summaryrefslogtreecommitdiff
path: root/iqk-quantize.cpp
blob: 7be21ff95e461c328a57f09c9f9577d9d0e117ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//
// Copyright (C) 2024 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//

#if GGML_USE_IQK_MULMAT
#include "iqk_mul_mat.h"
#endif
#include "ggml-quants.h"
#include "ggml-impl.h"
#define GGML_COMMON_IMPL_C
#include "ggml-common.h"

#include <vector>
#include <utility>
#include <cstdint>
#include <cmath>
#include <array>
#include <algorithm>
#include <cstring>

namespace {

inline int nearest_int(float fval) {
    assert(fval <= 4194303.f);
    float val = fval + 12582912.f;
    int i; memcpy(&i, &val, sizeof(int));
    return (i & 0x007fffff) - 0x00400000;
}

struct IQ1BNQuantizer {
    int8_t L[QK_IQ1BN];
    void quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix);
    void quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix);
    static inline float row_max(int n_per_row, const float * src) {
        float max_in_row = 0;
        for (int j = 0; j < n_per_row; ++j) {
            float ax = fabsf(src[j]);
            max_in_row = std::max(max_in_row, ax);
        }
        return max_in_row;
    }
    static constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1};
};

void IQ1BNQuantizer::quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix) {

    static const int k_nb[6] = {1, 3, 9, 27, 81, 243};
    (void)imatrix;

    const int nblock = n_per_row/QK_IQ1BN;

    for (int ib = 0; ib < nblock; ++ib) {
        std::memset(&y[ib], 0, sizeof(block_iq1_bn));
        auto xb = src + ib*QK_IQ1BN;
        int v13 = 0;
        for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) {
            for (int k = 0; k < 3; ++k) {
                int idx = 0;
                for (int j = 0; j < 5; ++j) {
                    float v = xb[16*i16 + 5*k + j];
                    int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2;
                    idx += k_nb[j]*q;
                }
                idx = (256*idx + k_nb[5] - 1)/k_nb[5];
                y[ib].ql[3*i16 + k] = idx;
            }
            float v = xb[16*i16 + 15];
            int q = fabsf(v) < 1e-6f ? 1 : v < 0 ? 0 : 2;
            v13 += k_nb[i16]*q;
        }
        y[ib].extra = (256*v13 + k_nb[5] - 1)/k_nb[5];
    }
}

void IQ1BNQuantizer::quantize_one_row_2bn(const float * src, block_iq2_bn * y, int n_per_row, const float * imatrix) {

    (void)imatrix;

    const int nblock = n_per_row/QK_IQ1BN;

    constexpr int Nj = QK_IQ1BN/4;

    for (int ib = 0; ib < nblock; ++ib) {
        auto xb = src + QK_IQ1BN*ib;
        for (int j = 0; j < QK_IQ1BN; ++j) {
            L[j] = fabsf(xb[j]) < 1e-6f ? 1 : xb[j] < 0 ? 0 : 2;
        }
        for (int j = 0; j < Nj; ++j) {
            y[ib].qs[j] = L[j] | (L[j + Nj] << 2) | (L[j + 2*Nj] << 4) | (L[j + 3*Nj] << 6);
        }
    }
}

}

size_t quantize_iq1_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
    IQ1BNQuantizer iq1bn;
    int nblock = n_per_row/QK_IQ1BN;
    block_iq1_bn * y = (block_iq1_bn *)dst;
    for (int row = 0; row < nrows; ++row) {
        iq1bn.quantize_one_row_1bn(src + row*n_per_row, y, n_per_row, imatrix);
        y += nblock;
    }
    return sizeof(block_iq1_bn)*nblock*nrows;
}

void quantize_row_iq1_bn_reference(const float * x, block_iq1_bn * y, int64_t k) {
    quantize_iq1_bn(x, y, 1, k, nullptr);
}

void quantize_row_iq1_bn(const float * x, void * y, int64_t k) {
    quantize_iq1_bn(x, y, 1, k, nullptr);
}

