summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_gemm_legacy_quants.cpp
blob: ab6eb130acac5df2ed0b02417ea8db2721e792f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
#include "iqk_gemm_legacy_quants.h"

#ifdef IQK_IMPLEMENT

#include "ggml-impl.h"

#define GGML_COMMON_IMPL_C
#include "ggml-common.h"

//
// ============================== Legacy quants
//

#ifdef __x86_64__

namespace {

struct DotHelper {
    const __m256i m1 = _mm256_set1_epi16(1);
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
    inline __m256i dot(__m256i x, __m256i y) const {
        return _mm256_dpbusd_epi32(_mm256_setzero_si256(), x, y);
    }
#else
    inline __m256i dot(__m256i x, __m256i y) const {
        return _mm256_madd_epi16(m1, _mm256_maddubs_epi16(x, y));
    }
#endif
};

struct SignedDot {
    DotHelper helper;
    inline __m256i compute(__m256i x, __m256i y) const {
        return helper.dot(_mm256_sign_epi8(x, x), _mm256_sign_epi8(y, x));
    }
};
struct UnsignedDot {
    DotHelper helper;
    inline __m256i compute(__m256i x, __m256i y) const {
        return helper.dot(x, y);
    }
};

template <typename Q8, typename Q8x4, typename Dot, bool can_pack = true> struct Sum4 {
    Dot dot;
    inline __m256i compute(const __m256i * qx, const Q8 * y) const {
        const Q8x4 * y4 = (const Q8x4 *)y;
        const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0
        const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1
        const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2
        const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3
        if constexpr (can_pack) {
            const __m256i p01 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p0, p1));    // 0,0, 1,1, 0,0, 1,1
            const __m256i p23 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p2, p3));    // 2,2, 3,3, 2,2, 3,3
            return _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p01, p23)); // 0,1,2,3, 0,1,2,3
        } else {
            // Note to myself: this is much faster than using _mm256_hadd_epi32()
            auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1
            auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3
            return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3
        }
    }
    inline __m256i compute(__m256i x, __m256i y) const { return dot.compute(x, y); }
};

template <typename Q8, typename Q8x4> struct Sum4q4 {
    inline __m256i compute(const __m256i * qx, const Q8 * y) const {
        const Q8x4 * y4 = (const Q8x4 *)y;
        auto p0 = _mm256_maddubs_epi16(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 16x block 0
        auto p1 = _mm256_maddubs_epi16(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 16x block 1
        auto p2 = _mm256_maddubs_epi16(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 16x block 2
        auto p3 = _mm256_maddubs_epi16(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 16x block 3
        auto p01 = _mm256_add_epi16(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1, 0,0, 1,1, 0,0, 1,1
        auto p23 = _mm256_add_epi16(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3, 2,2, 3,3, 2,2, 3,3
        auto p0123 = _mm256_add_epi16(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,0, 1,1, 2,2, 3,3, 0,0, 1,1, 2,2, 3,3
        return _mm256_madd_epi16(_mm256_set1_epi16(1), p0123);
    }
    inline __m256i compute(__m256i x, __m256i y) const { return _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(x, y)); }
};

struct ScaleHelperQ8_0 {
    inline __m128 prepare4(const block_q8_0 * y) {
        const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y;
        return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)y4->d));
    }
    inline __m128 prepare4(__m128 other_scales, const block_q8_0 * y) {
        return _mm_mul_ps(other_scales, prepare4(y));
    }
    template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); }
    template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); }
};

struct ScaleHelperQ_0 {
    ggml_half scales8[4];
    template <typename Q>
    inline __m128 prepare4(const Q * y) {
        for (int j = 0; j < 4; ++j) scales8[j] = y[j].d;
        return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)scales8));
    }
    template <typename Q>
    inline __m128 prepare4(__m128 other_scales, const Q * y) {
        return _mm_mul_ps(other_scales, prepare4<Q>(y));
    }
    template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); }
    template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); }
};

template <int min_value>
struct ScaleHelperQ_0_1 {
    ggml_half scales8[4];
    template <typename Q>
    inline __m256 prepare4(const Q * y) {
        for (int j = 0; j < 4; ++j) scales8[j] = y[j].d;
        auto s4 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)scales8));
        return _mm256_set_m128(_mm_mul_ps(s4, min), s4);
    }
    template <typename Q>
    inline __m256 prepare4(__m256 other_scales, const Q * y) {
        return _mm_mul256_ps(other_scales, prepare4<Q>(y));
    }
    template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const {
        float d = GGML_FP16_TO_FP32(y->d);
        return std::make_pair(d, -d*float(min_value));
    }
    std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const {
        return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s));
    }
    const __m128 min = _mm_set1_ps(float(-min_value));
};

//template <int min_value>
//struct ScaleHelperQ_0_2 {
//    ggml_bf16_t scales8[4];
//    template <typename Q>
//    inline __m256 prepare4(const Q * y) {
//        for (int j = 0; j < 4; ++j) scales8[j] = y[j].d;
//        auto s4 = _mm_castsi128_ps(_mm_slli_epi16(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)scales8)), 16));
//        return _mm256_set_m128(_mm_mul_ps(s4, min), s4);
//    }
//    template <typename Q>
//    inline __m256 prepare4(__m256 other_scales, const Q * y) {
//        return _mm_mul256_ps(other_scales, prepare4<Q>(y));
//    }
//    template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const {
//        float d = GGML_BF16_TO_FP32(y->d);
//        return std::make_pair(d, -d*float(min_value));
//    }
//    std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const {
//        return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s));
//    }
//    const __m128 min = _mm_set1_ps(float(-min_value));
//};

struct ScaleHelperQ8_1 {
    template <typename Q>
    inline __m256 prepare4(const Q * y) {
        const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y;
        return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)y4->d));
    }
    template <typename Q>
    inline __m256 prepare4(__m256 other_scales, const Q * y) {
        return _mm256_mul_ps(other_scales, prepare4<Q>(y));
    }
    template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const {
        return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m));
    }
    template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const {
        return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m));
    }
    std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const {
        return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s));
    }
};

inline __m256 convert_scales(const uint16_t * scales) {
    auto aux_d = _mm_castsi128_ps(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)scales)), 16));
    auto aux_m = _mm_cvtepi32_ps(_mm_cvtepi16_epi32(_mm_loadl_epi64((const __m128i *)(scales+4))));
    return _mm256_set_m128(_mm_mul_ps(aux_d, aux_m), aux_d);
}

struct ScaleHelperQ8_2 {
    template <typename Q>
    inline __m256 prepare4(const Q * y) {
        const block_q8_2_x4 * y4 = (const block_q8_2_x4 *)y;
        return convert_scales((const uint16_t *)y4->d);
    }
    template <typename Q>
    inline __m256 prepare4(__m256 other_scales, const Q * y) {
        return _mm256_mul_ps(other_scales, prepare4<Q>(y));
    }
    template <typename Q> static inline std::pair<float, float> prepare1(const Q * y) {
        float   d = GGML_BF16_TO_FP32(ggml_bf16_t{y->d});
        int16_t m = *(const int16_t *)&y->s;
        return std::make_pair(d, d*m);
    }
    static inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const block_q8_2 * y) {
        auto d = prepare1(y);
        return std::make_pair(dm.first*d.first, dm.second*d.second);
    }
};

struct ScaleHelperQ_1 {
    uint32_t scales8[4];
    const __m128i shuffle = _mm_set_epi16(0x0f0e, 0x0b0a, 0x0706, 0x0302, 0x0d0c, 0x0908, 0x0504, 0x0100);

    template <typename Q>
    inline __m256 prepare4(const Q * y) {
        for (int j = 0; j < 4; ++j) {
            // it is slightly faster to directly dereference (const uint32 *)&y[j].d, but some compilers
            // complain that this breaks strict-aliasing rules.
            memcpy(scales8 + j, &y[j].d, sizeof(uint32_t));
        }
        return _mm256_cvtph_ps(_mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)scales8), shuffle));
    }

    template <typename Q>
    inline __m256 prepare4(__m256 other_scales, const Q * y) {
        return _mm256_mul_ps(other_scales, prepare4<Q>(y));
    }

    template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const {
        return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m));
    }
    template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const {
        return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m));
    }
    std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const {
        return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s));
    }
};

struct MinusType0 {
    inline __m256 compute(__m128 d, int) const { return _mm256_set_m128(d, d); }
    inline float compute(float d, int) const { return d; }
    inline float result(__m256 acc, int) const { return hsum_float_8(acc); }
    inline __m256 vresult(__m256 acc, int) const { return acc; }
};

template <int nrc_y> struct MinusType1 {
    __m128 accm[nrc_y];
    MinusType1() { for (int iy = 0; iy < nrc_y; ++iy) accm[iy] = _mm_setzero_ps(); }
    inline __m256 compute(__m256 dm, int iy) {
        const __m128 d = _mm256_castps256_ps128(dm);
        const __m128 m = _mm256_extractf128_ps(dm, 1);
        accm[iy] = _mm_add_ps(accm[iy], m);
        return _mm256_set_m128(d, d);
    }
    inline float compute(const std::pair<float, float>& dm, int iy) {
        accm[iy] = _mm_add_ps(accm[iy], _mm_set1_ps(dm.second*0.25f));
        return dm.first;
    }
    inline float result(__m256 acc, int iy) const {
        const __m128 sum = _mm_add_ps(_mm256_castps256_ps128(acc), _mm256_extractf128_ps(acc, 1));
        return hsum_float_4(_mm_add_ps(sum, accm[iy]));
    }
    inline __m256 vresult(__m256 acc, int iy) const {
        return _mm256_add_ps(acc, _mm256_insertf128_ps(_mm256_setzero_ps(), accm[iy], 0));
    }
};

template <typename Minus, int nrc_y, bool is_multiple_of_4> struct AccumT {
    __m256 acc[nrc_y];
    Minus accm;
    AccumT() {  for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = _mm256_setzero_ps(); }
    template <typename Unpacker, typename Scales, typename Sum, typename Q8>
    inline void compute(int nb, Unpacker& unp, Scales& scales, Sum& sum, const Q8 ** y, const DataInfo& info, int ix) {
        auto qx = unp.quants();
        __m256 dall[nrc_y];
        for (int i = 0; i < nb/4; ++i) {
            auto other_scales = unp.set_block_4(i);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto s12 = scales.prepare4(other_scales, y[iy] + 4*i);
                dall[iy] = accm.compute(s12, iy);
            }
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto pall = sum.compute(qx, y[iy] + 4*i);
                acc[iy] = _mm256_fmadd_ps(dall[iy], _mm256_cvtepi32_ps(pall), acc[iy]);
            }
        }
        if (!is_multiple_of_4) {
            for (int i = 4*(nb/4); i < nb; ++i) {
                auto other_scales = unp.set_block(i);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto s12 = scales.prepare1(other_scales, y[iy] + i);
                    auto d = accm.compute(s12, iy);
                    const __m256i p0 = sum.compute(qx[0], _mm256_loadu_si256((const __m256i *)y[iy][i].qs));
                    acc[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(p0), acc[iy]);
                }
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix, iy, accm.result(acc[iy], iy));
        }
    }
    template <typename Unpacker, typename Scales, typename Sum, typename Q8>
    inline void compute(int nb, Unpacker& unp, Scales& scales, Sum& sum, const Q8 ** y, __m256 * result) {
        auto qx = unp.quants();
        __m256 dall[nrc_y];
        for (int i = 0; i < nb/4; ++i) {
            auto other_scales = unp.set_block_4(i);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto s12 = scales.prepare4(other_scales, y[iy] + 4*i);
                dall[iy] = accm.compute(s12, iy);
            }
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto pall = sum.compute(qx, y[iy] + 4*i);
                acc[iy] = _mm256_fmadd_ps(dall[iy], _mm256_cvtepi32_ps(pall), acc[iy]);
            }
        }
        if (!is_multiple_of_4) {
            for (int i = 4*(nb/4); i < nb; ++i) {
                auto other_scales = unp.set_block(i);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto s12 = scales.prepare1(other_scales, y[iy] + i);
                    auto d = accm.compute(s12, iy);
                    const __m256i p0 = sum.compute(qx[0], _mm256_loadu_si256((const __m256i *)y[iy][i].qs));
                    acc[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(p0), acc[iy]);
                }
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            result[iy] = accm.vresult(acc[iy], iy);
        }
    }
};

template <int nrc_y, bool is_multiple_of_4>
using AccumType0 = AccumT<MinusType0, nrc_y, is_multiple_of_4>;

template <int nrc_y, bool is_multiple_of_4>
using AccumType1 = AccumT<MinusType1<nrc_y>, nrc_y, is_multiple_of_4>;

using Sum4TypeQ80 = Sum4<block_q8_0, block_q8_0_x4, SignedDot, false>;
using Sum4TypeQ82 = Sum4<block_q8_2, block_q8_2_x4, UnsignedDot, false>;

template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y>
void mul_mat_qX_q8_Helper(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) {
    Unpacker unp(vx, bx);
    typename Unpacker::Sum4T sum4;
    Scales scales;
    for (int ix = 0; ix < nrc_x; ++ix) {
        unp.set_row(ix);
        AccumType accum;
        accum.compute(nb, unp, scales, sum4, y, info, ix);
    }
}

template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y>
void mul_mat_qX_q8_Helper_x2(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) {
    GGML_ASSERT(nrc_x%2 == 0);
    Unpacker unp(vx, bx);
    typename Unpacker::Sum4T sum4;
    Scales scales;
    for (int ix = 0; ix < nrc_x; ix += 2) {
        unp.set_row(ix);
        AccumType accum;
        accum.compute(nb, unp, scales, sum4, y, info, ix);
    }
}

template <typename Unpacker, int nrc_y>
void mul_mat_qX_0_q8_0_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    assert(n%Unpacker::block_size() == 0);
    Q8<nrc_y, block_q8_0> q8(info);
    int nb = n/Unpacker::block_size();
    if (nb%4 == 0) {
        mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, true>, ScaleHelperQ8_0, block_q8_0, nrc_y>(
                nb, vx, bx, info, q8.y, nrc_x
        );
    } else {
        mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, false>, ScaleHelperQ8_0, block_q8_0, nrc_y>(
                nb, vx, bx, info, q8.y, nrc_x
        );
    }
}

template <typename Unpacker, int nrc_y, int nrc_x>
void mul_mat_qX_0_q8_0_Tx(int n, const void * vx, size_t bx, const DataInfo& info, int) {
    static_assert(8%nrc_y == 0);
    Q8<nrc_y, block_q8_0> q8(info);
    int nb = n/Unpacker::block_size();
    Unpacker unp(vx, bx);
    typename Unpacker::Sum4T sum4;
    ScaleHelperQ8_0 scales;
    __m256 result[8];
    auto store = [&info, &result] (int ix0) {
        if constexpr (nrc_y == 1) {
            info.store(ix0, 0, hsum_float_8x8(result));
        }
        else if constexpr (nrc_y == 2) {
            auto value = hsum_float_8x8(result);
            auto value1 = _mm256_extractf128_ps(value, 1);
            info.store(ix0, 0, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0x88));
            info.store(ix0, 1, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0xdd));
        }
        else {
            float val[8];
            _mm256_storeu_ps(val, hsum_float_8x8(result));
            for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < 8/nrc_y; ++ix) info.store(ix0+ix, iy, val[nrc_y*ix+iy]);
        }
    };
    if (nb%4 == 0) {
        for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) {
            for (int ix = 0; ix < 8/nrc_y; ++ix) {
                unp.set_row(ix0 + ix);
                AccumType0<nrc_y, true> accum;
                accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix);
            }
            store(ix0);
        }
    } else {
        for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) {
            for (int ix = 0; ix < 8/nrc_y; ++ix) {
                unp.set_row(ix0 + ix);
                AccumType0<nrc_y, false> accum;
                accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix);
            }
            store(ix0);
        }
    }
}

