0] = kernel<Dequantizer, 1>;\
            funcs[1] = kernel<Dequantizer, 2>;\
            funcs[2] = kernel<Dequantizer, 3>;\
            funcs[3] = kernel<Dequantizer, 4>;\
            funcs[4] = kernel<Dequantizer, 5>;\
            funcs[5] = kernel<Dequantizer, 6>;\
            funcs[6] = kernel<Dequantizer, 7>;\
            funcs[7] = kernel<Dequantizer, 8>;\

#define IQK_SET_MUL_MAT_FUNCTIONS(kernel, funcs) \
            funcs[0] = kernel<1>;\
            funcs[1] = kernel<2>;\
            funcs[2] = kernel<3>;\
            funcs[3] = kernel<4>;\
            funcs[4] = kernel<5>;\
            funcs[5] = kernel<6>;\
            funcs[6] = kernel<7>;\
            funcs[7] = kernel<8>;\


// ==================================================================================================

static inline void make_q4_scales(const uint8_t * scales8, uint32_t * aux32) {
    const uint16_t * scales = (const uint16_t *)scales8;
    const uint32_t a0 = scales[0] | (scales[1] << 16);
    const uint32_t a1 = scales[2] | (scales[3] << 16);
    const uint32_t a2 = scales[4] | (scales[5] << 16);
    aux32[3] = ((a2 >> 4) & 0x0f0f0f0f) | ((a1 >> 2) & 0x30303030);
    aux32[1] = ((a2 >> 0) & 0x0f0f0f0f) | ((a0 >> 2) & 0x30303030);
    aux32[2] = a1 & 0x3f3f3f3f;
    aux32[0] = a0 & 0x3f3f3f3f;
}

const uint64_t keven_signs[128] = {
    0x0101010101010101, 0xff010101010101ff, 0xff0101010101ff01, 0x010101010101ffff,
    0xff01010101ff0101, 0x0101010101ff01ff, 0x0101010101ffff01, 0xff01010101ffffff,
    0xff010101ff010101, 0x01010101ff0101ff, 0x01010101ff01ff01, 0xff010101ff01ffff,
    0x01010101ffff0101, 0xff010101ffff01ff, 0xff010101ffffff01, 0x01010101ffffffff,
    0xff0101ff01010101, 0x010101ff010101ff, 0x010101ff0101ff01, 0xff0101ff0101ffff,
    0x010101ff01ff0101, 0xff0101ff01ff01ff, 0xff0101ff01ffff01, 0x010101ff01ffffff,
    0x010101ffff010101, 0xff0101ffff0101ff, 0xff0101ffff01ff01, 0x010101ffff01ffff,
    0xff0101ffffff0101, 0x010101ffffff01ff, 0x010101ffffffff01, 0xff0101ffffffffff,
    0xff01ff0101010101, 0x0101ff01010101ff, 0x0101ff010101ff01, 0xff01ff010101ffff,
    0x0101ff0101ff0101, 0xff01ff0101ff01ff, 0xff01ff0101ffff01, 0x0101ff0101ffffff,
    0x0101ff01ff010101, 0xff01ff01ff0101ff, 0xff01ff01ff01ff01, 0x0101ff01ff01ffff,
    0xff01ff01ffff0101, 0x0101ff01ffff01ff, 0x0101ff01ffffff01, 0xff01ff01ffffffff,
    0x0101ffff01010101, 0xff01ffff010101ff, 0xff01ffff0101ff01, 0x0101ffff0101ffff,
    0xff01ffff01ff0101, 0x0101ffff01ff01ff, 0x0101ffff01ffff01, 0xff01ffff01ffffff,
    0xff01ffffff010101, 0x0101ffffff0101ff, 0x0101ffffff01ff01, 0xff01ffffff01ffff,
    0x0101ffffffff0101, 0xff01ffffffff01ff, 0xff01ffffffffff01, 0x0101ffffffffffff,
    0xffff010101010101, 0x01ff0101010101ff, 0x01ff01010101ff01, 0xffff01010101ffff,
    0x01ff010101ff0101, 0xffff010101ff01ff, 0xffff010101ffff01, 0x01ff010101ffffff,
    0x01ff0101ff010101, 0xffff0101ff0101ff, 0xffff0101ff01ff01, 0x01ff0101ff01ffff,
    0xffff0101ffff0101, 0x01ff0101ffff01ff, 0x01ff0101ffffff01, 0xffff0101ffffffff,
    0x01ff01ff01010101, 0xffff01ff010101ff, 0xffff01ff0101ff01, 0x01ff01ff0101ffff,
    0xffff01ff01ff0101, 0x01ff01ff01ff01ff, 0x01ff01ff01ffff01, 0xffff01ff01ffffff,
    0xffff01ffff010101, 0x01ff01ffff0101ff, 0x01ff01ffff01ff01, 0xffff01ffff01ffff,
    0x01ff01ffffff0101, 0xffff01ffffff01ff, 0xffff01ffffffff01, 0x01ff01ffffffffff,
    0x01ffff0101010101, 0xffffff01010101ff, 0xffffff010101ff01, 0x01ffff010101ffff,
    0xffffff0101ff0101, 0x01ffff0101ff01ff, 0x01ffff0101ffff01, 0xffffff0101ffffff,
    0xffffff01ff010101, 0x01ffff01ff0101ff, 0x01ffff01ff01ff01, 0xffffff01ff01ffff,
    0x01ffff01ffff0101, 0xffffff01ffff01ff, 0xffffff01ffffff01, 0x01ffff01ffffffff,
    0xffffffff01010101, 0x01ffffff010101ff, 0x01ffffff0101ff01, 0xffffffff0101ffff,
    0x01ffffff01ff0101, 0xffffffff01ff01ff, 0xffffffff01ffff01, 0x01ffffff01ffffff,
    0x01ffffffff010101, 0xffffffffff0101ff, 0xffffffffff01ff01, 0x01ffffffff01ffff,
    0xffffffffffff0101, 0x01ffffffffff01ff, 0x01ffffffffffff01, 0xffffffffffffffff,
};

