summaryrefslogtreecommitdiff
path: root/gguf-py/gguf/lazy.py
blob: 650bea11c9c586d6cf36928d5acc8ff1d2798f1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import annotations
from abc import ABC, ABCMeta, abstractmethod

import logging
from typing import Any, Callable
from collections import deque

import numpy as np
from numpy.typing import DTypeLike


logger = logging.getLogger(__name__)


class LazyMeta(ABCMeta):

    def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
        def __getattr__(self, __name: str) -> Any:
            meta_attr = getattr(self._meta, __name)
            if callable(meta_attr):
                return type(self)._wrap_fn(
                    (lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)),
                    use_self=self,
                )
            elif isinstance(meta_attr, self._tensor_type):
                # e.g. self.T with torch.Tensor should still be wrapped
                return type(self)._wrap_fn(lambda s: getattr(s, __name))(self)
            else:
                # no need to wrap non-tensor properties,
                # and they likely don't depend on the actual contents of the tensor
                return meta_attr

        namespace["__getattr__"] = __getattr__

        # need to make a builder for the wrapped wrapper to copy the name,
        # or else it fails with very cryptic error messages,
        # because somehow the same string would end up in every closures
        def mk_wrap(op_name: str, *, meta_noop: bool = False):
            # need to wrap the wrapper to get self
            def wrapped_special_op(self, *args, **kwargs):
                return type(self)._wrap_fn(
                    getattr(type(self)._tensor_type, op_name),
                    meta_noop=meta_noop,
                )(self, *args, **kwargs)
            return wrapped_special_op

        # special methods bypass __getattr__, so they need to be added manually
        # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
        # NOTE: doing this from a metaclass is very convenient
        # TODO: make this even more comprehensive
        for binary_op in (
            "lt", "le", "eq", "ne", "ge", "gt", "not"
            "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
            "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
            "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
            "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
        ):
            attr_name = f"__{binary_op}__"
            # the result of these operators usually has the same shape and dtype as the input,
            # so evaluation on the meta tensor can be skipped.
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)

        for special_op in (
            "getitem", "setitem", "len",
        ):
            attr_name = f"__{special_op}__"
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)

        return super().__new__(cls, name, bases, namespace, **kwargs)


# Tree of lazy tensors
class LazyBase(ABC, metaclass=LazyMeta):
    _tensor_type: type
    _meta: Any
    _data: Any | None
    _lazy: deque[LazyBase]  # shared within a graph, to avoid deep recursion when making eager
    _args: tuple
    _func: Callable[[tuple], Any] | None

    def __init__(self, *, meta: Any, data: Any | None = None, lazy: deque[LazyBase] | None = None, args: tuple = (), func: Callable[[tuple], Any] | None = None):
        super().__init__()
        self._meta = meta
        self._data = data
        self._lazy = lazy if lazy is not None else deque()
        self._args = args
        self._func = func
        assert self._func is not None or self._data is not None
        if self._data is None:
            self._lazy.append(self)

    def __init_subclass__(cls) -> None:
        if "_tensor_type" not in cls.__dict__:
            raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
        return super().__init_subclass__()

    @staticmethod
    def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
        # TODO: dict and set
        if isinstance(o, (list, tuple)):
            L = []
            for item in o:
                L.append(LazyBase._recurse_apply(item, fn))
            if isinstance(o, tuple):
                L = tuple(L)
            return L
        elif isinstance(o, LazyBase):
            return fn(o)
        else:
            return o

    @classmethod
    def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]:
        def wrapped_fn(*args, **kwargs):
            if kwargs is None:
                kwargs = {}
            args = ((use_self,) if use_self is not None else ()) + args

            meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)

            if isinstance(meta_noop, bool) and not meta_noop:
                try:
                    res = fn(*meta_args, **kwargs)
                except NotImplementedError:
                    # running some operations on PyTorch's Meta tensors can cause this exception
                    res = None
            else:
                # some operators don't need to actually run on the meta tensors
                assert len(args) > 0
                res = args[0]
                assert isinstance(res, cls)
                res = res._meta
                # allow operations to override the dtype
                if meta_noop is not True:
                    res = cls.meta_with_dtype(res, meta_noop)

            if isinstance(res, cls._tensor_type):
                def collect_replace(t: LazyBase):
                    if collect_replace.shared_lazy is None:
                        collect_replace.shared_lazy = t._lazy
                    else:
                        collect_replace.shared_lazy.extend(t._lazy)
                        t._lazy = collect_replace.shared_lazy

                # emulating a static variable
                collect_replace.shared_lazy = None

                LazyBase._recurse_apply(args, collect_replace)

                shared_lazy = collect_replace.shared_lazy

                return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs))
            else:
                del res  # not needed
                # non-tensor return likely relies on the contents of the args
                # (e.g. the result of torch.equal)
                eager_args = cls.to_eager(args)
                return fn(*eager_args, **kwargs)
        return wrapped_fn

    @classmethod
    def to_eager(cls, t: Any) -> Any:
        def simple_to_eager(_t: LazyBase) -> Any:
            def already_eager_to_eager(_t: LazyBase) -> Any:
                assert _t._data is not None
                return _t._data

            while _t._data is None:
                lt = _t._lazy.popleft()
                if lt._data is not None:
                    raise ValueError(f"{lt} did not belong in the lazy queue")
                assert lt._func is not None
                lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
                lt._data = lt._func(lt._args)
                # sanity check
                assert lt._data.dtype == lt._meta.dtype
                assert lt._data.shape == lt._meta.shape

            return _t._data

        # recurse into lists and/or tuples, keeping their structure
        return cls._recurse_apply(t, simple_to_eager)

    @classmethod
    def eager_to_meta(cls, t: Any) -> Any:
        return cls.meta_with_dtype(t, t.dtype)

    # must be overridden, meta tensor init is backend-specific
    @classmethod
    @abstractmethod
    def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass

    @classmethod
    def from_eager(cls, t: Any) -> Any:
        if type(t) is cls:
            # already eager
            return t
        elif isinstance(t, cls._tensor_type):
            return cls(meta=cls.eager_to_meta(t), data=t)
        else:
            return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")


class LazyNumpyTensor(LazyBase):
    _tensor_type = np.ndarray

    @classmethod
    def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]:
        # The initial idea was to use np.nan as the fill value,
        # but non-float types like np.int16 can't use that.
        # So zero it is.
        cheat = np.zeros(1, dtype)
        return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape))

    def astype(self, dtype, *args, **kwargs):
        meta = type(self).meta_with_dtype(self._meta, dtype)
        full_args = (self, dtype,) + args
        # very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
        return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))

    def tofile(self, *args, **kwargs):
        eager = LazyNumpyTensor.to_eager(self)
        return eager.tofile(*args, **kwargs)

    # TODO: __array_function__