template <typename Unpacker, int nrc_y>
void mul_mat_qX_1_q8_1_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    assert(n%Unpacker::block_size() == 0);
    Q8<nrc_y, block_q8_1> q8(info);
    int nb = n/Unpacker::block_size();
    if (nb%4 == 0) {
        mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_1, block_q8_1, nrc_y>(
                nb, vx, bx, info, q8.y, nrc_x
        );
    } else {
        mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_1, block_q8_1, nrc_y>(
                nb, vx, bx, info, q8.y, nrc_x
        );
    }
}

template <typename Unpacker, int nrc_y>
void mul_mat_qX_1_q8_2_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    assert(n%Unpacker::block_size() == 0);
    Q8<nrc_y, block_q8_2> q8(info);
    int nb = n/Unpacker::block_size();
    if (nb%4 == 0) {
        mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_2, block_q8_2, nrc_y>(
                nb, vx, bx, info, q8.y, nrc_x
        );
    } else {
        mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_2, block_q8_2, nrc_y>(
                nb, vx, bx, info, q8.y, nrc_x
        );
    }
}

template <typename Unpacker, int nrc_y, int nrc_x>
void mul_mat_qX_0_q8_2_Tx(int n, const void * vx, size_t bx, const DataInfo& info, int) {
    static_assert(8%nrc_y == 0);
    Q8<nrc_y, block_q8_2> q8(info);
    int nb = n/Unpacker::block_size();
    Unpacker unp(vx, bx);
    typename Unpacker::Sum4T sum4;
    ScaleHelperQ8_2 scales;
    __m256 result[8];
    auto store = [&info, &result] (int ix0) {
        if constexpr (nrc_y == 1) {
            info.store(ix0, 0, hsum_float_8x8(result));
        }
        else if constexpr (nrc_y == 2) {
            auto value = hsum_float_8x8(result);
            auto value1 = _mm256_extractf128_ps(value, 1);
            info.store(ix0, 0, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0x88));
            info.store(ix0, 1, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0xdd));
        }
        else {
            float val[8];
            _mm256_storeu_ps(val, hsum_float_8x8(result));
            for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < 8/nrc_y; ++ix) info.store(ix0+ix, iy, val[nrc_y*ix+iy]);
        }
    };
    if (nb%4 == 0) {
        for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) {
            for (int ix = 0; ix < 8/nrc_y; ++ix) {
                unp.set_row(ix0 + ix);
                AccumType1<nrc_y, true> accum;
                accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix);
            }
            store(ix0);
        }
    } else {
        for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) {
            for (int ix = 0; ix < 8/nrc_y; ++ix) {
                unp.set_row(ix0 + ix);
                AccumType1<nrc_y, false> accum;
                accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix);
            }
            store(ix0);
        }
    }
}

struct Dequantizer4bit {
    const __m256i m4 = _mm256_set1_epi8(0xf);
    inline __m256i dequant(const uint8_t * qs) const {
        const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs);
        return _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128), m4);
    }
};

struct Q8_0_Dequantizer {
    inline __m256i dequant(const block_q8_0 * x) const {
        return _mm256_loadu_si256((const __m256i *)x->qs);
    }
};

struct Q8_0_1_Dequantizer {
    inline __m256i dequant(const block_q8_0 * x) const {
        return _mm256_add_epi8(_mm256_set1_epi8(127), _mm256_loadu_si256((const __m256i *)x->qs));
    }
};

struct Q4_0_Dequantizer {
    Dequantizer4bit b4;
    const __m256i m8 = _mm256_set1_epi8(-8);
    inline __m256i dequant(const block_q4_0 * x) const {
        return _mm256_add_epi8(b4.dequant(x->qs), m8);
    }
};

struct Q4_0_1_Dequantizer {
    Dequantizer4bit b4;
    inline __m256i dequant(const block_q4_0 * x) const {
        return b4.dequant(x->qs);
    }
};

struct IQ4_NL_Dequantizer {
    Dequantizer4bit b4;
#ifdef HAVE_FANCY_SIMD
    const __m256i values = load_iq4nl_values_256();
#else
    const __m256i values = load_iq4k_values_256();
#endif
    inline __m256i dequant(const block_iq4_nl * x) const {
        return _mm256_shuffle_epi8(values, b4.dequant(x->qs));
    }
};

struct IQ4_NL0_Dequantizer {
    Dequantizer4bit b4;
    const __m256i values = load_iq4k_values_256();
    inline __m256i dequant(const block_iq4_nl * x) const {
        return _mm256_shuffle_epi8(values, b4.dequant(x->qs));
    }
};

struct Q4_1_Dequantizer {
    Dequantizer4bit b4;
    inline __m256i dequant(const block_q4_1 * x) const {
        return b4.dequant(x->qs);
    }
};

struct HBitDequantizer {
    const __m256i shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000);
    const __m256i mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
    const __m256i minus1 = _mm256_set1_epi64x(-1);
    inline __m256i to_bytes(const uint8_t * bits) const {
        // Note: Data in all ggml quants is at least 2-byte aligned.
        // => we can cast to uint16_t and use or on two consecutive entries
        // which is faster than memcpy
        const uint16_t * aux16 = (const uint16_t *)bits;
        const uint32_t aux32 = aux16[0] | (aux16[1] << 16);
        //uint32_t aux32; memcpy(&aux32, bits, sizeof(uint32_t));
        __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(aux32), shuffle);
        bytes = _mm256_or_si256(bytes, mask);
        return _mm256_cmpeq_epi8(bytes, minus1);
    }
};

struct Q5_0_Dequantizer {
    Dequantizer4bit b4;
    HBitDequantizer hbit;
    const __m256i mh = _mm256_set1_epi8((char)0xF0);
    inline __m256i dequant(const block_q5_0 * x) const {
        const __m256i vqh = _mm256_andnot_si256(hbit.to_bytes(x->qh), mh);
        return _mm256_or_si256(b4.dequant(x->qs), vqh);
    }
};

template <typename Q5>
struct Q5_1_Dequantizer {
    Dequantizer4bit b4;
    HBitDequantizer hbit;
    const __m256i mh = _mm256_set1_epi8(0x10);
    inline __m256i dequant(const Q5 * x) const {
        const __m256i vqh = _mm256_and_si256(hbit.to_bytes(x->qh), mh);
        return _mm256_or_si256(b4.dequant(x->qs), vqh);
    }
};
struct Q6_0_1_Dequantizer {
    Dequantizer4bit b4;
    const __m256i mh = _mm256_set1_epi8(0x30);
    const __m256i shift1 = _mm256_set_epi64x(0, 2, 0, 4);
    const __m256i shift2 = _mm256_set_epi64x(2, 0, 0, 0);
    inline __m256i dequant(const block_q6_0 * x) const {
        uint64_t aux64; std::memcpy(&aux64, x->qh, 8);
        auto h256 = _mm256_sllv_epi64(_mm256_set1_epi64x(aux64), shift1);
        return _mm256_or_si256(b4.dequant(x->qs), _mm256_and_si256(_mm256_srlv_epi64(h256, shift2), mh));
    }
};
struct Q6_0_Dequantizer {
    Q6_0_1_Dequantizer deq;
    inline __m256i dequant(const block_q6_0 * x) const {
        return _mm256_add_epi8(deq.dequant(x), _mm256_set1_epi8(-32));
    }
};

template <typename Q, typename Scales, typename Dequantizer>
struct Q_Unpacker {
    Q_Unpacker(const void * vx, size_t bx) : cx_0((const char *)vx), x((const Q*)cx_0), bx(bx) {}

    const char * cx_0;
    const Q    * x;
    size_t       bx;

    Scales scales;
    Dequantizer deq;

    __m256i qx[4];

    inline const __m256i* quants() const { return qx; }

    inline void set_row(int ix) { x = (const Q*)(cx_0 + ix*bx); }

    inline auto set_block_4(int i) {
        for (int j = 0; j < 4; ++j) {
            qx[j] = deq.dequant(x + 4*i + j);
        }
        return scales.prepare4(x + 4*i);
    }
    inline auto set_block(int i) {
        qx[0] = deq.dequant(x + i);
        return scales.prepare1(x + i);
    }
};

struct Q8_0_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0, Q8_0_Dequantizer> {
    Q8_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ80;
    inline static int block_size() { return QK8_0; }
};
struct Q8_0_1_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0_1<127>, Q8_0_1_Dequantizer> {
    Q8_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ82;
    inline static int block_size() { return QK8_0; }
};
struct Q4_0_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0, Q4_0_Dequantizer> {
    Q4_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ80;
    inline static int block_size() { return QK4_0; }
};
struct Q4_0_1_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0_1<8>, Q4_0_1_Dequantizer> {
    Q4_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    //using Sum4T = Sum4TypeQ82;
    using Sum4T = Sum4q4<block_q8_2, block_q8_2_x4>;
    inline static int block_size() { return QK4_0; }
};
#ifdef HAVE_FANCY_SIMD
struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0_1<128>, IQ4_NL_Dequantizer> {
    IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ82;
    inline static int block_size() { return QK4_NL; }
};
#else
struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0, IQ4_NL_Dequantizer> {
    IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ80;
    inline static int block_size() { return QK4_NL; }
};
#endif
struct Q5_0_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0, Q5_0_Dequantizer> {
    Q5_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ80;
    inline static int block_size() { return QK5_0; }
};
struct Q5_0_1_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0_1<16>, Q5_1_Dequantizer<block_q5_0>> {
    Q5_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ82;
    inline static int block_size() { return QK5_0; }
};
struct Q4_1_Unpacker final : public Q_Unpacker<block_q4_1, ScaleHelperQ_1, Q4_1_Dequantizer> {
    Q4_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ82;
    inline static int block_size() { return QK4_1; }
};
struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_Dequantizer<block_q5_1>> {
    Q5_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ82;
    inline static int block_size() { return QK5_1; }
};
struct Q6_0_1_Unpacker final : public Q_Unpacker<block_q6_0, ScaleHelperQ_0_1<32>, Q6_0_1_Dequantizer> {
    Q6_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
    using Sum4T = Sum4TypeQ82;
    inline static int block_size() { return QK6_0; }
};

#ifdef HAVE_FANCY_SIMD
template <int nrc_y>
static void mul_mat_iq4_nl_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m4 = _mm512_set1_epi8(0xf);
    auto values = load_iq4nl_values_512();
    int nb = n / QK4_NL;
    __m512  acc[2*nrc_y] = {};
    __m512i qx[4];
    float d8[8*nrc_y];
    auto prepare = [&qx, &m4, &values] (const block_iq4_nl_r4& iq4l, const block_iq4_nl_r4& iq4h) {
        auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4l.d));
        auto scales1 = _mm256_set_m128(scales128, scales128);
        scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4h.d));
        auto scales2 = _mm256_set_m128(scales128, scales128);
        auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1);
        auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq4l.qs+0)),
                                                               _mm256_loadu_si256((const __m256i *)iq4h.qs+0), 1);
        auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq4l.qs+1)),
                                                               _mm256_loadu_si256((const __m256i *)iq4h.qs+1), 1);
        qx[0] = _mm512_shuffle_epi8(values, _mm512_and_si512(bits1, m4));
        qx[1] = _mm512_shuffle_epi8(values, _mm512_and_si512(bits2, m4));
        qx[2] = _mm512_shuffle_epi8(values, _mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4));
        qx[3] = _mm512_shuffle_epi8(values, _mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4));
        return scales;
    };
    auto dot = [&qx] (__m256i y8) {
        auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1);
        auto sumi = _mm512_setzero_si512();
        sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff)));
        return sumi;
    };
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_iq4_nl_r4 * iq4l = (const block_iq4_nl_r4 *)((const char *)vx + (ix+0)*bx);
        const block_iq4_nl_r4 * iq4h = (const block_iq4_nl_r4 *)((const char *)vx + (ix+4)*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                _mm256_storeu_ps(d8+8*iy, convert_scales((const uint16_t *)q8.y[iy][ib4].d));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq4l[4*ib4+k], iq4h[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k));
                    auto dy = _mm512_set1_ps(d8[8*iy+k]);
                    acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                    acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq4l[ib], iq4h[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs));
                ggml_bf16_t d, s; d.bits = qy[ib].d; s.bits = qy[ib].s;
                auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d));
                acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-64.f), acc[2*iy+1], acc[2*iy+0]);
            acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps();
            auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1));
            auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3));
            info.store(ix+0, iy, sum1);
            info.store(ix+4, iy, sum2);
        }
    }
}
#else
template <int nrc_y>
static void mul_mat_iq4_nl_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%4 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m4 = _mm256_set1_epi8(0xf);
    auto m1 = _mm256_set1_epi16(1);
    auto values128 = _mm_loadu_si128((const __m128i *)iq4k_values);
    auto values = MM256_SET_M128I(values128, values128);
    int nb = n / QK4_NL;
    __m256 acc[nrc_y] = {};
    __m256i qs[4];
    float d8[4*nrc_y];
    auto prepare = [&qs, &values, &m4] (const block_iq4_nl_r4& iq4) {
        auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4.d));
        auto scales = _mm256_set_m128(scales128, scales128);
        auto bits1 = _mm256_loadu_si256((const __m256i *)iq4.qs+0);
        auto bits2 = _mm256_loadu_si256((const __m256i *)iq4.qs+1);
        qs[0] = _mm256_shuffle_epi8(values, _mm256_and_si256(bits1, m4));
        qs[1] = _mm256_shuffle_epi8(values, _mm256_and_si256(bits2, m4));
        qs[2] = _mm256_shuffle_epi8(values, _mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4));
        qs[3] = _mm256_shuffle_epi8(values, _mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4));
        return scales;
    };
    auto dot = [&qs, &m1] (__m256i y) {
        auto u1 = _mm256_sign_epi8(qs[0], qs[0]);
        auto u2 = _mm256_sign_epi8(qs[1], qs[1]);
        auto sumi1 = _mm256_add_epi32(
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u1, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x00), qs[0]))),
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u2, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x55), qs[1]))));
        u1 = _mm256_sign_epi8(qs[2], qs[2]);
        u2 = _mm256_sign_epi8(qs[3], qs[3]);
        auto sumi2 = _mm256_add_epi32(
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u1, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xaa), qs[2]))),
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u2, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xff), qs[3]))));
        return _mm256_add_epi32(sumi1, sumi2);
    };
    for (int ix = 0; ix < nrc_x; ix += 4) {
        const block_iq4_nl_r4 * iq4 = (const block_iq4_nl_r4 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto aux = _mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)q8.y[iy][ib4].d)), 16);
                _mm_storeu_ps(d8+4*iy, _mm_castsi128_ps(aux));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq4[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k));
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+k]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq4[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs));
                ggml_bf16_t d{qy[ib].d};
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d)));
                acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1));
            info.store(ix, iy, sum);
            acc[iy] = _mm256_setzero_ps();
        }
    }
}
#endif

inline void prepare_q4_0_quants_avx2(const uint8_t * qs, __m256i * v, const __m256i& m4) {
    auto bits1 = _mm256_loadu_si256((const __m256i *)qs+0);
    auto bits2 = _mm256_loadu_si256((const __m256i *)qs+1);
    auto bits3 = _mm256_loadu_si256((const __m256i *)qs+2);
    auto bits4 = _mm256_loadu_si256((const __m256i *)qs+3);
    v[0] = _mm256_and_si256(bits1, m4);
    v[1] = _mm256_and_si256(bits2, m4);
    v[2] = _mm256_and_si256(bits3, m4);
    v[3] = _mm256_and_si256(bits4, m4);
    v[4] = _mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4);
    v[5] = _mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4);
    v[6] = _mm256_and_si256(_mm256_srli_epi16(bits3, 4), m4);
    v[7] = _mm256_and_si256(_mm256_srli_epi16(bits4, 4), m4);
}