void dequantize_row_iq1_bn(const block_iq1_bn * x, float * y, int64_t k) {
    assert(k%QK_IQ1BN == 0);
    int nblock = k / QK_IQ1BN;

    for (int i = 0; i < nblock; ++i) {
        uint8_t extra = x[i].extra;
        auto ql = x[i].ql;
        for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) {
            for (int k = 0; k < 3; ++k) {
                for (int j = 0; j < 5; ++j) {
                    uint8_t v = ql[k]*IQ1BNQuantizer::k_mult[j];
                    int8_t vs = ((v + (v >> 1)) >> 7);
                    *y++ = vs - 1;
                }
            }
            ql += 3;
            uint8_t v = extra*IQ1BNQuantizer::k_mult[i16];
            int8_t vs = ((v + (v >> 1)) >> 7);
            *y++ = vs - 1;
        }
    }
}

size_t quantize_iq2_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
    IQ1BNQuantizer iq1bn;
    int nblock = n_per_row/QK_IQ1BN;
    block_iq2_bn * y = (block_iq2_bn *)dst;
    for (int row = 0; row < nrows; ++row) {
        iq1bn.quantize_one_row_2bn(src + row*n_per_row, y, n_per_row, imatrix);
        y += nblock;
    }
    return sizeof(block_iq2_bn)*nblock*nrows;
}

void quantize_row_iq2_bn_reference(const float * x, block_iq2_bn * y, int64_t k) {
    quantize_iq2_bn(x, y, 1, k, nullptr);
}

void quantize_row_iq2_bn(const float * x, void * y, int64_t k) {
    quantize_iq2_bn(x, y, 1, k, nullptr);
}

void dequantize_row_iq2_bn(const block_iq2_bn * x, float * y, int64_t k) {
    assert(k%QK_IQ1BN == 0);
    int nblock = k / QK_IQ1BN;

    auto d1 = 1.f, d2 = 0.25f, d3 = d2*0.25f, d4 = d3*0.25f;
    auto m = -1.f;
    constexpr int Nj = QK_IQ1BN/4;
    for (int i = 0; i < nblock; ++i) {
        for (int j = 0; j < Nj; ++j) {
            y[j+   0] = d1*(x[i].qs[j] & 0x03) + m;
            y[j+1*Nj] = d2*(x[i].qs[j] & 0x0c) + m;
            y[j+2*Nj] = d3*(x[i].qs[j] & 0x30) + m;
            y[j+3*Nj] = d4*(x[i].qs[j] & 0xc0) + m;
        }
        y += QK_IQ1BN;
    }
}

namespace {
inline int8_t iq1bn_dequant(uint8_t q, int i) {
    uint8_t v = IQ1BNQuantizer::k_mult[i]*q;
    //int8_t vs = (v + (v << 1)) >> 8;
    int8_t vs = 3*v >> 8;
    return vs - 1;
}
}

