1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
|
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp fenc=utf-8 :vi
//
//
// Copyright (C) 2024 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
#include "iqk_config.h"
#if defined IQK_IMPLEMENT
#include <cstring>
#include <type_traits>
#include <vector>
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "iqk_mul_mat.h"
#include "iqk_quantize.h"
#include "iqk_flash_impl.h"
#include "iqk_gemm_floats.h"
#include "iqk_gemm_kquants.h"
#include "iqk_gemm_ktquants.h"
#include "iqk_gemm_iquants.h"
#include "iqk_gemm_iqk_quants.h"
#include "iqk_gemm_1bit.h"
#include "iqk_gemm_legacy_quants.h"
#include "iqk_utils.h"
#define GGML_COMMON_IMPL_C
#include "ggml-common.h"
// clang-format off
// This matrix - vector and matrix - matrix multiplication implementation
// for k-quants, i-quants, and legacy quants, makes prompt processing
// 150-350% faster (depending on quantization type) compared to mainline llama.cpp.
// It is AVX2 and ARM_NEON only for now.
// There are also implementations for fp16/32 x fp16/32 matrix multiplications
// on AVX2 and fp16 x fp16 on ARM_NEON.
//
// Main idea is that unpacking the quants and the block scales to
// be ready for dot products with the corresponding Q8_X quants
// takes time. Hence, if we are performing a QX x Q8_X matrix matrix
// multiplication (as needed for prompt processing), we can get
// a significant speedup by reusing the unpacked QX quants and scales
// for multiplication with several Q8_X columns.
//
// For fp16/fp32 matri multiplications tiling is used to improve
// performance.
namespace {
struct MulMat {
std::array<mul_mat_t, IQK_MAX_NY> funcs = {};
mul_mat_t func16 = nullptr;
inline void mul_mat_NxM(int n, const void * vx, size_t bx, DataInfo& info, int nrc_x, int nrc_y) {
#ifdef __aarch64__
constexpr int k_x_step = 64; //8192; // Tiling does not seem to help on my M2 Max (but difference to tiling is small)
#else
constexpr int k_x_step = 64; // This works best on my Ryzen-7950X (but differences to other tile size are small)
#endif
if (func16 && nrc_y >= 16) {
int n_step = (nrc_y - info.cur_y)/16;
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < n_step; ++iy) {
func16(n, (const void *)((const char *)vx + ix*bx), bx, this_info, this_nrc_x);
this_info.cur_y += 16;
}
}
info.cur_y += 16 * n_step;
if (info.cur_y == nrc_y) return;
}
int ny = funcs.size();
while (!funcs[ny-1] && ny > 0) --ny;
int n_left = nrc_y - info.cur_y;
int n_step = n_left/ny;
if (n_step > 0) {
if (n_step*ny != n_left) {
++n_step;
int ny1 = n_left/n_step;
int ny2 = ny1 + 1;
int my1 = n_step*ny2 - n_left;
int my2 = n_step - my1;
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < my1; ++iy) {
funcs[ny1-1](n, (const void *)((const char *)vx + ix*bx), bx, this_info, this_nrc_x);
this_info.cur_y += ny1;
}
for (int iy = 0; iy < my2; ++iy) {
funcs[ny2-1](n, (const void *)((const char *)vx + ix*bx), bx, this_info, this_nrc_x);
this_info.cur_y += ny2;
}
}
info.cur_y += n_left;
}
else {
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < n_step; ++iy) {
funcs[ny-1](n, (const void *)((const char *)vx + ix*bx), bx, this_info, this_nrc_x);
this_info.cur_y += ny;
}
}
info.cur_y += ny * n_step;
}
}
n_left = nrc_y - info.cur_y;
if (n_left > 0) {
funcs[n_left-1](n, vx, bx, info, nrc_x);
}
}
inline void gelu(int n, const float * src, float * dst);
inline void relu(int n, const float * src, float * dst);
inline void silu(int n, const float * src, float * dst);
inline void activate(ggml_unary_op op, int n, const float * src, float * dst) {
if (op == GGML_UNARY_OP_GELU) gelu(n, src, dst);
else if (op == GGML_UNARY_OP_RELU) relu(n, src, dst);
else if (op == GGML_UNARY_OP_SILU) silu(n, src, dst);
else GGML_ABORT("fatal error");
}
inline void mul_mat_up_gate_NxM(int n, const void * vx_up, const void * vx_gate, size_t bx, DataInfo& info, int nrc_x, int nrc_y, int unary_op) {
#ifdef __aarch64__
constexpr int k_x_step = 64; //8192; // Tiling does not seem to help on my M2 Max (but difference to tiling is small)
#else
constexpr int k_x_step = 64; // This works best on my Ryzen-7950X (but differences to other tile size are small)
#endif
auto op = ggml_unary_op(unary_op);
float tmp[k_x_step*16];
if (func16 && nrc_y >= 16) {
int n_step = (nrc_y - info.cur_y)/16;
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < n_step; ++iy) {
func16(n, (const void *)((const char *)vx_gate + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < 16; ++ky) {
activate(op, this_nrc_x, this_info.dst_row(ky), tmp + ky*k_x_step);
}
func16(n, (const void *)((const char *)vx_up + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < 16; ++ky) {
auto result = this_info.dst_row(ky);
for (int j = 0; j < this_nrc_x; ++j) result[j] *= tmp[ky*k_x_step + j];
}
this_info.cur_y += 16;
}
}
info.cur_y += 16 * n_step;
if (info.cur_y == nrc_y) return;
}
int ny = funcs.size();
while (!funcs[ny-1] && ny > 0) --ny;
int n_left = nrc_y - info.cur_y;
int n_step = n_left/ny;
if (n_step > 0) {
if (n_step*ny != n_left) {
++n_step;
int ny1 = n_left/n_step;
int ny2 = ny1 + 1;
int my1 = n_step*ny2 - n_left;
int my2 = n_step - my1;