inline __m256i accum_q4_0_quants(const __m256i * v, const int8_t * qs) {
    auto y4l = _mm_loadu_si128((const __m128i*)qs+0);
    auto y4h = _mm_loadu_si128((const __m128i*)qs+1);
    auto yl  = MM256_SET_M128I(y4l, y4l);
    auto yh  = MM256_SET_M128I(y4h, y4h);
#ifdef HAVE_FANCY_SIMD
    auto sumi = _mm256_setzero_si256();
    sumi = _mm256_dpbusd_epi32(sumi, v[0], _mm256_shuffle_epi32(yl, 0x00));
    sumi = _mm256_dpbusd_epi32(sumi, v[1], _mm256_shuffle_epi32(yl, 0x55));
    sumi = _mm256_dpbusd_epi32(sumi, v[2], _mm256_shuffle_epi32(yl, 0xaa));
    sumi = _mm256_dpbusd_epi32(sumi, v[3], _mm256_shuffle_epi32(yl, 0xff));
    sumi = _mm256_dpbusd_epi32(sumi, v[4], _mm256_shuffle_epi32(yh, 0x00));
    sumi = _mm256_dpbusd_epi32(sumi, v[5], _mm256_shuffle_epi32(yh, 0x55));
    sumi = _mm256_dpbusd_epi32(sumi, v[6], _mm256_shuffle_epi32(yh, 0xaa));
    sumi = _mm256_dpbusd_epi32(sumi, v[7], _mm256_shuffle_epi32(yh, 0xff));
#else
    auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(v[0], _mm256_shuffle_epi32(yl, 0x00)),
                                  _mm256_maddubs_epi16(v[1], _mm256_shuffle_epi32(yl, 0x55)));
    auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(v[2], _mm256_shuffle_epi32(yl, 0xaa)),
                                  _mm256_maddubs_epi16(v[3], _mm256_shuffle_epi32(yl, 0xff)));
    auto sumi3 = _mm256_add_epi16(_mm256_maddubs_epi16(v[4], _mm256_shuffle_epi32(yh, 0x00)),
                                  _mm256_maddubs_epi16(v[5], _mm256_shuffle_epi32(yh, 0x55)));
    auto sumi4 = _mm256_add_epi16(_mm256_maddubs_epi16(v[6], _mm256_shuffle_epi32(yh, 0xaa)),
                                  _mm256_maddubs_epi16(v[7], _mm256_shuffle_epi32(yh, 0xff)));
    auto sumi = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_add_epi16(_mm256_add_epi16(sumi1, sumi2), _mm256_add_epi16(sumi3, sumi4)));
#endif
    return sumi;
}

template <int nrc_y>
static void mul_mat_q4_0_r8_q8_2_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_1_x4> q8(info);
    auto m4 = _mm256_set1_epi8(0xf);
    int nb = n / QK4_NL;
    __m256i v[8];
    GGML_ASSERT(nb%4 == 0);
    if constexpr (nrc_y == 1) {
        union { __m256 vec; float val[8]; } helper;
        for (int ix = 0; ix < nrc_x; ix += 8) {
            const block_iq4_nl_r8 * iq4 = (const block_iq4_nl_r8 *)((const char *)vx + ix*bx);
            auto acc1 = _mm256_setzero_ps();
            auto acc2 = _mm256_setzero_ps();
            for (int ib4 = 0; ib4 < nb/4; ++ib4) {
                helper.vec = convert_scales((const uint16_t *)q8.y[0][ib4].d);
                for (int k = 0; k < 4; ++k) {
                    auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[4*ib4+k].d));
                    prepare_q4_0_quants_avx2(iq4[4*ib4+k].qs, v, m4);
                    auto sumi = accum_q4_0_quants(v, q8.y[0][ib4].qs+32*k);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(helper.val[k]));
                    acc1 = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc1);
                    acc2 = _mm256_fmadd_ps(scales, _mm256_set1_ps(helper.val[k+4]), acc2);
                }
            }
            for (int ib = 4*(nb/4); ib < nb; ++ib) {
                auto qy = (const block_q8_1 *)q8.y[0];
                auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[ib].d));
                prepare_q4_0_quants_avx2(iq4[ib].qs, v, m4);
                auto sumi = accum_q4_0_quants(v, qy[ib].qs);
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d)));
                acc1 = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc1);
                acc2 = _mm256_fmadd_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(s)), acc2);
            }
            acc1 = _mm256_fmadd_ps(acc2, _mm256_set1_ps(-8.f), acc1);
            info.store(ix, 0, acc1);
        }
    }
    else {
    __m256 acc[nrc_y] = {};
    float d8[8*nrc_y];
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_iq4_nl_r8 * iq4 = (const block_iq4_nl_r8 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            {
                __m256 d4[4];
                for (int k = 0; k < 4; ++k) {
                    d4[k] = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[4*ib4+k].d));
                }
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto scales = convert_scales((const uint16_t *)q8.y[iy][ib4].d);
                    _mm256_storeu_ps(d8 + 8*iy, scales);
                    auto m4 = _mm256_extractf128_ps(scales, 1);
                    auto m8 = _mm256_set_m128(m4, m4);
                    auto sumf = _mm256_mul_ps(d4[0], _mm256_shuffle_ps(m8, m8, 0x00));
                    sumf = _mm256_fmadd_ps(d4[1], _mm256_shuffle_ps(m8, m8, 0x55), sumf);
                    sumf = _mm256_fmadd_ps(d4[2], _mm256_shuffle_ps(m8, m8, 0xaa), sumf);
                    sumf = _mm256_fmadd_ps(d4[3], _mm256_shuffle_ps(m8, m8, 0xff), sumf);
                    acc[iy] = _mm256_fmadd_ps(sumf, _mm256_set1_ps(-8.f), acc[iy]);
                }
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[4*ib4+k].d));
                prepare_q4_0_quants_avx2(iq4[4*ib4+k].qs, v, m4);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = accum_q4_0_quants(v, q8.y[iy][ib4].qs+32*k);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[8*iy+k]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[ib].d));
            auto scales_m = _mm256_mul_ps(scales, _mm256_set1_ps(-8.f));
            prepare_q4_0_quants_avx2(iq4[ib].qs, v, m4);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = accum_q4_0_quants(v, qy[ib].qs);
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d)));
                acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                acc[iy] = _mm256_fmadd_ps(scales_m, _mm256_set1_ps(GGML_BF16_TO_FP32(s)), acc[iy]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix, iy, acc[iy]);
            acc[iy] = _mm256_setzero_ps();
        }
    }
    }
}

#ifdef HAVE_FANCY_SIMD
template <int nrc_y>
static void mul_mat_q4_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    if constexpr (nrc_y == 1) {
        mul_mat_q4_0_r8_q8_2_avx2<1>(n, vx, bx, info, nrc_x);
        return;
    }
    GGML_ASSERT(nrc_x%16 == 0);
    Q8<nrc_y, block_q8_1_x4> q8(info);
    auto m4 = _mm512_set1_epi8(0xf);
    int nb = n / QK4_NL;
    __m512  acc[2*nrc_y] = {};
    __m512i qx[8];
    auto prepare = [&qx, &m4] (const block_iq4_nl_r8& iq4l, const block_iq4_nl_r8& iq4h) {
        auto scales1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4l.d));
        auto scales2 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4h.d));
        auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1);
        for (int j = 0; j < 4; ++j) {
            auto bits = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq4l.qs+j)),
                    _mm256_loadu_si256((const __m256i *)iq4h.qs+j), 1);
            qx[j+0] = _mm512_and_si512(bits, m4);
            qx[j+4] = _mm512_and_si512(_mm512_srli_epi16(bits, 4), m4);
        }
        return scales;
    };
    auto dot = [&qx] (const int8_t * qy) {
        auto y4l = _mm_loadu_si128((const __m128i*)qy+0);
        auto y4h = _mm_loadu_si128((const __m128i*)qy+1);
        auto y8l = MM256_SET_M128I(y4l, y4l);
        auto y8h = MM256_SET_M128I(y4h, y4h);
        auto yl = _mm512_inserti32x8(_mm512_castsi256_si512(y8l), y8l, 1);
        auto yh = _mm512_inserti32x8(_mm512_castsi256_si512(y8h), y8h, 1);
        auto sumi = _mm512_setzero_si512();
        sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x00)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x55)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xaa)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xff)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[4], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x00)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[5], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x55)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[6], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xaa)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[7], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xff)));
        return sumi;
    };
    float d8[8*nrc_y];
    for (int ix = 0; ix < nrc_x; ix += 16) {
        const block_iq4_nl_r8 * iq4l = (const block_iq4_nl_r8 *)((const char *)vx + (ix+0)*bx);
        const block_iq4_nl_r8 * iq4h = (const block_iq4_nl_r8 *)((const char *)vx + (ix+8)*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                _mm256_storeu_ps(d8+8*iy, convert_scales((const uint16_t *)q8.y[iy][ib4].d));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq4l[4*ib4+k], iq4h[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(q8.y[iy][ib4].qs+32*k);
                    auto dy = _mm512_set1_ps(d8[8*iy+k]);
                    acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                    acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq4l[ib], iq4h[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(qy[ib].qs);
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d));
                acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum = _mm512_fmadd_ps(_mm512_set1_ps(-8.f), acc[2*iy+1], acc[2*iy+0]);
            acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps();
            info.store(ix, iy, sum);
        }
    }
}
#else
template <int nrc_y>
static void mul_mat_q4_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    mul_mat_q4_0_r8_q8_2_avx2<nrc_y>(n, vx, bx, info, nrc_x);
}
#endif

template <int nrc_y>
static void mul_mat_q5_0_r4_q8_2_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%4 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m4 = _mm256_set1_epi8(0xf);
    auto m5 = _mm256_set1_epi8(0x10);
#ifndef HAVE_FANCY_SIMD
    auto m1 = _mm256_set1_epi16(1);
#endif
    auto mscale = _mm256_set_m128(_mm_set1_ps(-8.f), _mm_set1_ps(1.f));
    int nb = n / QK5_0;
    __m256 acc[nrc_y] = {};
    __m256i qx[4];
    float d8[8*nrc_y];
    auto prepare = [&qx, &m4, &m5] (const block_q5_0_r4& iq5) {
        auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5.d));
        auto scales = _mm256_set_m128(scales128, scales128);
        auto bits1 = _mm256_loadu_si256((const __m256i *)iq5.qs+0);
        auto bits2 = _mm256_loadu_si256((const __m256i *)iq5.qs+1);
        auto hbits = _mm_loadu_si128((const __m128i *)iq5.qh);
        auto hb = MM256_SET_M128I(_mm_srli_epi16(hbits, 1), hbits);
        qx[0] = _mm256_or_si256(_mm256_and_si256(bits1, m4), _mm256_and_si256(_mm256_slli_epi16(hb, 4), m5));
        qx[1] = _mm256_or_si256(_mm256_and_si256(bits2, m4), _mm256_and_si256(_mm256_slli_epi16(hb, 2), m5));
        qx[2] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4), _mm256_and_si256(hb, m5));
        qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4), _mm256_and_si256(_mm256_srli_epi16(hb, 2), m5));;
        return scales;
    };
#ifdef HAVE_FANCY_SIMD
    auto dot = [&qx] (__m256i y) {
        auto sumi = _mm256_setzero_si256();
        sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00));
        sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55));
        sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa));
        sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff));
        return sumi;
    };
#else
    auto dot = [&qx, &m1] (__m256i y) {
        auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)),
                                      _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55)));
        auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)),
                                      _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff)));
        auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2));
        return sumi;
    };
#endif
    for (int ix = 0; ix < nrc_x; ix += 4) {
        const block_q5_0_r4 * iq5 = (const block_q5_0_r4 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto scales = convert_scales((const uint16_t *)q8.y[iy][ib4].d);
                _mm256_storeu_ps(d8 + 8*iy, _mm256_mul_ps(mscale, scales));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq5[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k));
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[8*iy+k]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                    acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(d8[8*iy+k+4]), acc[iy]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq5[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs));
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d)));
                acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(-8.f*GGML_BF16_TO_FP32(s)), acc[iy]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1));
            info.store(ix, iy, sum);
            acc[iy] = _mm256_setzero_ps();
        }
    }
}

#ifdef HAVE_FANCY_SIMD
template <int nrc_y>
static void mul_mat_q5_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    if constexpr (nrc_y == 1) {
        mul_mat_q5_0_r4_q8_2_avx2<1>(n, vx, bx, info, nrc_x);
    } else {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m4 = _mm512_set1_epi8(0xf);
    auto m5 = _mm512_set1_epi8(0x10);
    int nb = n / QK5_0;
    __m512  acc[2*nrc_y] = {};
    __m512i qx[4];
    float d8[8*nrc_y];
    auto prepare = [&qx, &m4, &m5] (const block_q5_0_r4& iq5l, const block_q5_0_r4& iq5h) {
        auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5l.d));
        auto scales1 = _mm256_set_m128(scales128, scales128);
        scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5h.d));
        auto scales2 = _mm256_set_m128(scales128, scales128);
        auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1);
        auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq5l.qs+0)),
                _mm256_loadu_si256((const __m256i *)iq5h.qs+0), 1);
        auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq5l.qs+1)),
                _mm256_loadu_si256((const __m256i *)iq5h.qs+1), 1);
        auto hbits1 = _mm_loadu_si128((const __m128i *)iq5l.qh);
        auto hbits2 = _mm_loadu_si128((const __m128i *)iq5h.qh);
        auto hb1 = MM256_SET_M128I(_mm_srli_epi16(hbits1, 1), hbits1);
        auto hb2 = MM256_SET_M128I(_mm_srli_epi16(hbits2, 1), hbits2);
        auto hb = _mm512_inserti32x8(_mm512_castsi256_si512(hb1), hb2, 1);
        qx[0] = _mm512_or_si512(_mm512_and_si512(bits1, m4), _mm512_and_si512(_mm512_slli_epi16(hb, 4), m5));
        qx[1] = _mm512_or_si512(_mm512_and_si512(bits2, m4), _mm512_and_si512(_mm512_slli_epi16(hb, 2), m5));
        qx[2] = _mm512_or_si512(_mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4), _mm512_and_si512(hb, m5));
        qx[3] = _mm512_or_si512(_mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4), _mm512_and_si512(_mm512_srli_epi16(hb, 2), m5));
        return scales;
    };
    auto dot = [&qx] (__m256i y8) {
        auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1);
        auto sumi = _mm512_setzero_si512();
        sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff)));
        return sumi;
    };
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_q5_0_r4 * iq5l = (const block_q5_0_r4 *)((const char *)vx + (ix+0)*bx);
        const block_q5_0_r4 * iq5h = (const block_q5_0_r4 *)((const char *)vx + (ix+4)*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                _mm256_storeu_ps(d8+8*iy, convert_scales((const uint16_t *)q8.y[iy][ib4].d));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq5l[4*ib4+k], iq5h[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k));
                    auto dy = _mm512_set1_ps(d8[8*iy+k]);
                    acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                    acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq5l[ib], iq5h[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs));
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d));
                acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-8.f), acc[2*iy+1], acc[2*iy+0]);
            acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps();
            auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1));
            auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3));
            info.store(ix+0, iy, sum1);
            info.store(ix+4, iy, sum2);
        }
    }
    }
}
#else
template <int nrc_y>
static void mul_mat_q5_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    mul_mat_q5_0_r4_q8_2_avx2<nrc_y>(n, vx, bx, info, nrc_x);
}
#endif

template <int nrc_y>
static void mul_mat_q6_0_r4_q8_2_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%4 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m4 = _mm256_set1_epi8(0xf);
    auto m6 = _mm256_set1_epi8(0x30);
    auto mscale = _mm256_set_m128(_mm_set1_ps(-16.f), _mm_set1_ps(1.f));
#ifndef HAVE_FANCY_SIMD
    auto m1 = _mm256_set1_epi16(1);
#endif
    int nb = n / QK6_0;
    __m256 acc[nrc_y] = {};
    float d8[8*nrc_y];
    __m256i qx[4];
    auto prepare = [&qx, &m4, &m6] (const block_q6_0_r4& iq6) {
        auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6.d));
        auto scales = _mm256_set_m128(scales128, scales128);
        auto bits1 = _mm256_loadu_si256((const __m256i *)iq6.qs+0);
        auto bits2 = _mm256_loadu_si256((const __m256i *)iq6.qs+1);
        auto hbits = _mm256_loadu_si256((const __m256i *)iq6.qh);
        qx[0] = _mm256_or_si256(_mm256_and_si256(bits1, m4), _mm256_and_si256(_mm256_slli_epi16(hbits, 4), m6));
        qx[1] = _mm256_or_si256(_mm256_and_si256(bits2, m4), _mm256_and_si256(_mm256_slli_epi16(hbits, 2), m6));
        qx[2] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4), _mm256_and_si256(hbits, m6));
        qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4), _mm256_and_si256(_mm256_srli_epi16(hbits, 2), m6));
        return scales;
    };
#ifdef HAVE_FANCY_SIMD
    auto dot = [&qx] (__m256i y) {
        auto sumi = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_shuffle_epi32(y, 0x00));
        sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55));
        sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa));
        sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff));
        return sumi;
    };
#else
    auto dot = [&qx, &m1] (__m256i y) {
        auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)),
                                      _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55)));
        auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)),
                                      _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff)));
        auto sumi = _mm256_add_epi32(_mm256_madd_epi16(m1, sumi1), _mm256_madd_epi16(m1, sumi2));
        return sumi;
    };
#endif
    for (int ix = 0; ix < nrc_x; ix += 4) {
        const block_q6_0_r4 * iq6 = (const block_q6_0_r4 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto scales = convert_scales((const uint16_t *)q8.y[iy][ib4].d);
                _mm256_storeu_ps(d8 + 8*iy,  _mm256_mul_ps(scales, mscale));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq6[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k));
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[8*iy+k]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                    acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(d8[8*iy+k+4]), acc[iy]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq6[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs));
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d)));
                acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(-16.f*GGML_BF16_TO_FP32(s)), acc[iy]);
            }
        }