static const int8_t iq1bn_values[1280] = {
    -1, -1, -1, -1, -1,  0,  0,  0,  0,  0,  0, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1,  0, -1, -1, -1,  0,  0, -1, -1, -1,  1,  0,
    -1, -1, -1, -1,  1, -1, -1, -1,  0,  1, -1, -1, -1,  1,  1, -1, -1, -1, -1, -1,  0, -1, -1,  0, -1,  0, -1, -1,  1, -1,  0, -1,
    -1, -1,  0,  0, -1, -1,  0,  0,  0, -1, -1,  1,  0,  0, -1, -1, -1,  1,  0, -1, -1,  0,  1,  0, -1, -1,  1,  1,  0, -1, -1, -1,
    -1,  1, -1, -1,  0,  0,  0,  0,  0,  0, -1,  1, -1, -1,  1, -1,  1, -1, -1, -1,  0,  1, -1, -1,  0,  0,  1, -1, -1,  1,  0,  1,
    -1, -1, -1,  1,  1, -1, -1,  0,  1,  1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  0, -1,  0, -1, -1,  0, -1,  1, -1, -1,  0, -1,
    -1,  0, -1,  0, -1,  0,  0, -1,  0, -1,  1,  0, -1,  0, -1, -1,  1, -1,  0, -1,  0,  1, -1,  0, -1,  1,  1, -1,  0, -1, -1, -1,
     0,  0, -1,  0, -1,  0,  0, -1,  0,  0,  0,  0,  0,  1, -1,  0,  0, -1, -1,  0,  0,  0, -1,  0,  0,  0,  0, -1,  1,  0,  0,  0,
    -1, -1,  1,  0,  0, -1,  0,  1,  0,  0, -1,  1,  1,  0,  0, -1, -1, -1,  1,  0, -1,  0, -1,  1,  0, -1,  1, -1,  1,  0, -1, -1,
     0,  1,  0, -1,  0,  0,  1,  0, -1,  1,  0,  1,  0, -1, -1,  1,  1,  0, -1,  0,  1,  1,  0, -1,  1,  1,  1,  0, -1, -1, -1, -1,
     1, -1,  0, -1, -1,  1, -1,  1, -1, -1,  1, -1,  0,  0,  0,  0,  0, -1,  0, -1,  1, -1,  0,  0, -1,  1, -1,  1,  0, -1,  1, -1,
    -1,  1, -1,  1, -1,  0,  1, -1,  1, -1,  1,  1, -1,  1, -1, -1, -1,  0,  1, -1,  0, -1,  0,  1, -1,  1, -1,  0,  1, -1, -1,  0,
     0,  1, -1,  0,  0,  0,  1, -1,  1,  0,  0,  1, -1, -1,  1,  0,  1, -1,  0,  1,  0,  1, -1,  1,  1,  0,  1, -1, -1, -1,  1,  1,
    -1,  0, -1,  1,  1, -1,  1, -1,  1,  1, -1,  0,  0,  0,  0,  0, -1,  0,  1,  1, -1,  0,  0,  1,  1, -1,  1,  0,  1,  1, -1, -1,
     1,  1,  1, -1,  0,  1,  1,  1, -1,  1,  1,  1,  1, -1, -1, -1, -1, -1,  0,  0, -1, -1, -1,  0,  1, -1, -1, -1,  0, -1,  0, -1,
    -1,  0,  0,  0, -1, -1,  0,  1,  0, -1, -1,  0, -1,  1, -1, -1,  0,  0,  1, -1, -1,  0,  1,  1, -1, -1,  0, -1, -1,  0, -1,  0,
     0, -1,  0, -1,  0,  1, -1,  0, -1,  0, -1,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1,  0,  0, -1,  0, -1,  1,
     0, -1,  0,  0,  1,  0, -1,  0,  1,  1,  0, -1,  0, -1, -1,  1, -1,  0,  0, -1,  1, -1,  0,  1, -1,  1, -1,  0, -1,  0,  1, -1,
     0,  0,  0,  1, -1,  0,  1,  0,  1, -1,  0, -1,  1,  1, -1,  0,  0,  1,  1, -1,  0,  1,  1,  1, -1,  0, -1, -1, -1,  0,  0,  0,
    -1, -1,  0,  0,  1, -1, -1,  0,  0, -1,  0, -1,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  1,  0, -1,  0,  0, -1,  1, -1,
     0,  0,  0,  1, -1,  0,  0,  1,  1, -1,  0,  0, -1, -1,  0,  0,  0,  0, -1,  0,  0,  0,  1, -1,  0,  0,  0, -1,  0,  0,  0,  0,