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < my1; ++iy) {
funcs[ny1-1](n, (const void *)((const char *)vx_gate + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < ny1; ++ky) activate(op, this_nrc_x, this_info.dst_row(ky), tmp + ky*k_x_step);
funcs[ny1-1](n, (const void *)((const char *)vx_up + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < ny1; ++ky) {
auto result = this_info.dst_row(ky);
for (int j = 0; j < this_nrc_x; ++j) result[j] *= tmp[ky*k_x_step + j];
}
this_info.cur_y += ny1;
}
for (int iy = 0; iy < my2; ++iy) {
funcs[ny2-1](n, (const void *)((const char *)vx_gate + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < ny2; ++ky) activate(op, this_nrc_x, this_info.dst_row(ky), tmp + ky*k_x_step);
funcs[ny2-1](n, (const void *)((const char *)vx_up + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < ny2; ++ky) {
auto result = this_info.dst_row(ky);
for (int j = 0; j < this_nrc_x; ++j) result[j] *= tmp[ky*k_x_step + j];
}
this_info.cur_y += ny2;
}
}
info.cur_y += n_left;
}
else {
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < n_step; ++iy) {
funcs[ny-1](n, (const void *)((const char *)vx_gate + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < ny; ++ky) activate(op, this_nrc_x, this_info.dst_row(ky), tmp + ky*k_x_step);
funcs[ny-1](n, (const void *)((const char *)vx_up + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < ny; ++ky) {
auto result = this_info.dst_row(ky);
for (int j = 0; j < this_nrc_x; ++j) result[j] *= tmp[ky*k_x_step + j];
}
this_info.cur_y += ny;
}
}
info.cur_y += ny * n_step;
}
}
n_left = nrc_y - info.cur_y;
if (n_left > 0) {
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
funcs[n_left-1](n, (const void *)((const char *)vx_gate + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < n_left; ++ky) activate(op, this_nrc_x, this_info.dst_row(ky), tmp + ky*k_x_step);
funcs[n_left-1](n, (const void *)((const char *)vx_up + ix*bx), bx, this_info, this_nrc_x);
for (int ky = 0; ky < n_left; ++ky) {
auto result = this_info.dst_row(ky);
for (int j = 0; j < this_nrc_x; ++j) result[j] *= tmp[ky*k_x_step + j];
}
}
}
}
static bool prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny);
static inline ggml_type is_dequant_better(ggml_type type, int nrc_y) {
#ifdef __AVX2__
switch (type) {
case GGML_TYPE_IQ2_XXS: return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_XS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_S : return nrc_y >= 16 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ3_XXS: return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ4_XS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ3_S : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ1_S : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ1_M : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q2_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q3_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q4_K : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q5_K : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q6_K : return nrc_y >= 64 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ2_KS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ3_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ4_KS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ4_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ5_KS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ5_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ6_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q4_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_Q4_1 : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q5_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_Q5_1 : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q6_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ4_NL : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_Q8_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ2_KT : return nrc_y >= 16 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ3_KT : return nrc_y >= 16 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ4_KT : return nrc_y >= 24 ? GGML_TYPE_Q8_0_R8 : type;
default: break;
}
#else
switch (type) {
case GGML_TYPE_Q2_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q3_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q4_K : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q5_K : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q6_K : return nrc_y >= 64 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ1_S : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ1_M : return nrc_y >= 8 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_XXS: return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_XS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_S : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ3_XXS: return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ3_S : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ4_XS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_Q4_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_Q4_1 : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q5_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_Q5_1 : return nrc_y >= 32 ? GGML_TYPE_Q8_1 : type;