#ifdef __AVX2__

#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)

static inline float hsum_float_4(__m128 x) {
    x = _mm_add_ps(x, _mm_movehl_ps(x, x));
    x = _mm_add_ss(x, _mm_movehdup_ps(x));
    return _mm_cvtss_f32(x);
}
static inline float hsum_float_8(__m256 x) {
    return hsum_float_4(_mm_add_ps(_mm256_castps256_ps128(x), _mm256_extractf128_ps(x, 1)));
}
static inline int hsum_i32_8(const __m256i a) {
    const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
    const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
    const __m128i sum64 = _mm_add_epi32(hi64, sum128);
    const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}
static inline float hmax_f32_8(__m256 x) {
    __m128 max4 = _mm_max_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128(x));
    max4 = _mm_max_ps(max4, _mm_movehl_ps(max4, max4));
    max4 = _mm_max_ss(max4, _mm_movehdup_ps(max4));
    return  _mm_cvtss_f32(max4);
}
static inline float hmax_float_8(__m256 x) {
    __m128 max4 = _mm_max_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128(x));
    max4 = _mm_max_ps( max4, _mm_movehl_ps(max4, max4));
    max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4));
    return  _mm_cvtss_f32(max4);
}

static inline __m128 hsum_float_4x4(__m128 * accm) {
    accm[0] = _mm_add_ps(_mm_unpacklo_ps(accm[0], accm[2]), _mm_unpackhi_ps(accm[0], accm[2]));
    accm[1] = _mm_add_ps(_mm_unpacklo_ps(accm[1], accm[3]), _mm_unpackhi_ps(accm[1], accm[3]));
    return _mm_add_ps(_mm_unpacklo_ps(accm[0], accm[1]), _mm_unpackhi_ps(accm[0], accm[1]));
}
static inline __m256 hsum_float_8x8(__m256 * accm) {
    for (int i = 0; i < 4; ++i) {
        accm[i] = _mm256_add_ps(_mm256_permute2f128_ps(accm[i], accm[i + 4], 0x20), _mm256_permute2f128_ps(accm[i], accm[i + 4], 0x31));
        //accm[i] = _mm256_set_m128(_mm_add_ps(_mm256_castps256_ps128(accm[i+4]), _mm256_extractf128_ps(accm[i+4], 1)),
        //                          _mm_add_ps(_mm256_castps256_ps128(accm[i+0]), _mm256_extractf128_ps(accm[i+0], 1)));
    }
    for (int i = 0; i < 2; ++i) accm[i] = _mm256_add_ps(_mm256_unpacklo_ps(accm[i], accm[i + 2]), _mm256_unpackhi_ps(accm[i], accm[i + 2]));
    return _mm256_add_ps(_mm256_unpacklo_ps(accm[0], accm[1]), _mm256_unpackhi_ps(accm[0], accm[1]));
}
static inline __m256 hsum_float_4x8(__m256 * accm) {
    for (int i = 0; i < 2; ++i) accm[i] = _mm256_add_ps(_mm256_unpacklo_ps(accm[i], accm[i + 2]), _mm256_unpackhi_ps(accm[i], accm[i + 2]));
    return _mm256_add_ps(_mm256_unpacklo_ps(accm[0], accm[1]), _mm256_unpackhi_ps(accm[0], accm[1]));
}

static inline __m128i load_iq4nl_values_128() {
    static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241};
    return _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}

static inline __m256i load_iq4nl_values_256() {
    auto val128 = load_iq4nl_values_128();
    return MM256_SET_M128I(val128, val128);
}

