summaryrefslogtreecommitdiff
path: root/gguf-py/gguf/gguf_writer.py
blob: a697f657b9ac88fc2e54fc3c765d2862604b1207 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from __future__ import annotations

import logging
import os
import shutil
import struct
import tempfile
from dataclasses import dataclass
from enum import Enum, auto
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from string import ascii_letters, digits

import numpy as np

from .constants import (
    GGUF_DEFAULT_ALIGNMENT,
    GGUF_MAGIC,
    GGUF_VERSION,
    GGMLQuantizationType,
    GGUFEndian,
    GGUFValueType,
    Keys,
    RopeScalingType,
    PoolingType,
    TokenType,
)

from .quants import quant_shape_from_byte_shape

logger = logging.getLogger(__name__)


@dataclass
class TensorInfo:
    shape: Sequence[int]
    dtype: GGMLQuantizationType
    nbytes: int
    tensor: np.ndarray[Any, Any] | None = None


@dataclass
class GGUFValue:
    value: Any
    type: GGUFValueType


class WriterState(Enum):
    NO_FILE = auto()
    EMPTY   = auto()
    HEADER  = auto()
    KV_DATA = auto()
    TI_DATA = auto()
    WEIGHTS = auto()


class GGUFWriter:
    fout: BufferedWriter | None
    path: os.PathLike[str] | str | None
    temp_file: tempfile.SpooledTemporaryFile[bytes] | None
    tensors: dict[str, TensorInfo]
    kv_data: dict[str, GGUFValue]
    state: WriterState
    _simple_value_packing = {
        GGUFValueType.UINT8:   "B",
        GGUFValueType.INT8:    "b",
        GGUFValueType.UINT16:  "H",
        GGUFValueType.INT16:   "h",
        GGUFValueType.UINT32:  "I",
        GGUFValueType.INT32:   "i",
        GGUFValueType.FLOAT32: "f",
        GGUFValueType.UINT64:  "Q",
        GGUFValueType.INT64:   "q",
        GGUFValueType.FLOAT64: "d",
        GGUFValueType.BOOL:    "?",
    }

    def __init__(
        self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False,
        endianess: GGUFEndian = GGUFEndian.LITTLE,
    ):
        self.fout = None
        self.path = path
        self.arch = arch
        self.endianess = endianess
        self.data_alignment = GGUF_DEFAULT_ALIGNMENT
        self.use_temp_file = use_temp_file
        self.temp_file = None
        self.tensors = dict()
        self.kv_data = dict()
        logger.info("gguf: This GGUF file is for {0} Endian only".format(
            "Big" if self.endianess == GGUFEndian.BIG else "Little",
        ))
        self.state = WriterState.NO_FILE

        self.add_architecture()

    def open_output_file(self, path: os.PathLike[str] | str | None = None) -> None:
        if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
            # allow calling this multiple times as long as the path is the same
            return
        if self.state is not WriterState.NO_FILE:
            raise ValueError(f'Expected output file to be not yet opened, got {self.state}')

        if path is not None:
            self.path = path

        if self.path is not None:
            if self.fout is not None:
                self.fout.close()
            self.fout = open(self.path, "wb")
            self.state = WriterState.EMPTY

    def write_header_to_file(self, path: os.PathLike[str] | str | None = None) -> None:
        self.open_output_file(path)

        if self.state is not WriterState.EMPTY:
            raise ValueError(f'Expected output file to be empty, got {self.state}')

        self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
        self._write_packed("I", GGUF_VERSION)
        self._write_packed("Q", len(self.tensors))
        self._write_packed("Q", len(self.kv_data))
        self.flush()
        self.state = WriterState.HEADER

    def write_kv_data_to_file(self) -> None:
        if self.state is not WriterState.HEADER:
            raise ValueError(f'Expected output file to contain the header, got {self.state}')
        assert self.fout is not None

        kv_data = bytearray()

        for key, val in self.kv_data.items():
            kv_data += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
            kv_data += self._pack_val(val.value, val.type, add_vtype=True)