case GGML_TYPE_Q6_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_Q8_0 : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ4_NL : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ2_KT : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ3_KT : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ4_KT : return nrc_y >= 32 ? GGML_TYPE_Q8_0_R8 : type;
case GGML_TYPE_IQ2_KS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ4_KS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ5_KS : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ2_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ3_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ4_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ5_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
case GGML_TYPE_IQ6_K : return nrc_y >= 32 ? GGML_TYPE_Q8_K_R8 : type;
default: break;
}
#endif
return type;
}
static inline int num_rows(ggml_type type) {
#ifdef HAVE_FANCY_SIMD
switch (type) {
case GGML_TYPE_Q2_K_R4:
case GGML_TYPE_Q3_K_R4:
case GGML_TYPE_Q6_K_R4:
case GGML_TYPE_IQ2_K_R4:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
case GGML_TYPE_IQ5_K_R4:
case GGML_TYPE_IQ4_KS_R4:
case GGML_TYPE_IQ5_KS_R4:
case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS_R4:
case GGML_TYPE_IQ2_S_R4:
case GGML_TYPE_IQ3_XXS_R4:
case GGML_TYPE_IQ1_S_R4:
case GGML_TYPE_IQ1_M_R4:
case GGML_TYPE_IQ3_S_R4: return 4;
case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_Q5_0_R4:
case GGML_TYPE_Q6_0_R4:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ4_XS_R8:
case GGML_TYPE_Q4_K_R4:
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q8_KV:
case GGML_TYPE_Q8_KV_R8:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q8_K_R8: return 8;
case GGML_TYPE_Q4_0_R8:
case GGML_TYPE_Q8_0_R8:
case GGML_TYPE_BF16_R16: return 16;
default: return 1;
}
#else
switch (type) {
case GGML_TYPE_Q2_K_R4:
case GGML_TYPE_Q3_K_R4:
case GGML_TYPE_Q4_K_R4:
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K_R4:
case GGML_TYPE_Q5_0_R4:
case GGML_TYPE_Q6_0_R4:
case GGML_TYPE_IQ4_NL_R4:
case GGML_TYPE_IQ2_K_R4:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
case GGML_TYPE_IQ5_K_R4:
case GGML_TYPE_IQ4_KS_R4:
case GGML_TYPE_IQ5_KS_R4:
case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS_R4:
case GGML_TYPE_IQ2_S_R4:
case GGML_TYPE_IQ3_XXS_R4:
case GGML_TYPE_IQ3_S_R4:
case GGML_TYPE_IQ1_S_R4:
case GGML_TYPE_IQ1_M_R4:
case GGML_TYPE_IQ2_BN_R4: return 4;
case GGML_TYPE_IQ4_XS_R8:
case GGML_TYPE_Q4_0_R8:
case GGML_TYPE_Q8_0_R8:
case GGML_TYPE_Q8_KV:
case GGML_TYPE_Q8_KV_R8:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q8_K_R8: return 8;
case GGML_TYPE_BF16_R16: return 16;
default: return 1;
}
#endif
}
};
static std::vector<char> & thread_local_work_buffer() {
thread_local std::vector<char> f;
return f;
}
bool iqk_convert_repack(int typeA, int n, const void * vx, size_t bx, void * vy, size_t stride_y, int nrc_x) {
switch (typeA) {
//case GGML_TYPE_F16:
//case GGML_TYPE_F32:
//case GGML_TYPE_BF16:
//case GGML_TYPE_BF16_R16:
// return iqk_set_kernels_float(ne00, typeA, typeB, mm.funcs);
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ4_XS:
//case GGML_TYPE_Q2_K_R4:
//case GGML_TYPE_Q3_K_R4:
//case GGML_TYPE_Q4_K_R4:
//case GGML_TYPE_Q5_K_R4:
//case GGML_TYPE_Q6_K_R4:
//case GGML_TYPE_IQ4_XS_R8:
//case GGML_TYPE_Q8_K_R8:
//case GGML_TYPE_Q8_KV:
//case GGML_TYPE_Q8_KV_R8:
return iqk_convert_kquants_q8X_r8(typeA, n, vx, bx, vy, nrc_x);
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS_R4:
case GGML_TYPE_IQ2_S_R4:
case GGML_TYPE_IQ3_XXS_R4:
case GGML_TYPE_IQ3_S_R4:
return iqk_convert_iquants_q80_r8(typeA, n, vx, bx, vy, nrc_x);
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ5_KS:
case GGML_TYPE_IQ5_K:
case GGML_TYPE_IQ6_K:
//case GGML_TYPE_IQ2_K_R4:
//case GGML_TYPE_IQ3_K_R4:
//case GGML_TYPE_IQ4_K_R4:
//case GGML_TYPE_IQ5_K_R4:
//case GGML_TYPE_IQ4_KS_R4:
//case GGML_TYPE_IQ5_KS_R4:
return iqk_convert_iqk_quants_q80_r8(typeA, n, vx, bx, vy, nrc_x);
case GGML_TYPE_IQ2_KT:
case GGML_TYPE_IQ3_KT:
case GGML_TYPE_IQ4_KT:
return iqk_dequantize_ktquants(typeA, n, vx, bx, vy, stride_y, nrc_x);
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q6_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
//case GGML_TYPE_Q4_0_R8:
//case GGML_TYPE_Q5_0_R4:
//case GGML_TYPE_Q6_0_R4:
//case GGML_TYPE_Q8_0_R8:
//case GGML_TYPE_IQ4_NL_R4:
return iqk_convert_legacy_quants_q8_r8(typeA, n, vx, bx, vy, nrc_x);
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
//case GGML_TYPE_IQ1_S_R4:
//case GGML_TYPE_IQ1_M_R4:
//case GGML_TYPE_IQ1_BN:
//case GGML_TYPE_IQ2_BN:
//case GGML_TYPE_IQ2_BN_R4:
return iqk_convert_1bit_q80_r8(typeA, n, vx, bx, vy, nrc_x);
default:
break;
}
return false;
}
}
extern "C" IQK_API int iqk_dequant_type(int type, int Ny) {
return MulMat::is_dequant_better(ggml_type(type), Ny);
}
extern "C" IQK_API bool iqk_mul_mat(long Nx, long Ny, long ne00,
int typeA, const void * A, long strideA,
int typeB, const void * B, long strideB,
float * C, long stride_C, int ith, int nth) {
MulMat mm;
auto etypeA = ggml_type(typeA);
