diff options
author | Kirill Volinsky <mataes2007@gmail.com> | 2013-08-16 06:01:02 +0000 |
---|---|---|
committer | Kirill Volinsky <mataes2007@gmail.com> | 2013-08-16 06:01:02 +0000 |
commit | f57fc10023c8c393896157f37af36e7cc86376d8 (patch) | |
tree | 3c7e57c0705e2f4b83639c8c90786c72beb3b509 | |
parent | 9d8aed0d3219134deef0dede7431d0c0b922ab01 (diff) |
not used files removed
git-svn-id: http://svn.miranda-ng.org/main/trunk@5713 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
-rw-r--r-- | protocols/MRA/src/Sdk/zconf.h | 428 | ||||
-rw-r--r-- | protocols/MRA/src/Sdk/zlib.h | 1357 |
2 files changed, 0 insertions, 1785 deletions
diff --git a/protocols/MRA/src/Sdk/zconf.h b/protocols/MRA/src/Sdk/zconf.h deleted file mode 100644 index 02ce56c431..0000000000 --- a/protocols/MRA/src/Sdk/zconf.h +++ /dev/null @@ -1,428 +0,0 @@ -/* zconf.h -- configuration of the zlib compression library - * Copyright (C) 1995-2010 Jean-loup Gailly. - * For conditions of distribution and use, see copyright notice in zlib.h - */ - -/* @(#) $Id$ */ - -#ifndef ZCONF_H -#define ZCONF_H - -/* - * If you *really* need a unique prefix for all types and library functions, - * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. - * Even better than compiling with -DZ_PREFIX would be to use configure to set - * this permanently in zconf.h using "./configure --zprefix". - */ -#ifdef Z_PREFIX /* may be set to #if 1 by ./configure */ - -/* all linked symbols */ -# define _dist_code z__dist_code -# define _length_code z__length_code -# define _tr_align z__tr_align -# define _tr_flush_block z__tr_flush_block -# define _tr_init z__tr_init -# define _tr_stored_block z__tr_stored_block -# define _tr_tally z__tr_tally -# define adler32 z_adler32 -# define adler32_combine z_adler32_combine -# define adler32_combine64 z_adler32_combine64 -# define compress z_compress -# define compress2 z_compress2 -# define compressBound z_compressBound -# define crc32 z_crc32 -# define crc32_combine z_crc32_combine -# define crc32_combine64 z_crc32_combine64 -# define deflate z_deflate -# define deflateBound z_deflateBound -# define deflateCopy z_deflateCopy -# define deflateEnd z_deflateEnd -# define deflateInit2_ z_deflateInit2_ -# define deflateInit_ z_deflateInit_ -# define deflateParams z_deflateParams -# define deflatePrime z_deflatePrime -# define deflateReset z_deflateReset -# define deflateSetDictionary z_deflateSetDictionary -# define deflateSetHeader z_deflateSetHeader -# define deflateTune z_deflateTune -# define deflate_copyright z_deflate_copyright -# define get_crc_table z_get_crc_table -# define gz_error z_gz_error -# define gz_intmax z_gz_intmax -# define gz_strwinerror z_gz_strwinerror -# define gzbuffer z_gzbuffer -# define gzclearerr z_gzclearerr -# define gzclose z_gzclose -# define gzclose_r z_gzclose_r -# define gzclose_w z_gzclose_w -# define gzdirect z_gzdirect -# define gzdopen z_gzdopen -# define gzeof z_gzeof -# define gzerror z_gzerror -# define gzflush z_gzflush -# define gzgetc z_gzgetc -# define gzgets z_gzgets -# define gzoffset z_gzoffset -# define gzoffset64 z_gzoffset64 -# define gzopen z_gzopen -# define gzopen64 z_gzopen64 -# define gzprintf z_gzprintf -# define gzputc z_gzputc -# define gzputs z_gzputs -# define gzread z_gzread -# define gzrewind z_gzrewind -# define gzseek z_gzseek -# define gzseek64 z_gzseek64 -# define gzsetparams z_gzsetparams -# define gztell z_gztell -# define gztell64 z_gztell64 -# define gzungetc z_gzungetc -# define gzwrite z_gzwrite -# define