        self.fout.write(kv_data)
        self.flush()
        self.state = WriterState.KV_DATA

    def write_ti_data_to_file(self) -> None:
        if self.state is not WriterState.KV_DATA:
            raise ValueError(f'Expected output file to contain KV data, got {self.state}')
        assert self.fout is not None

        ti_data = bytearray()
        offset_tensor = 0

        for name, ti in self.tensors.items():
            ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
            n_dims = len(ti.shape)
            ti_data += self._pack("I", n_dims)
            for i in range(n_dims):
                ti_data += self._pack("Q", ti.shape[n_dims - 1 - i])
            ti_data += self._pack("I", ti.dtype)
            ti_data += self._pack("Q", offset_tensor)
            offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)

        self.fout.write(ti_data)
        self.flush()
        self.state = WriterState.TI_DATA

    def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
        if key in self.kv_data:
            raise ValueError(f'Duplicated key name {key!r}')

        self.kv_data[key] = GGUFValue(value=val, type=vtype)

    def add_uint8(self, key: str, val: int) -> None:
        self.add_key_value(key,val, GGUFValueType.UINT8)

    def add_int8(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT8)

    def add_uint16(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.UINT16)

    def add_int16(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT16)

    def add_uint32(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.UINT32)

    def add_int32(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT32)

    def add_float32(self, key: str, val: float) -> None:
        self.add_key_value(key, val, GGUFValueType.FLOAT32)

    def add_uint64(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.UINT64)

    def add_int64(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT64)

    def add_float64(self, key: str, val: float) -> None:
        self.add_key_value(key, val, GGUFValueType.FLOAT64)

    def add_bool(self, key: str, val: bool) -> None:
        self.add_key_value(key, val, GGUFValueType.BOOL)

    def add_string(self, key: str, val: str) -> None:
        if not val:
            return
        self.add_key_value(key, val, GGUFValueType.STRING)

    def add_array(self, key: str, val: Sequence[Any]) -> None:
        if not isinstance(val, Sequence):
            raise ValueError("Value must be a sequence for array type")

        self.add_key_value(key, val, GGUFValueType.ARRAY)

    @staticmethod
    def ggml_pad(x: int, n: int) -> int:
        return ((x + n - 1) // n) * n

    def add_tensor_info(
        self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
        tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
    ) -> None:
        if self.state is not WriterState.NO_FILE:
            raise ValueError(f'Expected output file to be not yet opened, got {self.state}')

        if name in self.tensors:
            raise ValueError(f'Duplicated tensor name {name!r}')

        if raw_dtype is None:
            if tensor_dtype == np.float16:
                dtype = GGMLQuantizationType.F16
            elif tensor_dtype == np.float32:
                dtype = GGMLQuantizationType.F32
            elif tensor_dtype == np.float64:
                dtype = GGMLQuantizationType.F64
            elif tensor_dtype == np.int8:
                dtype = GGMLQuantizationType.I8
            elif tensor_dtype == np.int16:
                dtype = GGMLQuantizationType.I16
            elif tensor_dtype == np.int32:
                dtype = GGMLQuantizationType.I32
            elif tensor_dtype == np.int64:
                dtype = GGMLQuantizationType.I64
            else:
                raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
        else:
            dtype = raw_dtype
            if tensor_dtype == np.uint8:
                tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)

        self.tensors[name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)

    def add_tensor(
        self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
        raw_dtype: GGMLQuantizationType | None = None,
    ) -> None:
        if self.endianess == GGUFEndian.BIG:
            tensor.byteswap(inplace=True)
        if self.use_temp_file and self.temp_file is None:
            fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
            fp.seek(0)
            self.temp_file = fp

        shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
        self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)

        if self.temp_file is None:
            self.tensors[name].tensor = tensor
            return

        tensor.tofile(self.temp_file)
        self.write_padding(self.temp_file, tensor.nbytes)

    def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
        pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
        if pad != 0:
            fp.write(bytes([0] * pad))

    def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
        if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
            raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
        assert self.fout is not None