if (auto dequant_type = MulMat::is_dequant_better(etypeA, Ny); dequant_type != etypeA) {
if (!MulMat::prepare(dequant_type, typeB, ne00, mm, Ny)) {
return false;
}
constexpr int k_x_step = 32;
auto num_rows = MulMat::num_rows(ggml_type(dequant_type));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
size_t row_size_qx = ggml_row_size(dequant_type, ne00);
size_t row_size_qy = strideB;
//printf("Dequant mul mat %s x %s: ne00 = %d, row_size = %d\n", ggml_type_name(dequant_type), ggml_type_name(ggml_type(typeB)), (int)ne00, (int)row_size_qx);
DataInfo info{C + first_x, (const char *)B, (size_t)stride_C, row_size_qy, 0, 1, nullptr, 0};
auto& f = thread_local_work_buffer();
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
if (f.size() < row_size_qx*this_nrc_x) f.resize(row_size_qx*this_nrc_x);
if (!iqk_convert_repack(typeA, ne00, (const char *)A + (first_x + ix)*strideA, strideA, f.data(), ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
mm.mul_mat_NxM(ne00, f.data(), row_size_qx, this_info, this_nrc_x, Ny);
}
return true;
}
if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) {
return false;
}
size_t row_size_qx = strideA; //*ggml_type_size(ggml_type(typeA));
size_t row_size_qy = strideB; //*ggml_type_size(ggml_type(typeB));
//if (ith == 0) printf("%s: ne00 = %d, row_size_qx = %d, strideA = %d\n", __func__, int(ne00), int(row_size_qx), int(strideA));
auto num_rows = MulMat::num_rows(ggml_type(typeA));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
DataInfo info{C + first_x*num_rows, (const char *)B, (size_t)stride_C, row_size_qy, 0, 1, nullptr, 0};
mm.mul_mat_NxM(ne00, (const char *)A + row_size_qx*first_x*num_rows, row_size_qx, info, nrc_x*num_rows, Ny);
return true;
}
namespace {
inline uint32_t simple_gcd(uint32_t a, uint32_t b) {
while (a != b) {
if (a > b) a -= b;
else b -= a;
}
return a;
}
}
extern "C" IQK_API bool iqk_mul_mat_4d(long Nx, long Ny, long ne00,
long ne02, long ne03, long ne12, long ne13,
long nb02, long nb03, long nb12, long nb13, long nb2, long nb3,
int typeA, const void * A, long strideA,
int typeB, const void * B, long strideB,
float * C, long stride_C, int ith, int nth) {
auto r2 = ne12 / ne02;
auto r3 = ne13 / ne03;
if (ne13 == 1 && Ny == 1 && r2 > 1) {
if (Nx >= 256 && Nx%32 == 0) {
int nx32 = Nx/32;
int nchunk = nx32*ne02;
if (r2 <= IQK_MAX_NY) {
MulMat mm;
if (!MulMat::prepare(typeA, typeB, ne00, mm, r2)) return false;
int ny = mm.funcs.size();
while (ny > 0 && !mm.funcs[ny-1]) --ny;
if (ny >= r2) {
nchunk = nx32*ne02;
for (int ichunk = ith; ichunk < nchunk; ichunk += nth) {
int i02 = ichunk/nx32;
int ix = 32*(ichunk - i02*nx32);
DataInfo info{C + ix + r2*i02*nb2, (const char *)B + r2*i02*nb12, (size_t)nb2, (size_t)nb12, 0, 1, nullptr, 0};
mm.funcs[r2-1](ne00, (const void *)((const char *)A + ix*strideA + i02*nb02), strideA, info, 32);
}
return true;
}
}
for (int ichunk = ith; ichunk < nchunk; ichunk += nth) {
int i02 = ichunk/nx32;
int ix = ichunk - i02*nx32;
if (!iqk_mul_mat(32, r2, ne00,
typeA, (const char *)A + 32*ix*strideA + i02*nb02, strideA,
typeB, (const char *)B + i02*r2*nb12, nb12,
C + 32*ix + r2*i02*nb2, nb2, 0, 1)) return false;
}
return true;
}
int gcd = simple_gcd(ne02, nth);
int counter = 0;
for (int64_t i12 = 0; i12 < ne02; i12++) {
if ((counter++ % gcd) == (ith%gcd)) {
if (!iqk_mul_mat(Nx, r2, ne00,
typeA, (const char *)A + i12*nb02, strideA,
typeB, (const char *)B + i12*r2*nb12, nb12,
C + r2*i12*nb2, nb2,
ith/gcd, nth/gcd)) return false;
}
}
return true;
}
if (ne13 == 1 && ne12 > 1 && ne12 == ne02 && Ny == 1 && nb02 < strideA) {
MulMat mm;
if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) {
return false;
}
int n_per_thread = (Nx + nth - 1)/nth;
int first = ith*n_per_thread;
if (first >= Nx) return true;
int last = first + n_per_thread <= Nx ? first + n_per_thread : Nx;
for (int ix = first; ix < last; ++ix) {
for (int i02 = 0; i02 < ne02; ++i02) {
DataInfo info{C + ix + i02*nb2, (const char *)B + i02*nb12, (size_t)nb2, (size_t)nb12, 0, 1, nullptr, 0};
mm.funcs[0](ne00, (const void *)((const char *)A + ix*strideA + i02*nb02), nb02, info, 1);
}
}
return true;
}
int gcd = simple_gcd(ne12*ne13, nth);
int counter = 0;
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
if ((counter++ % gcd) == (ith%gcd)) {
if (!iqk_mul_mat(Nx, Ny, ne00,
typeA, (const char *)A + i12/r2*nb02 + i13/r3*nb03, strideA,
typeB, (const char *)B + i12*nb12 + i13*nb13, strideB,
C + i12*nb2 + i13*nb3, stride_C,
ith/gcd, nth/gcd)) return false;
}
}
}
return true;
}
extern "C" IQK_API bool iqk_mul_mat_moe(long Nx, long Ny, long ne00, int ne11,
int typeA, const void * A, long strideA,
int typeB, const void * B, long strideB,
float * C, long nb1, long nb2, const void * vrow_mapping, int ith, int nth) {
const mmid_row_mapping * row_mapping = (const mmid_row_mapping *)vrow_mapping;
assert(row_mapping != nullptr);
MulMat mm;
auto etypeA = ggml_type(typeA);
//auto etypeB = ggml_type(typeB);
auto dequant_type = MulMat::is_dequant_better(etypeA, Ny);
//if (etypeB != GGML_TYPE_F32) {
// if (ith == 0) printf("%s: typeA = %s, typeB = %s, dequant_type = %s\n", __func__, ggml_type_name(etypeA), ggml_type_name(etypeB), ggml_type_name(dequant_type));