#ifdef HAVE_FANCY_SIMD
static inline __m512i load_iq4nl_values_512() {
    auto val256 = load_iq4nl_values_256();
    return _mm512_inserti32x8(_mm512_castsi256_si512(val256), val256, 1);
}
#endif

static inline __m128i load_iq4k_values_128() {
    return _mm_loadu_si128((const __m128i *)iq4k_values);
}

static inline __m256i load_iq4k_values_256() {
    auto val128 = load_iq4k_values_128();
    return MM256_SET_M128I(val128, val128);
}

template <int nrc, typename block_q8 = block_q8_K> struct Q8 {

    constexpr static int nrc_y = nrc;

    Q8(const DataInfo& info) {
        for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8 *)info.src1_row(iy);
    }

#ifdef HAVE_FANCY_SIMD
    inline __m512i load_quants64(int iy, int i, int j) const { return _mm512_loadu_si512((const __m512i*)y[iy][i].qs + j); }
#endif
    inline __m256i load_quants(int iy, int i, int j) const { return _mm256_loadu_si256((const __m256i*)y[iy][i].qs + j); }
    inline __m256i load_bsums(int iy, int i) const { return _mm256_loadu_si256((const __m256i*)y[iy][i].bsums); }
    inline float scale(int iy, int i) const { return y[iy][i].d; }

    const block_q8 * y[nrc_y];
};

template <int nrc> struct Q8_16 {

    constexpr static int nrc_y = nrc;

    Q8_16(const DataInfo& info) {
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto ptr = (const float *)info.src1_row(iy);
            std::memcpy(d + 5*iy, ptr, 5*sizeof(float));
            y[iy] = (const int8_t *)(ptr + 5);
        }
    }

#ifdef HAVE_FANCY_SIMD
    inline __m512i load_quants64(int iy, int i) const { return _mm512_loadu_si512((const __m512i*)y[iy] + i); }
#endif
    inline __m256i load_quants(int iy, int i) const { return _mm256_loadu_si256((const __m256i*)y[iy] + i); }
    inline float scale(int iy, int k) const { return d[5*iy+k]; }
    inline float sum_row(int iy) const { return d[5*iy + 4]; }
    inline __m128 scale(int iy) const { return _mm_loadu_ps(d + 5*iy); }

    float d[5*nrc_y];
    const int8_t * y[nrc_y];
};

struct Scales8KBase {
    template <typename Q8>
    inline void accum_mins(const __m128i& mins128, const Q8& q8, int i, float c, __m256 * accd) const {
        const __m256i mins = MM256_SET_M128I(_mm_shuffle_epi8(mins128, shuffles[1]), _mm_shuffle_epi8(mins128, shuffles[0]));
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            const __m256i q8s = q8.load_bsums(iy, i);
            const __m256i prod = _mm256_madd_epi16(mins, q8s);
            accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(c*q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accd[iy]);
        }
    }
    inline __m256i shuffle(__m128i mins) const {
        return MM256_SET_M128I(_mm_shuffle_epi8(mins, shuffles[1]), _mm_shuffle_epi8(mins, shuffles[0]));
    }
    const __m128i shuffles[2] = {_mm_set_epi32(0x07060706, 0x05040504, 0x03020302, 0x01000100),
                                 _mm_set_epi32(0x0f0e0f0e, 0x0d0c0d0c, 0x0b0a0b0a, 0x09080908)};
};

template <typename Block, bool per_row_scale = false, bool is_f16 = false>
struct BaseDequantizer {
    BaseDequantizer(const void * vx, size_t bx) : vx(vx), bx(bx) {}
    inline void new_row(int ix) {
        if constexpr (per_row_scale) {
            if constexpr (is_f16) {
                const ggml_half * dptr = (const ggml_half *)((const char *)vx + bx*ix);
                d = GGML_FP16_TO_FP32(*dptr);
                x = (const Block *)(dptr + 1);
            } else {
                const float * dptr = (const float *)((const char *)vx + bx*ix);
                d = *dptr;
                x = (const Block *)(dptr + 1);
            }
        } else {
            x = (const Block *)((const char *)vx + bx*ix);
        }
    }