     0,  0,  0,  0,  0,  1,  0,  0,  0,  0, -1,  1,  0,  0,  0,  0,  1,  0,  0,  0,  1,  1,  0,  0,  0, -1, -1,  1,  0,  0,  0, -1,
     1,  0,  0,  1, -1,  1,  0,  0, -1,  0,  1,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  1,  0,  1,  0,  0, -1,  1,  1,  0,
     0,  0,  1,  1,  0,  0,  1,  1,  1,  0,  0, -1, -1, -1,  1,  0,  0, -1, -1,  1,  0,  1, -1, -1,  1,  0, -1,  0, -1,  1,  0,  0,
     0, -1,  1,  0,  1,  0, -1,  1,  0, -1,  1, -1,  1,  0,  0,  1, -1,  1,  0,  1,  1, -1,  1,  0, -1, -1,  0,  1,  0,  0, -1,  0,
     1,  0,  1, -1,  0,  1,  0, -1,  0,  0,  1,  0,  0,  0,  0,  1,  0,  1,  0,  0,  1,  0,  0,  0,  0,  0,  0, -1,  1,  0,  1,  0,
     0,  1,  0,  1,  0,  1,  1,  0,  1,  0, -1, -1,  1,  1,  0,  0, -1,  1,  1,  0,  1, -1,  1,  1,  0, -1,  0,  1,  1,  0,  0,  0,
     1,  1,  0,  1,  0,  1,  1,  0, -1,  1,  1,  1,  0,  0,  1,  1,  1,  0,  1,  1,  1,  1,  0, -1, -1, -1, -1,  1,  0, -1, -1, -1,
     1,  1, -1, -1, -1,  1, -1,  0, -1, -1,  1,  0,  0, -1, -1,  1,  1,  0, -1, -1,  1, -1,  1, -1, -1,  1,  0,  0,  0,  0,  0,  0,
     1, -1, -1,  1,  1,  1, -1, -1,  1, -1, -1,  0, -1,  1,  0, -1,  0, -1,  1,  1, -1,  0, -1,  1, -1,  0,  0, -1,  1,  0,  0,  0,
    -1,  1,  1,  0,  0, -1,  1, -1,  1,  0, -1,  1,  0,  1,  0, -1,  1,  1,  1,  0, -1,  1, -1, -1,  1, -1,  1,  0, -1,  1, -1,  1,
     1, -1,  1, -1,  1, -1,  0,  1, -1,  1,  0,  0,  1, -1,  1,  1,  0,  1, -1,  1, -1,  1,  1, -1,  1,  0,  0,  0,  0,  0,  0,  1,
     1, -1,  1,  1,  1,  1, -1,  1, -1, -1, -1,  0,  1,  0, -1, -1,  0,  1,  1, -1, -1,  0,  1, -1,  0, -1,  0,  1,  0,  0, -1,  0,
     1,  1,  0, -1,  0,  1, -1,  1, -1,  0,  1,  0,  1, -1,  0,  1,  1,  1, -1,  0,  1, -1, -1,  0,  0,  1,  0, -1,  0,  0,  1,  1,
    -1,  0,  0,  1, -1,  0,  0,  0,  1,  0,  0,  0,  0,  1,  1,  0,  0,  0,  1, -1,  1,  0,  0,  1,  0,  1,  0,  0,  1,  0,  0,  0,
     0,  0,  1,  1,  0,  0,  1, -1, -1,  1,  0,  1,  0, -1,  1,  0,  1,  1, -1,  1,  0,  1, -1,  0,  1,  0,  1,  0,  0,  1,  0,  1,
     1,  0,  1,  0,  1, -1,  1,  1,  0,  1,  0,  1,  1,  0,  1,  1,  1,  1,  0,  1, -1, -1, -1,  1,  1,  0, -1, -1,  1,  1,  1, -1,
    -1,  1,  1, -1,  0, -1,  1,  1,  0,  0, -1,  1,  1,  1,  0, -1,  1,  1, -1,  1, -1,  1,  1,  0,  1, -1,  1,  1,  1,  1, -1,  1,
     1,  0,  0,  0,  0,  0, -1, -1,  0,  1,  1,  0, -1,  0,  1,  1,  1, -1,  0,  1,  1, -1,  0,  0,  1,  1,  0,  0,  0,  1,  1,  1,
     0,  0,  1,  1, -1,  1,  0,  1,  1,  0,  1,  0,  1,  1,  1,  1,  0,  1,  1, -1, -1,  1,  1,  1,  0, -1,  1,  1,  1,  1, -1,  1,
     1,  1, -1,  0,  1,  1,  1,  0,  0,  1,  1,  1,  1,  0,  1,  1,  1, -1,  1,  1,  1,  1,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,
};