//}
if (dequant_type != etypeA) {
if (!MulMat::prepare(dequant_type, typeB, ne00, mm, Ny)) {
return false;
}
constexpr int k_x_step = 32;
auto num_rows = MulMat::num_rows(ggml_type(dequant_type));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
size_t row_size_qx = ggml_row_size(dequant_type, ne00);
size_t row_size_qy = strideB;
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float), row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
auto& f = thread_local_work_buffer();
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
if (f.size() < row_size_qx*this_nrc_x) f.resize(row_size_qx*this_nrc_x);
if (!iqk_convert_repack(typeA, ne00, (const char *)A + (first_x + ix)*strideA, strideA, f.data(), ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
mm.mul_mat_NxM(ne00, f.data(), row_size_qx, this_info, this_nrc_x, Ny);
}
return true;
}
if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) {
return false;
}
size_t row_size_qx = strideA;
size_t row_size_qy = strideB;
auto num_rows = MulMat::num_rows(ggml_type(typeA));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float),
row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
mm.mul_mat_NxM(ne00, (const char *)A + row_size_qx*first_x, row_size_qx, info, nrc_x, Ny);
return true;
}
extern "C" IQK_API bool iqk_moe_fused_up_gate(long Nx, long Ny, long ne00, int ne11, int unary_op,
int typeA, const void * Aup, const void * Agate, long strideA,
int typeB, const void * B, long strideB,
float * C, long nb1, long nb2, const void * vrow_mapping, int ith, int nth) {
const mmid_row_mapping * row_mapping = (const mmid_row_mapping *)vrow_mapping;
assert(row_mapping != nullptr);
MulMat mm;
auto etypeA = ggml_type(typeA);
if (auto dequant_type = MulMat::is_dequant_better(etypeA, Ny); dequant_type != etypeA) {
if (!MulMat::prepare(dequant_type, typeB, ne00, mm, Ny)) {
return false;
}
constexpr int k_x_step = 64;
auto num_rows = MulMat::num_rows(ggml_type(dequant_type));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
size_t row_size_qx = ggml_row_size(dequant_type, ne00);
size_t row_size_qy = strideB;
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float), row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
auto& f = thread_local_work_buffer();
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
if (f.size() < 2*row_size_qx*this_nrc_x) f.resize(2*row_size_qx*this_nrc_x);
auto Xu = f.data();
auto Xg = f.data() + row_size_qx*this_nrc_x;
if (!iqk_convert_repack(typeA, ne00, (const char *)Aup + (first_x + ix)*strideA, strideA, Xu, ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
if (!iqk_convert_repack(typeA, ne00, (const char *)Agate + (first_x + ix)*strideA, strideA, Xg, ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
mm.mul_mat_up_gate_NxM(ne00, Xu, Xg, row_size_qx, this_info, this_nrc_x, Ny, unary_op);
}
return true;
}
if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) {
return false;
}
size_t row_size_qx = strideA;
size_t row_size_qy = strideB;
auto num_rows = MulMat::num_rows(ggml_type(typeA));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float),
row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
mm.mul_mat_up_gate_NxM(ne00, (const char *)Aup + row_size_qx*first_x, (const char *)Agate + row_size_qx*first_x, row_size_qx, info, nrc_x, Ny, unary_op);
return true;
}
#if defined __x86_64__
namespace {
bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) {
(void)Ny;
switch (typeA) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_BF16:
case GGML_TYPE_BF16_R16:
return iqk_set_kernels_float(ne00, typeA, typeB, mm.funcs);
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_Q2_K_R4:
case GGML_TYPE_Q3_K_R4:
case GGML_TYPE_Q4_K_R4:
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K_R4:
case GGML_TYPE_IQ4_XS_R8:
case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_Q8_KV:
case GGML_TYPE_Q8_KV_R8:
return iqk_set_kernels_kquants(ne00, typeA, typeB, mm.funcs, mm.func16);
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS_R4:
case GGML_TYPE_IQ2_S_R4:
case GGML_TYPE_IQ3_XXS_R4:
case GGML_TYPE_IQ3_S_R4:
return iqk_set_kernels_iquants(ne00, typeA, typeB, mm.funcs, mm.func16);
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ5_KS:
case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ5_K:
case GGML_TYPE_IQ6_K:
case GGML_TYPE_IQ2_K_R4:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
case GGML_TYPE_IQ5_K_R4:
case GGML_TYPE_IQ4_KS_R4:
case GGML_TYPE_IQ5_KS_R4:
return iqk_set_kernels_iqk_quants(ne00, typeA, typeB, mm.funcs, mm.func16);
case GGML_TYPE_IQ2_KT:
case GGML_TYPE_IQ3_KT:
case GGML_TYPE_IQ4_KT:
return iqk_set_kernels_ktquants(ne00, typeA, typeB, mm.funcs, mm.func16);
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q6_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_Q4_0_R8:
case GGML_TYPE_Q5_0_R4:
case GGML_TYPE_Q6_0_R4:
case GGML_TYPE_Q8_0_R8:
case GGML_TYPE_IQ4_NL_R4:
return iqk_set_kernels_legacy_quants(ne00, typeA, typeB, mm.funcs, mm.func16);
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_S_R4:
case GGML_TYPE_IQ1_M_R4:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