inflate z_inflate -# define inflateBack z_inflateBack -# define inflateBackEnd z_inflateBackEnd -# define inflateBackInit_ z_inflateBackInit_ -# define inflateCopy z_inflateCopy -# define inflateEnd z_inflateEnd -# define inflateGetHeader z_inflateGetHeader -# define inflateInit2_ z_inflateInit2_ -# define inflateInit_ z_inflateInit_ -# define inflateMark z_inflateMark -# define inflatePrime z_inflatePrime -# define inflateReset z_inflateReset -# define inflateReset2 z_inflateReset2 -# define inflateSetDictionary z_inflateSetDictionary -# define inflateSync z_inflateSync -# define inflateSyncPoint z_inflateSyncPoint -# define inflateUndermine z_inflateUndermine -# define inflate_copyright z_inflate_copyright -# define inflate_fast z_inflate_fast -# define inflate_table z_inflate_table -# define uncompress z_uncompress -# define zError z_zError -# define zcalloc z_zcalloc -# define zcfree z_zcfree -# define zlibCompileFlags z_zlibCompileFlags -# define zlibVersion z_zlibVersion - -/* all zlib typedefs in zlib.h and zconf.h */ -# define Byte z_Byte -# define Bytef z_Bytef -# define alloc_func z_alloc_func -# define charf z_charf -# define free_func z_free_func -# define gzFile z_gzFile -# define gz_header z_gz_header -# define gz_headerp z_gz_headerp -# define in_func z_in_func -# define intf z_intf -# define out_func z_out_func -# define uInt z_uInt -# define uIntf z_uIntf -# define uLong z_uLong -# define uLongf z_uLongf -# define voidp z_voidp -# define voidpc z_voidpc -# define voidpf z_voidpf - -/* all zlib structs in zlib.h and zconf.h */ -# define gz_header_s z_gz_header_s -# define internal_state z_internal_state - -#endif - -#if defined(__MSDOS__) && !defined(MSDOS) -# define MSDOS -#endif -#if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) -# define OS2 -#endif -#if defined(_WINDOWS) && !defined(WINDOWS) -# define WINDOWS -#endif -#if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) -# ifndef WIN32 -# define WIN32 -# endif -#endif -#if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) -# if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) -# ifndef SYS16BIT -# define SYS16BIT -# endif -# endif -#endif - -/* - * Compile with -DMAXSEG_64K if the alloc function cannot allocate more - * than 64k bytes at a time (needed on systems with 16-bit int). - */ -#ifdef SYS16BIT -# define MAXSEG_64K -#endif -#ifdef MSDOS -# define UNALIGNED_OK -#endif - -#ifdef __STDC_VERSION__ -# ifndef STDC -# define STDC -# endif -# if __STDC_VERSION__ >= 199901L -# ifndef STDC99 -# define STDC99 -# endif -# endif -#endif -#if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) -# define STDC -#endif -#if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) -# define STDC -#endif -#if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) -# define STDC -#endif -#if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) -# define STDC -#endif - -#if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ -# define STDC -#endif - -#ifndef STDC -# ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ -# define const /* note: need a more gentle solution here */ -# endif -#endif - -/* Some Mac compilers merge all .h files incorrectly: */ -#if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) -# define NO_DUMMY_DECL -#endif - -/* Maximum value for memLevel in deflateInit2 */ -#ifndef MAX_MEM_LEVEL -# ifdef MAXSEG_64K -# define MAX_MEM_LEVEL 8 -# else -# define MAX_MEM_LEVEL 9 -# endif -#endif - -/* Maximum value for windowBits in deflateInit2 and