    const void *  vx;
    const size_t  bx;
    const Block * x;

    float d;
};

template <typename Q8, typename Bits>
static inline void multiply_add(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) {
    if (j == 0) {
#ifdef HAVE_FANCY_SIMD
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            sumi[iy] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 0)));
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 1)));
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 2)));
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 3)));
        }
#else
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 0)));
            const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 1)));
            const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 2)));
            const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 3)));
            sumi[iy] = _mm256_add_epi32(_mm256_add_epi32(p1, p3), _mm256_add_epi32(p2, p4));
        }
#endif
    } else {
#ifdef HAVE_FANCY_SIMD
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4)));
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 5)));
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 6)));
            sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 7)));
        }
#else
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4)));
            const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 5)));
            const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 6)));
            const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 7)));
            sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p1, p3));
            sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p2, p4));
        }
#endif
    }
}

template <typename Q8, typename Bits>
static inline void multiply_add_avx2(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) {
    __m256i p[4];
    if (j == 0) {
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            for (int k = 0; k < 4; ++k) {
                auto s = _mm256_sign_epi8(bits.values[k], bits.values[k]);
                p[k] = _mm256_madd_epi16(scales[k], _mm256_maddubs_epi16(s, _mm256_sign_epi8(q8.load_quants(iy, i, k), bits.values[k])));
            }
            sumi[iy] = _mm256_add_epi32(_mm256_add_epi32(p[0], p[1]), _mm256_add_epi32(p[2], p[3]));
        }
    } else {
        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            for (int k = 0; k < 4; ++k) {
                auto s = _mm256_sign_epi8(bits.values[k], bits.values[k]);
                p[k] = _mm256_madd_epi16(scales[k], _mm256_maddubs_epi16(s, _mm256_sign_epi8(q8.load_quants(iy, i, 4+k), bits.values[k])));
            }
            sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p[0], p[2]));
            sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p[1], p[3]));
        }
    }
}

#ifdef HAVE_FANCY_SIMD

struct BlockPermuter {
    const __m512i permute1 = _mm512_set_epi64(11, 10,  9,  8, 3, 2, 1, 0);
    const __m512i permute2 = _mm512_set_epi64(15, 14, 13, 12, 7, 6, 5, 4);
};

struct Q4Bits {
    inline void prepare(const uint8_t * q4) {
        auto q4bits = _mm512_loadu_si512((const __m512i*)q4 + 0);
        auto tmp1 = _mm512_and_si512(q4bits, ml);
        auto tmp2 = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
        values[0] = _mm512_permutex2var_epi64(tmp1, perm.permute1, tmp2);
        values[1] = _mm512_permutex2var_epi64(tmp1, perm.permute2, tmp2);
        q4bits = _mm512_loadu_si512((const __m512i*)q4 + 1);
        tmp1 = _mm512_and_si512(q4bits, ml);
        tmp2 = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
        values[2] = _mm512_permutex2var_epi64(tmp1, perm.permute1, tmp2);
        values[3] = _mm512_permutex2var_epi64(tmp1, perm.permute2, tmp2);
    }
    inline void prepare64(const uint8_t * q4) {
        auto q4bits = _mm512_loadu_si512((const __m512i*)q4 + 0);
        values[0] = _mm512_and_si512(q4bits, ml);
        values[1] = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
        q4bits = _mm512_loadu_si512((const __m512i*)q4 + 1);
        values[2] = _mm512_and_si512(q4bits, ml);
        values[3] = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
    }
    inline void prepare64a(const uint8_t * q4) {
        for (int k = 0; k < 4; ++k) {
            auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + k);
            values[k] = _mm512_inserti32x8(_mm512_castsi256_si512(q4bits), _mm256_srli_epi16(q4bits, 4), 1);
            values[k] = _mm512_and_si512(values[k], ml);
        }
    }
    __m512i values[4];
    const __m512i ml = _mm512_set1_epi8(0xf);
    const BlockPermuter perm;
};

struct Q2Bits {
    inline void prepare(const uint8_t * q2) {

        auto q2bits = _mm512_loadu_si512((const __m512i*)q2);
        auto tmp = _mm512_srli_epi16(q2bits, 2);

        values[0] = _mm512_permutex2var_epi64(q2bits, perm.permute1, tmp);
        values[2] = _mm512_permutex2var_epi64(q2bits, perm.permute2, tmp);
        values[1] = _mm512_and_si512(_mm512_srli_epi16(values[0], 4), ml);
        values[3] = _mm512_and_si512(_mm512_srli_epi16(values[2], 4), ml);
        values[0] = _mm512_and_si512(values[0], ml);
        values[2] = _mm512_and_si512(values[2], ml);
    }
    __m512i values[4];
    const __m512i ml = _mm512_set1_epi8(0x03);
    BlockPermuter perm;
};