        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1));
            info.store(ix, iy, sum);
            acc[iy] = _mm256_setzero_ps();
        }
    }
}

#ifdef HAVE_FANCY_SIMD
template <int nrc_y>
static void mul_mat_q6_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    if constexpr (nrc_y == 1) {
        mul_mat_q6_0_r4_q8_2_avx2<1>(n, vx, bx, info, nrc_x);
    } else {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m4 = _mm512_set1_epi8(0xf);
    auto m6 = _mm512_set1_epi8(0x30);
    int nb = n / QK6_0;
    __m512  acc[2*nrc_y] = {};
    __m512i qx[4];
    float d8[8*nrc_y];
    auto prepare = [&qx, &m4, &m6] (const block_q6_0_r4& iq6l, const block_q6_0_r4& iq6h) {
        auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6l.d));
        auto scales1 = _mm256_set_m128(scales128, scales128);
        scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6h.d));
        auto scales2 = _mm256_set_m128(scales128, scales128);
        auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1);
        auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq6l.qs+0)),
                                                               _mm256_loadu_si256((const __m256i *)iq6h.qs+0), 1);
        auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq6l.qs+1)),
                                                               _mm256_loadu_si256((const __m256i *)iq6h.qs+1), 1);
        auto hbits1 = _mm256_loadu_si256((const __m256i *)iq6l.qh);
        auto hbits2 = _mm256_loadu_si256((const __m256i *)iq6h.qh);
        auto hb = _mm512_inserti32x8(_mm512_castsi256_si512(hbits1), hbits2, 1);
        qx[0] = _mm512_and_si512(bits1, m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 4), m6);
        qx[1] = _mm512_and_si512(bits2, m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 2), m6);;
        qx[2] = _mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4) | _mm512_and_si512(hb, m6);
        qx[3] = _mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4) | _mm512_and_si512(_mm512_srli_epi16(hb, 2), m6);
        return scales;
    };
    auto dot = [&qx] (__m256i y8) {
        auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1);
        auto sumi = _mm512_setzero_si512();
        sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa)));
        sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff)));
        return sumi;
    };
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_q6_0_r4 * iq6l = (const block_q6_0_r4 *)((const char *)vx + (ix+0)*bx);
        const block_q6_0_r4 * iq6h = (const block_q6_0_r4 *)((const char *)vx + (ix+4)*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto scales = convert_scales((const uint16_t *)q8.y[iy][ib4].d);
                _mm256_storeu_ps(d8 + 8*iy, scales);
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = prepare(iq6l[4*ib4+k], iq6h[4*ib4+k]);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k));
                    auto dy = _mm512_set1_ps(d8[8*iy+k]);
                    acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                    acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = prepare(iq6l[ib], iq6h[ib]);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs));
                ggml_bf16_t d{qy[ib].d}, s{qy[ib].s};
                auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d));
                acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-16.f), acc[2*iy+1], acc[2*iy+0]);
            acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps();
            auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1));
            auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3));
            info.store(ix+0, iy, sum1);
            info.store(ix+4, iy, sum2);
        }
    }
    }
}
#else
template <int nrc_y>
static void mul_mat_q6_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    mul_mat_q6_0_r4_q8_2_avx2<nrc_y>(n, vx, bx, info, nrc_x);
}
#endif

#ifdef HAVE_FANCY_SIMD
inline __m512i qx_r8_q8_dot_product(const __m512i * qx, const int8_t * y) {
    auto y4l = _mm_loadu_si128((const __m128i*)y+0);
    auto y4h = _mm_loadu_si128((const __m128i*)y+1);
    auto y8l = MM256_SET_M128I(y4l, y4l);
    auto y8h = MM256_SET_M128I(y4h, y4h);
    auto yl  = _mm512_inserti32x8(_mm512_castsi256_si512(y8l), y8l, 1);
    auto yh  = _mm512_inserti32x8(_mm512_castsi256_si512(y8h), y8h, 1);
    auto sumi = _mm512_setzero_si512();
    sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x00)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x55)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xaa)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xff)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[4], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x00)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[5], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x55)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[6], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xaa)));
    sumi = _mm512_dpbusd_epi32(sumi, qx[7], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xff)));
    return sumi;
}
inline __m256i qx_r8_q8_dot_product(const __m256i * qx, const int8_t * y) {
    auto y4l = _mm_loadu_si128((const __m128i*)y+0);
    auto y4h = _mm_loadu_si128((const __m128i*)y+1);
    auto yl  = MM256_SET_M128I(y4l, y4l);
    auto yh  = MM256_SET_M128I(y4h, y4h);
    auto sumi = _mm256_setzero_si256();
    sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(yl, 0x00));
    sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(yl, 0x55));
    sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(yl, 0xaa));
    sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(yl, 0xff));
    sumi = _mm256_dpbusd_epi32(sumi, qx[4], _mm256_shuffle_epi32(yh, 0x00));
    sumi = _mm256_dpbusd_epi32(sumi, qx[5], _mm256_shuffle_epi32(yh, 0x55));
    sumi = _mm256_dpbusd_epi32(sumi, qx[6], _mm256_shuffle_epi32(yh, 0xaa));
    sumi = _mm256_dpbusd_epi32(sumi, qx[7], _mm256_shuffle_epi32(yh, 0xff));
    return sumi;
}
inline __m256i q8_0_r8_dot_product(const uint8_t * x, const int8_t * y, __m256i * qx) {
    for (int i = 0; i < 8; ++i) {
        qx[i] = _mm256_add_epi8(_mm256_loadu_si256((const __m256i *)x+i), _mm256_set1_epi8(127));
    }
    return qx_r8_q8_dot_product(qx, y);
}
template <int nrc_y>
static void mul_mat_q8_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%16 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    int nb = n / QK8_0;
    if constexpr (nrc_y == 1) {
        __m256 acc[2] = {};
        __m256i qx[8];
        float d8[8];
        for (int ix = 0; ix < nrc_x; ix += 8) {
            const block_q8_0_r8 * iq8 = (const block_q8_0_r8 *)((const char *)vx + ix*bx);
            for (int ib4 = 0; ib4 < nb/4; ++ib4) {
                _mm256_storeu_ps(d8, convert_scales((const uint16_t *)q8.y[0][ib4].d));
                for (int k = 0; k < 4; ++k) {
                    auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[4*ib4+k].d));
                    auto sumi = q8_0_r8_dot_product((const uint8_t *)iq8[4*ib4+k].qs, q8.y[0][ib4].qs+32*k, qx);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[k]));
                    acc[0] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[0]);
                    acc[1] = _mm256_fmadd_ps(scales, _mm256_set1_ps(d8[k+4]), acc[1]);
                }
            }
            if (4*(nb/4) < nb) {
                auto qy = (const block_q8_2 *)q8.y[0];
                for (int ib = 4*(nb/4); ib < nb; ++ib) {
                    auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[ib].d));
                    auto sumi = q8_0_r8_dot_product((const uint8_t *)iq8[ib].qs, qy[ib].qs, qx);
                    auto [d8, m8] = ScaleHelperQ8_2::prepare1(qy + ib);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8));
                    acc[0] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[0]);
                    acc[1] = _mm256_fmadd_ps(scales, _mm256_set1_ps(m8), acc[1]);
                }
            }
            info.store(ix, 0, _mm256_fmadd_ps(_mm256_set1_ps(-127.f), acc[1], acc[0]));
            acc[0] = acc[1] = _mm256_setzero_ps();
        }
    } else {
        __m512  acc[2*nrc_y] = {};
        __m512i qx[8];
        float d8[8*nrc_y];
        for (int ix = 0; ix < nrc_x; ix += 16) {
            const block_q8_0_r8 * q8l = (const block_q8_0_r8 *)((const char *)vx + (ix+0)*bx);
            const block_q8_0_r8 * q8h = (const block_q8_0_r8 *)((const char *)vx + (ix+8)*bx);
            for (int ib4 = 0; ib4 < nb/4; ++ib4) {
                for (int iy = 0; iy < nrc_y; ++iy) {
                    _mm256_storeu_ps(d8+8*iy, convert_scales((const uint16_t *)q8.y[iy][ib4].d));
                }
                for (int k = 0; k < 4; ++k) {
                    auto scales1  = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8l[4*ib4+k].d));
                    auto scales2  = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8h[4*ib4+k].d));
                    auto scales   = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1);
                    for (int j = 0; j < 8; ++j) {
                        qx[j] = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)q8l[4*ib4+k].qs+j)),
                                                                          _mm256_loadu_si256((const __m256i *)q8h[4*ib4+k].qs+j), 1);
                        qx[j] = _mm512_add_epi8(qx[j], _mm512_set1_epi8(127));
                    }
                    for (int iy = 0; iy < nrc_y; ++iy) {
                        auto sumi = qx_r8_q8_dot_product(qx, q8.y[iy][ib4].qs+32*k);
                        auto dy = _mm512_set1_ps(d8[8*iy+k]);
                        acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                        acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]);
                    }
                }
            }
            for (int ib = 4*(nb/4); ib < nb; ++ib) {
                auto scales1  = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8l[ib].d));
                auto scales2  = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8h[ib].d));
                auto scales   = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1);
                for (int j = 0; j < 8; ++j) {
                    qx[j] = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)q8l[ib].qs+j)),
                                                                      _mm256_loadu_si256((const __m256i *)q8h[ib].qs+j), 1);
                    qx[j] = _mm512_add_epi8(qx[j], _mm512_set1_epi8(127));
                }
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto qy = (const block_q8_2 *)q8.y[iy];
                    auto sumi = qx_r8_q8_dot_product(qx, qy[ib].qs);
                    auto [d8, m8] = ScaleHelperQ8_2::prepare1(qy + ib);
                    auto dy = _mm512_set1_ps(d8);
                    acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]);
                    acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(m8), acc[2*iy+1]);
                }
            }
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-127.f), acc[2*iy+1], acc[2*iy+0]);
                info.store(ix, iy, sum512);
                acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps();
            }
        }
    }
}
#else
template <int nrc_y>
static void mul_mat_q8_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    auto m1 = _mm256_set1_epi16(1);
    int nb = n / QK8_0;
    __m256 acc[nrc_y] = {};
    float d8[4*nrc_y];
    __m256i qx[4], sx[4];
    auto dot = [&qx, &sx, &m1] (const int8_t * qy) {
        auto y128 = _mm_loadu_si128((const __m128i*)qy);
        auto y = MM256_SET_M128I(y128, y128);
        auto sumi1 = _mm256_add_epi32(
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[0], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x00), qx[0]))),
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[1], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x55), qx[1])))
        );
        auto sumi2 = _mm256_add_epi32(
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[2], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xaa), qx[2]))),
                _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[3], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xff), qx[3])))
        );
        return _mm256_add_epi32(sumi1, sumi2);
    };
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_q8_0_r8 * iq8 = (const block_q8_0_r8 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto scales = _mm_castsi128_ps(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)q8.y[iy][ib4].d)), 16));
                _mm_storeu_ps(d8 + 4*iy, scales);
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[4*ib4+k].d));
                for (int j = 0; j < 4; ++j) {
                    qx[j] = _mm256_loadu_si256((const __m256i *)iq8[4*ib4+k].qs+j);
                    sx[j] = _mm256_sign_epi8(qx[j], qx[j]);
                }
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(q8.y[iy][ib4].qs+32*k);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+k]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                }
                for (int j = 0; j < 4; ++j) {
                    qx[j] = _mm256_loadu_si256((const __m256i *)iq8[4*ib4+k].qs+4+j);
                    sx[j] = _mm256_sign_epi8(qx[j], qx[j]);
                }
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(q8.y[iy][ib4].qs+32*k+16);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+k]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[ib].d));
            for (int j = 0; j < 4; ++j) {
                qx[j] = _mm256_loadu_si256((const __m256i *)iq8[ib].qs+j);
                sx[j] = _mm256_sign_epi8(qx[j], qx[j]);
            }
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_2 *)q8.y[iy];
                auto sumi = dot(qy[ib].qs);
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(ggml_bf16_t{qy[ib].d})));
                acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
            }
            for (int j = 0; j < 4; ++j) {
                qx[j] = _mm256_loadu_si256((const __m256i *)iq8[ib].qs+4+j);
                sx[j] = _mm256_sign_epi8(qx[j], qx[j]);
            }
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_2 *)q8.y[iy];
                auto sumi = dot(qy[ib].qs+16);
                auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(ggml_bf16_t{qy[ib].d})));
                acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix, iy, acc[iy]);
            acc[iy] = _mm256_setzero_ps();
        }
    }
}
#endif

typedef struct {
    ggml_half d[16];
    uint8_t   qs[256];
} block_q8_1_r8;

template <int nrc_y>
static void mul_mat_q8_1_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_2_x4> q8(info);
    int nb = n / QK8_0;
    __m256 acc[nrc_y] = {};
    float d8[4*nrc_y];
    __m256i qx[4];
    auto dot = [&qx] (const int8_t * qy) {
        auto y128 = _mm_loadu_si128((const __m128i*)qy);
        auto y = MM256_SET_M128I(y128, y128);
#ifdef HAVE_FANCY_SIMD
        auto sumi = _mm256_setzero_si256();
        sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00));
        sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55));
        sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa));
        sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff));
        return sumi;
#else
        auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)),
                                      _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55)));
        auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)),
                                      _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff)));
        return _mm256_add_epi32(_mm256_madd_epi16(_mm256_set1_epi16(1), sumi1), _mm256_madd_epi16(_mm256_set1_epi16(1), sumi2));
#endif
    };
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_q8_1_r8 * iq8 = (const block_q8_1_r8 *)((const char *)vx + ix*bx);
        for (int i4 = 0; i4 < nb/4; ++i4) {
            {
                __m256 mx[4];
                for (int ib32 = 0; ib32 < 4; ++ib32) mx[ib32] = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[4*i4+ib32].d+1));
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto scales = _mm_castsi128_ps(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)q8.y[iy][i4].d)), 16));
                    _mm_storeu_ps(d8 + 4*iy + 0, scales);
                    auto bsums4 = _mm_cvtepi32_ps(_mm_cvtepi16_epi32(_mm_loadl_epi64((const __m128i *)(q8.y[iy][i4].d+4))));
                    bsums4 = _mm_mul_ps(bsums4, scales);
                    auto bsums  = _mm256_set_m128(bsums4, bsums4);
                    acc[iy] = _mm256_fmadd_ps(mx[0], _mm256_shuffle_ps(bsums, bsums, 0x00), acc[iy]);
                    acc[iy] = _mm256_fmadd_ps(mx[1], _mm256_shuffle_ps(bsums, bsums, 0x55), acc[iy]);
                    acc[iy] = _mm256_fmadd_ps(mx[2], _mm256_shuffle_ps(bsums, bsums, 0xaa), acc[iy]);
                    acc[iy] = _mm256_fmadd_ps(mx[3], _mm256_shuffle_ps(bsums, bsums, 0xff), acc[iy]);
                }
            }
            for (int ib32 = 0; ib32 < 4; ++ib32) {
                auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[4*i4+ib32].d));
                for (int j = 0; j < 4; ++j) {
                    qx[j] = _mm256_loadu_si256((const __m256i *)iq8[4*i4+ib32].qs+j);
                }
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(q8.y[iy][i4].qs+32*ib32);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+ib32]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                }
                for (int j = 0; j < 4; ++j) {
                    qx[j] = _mm256_loadu_si256((const __m256i *)iq8[4*i4+ib32].qs+4+j);
                }
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto sumi = dot(q8.y[iy][i4].qs+32*ib32+16);
                    auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+ib32]));
                    acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]);
                }
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix, iy, acc[iy]);
            acc[iy] = _mm256_setzero_ps();
        }
    }
}