return iqk_set_kernels_1bit(ne00, typeA, typeB, mm.funcs, mm.func16);
default:
return false;
}
return false;
}
} // namespace
#else // __aarch64__
namespace {
bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) {
switch (typeA) {
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_F32:
return iqk_set_kernels_float(ne00, typeA, typeB, m.funcs);
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_Q2_K_R4:
case GGML_TYPE_Q3_K_R4:
case GGML_TYPE_Q4_K_R4:
case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K_R4:
case GGML_TYPE_IQ4_XS_R8:
case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_Q8_KV:
case GGML_TYPE_Q8_KV_R8:
return iqk_set_kernels_kquants(ne00, typeA, typeB, m.funcs, m.func16);
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ5_KS:
case GGML_TYPE_IQ5_K:
case GGML_TYPE_IQ6_K:
case GGML_TYPE_IQ2_K_R4:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
case GGML_TYPE_IQ5_K_R4:
case GGML_TYPE_IQ4_KS_R4:
case GGML_TYPE_IQ5_KS_R4:
return iqk_set_kernels_iqk_quants(ne00, typeA, typeB, m.funcs, m.func16);
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS_R4:
case GGML_TYPE_IQ2_S_R4:
case GGML_TYPE_IQ3_XXS_R4:
case GGML_TYPE_IQ3_S_R4:
return iqk_set_kernels_iquants(ne00, typeA, typeB, m.funcs, m.func16);
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q6_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_Q4_0_R8:
case GGML_TYPE_Q5_0_R4:
case GGML_TYPE_Q6_0_R4:
case GGML_TYPE_Q8_0_R8:
case GGML_TYPE_Q8_1:
case GGML_TYPE_IQ4_NL_R4:
return iqk_set_kernels_legacy_quants(ne00, typeA, typeB, m.funcs, m.func16);
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_BN_R4:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_S_R4:
case GGML_TYPE_IQ1_M_R4:
return iqk_set_kernels_1bit(ne00, typeA, typeB, m.funcs, m.func16);
case GGML_TYPE_IQ2_KT:
case GGML_TYPE_IQ3_KT:
case GGML_TYPE_IQ4_KT:
return iqk_set_kernels_ktquants(ne00, typeA, typeB, m.funcs, m.func16);
default:
return false;
}
}
}
#endif // __aarch64__
namespace {
#if defined(__ARM_NEON) && defined(__aarch64__)
void MulMat::gelu(int n, const float * x, float * y) {
constexpr float GELU_COEF_A = 0.044715f;
constexpr float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
int i = 0;
auto c1 = vdupq_n_f32(GELU_COEF_A);
auto c2 = vdupq_n_f32(2.f*SQRT_2_OVER_PI);
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, v_gelu(vld1q_f32(x + i), c1, c2));
}
for (; i < n; ++i) y[i] = 0.5f*x[i]*(1.0f + tanhf(SQRT_2_OVER_PI*x[i]*(1.0f + GELU_COEF_A*x[i]*x[i])));
}
void MulMat::silu(int n, const float * x, float * y) {
int i = 0;
for (; i + 3 < n; i += 4) vst1q_f32(y + i, v_silu(vld1q_f32(x + i)));
for (; i < n; ++i) y[i] = x[i]/(1.0f + expf(-x[i]));
}
void MulMat::relu(int n, const float * x, float * y) {
for (int j = 0; j < n; ++j) y[j] = x[j] > 0 ? x[j] : 0;
}
#endif
#if defined(__AVX2__) && defined(__FMA__)
void MulMat::gelu(int n, const float * x, float * y) {
constexpr float GELU_COEF_A = 0.044715f;
constexpr float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
//GGML_ASSERT(n%8 == 0);
int i = 0;
#if defined __AVX512F__ && defined __AVX512DQ__
{
__m512 c1 = _mm512_set1_ps(GELU_COEF_A);
__m512 c2 = _mm512_set1_ps(2.f*SQRT_2_OVER_PI);
for (; i + 15 < n; i += 16) _mm512_storeu_ps(y + i, v_gelu(_mm512_loadu_ps(x + i), c1, c2));
}
#endif
#if defined __AVX2__ && defined __FMA__
if (i + 7 < n) {
__m256 c1 = _mm256_set1_ps(GELU_COEF_A);
__m256 c2 = _mm256_set1_ps(2.f*SQRT_2_OVER_PI);
for (; i + 7 < n; i += 8) _mm256_storeu_ps(y + i, v_gelu(_mm256_loadu_ps(x + i), c1, c2));
}
#endif
for (; i < n; ++i) y[i] = 0.5f*x[i]*(1.0f + tanhf(SQRT_2_OVER_PI*x[i]*(1.0f + GELU_COEF_A*x[i]*x[i])));
}
void MulMat::silu(int n, const float * x, float * y) {
int i = 0;
#if defined __AVX512F__ && defined __AVX512DQ__
for (; i + 15 < n; i += 16) _mm512_storeu_ps(y + i, v_silu(_mm512_loadu_ps(x + i)));
#endif
#if defined __AVX2__ && defined __FMA__
for (; i + 7 < n; i += 8) _mm256_storeu_ps(y + i, v_silu(_mm256_loadu_ps(x + i)));
#endif
for (; i < n; ++i) y[i] = x[i]/(1.0f + expf(-x[i]));
}
void MulMat::relu(int n, const float * x, float * y) {
for (int j = 0; j < n; ++j) y[j] = x[j] > 0 ? x[j] : 0;
}
#endif
} // namespace
#ifdef GGML_IQK_FLASH_ATTENTION
void * iqk_repack_k(int int_type_k, int nek0, int nek1, int nek2, int nek3, long nbk1, long nbk2, long nbk3,
const void * data, void * work, int ith, int nth, int& repacked_type, uint64_t& row_size) {
repacked_type = int_type_k;
auto type_k = ggml_type(int_type_k);
if (type_k != GGML_TYPE_Q8_0 || nek0%QK8_0 != 0) return work;
int nrows = nek1*nek2*nek3;
if (nrows%8 != 0) return work;
repacked_type = int(GGML_TYPE_Q8_0_R8);
row_size = ggml_row_size(GGML_TYPE_Q8_0, nek0);
void * result = (char *)work + nrows*row_size;
int npt = 8*((nrows/8 + nth - 1)/nth);
int first = npt*ith;
if (first >= nrows) return result;
int last = std::min(first + npt, nrows);
const block_q8_0 * x8[8];
auto y = (block_q8_0_r8 *)((char *)work + first*row_size);
int nblock = nek0/QK8_0;
#ifdef __ARM_NEON
int8x16x2_t m0, m1, m2, m3;
#endif
for (int row = first; row < last; row += 8) {
int ik3 = row/(nek1*nek2);