#else

struct Q2Bits {
    inline void prepare(const uint8_t * q2, int j) {
        auto q2bits = _mm256_loadu_si256((const __m256i *)q2 + j);
        values[0] = _mm256_and_si256(q2bits, ml);
        values[1] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), ml);
        values[2] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), ml);
        values[3] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), ml);
    }
    __m256i values[4];
    const __m256i ml = _mm256_set1_epi8(0x03);
};

struct Q4Bits {
    inline void prepare(const uint8_t * q4, int j) {
        auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+0);
        values[0] = _mm256_and_si256(q4bits, ml);
        values[1] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
        q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+1);
        values[2] = _mm256_and_si256(q4bits, ml);
        values[3] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
    }
    inline void prepare64(const uint8_t * q4, int j) {
        auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+0);
        values[0] = _mm256_and_si256(q4bits, ml);
        values[2] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
        q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+1);
        values[1] = _mm256_and_si256(q4bits, ml);
        values[3] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
    }
    inline void prepare16(const uint8_t * q4, int j) {
        values[0] = dequant16(q4 + 64*j +  0);
        values[1] = dequant16(q4 + 64*j + 16);
        values[2] = dequant16(q4 + 64*j + 32);
        values[3] = dequant16(q4 + 64*j + 48);
    }
    inline __m256i dequant16(const uint8_t * qs) const {
        const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs);
        const __m256i aux256 = MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128);
        return _mm256_and_si256(ml, aux256);
    }
    __m256i values[4];
    const __m256i ml = _mm256_set1_epi8(0xf);
};

#endif

inline void iqk_transpose_8x8(__m256 * m) {
    for (int k = 0; k < 8; k += 4) {
        auto t0 = _mm256_unpacklo_ps(m[k+0], m[k+1]);
        auto t1 = _mm256_unpacklo_ps(m[k+2], m[k+3]);
        auto t2 = _mm256_unpackhi_ps(m[k+0], m[k+1]);
        auto t3 = _mm256_unpackhi_ps(m[k+2], m[k+3]);
        m[k+0] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(t0), _mm256_castps_pd(t1)));
        m[k+1] = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(t0), _mm256_castps_pd(t1)));
        m[k+2] = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(t2), _mm256_castps_pd(t3)));
        m[k+3] = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(t2), _mm256_castps_pd(t3)));
    }
    for (int k = 0; k < 4; ++k) {
        auto t = _mm256_set_m128(_mm256_extractf128_ps(m[k+4], 1), _mm256_extractf128_ps(m[k], 1));
        m[k+0] = _mm256_set_m128(_mm256_castps256_ps128(m[k+4]), _mm256_castps256_ps128(m[k+0]));
        m[k+4] = t;
    }
}

#else
// ------------------------------------ __aarch64__ --------------------------------------------------

template <int nrc, typename block_q8 = block_q8_K> struct Q8 {

    constexpr static int nrc_y = nrc;

    Q8(const DataInfo& info) {
        for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8 *)info.src1_row(iy);
    }

    inline int8x16x2_t load_quants(int iy, int i, int j) const { return vld1q_s8_x2(y[iy][i].qs + 32*j); }
    inline int8x16x4_t load_quants_64(int iy, int i, int j) const { return vld1q_s8_x4(y[iy][i].qs + 64*j); }
    inline int16x8x2_t load_bsums(int iy, int i) const { return vld1q_s16_x2(y[iy][i].bsums); }
    inline int16x8_t load_bsums8(int iy, int i) const {
        auto q8s = vld1q_s16_x2(y[iy][i].bsums);
        return vpaddq_s16(q8s.val[0], q8s.val[1]);
    }
    inline float scale(int iy, int i) const { return y[iy][i].d; }

    const block_q8 * y[nrc_y];
};