        if self.endianess == GGUFEndian.BIG:
            tensor.byteswap(inplace=True)
        self.write_padding(self.fout, self.fout.tell())
        tensor.tofile(self.fout)
        self.write_padding(self.fout, tensor.nbytes)

        self.state = WriterState.WEIGHTS

    def write_tensors_to_file(self, *, progress: bool = False) -> None:
        self.write_ti_data_to_file()

        assert self.fout is not None

        self.write_padding(self.fout, self.fout.tell())

        if self.temp_file is None:
            bar = None

            if progress:
                from tqdm import tqdm

                total_bytes = sum(t.nbytes for t in self.tensors.values())

                bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)

            # relying on the fact that Python dicts preserve insertion order (since 3.7)
            for ti in self.tensors.values():
                assert ti.tensor is not None  # can only iterate once over the tensors
                assert ti.tensor.nbytes == ti.nbytes
                ti.tensor.tofile(self.fout)
                if bar is not None:
                    bar.update(ti.nbytes)
                self.write_padding(self.fout, ti.nbytes)
                ti.tensor = None
        else:
            self.temp_file.seek(0)

            shutil.copyfileobj(self.temp_file, self.fout)
            self.flush()
            self.temp_file.close()

        self.state = WriterState.WEIGHTS

    def flush(self) -> None:
        assert self.fout is not None
        self.fout.flush()

    def close(self) -> None:
        if self.fout is not None:
            self.fout.close()
            self.fout = None

    def add_architecture(self) -> None:
        self.add_string(Keys.General.ARCHITECTURE, self.arch)

    def add_author(self, author: str) -> None:
        self.add_string(Keys.General.AUTHOR, author)

    def add_version(self, version: str) -> None:
        self.add_string(Keys.General.VERSION, version)

    def add_tensor_data_layout(self, layout: str) -> None:
        self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)

    def add_url(self, url: str) -> None:
        self.add_string(Keys.General.URL, url)

    def add_description(self, description: str) -> None:
        self.add_string(Keys.General.DESCRIPTION, description)

    def add_licence(self, licence: str) -> None:
        self.add_string(Keys.General.LICENSE, licence)

    def add_source_url(self, url: str) -> None:
        self.add_string(Keys.General.SOURCE_URL, url)

    def add_source_hf_repo(self, repo: str) -> None:
        self.add_string(Keys.General.SOURCE_HF_REPO, repo)

    def add_file_type(self, ftype: int) -> None:
        self.add_uint32(Keys.General.FILE_TYPE, ftype)

    def add_name(self, name: str) -> None:
        self.add_string(Keys.General.NAME, name)

    def add_quantization_version(self, quantization_version: int) -> None:
        self.add_uint32(
            Keys.General.QUANTIZATION_VERSION, quantization_version)

    def add_custom_alignment(self, alignment: int) -> None:
        self.data_alignment = alignment
        self.add_uint32(Keys.General.ALIGNMENT, alignment)

    def add_vocab_size(self, size: int) -> None:
        self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)

    def add_context_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)

    def add_embedding_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)

    def add_block_count(self, length: int) -> None:
        self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)

    def add_leading_dense_block_count(self, length: int) -> None:
        self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)

    def add_feed_forward_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)

    def add_expert_feed_forward_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)

    def add_expert_shared_feed_forward_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)

    def add_parallel_residual(self, use: bool) -> None:
        self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)

    def add_head_count(self, count: int) -> None:
        self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)

    def add_head_count_kv(self, count: int) -> None:
        self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)

    def add_key_length(self, length: int) -> None:
        self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)

    def add_value_length(self, length: int) -> None:
        self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)

    def add_max_alibi_bias(self, bias: float) -> None:
        self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)

    def add_clamp_kqv(self, value: float) -> None:
        self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)

    def add_logit_scale(self, value: float) -> None:
        self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)

    def add_expert_count(self, count: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)

    def add_expert_used_count(self, count: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)

    def add_expert_shared_count(self, count: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)

    def add_expert_weights_scale(self, value: float) -> None:
        self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)

    def add_layer_norm_eps(self, value: float) -> None:
        self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)