int ik2 = (row - ik3*nek1*nek2)/nek1;
int ik1 = row - ik3*nek1*nek2 - ik2*nek1;
auto this_data = (const char *)data + ik1*nbk1 + ik2*nbk2 + ik3*nbk3;
for (int k = 0; k < 8; ++k) x8[k] = (const block_q8_0 *)(this_data + k*nbk1);
for (int ib = 0; ib < nblock; ++ib) {
for (int k = 0; k < 8; ++k) y[ib].d[k] = x8[k][ib].d;
#ifdef __AVX2__
auto m0 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[4][ib].qs), _mm_loadu_si128((const __m128i *)x8[0][ib].qs));
auto m1 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[5][ib].qs), _mm_loadu_si128((const __m128i *)x8[1][ib].qs));
auto m2 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[6][ib].qs), _mm_loadu_si128((const __m128i *)x8[2][ib].qs));
auto m3 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[7][ib].qs), _mm_loadu_si128((const __m128i *)x8[3][ib].qs));
auto t0 = _mm256_unpacklo_epi32(m0, m1);
auto t1 = _mm256_unpacklo_epi32(m2, m3);
auto t2 = _mm256_unpackhi_epi32(m0, m1);
auto t3 = _mm256_unpackhi_epi32(m2, m3);
m0 = _mm256_unpacklo_epi64(t0, t1);
m1 = _mm256_unpackhi_epi64(t0, t1);
m2 = _mm256_unpacklo_epi64(t2, t3);
m3 = _mm256_unpackhi_epi64(t2, t3);
//#ifdef HAVE_FANCY_SIMD
// m0 = _mm256_add_epi8(m0, _mm256_set1_epi8(127));
// m1 = _mm256_add_epi8(m1, _mm256_set1_epi8(127));
// m2 = _mm256_add_epi8(m2, _mm256_set1_epi8(127));
// m3 = _mm256_add_epi8(m3, _mm256_set1_epi8(127));
//#endif
_mm256_storeu_si256((__m256i *)y[ib].qs + 0, m0);
_mm256_storeu_si256((__m256i *)y[ib].qs + 1, m1);
_mm256_storeu_si256((__m256i *)y[ib].qs + 2, m2);
_mm256_storeu_si256((__m256i *)y[ib].qs + 3, m3);
m0 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[4][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[0][ib].qs+1));
m1 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[5][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[1][ib].qs+1));
m2 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[6][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[2][ib].qs+1));
m3 = MM256_SET_M128I(_mm_loadu_si128((const __m128i *)x8[7][ib].qs+1), _mm_loadu_si128((const __m128i *)x8[3][ib].qs+1));
t0 = _mm256_unpacklo_epi32(m0, m1);
t1 = _mm256_unpacklo_epi32(m2, m3);
t2 = _mm256_unpackhi_epi32(m0, m1);
t3 = _mm256_unpackhi_epi32(m2, m3);
m0 = _mm256_unpacklo_epi64(t0, t1);
m1 = _mm256_unpackhi_epi64(t0, t1);
m2 = _mm256_unpacklo_epi64(t2, t3);
m3 = _mm256_unpackhi_epi64(t2, t3);
//#ifdef HAVE_FANCY_SIMD
// m0 = _mm256_add_epi8(m0, _mm256_set1_epi8(127));
// m1 = _mm256_add_epi8(m1, _mm256_set1_epi8(127));
// m2 = _mm256_add_epi8(m2, _mm256_set1_epi8(127));
// m3 = _mm256_add_epi8(m3, _mm256_set1_epi8(127));
//#endif
_mm256_storeu_si256((__m256i *)y[ib].qs + 4, m0);
_mm256_storeu_si256((__m256i *)y[ib].qs + 5, m1);
_mm256_storeu_si256((__m256i *)y[ib].qs + 6, m2);
_mm256_storeu_si256((__m256i *)y[ib].qs + 7, m3);
#elif defined __ARM_NEON
for (int l = 0; l < 2; ++l) {
m0.val[0] = vld1q_s8(x8[0][ib].qs+16*l); m0.val[1] = vld1q_s8(x8[4][ib].qs+16*l);
m1.val[0] = vld1q_s8(x8[1][ib].qs+16*l); m1.val[1] = vld1q_s8(x8[5][ib].qs+16*l);
m2.val[0] = vld1q_s8(x8[2][ib].qs+16*l); m2.val[1] = vld1q_s8(x8[6][ib].qs+16*l);
m3.val[0] = vld1q_s8(x8[3][ib].qs+16*l); m3.val[1] = vld1q_s8(x8[7][ib].qs+16*l);
auto row01 = vtrnq_s32(vreinterpretq_s32_s8(m0.val[0]), vreinterpretq_s32_s8(m1.val[0]));
auto row23 = vtrnq_s32(vreinterpretq_s32_s8(m2.val[0]), vreinterpretq_s32_s8(m3.val[0]));
m0.val[0] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
m1.val[0] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
m2.val[0] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
m3.val[0] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
row01 = vtrnq_s32(vreinterpretq_s32_s8(m0.val[1]), vreinterpretq_s32_s8(m1.val[1]));
row23 = vtrnq_s32(vreinterpretq_s32_s8(m2.val[1]), vreinterpretq_s32_s8(m3.val[1]));
m0.val[1] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
m1.val[1] = vreinterpretq_s8_s64(vtrn1q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
m2.val[1] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[0]), vreinterpretq_s64_s32(row23.val[0])));
m3.val[1] = vreinterpretq_s8_s64(vtrn2q_s64(vreinterpretq_s64_s32(row01.val[1]), vreinterpretq_s64_s32(row23.val[1])));
vst1q_s8_x2(y[ib].qs + 0 + 128*l, m0);
vst1q_s8_x2(y[ib].qs + 32 + 128*l, m1);
vst1q_s8_x2(y[ib].qs + 64 + 128*l, m2);
vst1q_s8_x2(y[ib].qs + 96 + 128*l, m3);
}
#else
for (int l = 0; l < 4; ++l) {
for (int k = 0; k < 8; ++k) for (int i = 0; i < 4; ++i) {
y[ib].qs[32*l+4*k+i+ 0] = x8[k][ib].qs[i+4*l+ 0];
y[ib].qs[32*l+4*k+i+128] = x8[k][ib].qs[i+4*l+16];
}
}
#endif
}
y += nblock;
}
return result;
}
#include "iqk_flash_impl.h"
#include "fa/iqk_fa_templates.h"
bool iqk_flash_attn_impl(int int_type_k, // type of k
int int_type_v, // type of v
int Dk, // K head size
int Dv, // V head size
int nq1, // number of columns in q
int nk1, // number of rows in k
int stride_q, // distance between q columns in bytes
int stride_k, // distance between k rows in bytes
int stride_v, // distance between v rows in bytes
int stride_m, // distance between mask rows (in bytes
int stride_qkv, // distance between rows in mask (in bytes)
const float * q, // q matrix.