template <typename block_q, bool has_row_scale = false, bool scale_is_f16 = false>
struct BaseDequantizer {
    BaseDequantizer(const void * vx, size_t bx, int nrc) : vx(vx), x(nullptr), bx(bx), nrc(nrc) {}
    inline void new_row(int ix) {
        if constexpr (has_row_scale) {
            if constexpr (scale_is_f16) {
                const ggml_half * dptr = (const ggml_half *)((const char *)vx + ix*bx);
                d = GGML_FP16_TO_FP32(*dptr);
                x = (const block_q *)(dptr + 1);
            } else {
                const float * dptr = (const float *)((const char *)vx + ix*bx);
                d = *dptr;
                x = (const block_q *)(dptr + 1);
            }
        } else {
            x = (const block_q *)((const char *)vx + ix*bx);
        }
    }
    const void * vx;
    const block_q * x;
    const size_t bx;
    const int nrc;
    float d;
};

struct Q4bits {
    const uint8x16_t m4b = vdupq_n_u8(0xf);
    uint8x16x4_t b1, b2;
    inline void prepare4(uint8x16x4_t& b, const uint8x16_t * val) const {
        b.val[0] = vandq_u8(val[0], m4b);
        b.val[2] = vshrq_n_u8(val[0], 4);
        b.val[1] = vandq_u8(val[1], m4b);
        b.val[3] = vshrq_n_u8(val[1], 4);
    }
    inline void prepare4_16(uint8x16x4_t& b, const uint8x16_t * val) const {
        b.val[0] = vandq_u8(val[0], m4b);
        b.val[1] = vshrq_n_u8(val[0], 4);
        b.val[2] = vandq_u8(val[1], m4b);
        b.val[3] = vshrq_n_u8(val[1], 4);
    }
    inline void prepare(const uint8_t * qs) {
        auto q4bits = vld1q_u8_x2(qs);
        prepare4(b1, q4bits.val);
        q4bits = vld1q_u8_x2(qs+32);
        prepare4(b2, q4bits.val);
    }
    inline void prepare_v2(const uint8_t * qs) {
        auto q4bits = vld1q_u8_x4(qs);
        prepare4(b1, q4bits.val+0);
        prepare4(b2, q4bits.val+2);
    }
    inline void prepare64(const uint8_t * qs) {
        auto q4bits = vld1q_u8_x4(qs);
        b1.val[0] = vandq_u8(q4bits.val[0], m4b);
        b1.val[1] = vandq_u8(q4bits.val[1], m4b);
        b1.val[2] = vandq_u8(q4bits.val[2], m4b);
        b1.val[3] = vandq_u8(q4bits.val[3], m4b);
        b2.val[0] = vshrq_n_u8(q4bits.val[0], 4);
        b2.val[1] = vshrq_n_u8(q4bits.val[1], 4);
        b2.val[2] = vshrq_n_u8(q4bits.val[2], 4);
        b2.val[3] = vshrq_n_u8(q4bits.val[3], 4);
    }
    inline void prepare16(const uint8_t * qs) {
        auto q4bits = vld1q_u8_x2(qs);
        prepare4_16(b1, q4bits.val);
        q4bits = vld1q_u8_x2(qs+32);
        prepare4_16(b2, q4bits.val);
    }
    inline void prepare16_v2(const uint8_t * qs) {
        auto q4bits = vld1q_u8_x4(qs);
        prepare4_16(b1, q4bits.val+0);
        prepare4_16(b2, q4bits.val+2);
    }
};

struct Q2bits {
    const uint8x16_t m4b = vdupq_n_u8(0x03);
    uint8x16x4_t b1, b2;
    inline void prepare(const uint8_t * qs) {
        auto q2bits = vld1q_u8_x2(qs);
        b1.val[0] = vandq_u8(q2bits.val[0], m4b);
        b1.val[1] = vandq_u8(q2bits.val[1], m4b);

        q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2);
        q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2);
        b1.val[2] = vandq_u8(q2bits.val[0], m4b);
        b1.val[3] = vandq_u8(q2bits.val[1], m4b);

        q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2);
        q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2);
        b2.val[0] = vandq_u8(q2bits.val[0], m4b);
        b2.val[1] = vandq_u8(q2bits.val[1], m4b);

        q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2);
        q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2);
        b2.val[2] = vandq_u8(q2bits.val[0], m4b);
        b2.val[3] = vandq_u8(q2bits.val[1], m4b);
    }
};

template <typename Q8>
static inline void compute_8_blocks(const uint8x16x4_t& qx_1, const uint8x16x4_t& qx_2, const Q8& q8,
        const int32x4x2_t& scales, int iy, int i, int j, int32x4_t& sumi) {
    auto mzero = vdupq_n_s32(0);
    auto q8b_1 = q8.load_quants(iy, i, 4*j+0);
    auto p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[0]), q8b_1.val[0]),
            vreinterpretq_s8_u8(qx_1.val[1]), q8b_1.val[1]); // block 1
    auto q8b_2 = q8.load_quants(iy, i, 4*j+1);
    auto p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[2]), q8b_2.val[0]),
            vreinterpretq_s8_u8(qx_1.val[3]), q8b_2.val[1]); // block 2
    auto p12 = vpaddq_s32(p1, p2);