void iqk_convert_q80_q80_r8(int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    static_assert(QK4_0 == QK8_0);
    GGML_ASSERT(n%QK4_0 == 0);
    GGML_ASSERT(nrc_x%8 == 0);

    const int nb = n/QK4_0;

    block_q8_0_r8 * y = (block_q8_0_r8 *)vy;

    const block_q8_0 * x8[8];

    uint32_t block[8];

    for (int ix = 0; ix < nrc_x; ix += 8) {

        for (int k = 0; k < 8; ++k) x8[k] = (const block_q8_0 *)((const char *)vx + (ix + k)*bx);

        for (int i = 0; i < nb; ++i) {
            for (int k = 0; k < 8; ++k) {
                y[i].d[k] = x8[k][i].d;
                _mm256_storeu_si256((__m256i *)block, _mm256_loadu_si256((const __m256i *)x8[k][i].qs));
                auto qs = (uint32_t *)y[i].qs;
                for (int l = 0; l < 4; ++l) {
                    qs[8*l + k +  0] = block[l + 0];
                    qs[8*l + k + 32] = block[l + 4];
                }
            }
        }
        y += nb;
    }
}

template <typename Block, typename Dequantizer>
void iqk_convert_qX_q80_r8(int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    GGML_ASSERT(n%QK4_0 == 0);
    GGML_ASSERT(nrc_x%8 == 0);

    const int nb = n/QK8_0;

    block_q8_0_r8 * y = (block_q8_0_r8 *)vy;

    const Block * x8[8];

    uint32_t block[8];

    Dequantizer deq;

    for (int ix = 0; ix < nrc_x; ix += 8) {

        for (int k = 0; k < 8; ++k) x8[k] = (const Block *)((const char *)vx + (ix + k)*bx);

        for (int i = 0; i < nb; ++i) {
            for (int k = 0; k < 8; ++k) {
                y[i].d[k] = x8[k][i].d;
                _mm256_storeu_si256((__m256i *)block, deq.dequant(x8[k] + i));
                auto qs = (uint32_t *)y[i].qs;
                for (int l = 0; l < 4; ++l) {
                    qs[8*l + k +  0] = block[l + 0];
                    qs[8*l + k + 32] = block[l + 4];
                }
            }
        }
        y += nb;
    }
}

template <typename Block, typename Dequantizer>
void iqk_convert_qX_1_q8_1_r8(int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    GGML_ASSERT(n%QK8_0 == 0);
    GGML_ASSERT(nrc_x%8 == 0);

    int nb = n/QK8_0;

    const Block * x8[8];

    block_q8_1_r8 * y = (block_q8_1_r8 *)vy;

    uint32_t block[8];

    Dequantizer deq;

    for (int ix = 0; ix < nrc_x; ix += 8) {
        for (int k = 0; k < 8; ++k) x8[k] = (const Block *)((const char *)vx + (ix + k)*bx);
        for (int i = 0; i < nb; ++i) {
            for (int k = 0; k < 8; ++k) {
                y[i].d[k+0] = x8[k][i].d;
                y[i].d[k+8] = x8[k][i].m;
                _mm256_storeu_si256((__m256i *)block, deq.dequant(x8[k]+i));
                auto qs = (uint32_t *)y[i].qs;
                for (int l = 0; l < 4; ++l) {
                    qs[8*l + k +  0] = block[l + 0];
                    qs[8*l + k + 32] = block[l + 4];
                }
            }
        }
        y += nb;
    }
}

template <typename Dequantizer> void set_functions(std::array<mul_mat_t, IQK_MAX_NY>& funcs) {
    if constexpr (std::is_same_v<Dequantizer, Q4_0_Unpacker> || std::is_same_v<Dequantizer, Q5_0_Unpacker> ||
            std::is_same_v<Dequantizer, Q8_0_Unpacker>) {
        IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0_T, Dequantizer, funcs)
    }
    else if constexpr (std::is_same_v<Dequantizer, Q4_1_Unpacker> || std::is_same_v<Dequantizer, Q5_1_Unpacker>) {
        IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_2_T, Dequantizer, funcs)
    }
    else if constexpr (std::is_same_v<Dequantizer, IQ4_NL_Unpacker>) {
#ifdef HAVE_FANCY_SIMD
        IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_2_T, Dequantizer, funcs)
#else
        IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0_T, Dequantizer, funcs)
#endif
    }
    else if constexpr (std::is_same_v<Dequantizer, Q8_0_1_Unpacker> || std::is_same_v<Dequantizer, Q4_0_1_Unpacker> ||
                       std::is_same_v<Dequantizer, Q5_0_1_Unpacker> || std::is_same_v<Dequantizer, Q6_0_1_Unpacker>) {
        IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_2_T, Dequantizer, funcs)
    }
}

} // namespace

bool iqk_convert_legacy_quants_q8_r8(int type, int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    switch (type) {
        case GGML_TYPE_Q4_0  : iqk_convert_qX_q80_r8<block_q4_0, Q4_0_Dequantizer>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q4_1  : iqk_convert_qX_1_q8_1_r8<block_q4_1, Q4_1_Dequantizer>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q5_0  : iqk_convert_qX_q80_r8<block_q5_0, Q5_0_Dequantizer>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q5_1  : iqk_convert_qX_1_q8_1_r8<block_q5_1, Q5_1_Dequantizer<block_q5_1>>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q6_0  : iqk_convert_qX_q80_r8<block_q6_0, Q6_0_Dequantizer>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_IQ4_NL: iqk_convert_qX_q80_r8<block_iq4_nl, IQ4_NL0_Dequantizer>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q8_0  : iqk_convert_q80_q80_r8(n, vx, bx, vy, nrc_x); break;
        default: return false;
    }
    return true;
}

bool iqk_set_kernels_legacy_quants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) {

    if (ne00%QK8_0 != 0) return false;

    auto expected_typeB = GGML_TYPE_Q8_2_X4;

    func16 = nullptr;

    switch (typeA) {
        case GGML_TYPE_Q4_0:
            set_functions<Q4_0_1_Unpacker>(kernels);
            break;
        case GGML_TYPE_Q4_1:
            set_functions<Q4_1_Unpacker>(kernels);
            break;
        case GGML_TYPE_Q5_0:
            set_functions<Q5_0_1_Unpacker>(kernels);
            break;
        case GGML_TYPE_Q5_1:
            set_functions<Q5_1_Unpacker>(kernels);
            break;
        case GGML_TYPE_Q6_0:
            set_functions<Q6_0_1_Unpacker>(kernels);
            break;
        case GGML_TYPE_Q8_0:
#ifdef HAVE_FANCY_SIMD
            set_functions<Q8_0_1_Unpacker>(kernels);
#else
            set_functions<Q8_0_Unpacker>(kernels);
            expected_typeB = GGML_TYPE_Q8_0_X4;
#endif
            break;
        case GGML_TYPE_IQ4_NL:
            set_functions<IQ4_NL_Unpacker>(kernels);
#ifndef HAVE_FANCY_SIMD
            expected_typeB = GGML_TYPE_Q8_0_X4;
#endif
            break;
        case GGML_TYPE_Q4_0_R8:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q4_0_r8_q8_2, kernels)
#ifdef HAVE_FANCY_SIMD
            func16 = mul_mat_q4_0_r8_q8_2<16>;
#endif
            break;
        case GGML_TYPE_Q5_0_R4:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q5_0_r4_q8_2, kernels)
            break;
        case GGML_TYPE_Q6_0_R4:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q6_0_r4_q8_2, kernels)
            break;
        case GGML_TYPE_Q8_0_R8:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q8_0_r8_q8_2, kernels)
            break;
        case GGML_TYPE_IQ4_NL_R4:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq4_nl_r4_q8_2, kernels)
            break;
        case GGML_TYPE_Q8_1: // Note: we are misusing the Q8_1 type for Q8_1_R8
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q8_1_r8_q8_2, kernels)
            break;
        default:
            return false;
    }

    return ggml_type(typeB) == expected_typeB;
}

#else
// ---------------------------- __aarch64__ ----------------------------------------------

namespace {

template <typename Block>
inline float16x4_t load_scales_q0(const Block * x, ggml_half * aux) {
    for (int k = 0; k < 4; ++k) aux[k] = x[k].d;
    return vld1_f16((const float16_t *)aux);
}

template <typename Block>
inline float16x8_t load_scales_q1(const Block * x, ggml_half * aux) {
    if constexpr (std::is_same_v<Block, block_q8_1>) {
        for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].s; }
    } else {
        for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].m; }
    }
    return vld1q_f16((const float16_t *)aux);
}

struct Q4LegacyBits {
    template <typename Block>
    inline void prepare(const Block * x) {
        for (int i = 0; i < 4; ++i) {
            auto q4bits = vld1q_u8(x[i].qs);
            b[2*i+0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b));
            b[2*i+1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4));
        }
    }
    inline void prepare1(const uint8_t * qs, int8x16_t * q) const {
        auto q4bits = vld1q_u8(qs);
        q[0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b));
        q[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4));
    }
    inline void prepare1(const uint8_t * qs) {
        prepare1(qs, b);
    }
    const uint8x16_t m4b = vdupq_n_u8(0xf);
    int8x16_t b[8];
};

// One would think this commented out version would do better than the one below
// because it offers more opportunities to execute instructions in parallel.
// Instead, it runs significantly slower. Why? If the compiler is running out of vector registers
// cannot it just do the sequential version below on its own?
//inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) {
//    const auto q8b_1 = vld1q_s8_x2(qs + 0);
//    auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b_1.val[0]), b[1], q8b_1.val[1]);
//    const auto q8b_2 = vld1q_s8_x2(qs + 32);
//    auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b_2.val[0]), b[3], q8b_2.val[1]);
//    auto p1234 = vpaddq_s32(p12, p34);
//    const auto q8b_3 = vld1q_s8_x2(qs + 64);
//    auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b_3.val[0]), b[5], q8b_3.val[1]);
//    const auto q8b_4 = vld1q_s8_x2(qs + 96);
//    auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b_4.val[0]), b[7], q8b_4.val[1]);
//    return vpaddq_s32(p1234, vpaddq_s32(p56, p78));
//}

inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) {
    auto q8b = vld1q_s8_x2(qs + 0);
    auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b.val[0]), b[1], q8b.val[1]);
    q8b = vld1q_s8_x2(qs + 32);
    auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b.val[0]), b[3], q8b.val[1]);
    auto p1234 = vpaddq_s32(p12, p34);
    q8b = vld1q_s8_x2(qs + 64);
    auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b.val[0]), b[5], q8b.val[1]);
    q8b = vld1q_s8_x2(qs + 96);
    auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b.val[0]), b[7], q8b.val[1]);
    return vpaddq_s32(p1234, vpaddq_s32(p56, p78));
}

inline int32x4x2_t sum_4_blocks(const int8x16_t * b1, const int8x16_t * b2, const int8_t * qs) {
    auto q8b = vld1q_s8_x2(qs + 0);
    auto p12_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[0], q8b.val[0]), b1[1], q8b.val[1]);
    auto p12_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[0], q8b.val[0]), b2[1], q8b.val[1]);
    q8b = vld1q_s8_x2(qs + 32);
    auto p34_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[2], q8b.val[0]), b1[3], q8b.val[1]);
    auto p34_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[2], q8b.val[0]), b2[3], q8b.val[1]);
    auto p1234_1 = vpaddq_s32(p12_1, p34_1);
    auto p1234_2 = vpaddq_s32(p12_2, p34_2);
    q8b = vld1q_s8_x2(qs + 64);
    auto p56_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[4], q8b.val[0]), b1[5], q8b.val[1]);
    auto p56_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[4], q8b.val[0]), b2[5], q8b.val[1]);
    q8b = vld1q_s8_x2(qs + 96);
    auto p78_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[6], q8b.val[0]), b1[7], q8b.val[1]);
    auto p78_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[6], q8b.val[0]), b2[7], q8b.val[1]);
    auto p5678_1 = vpaddq_s32(p56_1, p78_1);
    auto p5678_2 = vpaddq_s32(p56_2, p78_2);
    return { vpaddq_s32(p1234_1, p5678_1), vpaddq_s32(p1234_2, p5678_2)};
}

template <int nrc> struct Q80 {

    constexpr static int nrc_y = nrc;

    Q80(const DataInfo& info) {
        for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_0 *)info.src1_row(iy);
    }

    inline const int8_t * quant_data(int iy, int i) const {
        const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i;
        return y4->qs;
    }

    inline float16x4_t load_scales(int iy, int i) const {
        const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i;
        return vld1_f16((const float16_t *)y4->d);
    }

    template <typename Dequantizer>
    inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * /*acc*/) const {
        auto qx_scales = deq.new_block(i);
        for (int iy = 0; iy < nrc; ++iy) {
            auto q8_scales = load_scales(iy, i);
            sc16[iy] = vmul_f16(qx_scales, q8_scales);
        }
    }

    template <typename Dequantizer>
    inline void process_scales(int i, Dequantizer& deq1, Dequantizer& deq2, float16x4_t * sc16, float32x4_t * /*acc*/) const {
        auto qx_scales_1 = deq1.new_block(i);
        auto qx_scales_2 = deq2.new_block(i);
        for (int iy = 0; iy < nrc; ++iy) {
            auto q8_scales = load_scales(iy, i);
            sc16[iy      ] = vmul_f16(qx_scales_1, q8_scales);
            sc16[iy+nrc_y] = vmul_f16(qx_scales_2, q8_scales);
        }
    }

    template <typename Dequantizer>
    inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const {
        deq.prepare1(i);
        float d = GGML_FP16_TO_FP32(deq.x[i].d);
        for (int iy = 0; iy < nrc; ++iy) {
            auto q8b = vld1q_s8_x2(y[iy][i].qs);
            auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]);
            acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p));
        }
    }

    const block_q8_0 * y[nrc_y];
};

template <int nrc> struct Q81 {

    constexpr static int nrc_y = nrc;