const void * k, // k matrix. Assumed to be fp16, nq x nk elements
const void * v, // v matrix. Assumed to be fp16, nq x nk elements
const void * mask, // mask. If not null, assumed to be fp16. nq x nk elements
float scale, // scale applied before softmax
float softcap, // if > 0, a "soft-cap" operation is applied before softmax
float * qkv, // v*softmax(scale*(k*q))
float * M, float * S) {
if (!mask || nk1%32 != 0) return false; // the implementation assumes mask is not null and nk is a multiple of 32
if (Dk == 576 && Dv == 512) {
return iqk_fa_576_512(int_type_k, int_type_v, nq1, nk1, stride_q, stride_k, stride_v, stride_m, stride_qkv,
q, k, v, mask, scale, softcap, qkv, M, S);
}
if (Dk == 192 && Dv == 128) {
return iqk_fa_192_128(int_type_k, int_type_v, nq1, nk1, stride_q, stride_k, stride_v, stride_m, stride_qkv,
q, k, v, mask, scale, softcap, qkv, M, S);
}
if (Dk == 256 && Dv == 256) {
return iqk_fa_256_256(int_type_k, int_type_v, nq1, nk1, stride_q, stride_k, stride_v, stride_m, stride_qkv,
q, k, v, mask, scale, softcap, qkv, M, S);
}
if (Dk == 128 && Dv == 128) {
return iqk_fa_128_128(int_type_k, int_type_v, nq1, nk1, stride_q, stride_k, stride_v, stride_m, stride_qkv,
q, k, v, mask, scale, softcap, qkv, M, S);
}
if (Dk == 96 && Dv == 96) {
return iqk_fa_96_96(int_type_k, int_type_v, nq1, nk1, stride_q, stride_k, stride_v, stride_m, stride_qkv,
q, k, v, mask, scale, softcap, qkv, M, S);
}
if (Dk == 64 && Dv == 64) {
return iqk_fa_64_64(int_type_k, int_type_v, nq1, nk1, stride_q, stride_k, stride_v, stride_m, stride_qkv,
q, k, v, mask, scale, softcap, qkv, M, S);
}
return false;
}
#endif
#else // IQK_IMPLEMENT
#include "ggml-impl.h"
extern "C" IQK_API bool iqk_mul_mat(int, long, long, long, int, const void *, long, int, const void *, long, float *, long, int, int) {
GGML_ABORT("Unsupported CPU. You may need to manually set compilation flags\n");
return false;
}
extern "C" IQK_API bool iqk_mul_mat_4d(long /*Nx*/, long /*Ny*/, long /*ne00*/,
long /*ne02*/, long /*ne03*/, long /*ne12*/, long /*ne13*/,
long /*nb02*/, long /*nb03*/, long /*nb12*/, long /*nb13*/, long /*nb2*/, long /*nb3*/,
int /*typeA*/, const void * /*A*/, long /*strideA*/,
int /*typeB*/, const void * /*B*/, long /*strideB*/,
float * /*C*/, long /*stride_C*/, int /*ith*/, int /*nth*/) {
GGML_ABORT("Unsupported CPU. You may need to manually set compilation flags\n");
return false;
}
extern "C" IQK_API bool iqk_mul_mat_moe(long, long, long, int, int, const void *, long, int, const void *, long, float *, long, long,
const void *, int, int) {
GGML_ABORT("Unsupported CPU. You may need to manually set compilation flags\n");
return false;
}
extern "C" IQK_API bool iqk_moe_fused_up_gate(long /*Nx*/, long /*Ny*/, long /*ne00*/, int /*ne11*/, int /*unary_op*/,
int /*typeA*/, const void * /*Aup*/, const void * /*Agate*/, long /*strideA*/,
int /*typeB*/, const void * /*B*/, long /*strideB*/,
float * /*C*/, long /*nb1*/, long /*nb2*/, const void * /*vrow_mapping*/, int /*ith*/, int /*nth*/) {
GGML_ABORT("Unsupported CPU. You may need to manually set compilation flags\n");
return false;
}
#endif
|