    auto q8b_3 = q8.load_quants(iy, i, 4*j+2);
    auto p3 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[0]), q8b_3.val[0]),
            vreinterpretq_s8_u8(qx_2.val[1]), q8b_3.val[1]); // block 1
    auto q8b_4 = q8.load_quants(iy, i, 4*j+3);
    auto p4 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[2]), q8b_4.val[0]),
            vreinterpretq_s8_u8(qx_2.val[3]), q8b_4.val[1]); // block 2
    auto p34 = vpaddq_s32(p3, p4);

    auto pall = vpaddq_s32(p12, p34);
    sumi = vmlaq_s32(sumi, scales.val[j], pall);
}

template <typename Q8>
static inline void compute_16_blocks(const uint8x16x4_t& qx_1, const uint8x16x4_t& qx_2, const Q8& q8,
        const int32x4x4_t& scales, int iy, int i, int j, int32x4_t& sumi) {

    auto mzero = vdupq_n_s32(0);
    auto q8b_1 = q8.load_quants(iy, i, 4*j+0);
    auto p1 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[0]), q8b_1.val[0]),
                         ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[1]), q8b_1.val[1])); // blocks 0, 0, 1, 1,
    auto q8b_2 = q8.load_quants(iy, i, 4*j+1);
    auto p2 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[2]), q8b_2.val[0]),
                         ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[3]), q8b_2.val[1])); // blocks 3, 3, 4, 4,
    auto p12 = vpaddq_s32(p1, p2); // blocks 0, 1, 2, 3
    sumi = vmlaq_s32(sumi, scales.val[2*j+0], p12);

    auto q8b_3 = q8.load_quants(iy, i, 4*j+2);
    auto p3 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[0]), q8b_3.val[0]),
                         ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[1]), q8b_3.val[1])); // block 4, 4, 5, 5,
    auto q8b_4 = q8.load_quants(iy, i, 4*j+3);
    auto p4 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[2]), q8b_4.val[0]),
                         ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[3]), q8b_4.val[1])); // block 6, 6, 7, 7,
    auto p34 = vpaddq_s32(p3, p4); // blocks 4, 5, 6, 7
    sumi = vmlaq_s32(sumi, scales.val[2*j+1], p34);
}

struct SignHelper {

    inline void init() { shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1)); }

    inline void apply_signs_1(uint8x16_t * b, const uint8x16_t& signs16) {
        auto aux = vqtbl1q_u8(signs16, shuffle);
        auto s = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(aux, smask), smask), m1));
        b[0] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[0]), s));
        shuffle = vaddq_u8(shuffle, step);
    }

    const uint8x16_t smask = vreinterpretq_u8_u64(vdupq_n_u64(0x8040201008040201));
    const uint8x16_t m1    = vdupq_n_u8(1);
    const uint8x16_t step  = vdupq_n_u8(2);
    uint8x16_t shuffle;
};

template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    assert(n % QK_K == 0);
    const int nb = n / QK_K;

    Q8<nrc_y, block_q8_K> q8(info);

    Dequantizer deq(vx, bx, nrc_y);

    for (int ix = 0; ix < nrc_x; ++ix) {

        deq.new_row(ix);

        float32x4_t acc[nrc_y];
        for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f);

        for (int i = 0; i < nb; ++i) {

            int32x4_t sumi[nrc_y];
            for (int iy = 0; iy < nrc_y; ++iy) sumi[iy] = vdupq_n_s32(0);

            if constexpr (nrc_y > 1 && Dequantizer::should_scale_quants()) {
                deq.process_scales(i, q8, acc);
                deq.prepare(i, 0);
                deq.compute(q8, i, 0, sumi);
                deq.prepare(i, 1);
                deq.compute(q8, i, 1, sumi);
            } else {
                if constexpr (Dequantizer::num_blocks() == 8) {
                    auto scales = deq.new_block(i, q8, acc);
                    deq.prepare(i, 0);
                    for (int iy = 0; iy < nrc_y; ++iy) compute_8_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 0, sumi[iy]);
                    deq.prepare(i, 1);
                    for (int iy = 0; iy < nrc_y; ++iy) compute_8_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 1, sumi[iy]);
                }
                else if constexpr (Dequantizer::num_blocks() == 16) {
                    auto scales = deq.new_block(i, q8, acc);
                    deq.prepare(i, 0);
                    for (int iy = 0; iy < nrc_y; ++iy) compute_16_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 0, sumi[iy]);
                    deq.prepare(i, 1);
                    for (int iy = 0; iy < nrc_y; ++iy) compute_16_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 1, sumi[iy]);
                }
                else {
                    GGML_ASSERT(false);
                }
            }

            for (int iy = 0; iy < nrc_y; ++iy) {
                acc[iy] = vmlaq_f32(acc[iy], vcvtq_f32_s32(sumi[iy]), vdupq_n_f32(deq.d*q8.scale(iy, i)));
            }
        }