    Q81(const DataInfo& info) {
        for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_1 *)info.src1_row(iy);
    }

    inline const int8_t * quant_data(int iy, int i) const {
        const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i;
        return y4->qs;
    }

    inline float16x8_t load_scales(int iy, int i) const {
        const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i;
        return vld1q_f16((const float16_t *)y4->d);
    }

    template <typename Dequantizer>
    inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * acc) const {
        auto qx_scales = deq.new_block(i);
        for (int iy = 0; iy < nrc; ++iy) {
            auto q8_scales = load_scales(iy, i);
            auto m = vmul_f16(vget_high_f16(qx_scales), vget_high_f16(q8_scales));
            acc[iy] = vaddq_f32(acc[iy], vcvt_f32_f16(m));
            sc16[iy] = vmul_f16(vget_low_f16(qx_scales), vget_low_f16(q8_scales));
        }
    }

    template <typename Dequantizer>
    inline void process_scales(int i, Dequantizer& deq1, Dequantizer& deq2, float16x4_t * sc16, float32x4_t * acc) const {
        auto qx_scales_1 = deq1.new_block(i);
        auto qx_scales_2 = deq2.new_block(i);
        for (int iy = 0; iy < nrc; ++iy) {
            auto q8_scales = load_scales(iy, i);
            auto q8_scales_l = vget_low_f16(q8_scales);
            auto q8_scales_h = vget_high_f16(q8_scales);
            auto m1 = vmul_f16(vget_high_f16(qx_scales_1), q8_scales_h);
            auto m2 = vmul_f16(vget_high_f16(qx_scales_2), q8_scales_h);
            acc[iy       ] = vaddq_f32(acc[iy      ], vcvt_f32_f16(m1));
            acc[iy+nrc_y ] = vaddq_f32(acc[iy+nrc_y], vcvt_f32_f16(m2));
            sc16[iy      ] = vmul_f16(vget_low_f16(qx_scales_1), q8_scales_l);
            sc16[iy+nrc_y] = vmul_f16(vget_low_f16(qx_scales_2), q8_scales_l);
        }
    }

    template <typename Dequantizer>
    inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const {
        deq.prepare1(i);
        float d = GGML_FP16_TO_FP32(deq.x[i].d), m = 0.25f*GGML_FP16_TO_FP32(deq.x[i].m);
        for (int iy = 0; iy < nrc; ++iy) {
            auto q8b = vld1q_s8_x2(y[iy][i].qs);
            auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]);
            acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p));
            acc[iy] = vaddq_f32(acc[iy], vdupq_n_f32(m*GGML_FP16_TO_FP32(y[iy][i].s)));
        }
    }

    const block_q8_1 * y[nrc_y];
};

template <typename block_q>
struct BaseLegacyDequantizer {

    BaseLegacyDequantizer(const void * vx, size_t bx) : vx(vx), x(nullptr), bx(bx) {}

    inline void new_row(int ix) { x = (const block_q *)((const char *)vx + bx*ix); }

    Q4LegacyBits bits;

    const void * vx;
    const block_q * x;
    size_t bx;
};

struct DequantizerQ40 final : public BaseLegacyDequantizer<block_q4_0> {

    DequantizerQ40(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i, int8x16_t * q) const {
        bits.prepare1(x[i].qs, q);
        q[0] = vaddq_s8(q[0], m8);
        q[1] = vaddq_s8(q[1], m8);
    }
    inline void prepare1(int i) {
        prepare1(i, bits.b);
    }

    inline float16x4_t new_block(int i) {
        ggml_half aux[4];
        for (int k = 0; k < 4; ++k) {
            aux[k] = x[4*i+k].d;
            prepare1(4*i+k, bits.b + 2*k);
        }
        return vld1_f16((const float16_t *)aux);
    }

    const int8x16_t m8 = vdupq_n_s8(-8);
    //ggml_half aux[4];
};

struct DequantizerQ60 final : public BaseLegacyDequantizer<block_q6_0> {

    DequantizerQ60(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i, int8x16_t * q) const {
        bits.prepare1(x[i].qs, q);
        auto qh8 = vld1_u8(x[i].qh);
        auto qh  = vcombine_u8(vshl_n_u8(qh8, 4), qh8);
        q[0] = vaddq_s8(vorrq_u8(q[0], vandq_u8(qh, hmask)), m32);
        q[1] = vaddq_s8(vorrq_u8(q[1], vandq_u8(vshrq_n_u8(qh, 2), hmask)), m32);
    }
    inline void prepare1(int i) {
        prepare1(i, bits.b);
    }

    inline float16x4_t new_block(int i) {
        ggml_half aux[4];
        for (int k = 0; k < 4; ++k) {
            aux[k] = x[4*i+k].d;
            prepare1(4*i+k, bits.b + 2*k);
        }
        return vld1_f16((const float16_t *)aux);
    }

    const int8x16_t m32 = vdupq_n_s8(-32);
    const uint8x16_t hmask = vdupq_n_u8(0x30);
};

struct DequantizerIQ4NL final : public BaseLegacyDequantizer<block_iq4_nl> {

    DequantizerIQ4NL(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i, int8x16_t * q) const {
        bits.prepare1(x[i].qs, q);
        q[0] = vqtbl1q_s8(values, q[0]);
        q[1] = vqtbl1q_s8(values, q[1]);
    }
    inline void prepare1(int i) {
        prepare1(i, bits.b);
    }

    inline float16x4_t new_block(int i) {
        ggml_half aux[4];
        for (int k = 0; k < 4; ++k) {
            aux[k] = x[4*i+k].d;
            prepare1(4*i+k, bits.b + 2*k);
        }
        return vld1_f16((const float16_t *)aux);
    }
    static int8x16_t load_values() {
        static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
        return vld1q_s8(iq4nl_values);
    }

    const int8x16_t values = load_values();
};

struct DequantizerQ41 : public BaseLegacyDequantizer<block_q4_1> {

    DequantizerQ41(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i) {
        bits.prepare1(x[i].qs);
    }

    inline float16x8_t new_block(int i) {
        uint32_t aux32[4];
        const uint32_t * s32 = (const uint32_t *)&x[4*i].d;
        for (int k = 0; k < 4; ++k) {
            aux32[k] = *s32; s32 += sizeof(block_q4_1)/4;
            bits.prepare1(x[4*i+k].qs, bits.b + 2*k);
        }
        return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle)));
    }
    // Leaving this commented out attempt to be reminded that I already tried this.
    // It has basically the same performance as the version above.
    //inline float16x8_t new_block(int i) {
    //    uint32x4_t scales = {};
    //    const block_q4_1 * xi = x + 4*i;
    //    const uint32_t * s32 = (const uint32_t *)&xi->d;
    //    scales = vsetq_lane_u32(*s32, scales, 0); s32 += sizeof(block_q4_1)/4;
    //    bits.prepare1(xi[0].qs, bits.b + 0);
    //    scales = vsetq_lane_u32(*s32, scales, 1); s32 += sizeof(block_q4_1)/4;
    //    bits.prepare1(xi[1].qs, bits.b + 2);
    //    scales = vsetq_lane_u32(*s32, scales, 2); s32 += sizeof(block_q4_1)/4;
    //    bits.prepare1(xi[2].qs, bits.b + 4);
    //    scales = vsetq_lane_u32(*s32, scales, 3);
    //    bits.prepare1(xi[3].qs, bits.b + 6);
    //    return vreinterpretq_f16_u8(vqtbl1q_u8(vreinterpretq_u8_u32(scales), vreinterpretq_u8_u64(shuffle)));
    //}

    const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302};
};

struct HighBit5Legacy {
    inline uint8x16_t to_bytes(const uint8_t * qh) const {
        uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle);
        return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vreinterpretq_u8_u64(mask));
    }
    inline uint8x16_t to_negated_bytes(const uint8_t * qh) const {
        uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle);
        return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vdupq_n_u8(0));
    }
    const uint64x2_t mask = vdupq_n_u64(0x8040201008040201);
    const uint8x16_t shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1));
};

struct DequantizerQ50 final : public BaseLegacyDequantizer<block_q5_0> {

    DequantizerQ50(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i, int8x16_t * q) const {
        bits.prepare1(x[i].qs, q);
        auto qh = x[i].qh;
        q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_negated_bytes(qh+0))));
        q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_negated_bytes(qh+2))));
    }
    inline void prepare1(int i) {
        prepare1(i, bits.b);
    }

    inline float16x4_t new_block(int i) {
        ggml_half aux[4];
        for (int k = 0; k < 4; ++k) {
            aux[k] = x[4*i+k].d;
            prepare1(4*i+k, bits.b + 2*k);
        }
        return vld1_f16((const float16_t *)aux);
    }

    HighBit5Legacy hbits;

    const uint8x16_t mh = vdupq_n_u8(0xf0);

};

struct DequantizerQ80 final : public BaseLegacyDequantizer<block_q8_0> {

    DequantizerQ80(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i) {
        bits.b[0] = vld1q_s8(x[i].qs);
        bits.b[1] = vld1q_s8(x[i].qs+16);
    }

    inline float16x4_t new_block(int i) {
        ggml_half aux[4];
        for (int k = 0; k < 4; ++k) {
            aux[k] = x[4*i+k].d;
            bits.b[2*k+0] = vld1q_s8(x[4*i+k].qs);
            bits.b[2*k+1] = vld1q_s8(x[4*i+k].qs+16);
        }
        return vld1_f16((const float16_t *)aux);
    }

};

// TODO: handle case where row size is not a multiple of 128
struct DequantizerQ80_x4 final : public BaseLegacyDequantizer<block_q8_0_x4> {

    DequantizerQ80_x4(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i) {
        bits.b[0] = vld1q_s8(x[i].qs);
        bits.b[1] = vld1q_s8(x[i].qs+16);
    }

    inline float16x4_t new_block(int i) {
        auto scale = vld1_f16((const float16_t *)x[i].d);
        for (int k = 0; k < 4; ++k) {
            bits.b[2*k+0] = vld1q_s8(x[i].qs+32*k);
            bits.b[2*k+1] = vld1q_s8(x[i].qs+32*k+16);
        }
        return scale;
    }

};

struct DequantizerQ51 final : public BaseLegacyDequantizer<block_q5_1> {

    DequantizerQ51(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}

    inline void prepare1(int i, int8x16_t * q) const {
        bits.prepare1(x[i].qs, q);
        auto qh = x[i].qh;
        q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_bytes(qh+0))));
        q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_bytes(qh+2))));
    }
    inline void prepare1(int i) {
        bits.prepare1(x[i].qs, bits.b);
    }

    inline float16x8_t new_block(int i) {
        uint32_t aux32[4];
        const uint32_t * s32 = (const uint32_t *)&x[4*i].d;
        for (int k = 0; k < 4; ++k) {
            aux32[k] = *s32; s32 += sizeof(block_q5_1)/4;
            prepare1(4*i+k, bits.b + 2*k);
        }
        return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle)));
    }

    HighBit5Legacy hbits;

    const uint8x16_t mh = vdupq_n_u8(0x10);
    const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302};

};

template <typename Dequantizer, typename Q8>
inline void sum_4(int i, Dequantizer& deq, const Q8& q8, const float16x4_t * sc16, float32x4_t * acc) {
    for (int iy = 0; iy < Q8::nrc_y; ++iy) {
        auto pall = sum_4_blocks(deq.bits.b, q8.quant_data(iy, i));
        auto scale = vcvt_f32_f16(sc16[iy]);
        acc[iy] = vmlaq_f32(acc[iy], scale, vcvtq_f32_s32(pall));
    }
}

template <typename Dequantizer, typename Q8>
inline void sum_4(int i, Dequantizer& deq1, Dequantizer& deq2, const Q8& q8, const float16x4_t * sc16, float32x4_t * acc) {
    for (int iy = 0; iy < Q8::nrc_y; ++iy) {
        auto pall = sum_4_blocks(deq1.bits.b, deq2.bits.b, q8.quant_data(iy, i));
        auto scale1 = vcvt_f32_f16(sc16[iy]);
        auto scale2 = vcvt_f32_f16(sc16[iy+Q8::nrc_y]);
        acc[iy] = vmlaq_f32(acc[iy], scale1, vcvtq_f32_s32(pall.val[0]));
        acc[iy+Q8::nrc_y] = vmlaq_f32(acc[iy+Q8::nrc_y], scale2, vcvtq_f32_s32(pall.val[1]));
    }
}

template <typename Dequantizer, typename Q8>
inline void mul_mat_qX_Y_q8_Y(int n, Dequantizer& deq, Q8& q8, const DataInfo& info, int nrc_x) {
    const int nb = n / QK4_1;

    float16x4_t sc16[Q8::nrc_y];

    for (int ix = 0; ix < nrc_x; ++ix) {

        deq.new_row(ix);

        float32x4_t acc[Q8::nrc_y];
        for (int iy = 0; iy < Q8::nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f);

        for (int i = 0; i < nb/4; ++i) {
            q8.process_scales(i, deq, sc16, acc);
            sum_4(i, deq, q8, sc16, acc);
        }
        for (int i = 4*(nb/4); i < nb; ++i) {
            q8.process_1_block(i, deq, acc);
        }

        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            info.store(ix, iy, vaddvq_f32(acc[iy]));
        }
    }
}

template <typename Dequantizer, typename Q8>
inline void mul_mat_qX_Y_q8_Y_IK(int n, Dequantizer& deq1, Dequantizer& deq2, Q8& q8, const DataInfo& info, int nrc_x) {
    const int nb = n / QK4_1;

    float16x4_t sc16[2*Q8::nrc_y];
    float32x4_t acc[2*Q8::nrc_y];

    for (int ix = 0; ix < nrc_x; ix += 2) {

        deq1.new_row(ix+0);
        deq2.new_row(ix+1);

        for (int iy = 0; iy < 2*Q8::nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f);

        for (int i = 0; i < nb/4; ++i) {
            q8.process_scales(i, deq1, deq2, sc16, acc);
            sum_4(i, deq1, deq2, q8, sc16, acc);
        }
        //for (int i = 4*(nb/4); i < nb; ++i) {
        //    q8.process_1_block(i, deq, acc);
        //}

        for (int iy = 0; iy < Q8::nrc_y; ++iy) {
            info.store(ix+0, iy, vaddvq_f32(acc[iy]));
            info.store(ix+1, iy, vaddvq_f32(acc[iy+Q8::nrc_y]));
        }
    }
}

template <typename Dequantizer, typename Q8>
inline void mul_mat_qX_Y_q8_Y_1(int n, Dequantizer& deq1, Dequantizer& deq2, Q8& q8, const DataInfo& info, int nrc_x) {
    const int nb = n / QK4_1;

    float16x4_t sc16[2];

    for (int ix = 0; ix < nrc_x; ++ix) {

        deq1.new_row(ix);
        deq2.new_row(ix);

        float32x4_t acc[2] = { vdupq_n_f32(0.f), vdupq_n_f32(0.f) };

        for (int i = 0; i < nb/8; ++i) {
            q8.process_scales(2*i+0, deq1, sc16+0, acc+0);
            q8.process_scales(2*i+1, deq2, sc16+1, acc+1);
            sum_4(2*i+0, deq1, q8, sc16+0, acc+0);
            sum_4(2*i+1, deq2, q8, sc16+1, acc+1);
        }
        for (int i = 2*(nb/8); i < nb/4; ++i) {
            q8.process_scales(i, deq1, sc16, acc);
            sum_4(i, deq1, q8, sc16, acc);
        }
        //for (int i = 4*(nb/4); i < nb; ++i) {
        //    q8.process_1_block(i, deq1, acc);
        //}

        info.store(ix, 0, vaddvq_f32(vaddq_f32(acc[0], acc[1])));
    }
}

template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_1_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    Q81<nrc_y> q8(info);
    if constexpr (nrc_y == 1) {
        Dequantizer deq1(vx, bx), deq2(vx, bx);
        mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x);
    } else {
        if (nrc_x%2 == 0 && n%128 == 0) {
            Dequantizer deq1(vx, bx), deq2(vx, bx);
            mul_mat_qX_Y_q8_Y_IK(n, deq1, deq2, q8, info, nrc_x);
        } else {
            Dequantizer deq(vx, bx);
            mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x);
        }
    }
}

template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_0_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    Q80<nrc_y> q8(info);
    if constexpr (nrc_y == 1) {
        Dequantizer deq1(vx, bx), deq2(vx, bx);
        mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x);
    } else {
        if (nrc_x%2 == 0 && n%128 == 0) {
            Dequantizer deq1(vx, bx), deq2(vx, bx);
            mul_mat_qX_Y_q8_Y_IK(n, deq1, deq2, q8, info, nrc_x);
        } else {
            Dequantizer deq(vx, bx);
            mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x);
        }
    }
}

template <typename Dequantizer>
static void mul_mat_qX_1_q8_1_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    Dequantizer deq1(vx, bx), deq2(vx, bx);
    Q81<1> q8(info);
    mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x);
}