    def add_layer_norm_rms_eps(self, value: float) -> None:
        self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)

    def add_causal_attention(self, value: bool) -> None:
        self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)

    def add_q_lora_rank(self, length: int) -> None:
        self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)

    def add_kv_lora_rank(self, length: int) -> None:
        self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)

    def add_pooling_type(self, value: PoolingType) -> None:
        self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)

    def add_rope_dimension_count(self, count: int) -> None:
        self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)

    def add_rope_freq_base(self, value: float) -> None:
        self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)

    def add_rope_scaling_type(self, value: RopeScalingType) -> None:
        self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)

    def add_rope_scaling_factor(self, value: float) -> None:
        self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)

    def add_rope_scaling_attn_factors(self, value: float) -> None:
        self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)

    def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
        self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)

    def add_rope_scaling_finetuned(self, value: bool) -> None:
        self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)

    def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
        self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)

    def add_ssm_conv_kernel(self, value: int) -> None:
        self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)

    def add_ssm_inner_size(self, value: int) -> None:
        self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)

    def add_ssm_state_size(self, value: int) -> None:
        self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)

    def add_ssm_time_step_rank(self, value: int) -> None:
        self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)

    def add_tokenizer_model(self, model: str) -> None:
        self.add_string(Keys.Tokenizer.MODEL, model)

    def add_tokenizer_pre(self, pre: str) -> None:
        self.add_string(Keys.Tokenizer.PRE, pre)

    def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
        self.add_array(Keys.Tokenizer.LIST, tokens)

    def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
        self.add_array(Keys.Tokenizer.MERGES, merges)

    def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
        self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)

    def add_token_type_count(self, value: int) -> None:
        self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)

    def add_token_scores(self, scores: Sequence[float]) -> None:
        self.add_array(Keys.Tokenizer.SCORES, scores)

    def add_bos_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.BOS_ID, id)

    def add_eos_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.EOS_ID, id)

    def add_unk_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.UNK_ID, id)

    def add_sep_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.SEP_ID, id)

    def add_pad_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.PAD_ID, id)

    def add_cls_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.CLS_ID, id)

    def add_mask_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.MASK_ID, id)

    def add_add_bos_token(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.ADD_BOS, value)

    def add_add_eos_token(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.ADD_EOS, value)

    def add_add_space_prefix(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)

    def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
        if not isinstance(value, str):
            template_default = None
            template_names = set()

            for choice in value:
                name = choice.get('name', '')
                template = choice.get('template')

                # Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
                name = ''.join((c if c in ascii_letters + digits else '_' for c in name))

                if name and template is not None:
                    if name == 'default':
                        template_default = template
                    else:
                        template_names.add(name)
                        self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)

            if template_names:
                self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))

            if template_default is None:
                return

            value = template_default

        self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)

    def add_prefix_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)

    def add_suffix_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)

    def add_middle_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)

    def add_eot_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.EOT_ID, id)

    def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
        pack_prefix = ''
        if not skip_pack_prefix:
            pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
        return struct.pack(f'{pack_prefix}{fmt}', value)

    def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
        kv_data = bytearray()

        if add_vtype:
            kv_data += self._pack("I", vtype)

        pack_fmt = self._simple_value_packing.get(vtype)
        if pack_fmt is not None:
            kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
        elif vtype == GGUFValueType.STRING:
            encoded_val = val.encode("utf-8") if isinstance(val, str) else val
            kv_data += self._pack("Q", len(encoded_val))
            kv_data += encoded_val
        elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
            ltype = GGUFValueType.get_type(val[0])
            if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
                raise ValueError("All items in a GGUF array should be of the same type")
            kv_data += self._pack("I", ltype)
            kv_data += self._pack("Q", len(val))
            for item in val:
                kv_data += self._pack_val(item, ltype, add_vtype=False)
        else:
            raise ValueError("Invalid GGUF metadata value type or value")

        return kv_data

    def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
        assert self.fout is not None
        self.fout.write(self._pack(fmt, value, skip_pack_prefix))