        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix, iy, vaddvq_f32(acc[iy]));
        }
    }
}

static IQK_ALWAYS_INLINE int32x4_t interleaved_dotq(const int8x16_t * qx, const int8x16x2_t& y) {
    auto sumi = vdupq_n_s32(0);
    sumi = vdotq_laneq_s32(sumi, qx[0], y.val[0], 0);
    sumi = vdotq_laneq_s32(sumi, qx[1], y.val[1], 0);
    sumi = vdotq_laneq_s32(sumi, qx[2], y.val[0], 1);
    sumi = vdotq_laneq_s32(sumi, qx[3], y.val[1], 1);
    sumi = vdotq_laneq_s32(sumi, qx[4], y.val[0], 2);
    sumi = vdotq_laneq_s32(sumi, qx[5], y.val[1], 2);
    sumi = vdotq_laneq_s32(sumi, qx[6], y.val[0], 3);
    sumi = vdotq_laneq_s32(sumi, qx[7], y.val[1], 3);
    return sumi;
}

static IQK_ALWAYS_INLINE int32x4x2_t interleaved_dotq_b16(const int8x16_t * qx, const int8x16x2_t& y) {
    int32x4x2_t sumi = { vdupq_n_s32(0), vdupq_n_s32(0) };
    sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[0], y.val[0], 0);
    sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[1], y.val[1], 0);
    sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[2], y.val[0], 1);
    sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[3], y.val[1], 1);
    sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[4], y.val[0], 2);
    sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[5], y.val[1], 2);
    sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[6], y.val[0], 3);
    sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[7], y.val[1], 3);
    return sumi;
}

static IQK_ALWAYS_INLINE int32x4_t interleaved_dotq(const int8x16_t * qx, const int8x16_t& y) {
    auto sumi = vdupq_n_s32(0);
    sumi = vdotq_laneq_s32(sumi, qx[0], y, 0);
    sumi = vdotq_laneq_s32(sumi, qx[1], y, 1);
    sumi = vdotq_laneq_s32(sumi, qx[2], y, 2);
    sumi = vdotq_laneq_s32(sumi, qx[3], y, 3);
    return sumi;
}

static IQK_ALWAYS_INLINE void prepare_iq4_nl_quants(const int8x16_t& values, const uint8x16_t& m4, const uint8x16x4_t& bits, int8x16_t * qx) {
    qx[0] = vqtbl1q_s8(values, vandq_u8(bits.val[0], m4));   //  0...3 from the 4 rows
    qx[1] = vqtbl1q_s8(values, vandq_u8(bits.val[1], m4));   // 16..19
    qx[2] = vqtbl1q_s8(values, vandq_u8(bits.val[2], m4));   //  4...7
    qx[3] = vqtbl1q_s8(values, vandq_u8(bits.val[3], m4));   // 20..23
    qx[4] = vqtbl1q_s8(values, vshrq_n_u8(bits.val[0], 4));  //  8..11
    qx[5] = vqtbl1q_s8(values, vshrq_n_u8(bits.val[1], 4));  // 24..27
    qx[6] = vqtbl1q_s8(values, vshrq_n_u8(bits.val[2], 4));  // 12..15
    qx[7] = vqtbl1q_s8(values, vshrq_n_u8(bits.val[3], 4));  // 28..31
}

static IQK_ALWAYS_INLINE void prepare_iq4_nl_quants_r8(const int8x16_t& values, const uint8x16_t& m4, const uint8x16x2_t& bits, int8x16_t * qx) {
    qx[0] = vqtbl1q_s8(values, vandq_u8(  bits.val[0], m4));
    qx[1] = vqtbl1q_s8(values, vshrq_n_u8(bits.val[0],  4));
    qx[2] = vqtbl1q_s8(values, vandq_u8(  bits.val[1], m4));
    qx[3] = vqtbl1q_s8(values, vshrq_n_u8(bits.val[1],  4));
}

#endif

#endif