void ggml_vec_dot_iq1_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {

    GGML_UNUSED(bs);
    GGML_UNUSED(bx);
    GGML_UNUSED(by);
    GGML_UNUSED(nrc);

    static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64");

#if GGML_USE_IQK_MULMAT
    if (iqk_mul_mat(GGML_TASK_TYPE_COMPUTE, 1, 1, n, GGML_TYPE_IQ1_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) {
        return;
    }
#endif

    const block_iq1_bn * x = (const block_iq1_bn *)vx;

    const float * d8 = (const float *)vy;
    const int8_t * q8 = (const int8_t *)(d8 + 4);
    int nblock = n / QK_IQ1BN;

    int sumi[8] = {};
    int8_t q1[16];

    for (int ii = 0; ii < nblock; ii += 32) {
        int16_t sum16[8] = {};
        int nb = std::min(ii + 32, nblock);
        for (int i = ii; i < nb; ++i) {
            auto ql = x[i].ql;
            const int8_t * extra = iq1bn_values + 5*x[i].extra;
            for (int i16 = 0; i16 < QK_IQ1BN/16; ++i16) {
                for (int k = 0; k < 3; ++k) {
                    uint8_t q = *ql++;
                    const int8_t * vs = iq1bn_values + 5*q;
                    for (int j = 0; j < 5; ++j) q1[5*k+j] = vs[j];
                }
                q1[15] = extra[i16];
                // We collect 8 q8 values per block into each element of sum16
                // => 32 x 8 = 256 values in each loop over i, so this cannot overflow the int16_t range
                //    (q8 is in -127...127, and hence the sum is in -32512...32512
                for (int j = 0; j < 8; ++j) sum16[j] += q8[2*j+0]*q1[2*j+0] + q8[2*j+1]*q1[2*j+1];
                q8 += 16;
            }
        }
        for (int j = 0; j < 8; ++j) sumi[j] += sum16[j];
    }

    *s = d8[0] * (sumi[0] + sumi[1]) + d8[1] * (sumi[2] + sumi[3]) + d8[2] * (sumi[4] + sumi[5]) + d8[3] * (sumi[6] + sumi[7]);
}

void ggml_vec_dot_iq2_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) {

    GGML_ASSERT(nrc == 1);
    GGML_UNUSED(bs);
    GGML_UNUSED(bx);
    GGML_UNUSED(by);
    GGML_UNUSED(nrc);

    static_assert(QK_IQ1BN == 64, "This dot product implementation for iq2_bn requires a block size of 64");

    if (iqk_mul_mat(GGML_TASK_TYPE_COMPUTE, 1, 1, n, GGML_TYPE_IQ2_BN, vx, 0, GGML_TYPE_Q8_K64, vy, 0, s, 0, 0, 1)) {
        return;
    }

    constexpr int Nj = QK_IQ1BN/4;

    const block_iq2_bn * x = (const block_iq2_bn *)vx;
    int nblock = n / QK_IQ1BN;

    const float * d = (const float *)vy;
    const int8_t * q8 = (const int8_t *)(d + 4);

    int sum[16] = { };
    int sum0[4] = { };

    for (int i = 0; i < nblock; ++i) {
        for (int j = 0; j < Nj/4; ++j) {
            for (int l = 0; l < 4; ++l) {
                sum[4*j + 0] += q8[4*j + l +    0] * (x[i].qs[4*j+l] & 0x03);
                sum[4*j + 1] += q8[4*j + l + 1*Nj] * (x[i].qs[4*j+l] & 0x0c);
                sum[4*j + 2] += q8[4*j + l + 2*Nj] * (x[i].qs[4*j+l] & 0x30);
                sum[4*j + 3] += q8[4*j + l + 3*Nj] * (x[i].qs[4*j+l] & 0xc0);
                sum0[j] += q8[4*j + l] + q8[4*j + l + 1*Nj] + q8[4*j + l + 2*Nj] + q8[4*j + l + 3*Nj];
            }
        }
        q8 += QK_IQ1BN;
    }

    float sumf = 0;
    for (int j = 0; j < 4; ++j) {
        sumf += d[j] * (sum[4*j + 0] + 0.25f*sum[4*j + 1] + 0.0625*sum[4*j + 2] + 0.015625*sum[4*j + 3] - sum0[j]);
    }
    *s = sumf;