template <typename Dequantizer>
static void mul_mat_qX_0_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    Dequantizer deq1(vx, bx), deq2(vx, bx);
    Q80<1> q8(info);
    mul_mat_qX_Y_q8_Y(n, deq1, deq2, q8, info, nrc_x);
}

template <typename Dequantizer, int nrc_y>
void mul_mat_qx_r4_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%4 == 0);
    Q8<nrc_y, block_q8_0_x4> q8(info);
    Dequantizer deq(vx, bx);
    int nb = n / QK4_NL;
    int8x16_t qx[8];
    float d8[4*nrc_y];
    float32x4_t acc[nrc_y] = {};
    for (int ix = 0; ix < nrc_x; ix += 4) {
        deq.new_row(ix);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                vst1q_f32(d8+4*iy, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d)));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = deq.prepare(4*ib4+k, qx);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto y = vld1q_s8_x2(q8.y[iy][ib4].qs+32*k);
                    auto sumi = interleaved_dotq(qx, y);
                    auto d4d8 = vmulq_f32(scales, vdupq_n_f32(d8[4*iy+k]));
                    acc[iy] = vfmaq_f32(acc[iy], d4d8, vcvtq_f32_s32(sumi));
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = deq.prepare(ib, qx);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_0 *)q8.y[iy];
                auto y = vld1q_s8_x2(qy[ib].qs);
                auto sumi = interleaved_dotq(qx, y);
                auto d4d8 = vmulq_f32(scales, vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d)));
                acc[iy] = vfmaq_f32(acc[iy], d4d8, vcvtq_f32_s32(sumi));
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix, iy, deq.result(acc[iy]));
            acc[iy] = vdupq_n_f32(0.f);
        }
    }
}

template <typename Dequantizer, int nrc_y>
void mul_mat_qx_r8_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_0_x4> q8(info);
    Dequantizer deq(vx, bx);
    int nb = n / QK4_NL;
    int8x16_t qx[16];
    float d8[4*nrc_y];
    float32x4_t acc[2*nrc_y] = {};
    for (int ix = 0; ix < nrc_x; ix += 8) {
        deq.new_row(ix);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                vst1q_f32(d8+4*iy, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d)));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales = deq.prepare(ib4, k, qx);
                for (int iy = 0; iy < nrc_y; ++iy) {
                    auto y = vld1q_s8_x2(q8.y[iy][ib4].qs+32*k);
                    auto sumi1 = interleaved_dotq(qx+0, y);
                    auto sumi2 = interleaved_dotq(qx+8, y);
                    auto dy = vdupq_n_f32(d8[4*iy+k]);
                    acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales.val[0], dy), vcvtq_f32_s32(sumi1));
                    acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales.val[1], dy), vcvtq_f32_s32(sumi2));
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales = deq.prepare(ib, 0, qx);
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_0 *)q8.y[iy];
                auto y = vld1q_s8_x2(qy[ib].qs);
                auto sumi1 = interleaved_dotq(qx+0, y);
                auto sumi2 = interleaved_dotq(qx+8, y);
                auto dy = vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d));
                acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales.val[0], dy), vcvtq_f32_s32(sumi1));
                acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales.val[1], dy), vcvtq_f32_s32(sumi2));
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix+0, iy, deq.result(acc[2*iy+0]));
            info.store(ix+4, iy, deq.result(acc[2*iy+1]));
            acc[2*iy] = acc[2*iy+1] = vdupq_n_f32(0.f);
        }
    }
}

struct IQ4_NL_R4_Dequantizer {
    IQ4_NL_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx), values(vld1q_s8(iq4k_values)) {}
    inline void new_row(int ix) { iq4 = (const block_iq4_nl_r4 *)(cx + ix*bx); }
    inline float32x4_t prepare(int ib, int8x16_t * qx) const {
        auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq4[ib].d));
        auto bits   = vld1q_u8_x4(iq4[ib].qs);
        prepare_iq4_nl_quants(values, m4, bits, qx);
        return scales;
    }
    inline float32x4_t result(float32x4_t acc) const {
        return acc;
    }

    const char * cx;
    const size_t bx;
    const block_iq4_nl_r4 * iq4;
    const uint8x16_t m4 = vdupq_n_u8(0x0f);
    const int8x16_t values;
};

struct Q4_0_R8_Dequantizer {
    Q4_0_R8_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {}
    inline void new_row(int ix) { iq4 = (const block_iq4_nl_r8 *)(cx + ix*bx); }
    inline float32x4x2_t prepare(int ib4, int k, int8x16_t * qx) const {
        auto scales16 = vld1q_f16((const float16_t *)iq4[4*ib4+k].d);
        float32x4x2_t scales = { vcvt_f32_f16(vget_low_f16(scales16)), vcvt_f32_f16(vget_high_f16(scales16)) };
        for (int j = 0; j < 4; ++j) {
            auto bits = vld1q_u8_x2(iq4[4*ib4+k].qs + 32*j);
            bits.val[0] = veorq_u8(m88, bits.val[0]);
            bits.val[1] = veorq_u8(m88, bits.val[1]);
            qx[2*j+0] = vshlq_n_u8(bits.val[0], 4);
            qx[2*j+1] = vandq_u8(bits.val[0], m4);
            qx[2*j+8] = vshlq_n_u8(bits.val[1], 4);
            qx[2*j+9] = vandq_u8(bits.val[1], m4);
        }
        return scales;
    }
    inline float32x4_t result(float32x4_t acc) const {
        return vmulq_f32(norm, acc);
    }

    const char * cx;
    const size_t bx;
    const block_iq4_nl_r8 * iq4;
    const uint8x16_t m4 = vdupq_n_u8(0xf0);
    const uint8x16_t m88 = vdupq_n_u8(0x88);
    const float32x4_t norm = vdupq_n_f32(1.f/16);
};

struct Q5_0_R4_Dequantizer {
    Q5_0_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {}
    inline void new_row(int ix) { iq5 = (const block_q5_0_r4 *)(cx + ix*bx); }
    inline float32x4_t prepare(int ib, int8x16_t * qx) const {
        auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq5[ib].d));
        auto lbits   = vld1q_u8_x4(iq5[ib].qs);
        auto hbits   = vld1q_u8(iq5[ib].qh);
        qx[0] = vaddq_s8(vandq_u8(lbits.val[0], m4) | vandq_u8(vshlq_n_u8(hbits, 4), m5), m16); //  0...3
        qx[1] = vaddq_s8(vandq_u8(lbits.val[1], m4) | vandq_u8(vshlq_n_u8(hbits, 3), m5), m16); // 16..19
        qx[2] = vaddq_s8(vandq_u8(lbits.val[2], m4) | vandq_u8(vshlq_n_u8(hbits, 2), m5), m16); //  4...7
        qx[3] = vaddq_s8(vandq_u8(lbits.val[3], m4) | vandq_u8(vshlq_n_u8(hbits, 1), m5), m16); // 20..23
        qx[4] = vaddq_s8(vshrq_n_u8(lbits.val[0], 4)| vandq_u8(hbits, m5), m16);                //  8..11
        qx[5] = vaddq_s8(vshrq_n_u8(lbits.val[1], 4)| vandq_u8(vshrq_n_u8(hbits, 1), m5), m16); // 24..27
        qx[6] = vaddq_s8(vshrq_n_u8(lbits.val[2], 4)| vandq_u8(vshrq_n_u8(hbits, 2), m5), m16); // 12..15
        qx[7] = vaddq_s8(vshrq_n_u8(lbits.val[3], 4)| vandq_u8(vshrq_n_u8(hbits, 3), m5), m16); // 28..31
        return scales;
    }
    inline float32x4_t result(float32x4_t acc) const {
        return acc;
    }

    const char * cx;
    const size_t bx;
    const block_q5_0_r4 * iq5;
    const uint8x16_t m4 = vdupq_n_u8(0x0f);
    const uint8x16_t m5 = vdupq_n_u8(0x10);
    const int8x16_t m16 = vdupq_n_s8(-16);
};

struct Q6_0_R4_Dequantizer {
    Q6_0_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {}
    inline void new_row(int ix) { iq6 = (const block_q6_0_r4 *)(cx + ix*bx); }
    inline float32x4_t prepare(int ib, int8x16_t * qx) const {
        auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq6[ib].d));
        auto lbits   = vld1q_u8_x4(iq6[ib].qs);
        auto hbits   = vld1q_u8_x2(iq6[ib].qh);
        qx[0] = vaddq_s8(vandq_u8(lbits.val[0], m4) | vandq_u8(vshlq_n_u8(hbits.val[0], 4), m6), m32); //  0...3
        qx[1] = vaddq_s8(vandq_u8(lbits.val[1], m4) | vandq_u8(vshlq_n_u8(hbits.val[1], 4), m6), m32); // 16..19
        qx[2] = vaddq_s8(vandq_u8(lbits.val[2], m4) | vandq_u8(vshlq_n_u8(hbits.val[0], 2), m6), m32); //  4...7
        qx[3] = vaddq_s8(vandq_u8(lbits.val[3], m4) | vandq_u8(vshlq_n_u8(hbits.val[1], 2), m6), m32); // 20..23
        qx[4] = vaddq_s8(vshrq_n_u8(lbits.val[0], 4)| vandq_u8(hbits.val[0], m6), m32);                //  8..11
        qx[5] = vaddq_s8(vshrq_n_u8(lbits.val[1], 4)| vandq_u8(hbits.val[1], m6), m32);                // 24..27
        qx[6] = vaddq_s8(vshrq_n_u8(lbits.val[2], 4)| vandq_u8(vshrq_n_u8(hbits.val[0], 2), m6), m32); // 12..15
        qx[7] = vaddq_s8(vshrq_n_u8(lbits.val[3], 4)| vandq_u8(vshrq_n_u8(hbits.val[1], 2), m6), m32); // 28..31
        return scales;
    }
    inline float32x4_t result(float32x4_t acc) const {
        return acc;
    }

    const char * cx;
    const size_t bx;
    const block_q6_0_r4 * iq6;
    const uint8x16_t m4 = vdupq_n_u8(0x0f);
    const uint8x16_t m6 = vdupq_n_u8(0x30);
    const int8x16_t m32 = vdupq_n_s8(-32);
};

inline void qx_0_q8_0_dot(const int8x16_t * qx, const int8_t * qy, int32x4_t& sumi1, int32x4_t& sumi2) {
    auto y = vld1q_s8_x2(qy);
    sumi1 = sumi2 = vdupq_n_s32(0);
    sumi1 = vdotq_laneq_s32(sumi1, qx[0], y.val[0], 0);
    sumi2 = vdotq_laneq_s32(sumi2, qx[1], y.val[0], 0);
    sumi1 = vdotq_laneq_s32(sumi1, qx[2], y.val[0], 1);
    sumi2 = vdotq_laneq_s32(sumi2, qx[3], y.val[0], 1);
    sumi1 = vdotq_laneq_s32(sumi1, qx[4], y.val[0], 2);
    sumi2 = vdotq_laneq_s32(sumi2, qx[5], y.val[0], 2);
    sumi1 = vdotq_laneq_s32(sumi1, qx[6], y.val[0], 3);
    sumi2 = vdotq_laneq_s32(sumi2, qx[7], y.val[0], 3);
    sumi1 = vdotq_laneq_s32(sumi1, qx[8+0], y.val[1], 0);
    sumi2 = vdotq_laneq_s32(sumi2, qx[8+1], y.val[1], 0);
    sumi1 = vdotq_laneq_s32(sumi1, qx[8+2], y.val[1], 1);
    sumi2 = vdotq_laneq_s32(sumi2, qx[8+3], y.val[1], 1);
    sumi1 = vdotq_laneq_s32(sumi1, qx[8+4], y.val[1], 2);
    sumi2 = vdotq_laneq_s32(sumi2, qx[8+5], y.val[1], 2);
    sumi1 = vdotq_laneq_s32(sumi1, qx[8+6], y.val[1], 3);
    sumi2 = vdotq_laneq_s32(sumi2, qx[8+7], y.val[1], 3);
}

template <int nrc_y>
void mul_mat_q8_0_r8_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_0_x4> q8(info);
    int nb = n / QK8_0;
    float32x4_t acc[2*nrc_y] = {};
    int8x16_t qx[16];
    float d8[4*nrc_y];
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_q8_0_r8 * iq8 = (const block_q8_0_r8 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                vst1q_f32(d8+4*iy, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d)));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales16 = vld1q_f16((const float16_t *)iq8[4*ib4+k].d);
                auto scales1 = vcvt_f32_f16(vget_low_f16 (scales16));
                auto scales2 = vcvt_f32_f16(vget_high_f16(scales16));
                for (int j = 0; j < 16; ++j) qx[j] = vld1q_s8(iq8[4*ib4+k].qs + 16*j);
                int32x4_t sumi1, sumi2;
                for (int iy = 0; iy < nrc_y; ++iy) {
                    qx_0_q8_0_dot(qx, q8.y[iy][ib4].qs+32*k, sumi1, sumi2);
                    auto dy = vdupq_n_f32(d8[4*iy+k]);
                    acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales1, dy), vcvtq_f32_s32(sumi1));
                    acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales2, dy), vcvtq_f32_s32(sumi2));
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales16 = vld1q_f16((const float16_t *)iq8[ib].d);
            auto scales1 = vcvt_f32_f16(vget_low_f16 (scales16));
            auto scales2 = vcvt_f32_f16(vget_high_f16(scales16));
            for (int j = 0; j < 16; ++j) qx[j] = vld1q_s8(iq8[ib].qs + 16*j);
            int32x4_t sumi1, sumi2;
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_0 *)q8.y[iy];
                qx_0_q8_0_dot(qx, qy[ib].qs, sumi1, sumi2);
                auto dy = vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d));
                acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales1, dy), vcvtq_f32_s32(sumi1));
                acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales2, dy), vcvtq_f32_s32(sumi2));
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix+0, iy, acc[2*iy+0]);
            info.store(ix+4, iy, acc[2*iy+1]);
            acc[2*iy] = acc[2*iy+1] = vdupq_n_f32(0.f);
        }
    }
}

typedef struct {
    ggml_half d[16];
    int8_t    qs[256];
} block_q8_1_r8;

template <int nrc_y>
void mul_mat_q8_1_r8_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
    GGML_ASSERT(nrc_x%8 == 0);
    Q8<nrc_y, block_q8_1_x4> q8(info);
    int nb = n / QK8_0;
    float32x4_t acc[2*nrc_y] = {};
    int8x16_t qx[16];
    float d8[8*nrc_y];
    for (int ix = 0; ix < nrc_x; ix += 8) {
        const block_q8_1_r8 * iq8 = (const block_q8_1_r8 *)((const char *)vx + ix*bx);
        for (int ib4 = 0; ib4 < nb/4; ++ib4) {
            for (int iy = 0; iy < nrc_y; ++iy) {
                vst1q_f32(d8+8*iy+0, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d+0)));
                vst1q_f32(d8+8*iy+4, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d+4)));
            }
            for (int k = 0; k < 4; ++k) {
                auto scales16 = vld1q_f16((const float16_t *)iq8[4*ib4+k].d);
                auto scales1 = vcvt_f32_f16(vget_low_f16 (scales16));
                auto scales2 = vcvt_f32_f16(vget_high_f16(scales16));
                auto m16 = vld1q_f16((const float16_t *)iq8[4*ib4+k].d+8);
                auto m1 = vcvt_f32_f16(vget_low_f16 (m16));
                auto m2 = vcvt_f32_f16(vget_high_f16(m16));
                for (int j = 0; j < 16; ++j) qx[j] = vld1q_s8(iq8[4*ib4+k].qs + 16*j);
                int32x4_t sumi1, sumi2;
                for (int iy = 0; iy < nrc_y; ++iy) {
                    qx_0_q8_0_dot(qx, q8.y[iy][ib4].qs+32*k, sumi1, sumi2);
                    auto dy = vdupq_n_f32(d8[8*iy+k]);
                    acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales1, dy), vcvtq_f32_s32(sumi1));
                    acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales2, dy), vcvtq_f32_s32(sumi2));
                    auto my = vdupq_n_f32(d8[8*iy+k+4]);
                    acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], m1, my);
                    acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], m2, my);
                }
            }
        }
        for (int ib = 4*(nb/4); ib < nb; ++ib) {
            auto scales16 = vld1q_f16((const float16_t *)iq8[ib].d);
            auto scales1 = vcvt_f32_f16(vget_low_f16 (scales16));
            auto scales2 = vcvt_f32_f16(vget_high_f16(scales16));
            auto m16 = vld1q_f16((const float16_t *)iq8[ib].d+8);
            auto m1 = vcvt_f32_f16(vget_low_f16 (m16));
            auto m2 = vcvt_f32_f16(vget_high_f16(m16));
            for (int j = 0; j < 16; ++j) qx[j] = vld1q_s8(iq8[ib].qs + 16*j);
            int32x4_t sumi1, sumi2;
            for (int iy = 0; iy < nrc_y; ++iy) {
                auto qy = (const block_q8_1 *)q8.y[iy];
                qx_0_q8_0_dot(qx, qy[ib].qs, sumi1, sumi2);
                auto dy = vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d));
                acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales1, dy), vcvtq_f32_s32(sumi1));
                acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales2, dy), vcvtq_f32_s32(sumi2));
                auto my = vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].s));
                acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], m1, my);
                acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], m2, my);
            }
        }
        for (int iy = 0; iy < nrc_y; ++iy) {
            info.store(ix+0, iy, acc[2*iy+0]);
            info.store(ix+4, iy, acc[2*iy+1]);
            acc[2*iy] = acc[2*iy+1] = vdupq_n_f32(0.f);
        }
    }
}