}

void quantize_row_q8_K64_reference(const float * x, block_q8_K64 * y, int64_t k) {

    float * dptr = (float *)y;
    auto qs = (int8_t *)(dptr + 4);
#ifdef __ARM_NEON
    static const uint8_t k_shuffle[16] = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60};
    auto shuffle = vld1q_u8(k_shuffle);
    float32x4_t max[4] = { };
    for (int j = 0; j < k; j += 16) {
        for (int i = 0; i < 4; ++i) {
            auto val = vld1q_f32(x + j + 4*i);
            val = vabsq_f32(val);
            max[i] = vmaxq_f32(max[i], val);
        }
    }
    float32x4_t vid[4];
    for (int i = 0; i < 4; ++i) {
        dptr[i] = vmaxvq_f32(max[i])/127;
        float id = dptr[i] > 0 ? 1/dptr[i] : 0.f;
        vid[i] = vdupq_n_f32(id);
    }
    int8x16x4_t q;
    for (int j = 0; j < k; j += 16) {
        for (int i = 0; i < 4; ++i) {
            auto val = vld1q_f32(x + j + 4*i);
            val = vmulq_f32(vid[i], val);
            q.val[i] = vreinterpretq_s8_s32(vcvtnq_s32_f32(val));
        }
        auto qi = vqtbl4q_s8(q, shuffle);
        vst1q_s8(qs, qi);
        qs += 16;
    }
#elif defined __AVX__
    __m128 max[4] = {};
    __m128 sign_bit = _mm_set1_ps(-0.f);
    for (int j = 0; j < k; j += 16) {
        for (int i = 0; i < 4; ++i) {
            auto val = _mm_loadu_ps(x + j + 4*i);
            val = _mm_andnot_ps(sign_bit, val);
            max[i] = _mm_max_ps(max[i], val);
        }
    }
    __m128 vid[4];
    for (int i = 0; i < 4; ++i) {
        max[i] = _mm_max_ps(max[i], _mm_movehl_ps(max[i], max[i]));
        max[i] = _mm_max_ss(max[i], _mm_movehdup_ps(max[i]));
        float maxi = _mm_cvtss_f32(max[i]);
        dptr[i] = maxi/127;
        float id = dptr[i] > 0 ? 1/dptr[i] : 0.f;
        vid[i] = _mm_set1_ps(id);
    }
    __m128i q[4];
    for (int j = 0; j < k; j += 16) {
        for (int i = 0; i < 4; ++i) {
            auto val = _mm_loadu_ps(x + j + 4*i);
            val = _mm_round_ps(_mm_mul_ps(vid[i], val), _MM_ROUND_NEAREST);
            q[i] = _mm_cvtps_epi32(val);
        }
        auto q1 = _mm_packs_epi32(q[0], q[1]);
        auto q2 = _mm_packs_epi32(q[2], q[3]);
        auto qi = _mm_packs_epi16(q1, q2);
        _mm_storeu_si128((__m128i *)qs, qi);
        qs += 16;
    }
#else
    float aux[4] = {0.f, 0.f, 0.f, 0.f};
    for (int j = 0; j < k; j += 16) {
        for (int i = 0; i < 4; ++i) {
            for (int l = 0; l < 4; ++l) {
                float ax = fabsf(x[j+4*i+l]);
                aux[i] = std::max(aux[i], ax);
            }
        }
    }
    for (int i = 0; i < 4; ++i) {
        dptr[i] = aux[i]/127;
        aux[i] = dptr[i] > 0 ? 1/dptr[i] : 0.f;
    }
    for (int j = 0; j < k; j += 16) {
        for (int i = 0; i < 4; ++i) {
            for (int l = 0; l < 4; ++l) qs[j+4*i+l] = nearest_int(aux[i]*x[j+4*i+l]);
        }
    }
#endif
}

void quantize_row_q8_K64(const float * x, void * y, int64_t k) {
    quantize_row_q8_K64_reference(x, (block_q8_K64 *)y, k);
}