struct DeqQ40 {
    const int8x16_t m8  = vdupq_n_s8(-8);
    const uint8x16_t ml = vdupq_n_s8(0xf);
    inline int8x16x2_t dequant(const block_q4_0& x) const {
        auto bits = vld1q_u8(x.qs);
        return { vaddq_s8(vreinterpretq_s8_u8(vandq_u8(bits, ml)), m8), vaddq_s8(vreinterpretq_s8_u8(vshrq_n_u8(bits, 4)), m8) };
    }
};

struct DeqQ41 {
    const uint8x16_t ml = vdupq_n_s8(0xf);
    inline int8x16x2_t dequant(const block_q4_1& x) const {
        auto bits = vld1q_u8(x.qs);
        return { vreinterpretq_s8_u8(vandq_u8(bits, ml)), vreinterpretq_s8_u8(vshrq_n_u8(bits, 4)) };
    }
};

struct DeqIQ4NL {
    const int8x16_t mt  = load_values();
    const uint8x16_t ml = vdupq_n_s8(0xf);
    inline int8x16x2_t dequant(const block_iq4_nl& x) const {
        auto bits = vld1q_u8(x.qs);
        return { vqtbl1q_s8(mt, vandq_u8(bits, ml)), vqtbl1q_s8(mt, vshrq_n_u8(bits, 4)) };
    }
    static inline int8x16_t load_values() { return vld1q_s8(iq4k_values); }
};

struct DeqQ50 {

    inline int8x16x2_t dequant(const block_q5_0& x) const {
        int8x16x2_t r;
        bits.prepare1(x.qs, r.val);
        auto qh = x.qh;
        r.val[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(r.val[0]), vandq_u8(mh, hbits.to_negated_bytes(qh+0))));
        r.val[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(r.val[1]), vandq_u8(mh, hbits.to_negated_bytes(qh+2))));
        return r;
    }

    Q4LegacyBits bits;
    HighBit5Legacy hbits;
    const uint8x16_t mh = vdupq_n_u8(0xf0);
};

struct DeqQ51 {

    inline int8x16x2_t dequant(const block_q5_1& x) const {
        int8x16x2_t r;
        bits.prepare1(x.qs, r.val);
        auto qh = x.qh;
        r.val[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(r.val[0]), vandq_u8(mh, hbits.to_bytes(qh+0))));
        r.val[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(r.val[1]), vandq_u8(mh, hbits.to_bytes(qh+2))));
        return r;
    }

    Q4LegacyBits bits;
    HighBit5Legacy hbits;
    const uint8x16_t mh = vdupq_n_u8(0x10);
};

struct DeqQ60 {

    inline int8x16x2_t dequant(const block_q6_0& x) const {
        int8x16x2_t r;
        bits.prepare1(x.qs, r.val);
        auto qh8 = vld1_u8(x.qh);
        auto qh  = vcombine_u8(vshl_n_u8(qh8, 4), qh8);
        r.val[0] = vaddq_s8(vorrq_u8(r.val[0], vandq_u8(qh, hmask)), m32);
        r.val[1] = vaddq_s8(vorrq_u8(r.val[1], vandq_u8(vshrq_n_u8(qh, 2), hmask)), m32);
        return r;
    }

    Q4LegacyBits bits;
    const int8x16_t m32 = vdupq_n_s8(-32);
    const uint8x16_t hmask = vdupq_n_u8(0x30);
};

struct DeqQ80 {
    inline int8x16x2_t dequant(const block_q8_0& x) const {
        return vld1q_s8_x2(x.qs);
    }
};

template <typename Block, typename Dequantizer>
void iqk_convert_qX_q80_r8(int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    GGML_ASSERT(n%QK4_0 == 0);
    GGML_ASSERT(nrc_x%8 == 0);

    const int nb = n/QK8_0;

    block_q8_0_r8 * y = (block_q8_0_r8 *)vy;

    const Block * x8[8];

    uint32_t block[8];

    Dequantizer deq;

    for (int ix = 0; ix < nrc_x; ix += 8) {

        for (int k = 0; k < 8; ++k) x8[k] = (const Block *)((const char *)vx + (ix + k)*bx);

        for (int i = 0; i < nb; ++i) {
            for (int k = 0; k < 8; ++k) {
                y[i].d[k] = x8[k][i].d;
                vst1q_s8_x2((int8_t *)block, deq.dequant(x8[k][i]));
                auto qs = (uint32_t *)y[i].qs;
                for (int l = 0; l < 4; ++l) {
                    qs[8*l + k +  0] = block[l + 0];
                    qs[8*l + k + 32] = block[l + 4];
                }
            }
        }
        y += nb;
    }
}

template <typename Block, typename Dequantizer>
void iqk_convert_qX_1_q8_1_r8(int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    GGML_ASSERT(n%QK4_0 == 0);
    GGML_ASSERT(nrc_x%8 == 0);

    const int nb = n/QK8_0;

    block_q8_1_r8 * y = (block_q8_1_r8 *)vy;

    const Block * x8[8];

    uint32_t block[8];

    Dequantizer deq;

    for (int ix = 0; ix < nrc_x; ix += 8) {

        for (int k = 0; k < 8; ++k) x8[k] = (const Block *)((const char *)vx + (ix + k)*bx);

        for (int i = 0; i < nb; ++i) {
            for (int k = 0; k < 8; ++k) {
                y[i].d[k+0] = x8[k][i].d;
                y[i].d[k+8] = x8[k][i].m;
                vst1q_s8_x2((int8_t *)block, deq.dequant(x8[k][i]));
                auto qs = (uint32_t *)y[i].qs;
                for (int l = 0; l < 4; ++l) {
                    qs[8*l + k +  0] = block[l + 0];
                    qs[8*l + k + 32] = block[l + 4];
                }
            }
        }
        y += nb;
    }
}

}

bool iqk_convert_legacy_quants_q8_r8(int type, int n, const void * vx, size_t bx, void * vy, int nrc_x) {
    switch (type) {
        case GGML_TYPE_Q4_0  : iqk_convert_qX_q80_r8<block_q4_0, DeqQ40>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q4_1  : iqk_convert_qX_1_q8_1_r8<block_q4_1, DeqQ41>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q5_0  : iqk_convert_qX_q80_r8<block_q5_0, DeqQ50>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q5_1  : iqk_convert_qX_1_q8_1_r8<block_q5_1, DeqQ51>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q6_0  : iqk_convert_qX_q80_r8<block_q6_0, DeqQ60>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_IQ4_NL: iqk_convert_qX_q80_r8<block_iq4_nl, DeqIQ4NL>(n, vx, bx, vy, nrc_x); break;
        case GGML_TYPE_Q8_0  : iqk_convert_qX_q80_r8<block_q8_0, DeqQ80>(n, vx, bx, vy, nrc_x); break;
        default: return false;
    }
    return true;
}

bool iqk_set_kernels_legacy_quants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) {

    if (ne00%QK8_0 != 0) return false;

    auto etypeA = ggml_type(typeA);
    auto expected_typeB = etypeA == GGML_TYPE_Q4_1 || etypeA == GGML_TYPE_Q5_1 || etypeA == GGML_TYPE_Q8_1 ? GGML_TYPE_Q8_1_X4 : GGML_TYPE_Q8_0_X4;
    if (ggml_type(typeB) != expected_typeB) return false;

    func16 = nullptr;

    switch (typeA) {
        case GGML_TYPE_Q4_0:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ40, kernels);
            break;
        case GGML_TYPE_Q4_1:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_1, DequantizerQ41, kernels);
            break;
        case GGML_TYPE_Q5_0:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ50, kernels);
            break;
        case GGML_TYPE_Q5_1:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_1, DequantizerQ51, kernels);
            break;
        case GGML_TYPE_Q6_0:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ60, kernels);
            break;
        case GGML_TYPE_Q8_0:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ80, kernels);
            break;
        case GGML_TYPE_IQ4_NL:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerIQ4NL, kernels);
            break;
        case GGML_TYPE_Q4_0_R8:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r8_q8_0, Q4_0_R8_Dequantizer, kernels);
            break;
        case GGML_TYPE_Q5_0_R4:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r4_q8_0, Q5_0_R4_Dequantizer, kernels);
            break;
        case GGML_TYPE_Q6_0_R4:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r4_q8_0, Q6_0_R4_Dequantizer, kernels);
            break;
        case GGML_TYPE_Q8_0_R8:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q8_0_r8_q8_0, kernels);
            break;
        case GGML_TYPE_Q8_1:
            IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q8_1_r8_q8_1, kernels);
            break;
        case GGML_TYPE_IQ4_NL_R4:
            IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r4_q8_0, IQ4_NL_R4_Dequantizer, kernels);
            break;
        default:
            return false;
    }

    return true;
}

#endif

namespace {
template <int k_step>
inline std::pair<mul_mat_t, int> mul_mat_kernel(int int_typeA, int nq) {
    auto typeA = ggml_type(int_typeA);
    constexpr int kMaxQ = 8;
#define MAKE_FUNCS(mul_mat, n) \
    if (n >= kMaxQ) return std::make_pair(mul_mat, kMaxQ>, kMaxQ);\
    else {\
        switch (n) {\
            case 1: return std::make_pair(mul_mat, 1>, 1);\
            case 2: return std::make_pair(mul_mat, 2>, 2);\
            case 3: return std::make_pair(mul_mat, 3>, 3);\
            case 4: return std::make_pair(mul_mat, 4>, 4);\
            case 5: return std::make_pair(mul_mat, 5>, 5);\
            case 6: return std::make_pair(mul_mat, 6>, 6);\
            case 7: return std::make_pair(mul_mat, 7>, 7);\
        }\
    }
#define MAKE_FUNCS_ONLY_NRC(mul_mat, n) \
    if (n >= kMaxQ) return std::make_pair(mul_mat<kMaxQ>, kMaxQ);\
    else {\
        switch (n) {\
            case 1: return std::make_pair(mul_mat<1>, 1);\
            case 2: return std::make_pair(mul_mat<2>, 2);\
            case 3: return std::make_pair(mul_mat<3>, 3);\
            case 4: return std::make_pair(mul_mat<4>, 4);\
            case 5: return std::make_pair(mul_mat<5>, 5);\
            case 6: return std::make_pair(mul_mat<6>, 6);\
            case 7: return std::make_pair(mul_mat<7>, 7);\
        }\
    }
    if (typeA == GGML_TYPE_Q8_0) {
#ifdef __aarch64__
        MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerQ80, nq);
#else
#ifdef HAVE_FANCY_SIMD
        if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q8_0_1_Unpacker, 1, k_step>, 1);
        if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q8_0_1_Unpacker, 2, k_step>, 2);
        if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q8_0_1_Unpacker, 4, k_step>, 4);
        MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q8_0_1_Unpacker, nq);
#else
        if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_0_Tx<Q8_0_Unpacker, 1, k_step>, 1);
        if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_0_Tx<Q8_0_Unpacker, 2, k_step>, 2);
        if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_0_Tx<Q8_0_Unpacker, 4, k_step>, 4);
        MAKE_FUNCS(mul_mat_qX_0_q8_0_T<Q8_0_Unpacker, nq);
#endif
#endif
    }
    else if (typeA == GGML_TYPE_Q8_0_R8) {
#ifdef __aarch64__
        MAKE_FUNCS_ONLY_NRC(mul_mat_q8_0_r8_q8_0, nq);
#else
        MAKE_FUNCS_ONLY_NRC(mul_mat_q8_0_r8_q8_2, nq);
#endif
    }
    else if (typeA == GGML_TYPE_Q6_0) {
#ifdef __aarch64__
        MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerQ60, nq);
#else
        if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q6_0_1_Unpacker, 1, k_step>, 1);
        if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q6_0_1_Unpacker, 2, k_step>, 2);
        if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q6_0_1_Unpacker, 4, k_step>, 4);
        MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q6_0_1_Unpacker, nq);
#endif
    }
    else if (typeA == GGML_TYPE_Q4_0) {
#ifdef __aarch64__
        MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerQ40, nq);
#else
        if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q4_0_1_Unpacker, 1, k_step>, 1);
        if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q4_0_1_Unpacker, 2, k_step>, 2);
        if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q4_0_1_Unpacker, 4, k_step>, 4);
        MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q4_0_1_Unpacker, nq);
#endif
    }
#if GGML_IQK_FA_ALL_QUANTS
    else if (typeA == GGML_TYPE_Q4_1) {
#ifdef __aarch64__
        MAKE_FUNCS(mul_mat_qX_1_q8_1<DequantizerQ41, nq);
#else
        MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q4_1_Unpacker, nq);
#endif
    }
    else if (typeA == GGML_TYPE_IQ4_NL) {
#ifdef __aarch64__
       MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerIQ4NL, nq);
#else
#ifdef HAVE_FANCY_SIMD
       MAKE_FUNCS(mul_mat_qX_1_q8_2_T<IQ4_NL_Unpacker, nq);
#else
       MAKE_FUNCS(mul_mat_qX_0_q8_0_T<IQ4_NL_Unpacker, nq);
#endif
#endif
    }
#endif
    else {
        GGML_ASSERT(false);
    }
    return std::make_pair<mul_mat_t, int>(nullptr, 0);
}

inline std::pair<mul_mat_t, int> mul_mat_kernel(int int_typeA, int nq, int k_step) {
    switch (k_step) {
        case  32: return mul_mat_kernel< 32>(int_typeA, nq);
        case  64: return mul_mat_kernel< 64>(int_typeA, nq);
        case 128: return mul_mat_kernel<128>(int_typeA, nq);
        default: GGML_ABORT("Fatal error");
    }
}
}

void iqk_gemm_legacy_fa(int D, int nq, int type_k, const char * k, size_t stride_k, DataInfo& info, int k_step) {
    auto [mul_mat, nrc_q] = mul_mat_kernel(type_k, nq, k_step);
    for (int iq = 0; iq < nq/nrc_q; ++iq) {
        mul_mat(D, k, stride_k, info, k_step);
        info.cur_y += nrc_q;
    }
    int iq = nrc_q*(nq/nrc_q);
    if (iq < nq) {
        auto [mul_mat1, nrc_q1] = mul_mat_kernel(type_k, nq - iq, k_step);
        GGML_ASSERT(nrc_q1 == nq - iq);
        mul_mat1(D, k, stride_k, info, k_step);
    }
}

#endif