inflateInit2. - * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files - * created by gzip. (Files created by minigzip can still be extracted by - * gzip.) - */ -#ifndef MAX_WBITS -# define MAX_WBITS 15 /* 32K LZ77 window */ -#endif - -/* The memory requirements for deflate are (in bytes): - (1 << (windowBits+2)) + (1 << (memLevel+9)) - that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) - plus a few kilobytes for small objects. For example, if you want to reduce - the default memory requirements from 256K to 128K, compile with - make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" - Of course this will generally degrade compression (there's no free lunch). - - The memory requirements for inflate are (in bytes) 1 << windowBits - that is, 32K for windowBits=15 (default value) plus a few kilobytes - for small objects. -*/ - - /* Type declarations */ - -#ifndef OF /* function prototypes */ -# ifdef STDC -# define OF(args) args -# else -# define OF(args) () -# endif -#endif - -/* The following definitions for FAR are needed only for MSDOS mixed - * model programming (small or medium model with some far allocations). - * This was tested only with MSC; for other MSDOS compilers you may have - * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, - * just define FAR to be empty. - */ -#ifdef SYS16BIT -# if defined(M_I86SM) || defined(M_I86MM) - /* MSC small or medium model */ -# define SMALL_MEDIUM -# ifdef _MSC_VER -# define FAR _far -# else -# define FAR far -# endif -# endif -# if (defined(__SMALL__) || defined(__MEDIUM__)) - /* Turbo C small or medium model */ -# define SMALL_MEDIUM -# ifdef __BORLANDC__ -# define FAR _far -# else -# define FAR far -# endif -# endif -#endif - -#if defined(WINDOWS) || defined(WIN32) - /* If building or using zlib as a DLL, define ZLIB_DLL. - * This is not mandatory, but it offers a little performance increase. - */ -# ifdef ZLIB_DLL -# if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) -# ifdef ZLIB_INTERNAL -# define ZEXTERN extern __declspec(dllexport) -# else -# define ZEXTERN extern __declspec(dllimport) -# endif -# endif -# endif /* ZLIB_DLL */ - /* If building or using zlib with the WINAPI/WINAPIV calling convention, - * define ZLIB_WINAPI. - * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. - */ -# ifdef ZLIB_WINAPI -# ifdef FAR -# undef FAR -# endif -# include <windows.h> - /* No need for _export, use ZLIB.DEF instead. */ - /* For complete Windows compatibility, use WINAPI, not __stdcall. */ -# define ZEXPORT WINAPI -# ifdef WIN32 -# define ZEXPORTVA WINAPIV -# else -# define ZEXPORTVA FAR CDECL -# endif -# endif -#endif - -#if defined (__BEOS__) -# ifdef ZLIB_DLL -# ifdef ZLIB_INTERNAL -# define ZEXPORT __declspec(dllexport) -# define ZEXPORTVA __declspec(dllexport) -# else -# define ZEXPORT __declspec(dllimport) -# define ZEXPORTVA __declspec(dllimport) -# endif -# endif -#endif - -#ifndef ZEXTERN -# define ZEXTERN extern -#endif -#ifndef ZEXPORT -# define ZEXPORT -#endif -#ifndef ZEXPORTVA -# define ZEXPORTVA -#endif - -#ifndef FAR -# define FAR -#endif - -#if !defined(__MACTYPES__) -typedef unsigned char Byte; /* 8 bits */ -#endif -typedef unsigned int uInt; /* 16 bits or more */ -typedef unsigned long uLong; /* 32 bits or more */ - -#ifdef SMALL_MEDIUM - /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ -# define Bytef Byte FAR -#else - typedef Byte FAR Bytef; -#endif -typedef char FAR charf; -typedef int FAR intf; -typedef uInt FAR uIntf; -typedef uLong FAR uLongf; - -#ifdef STDC - typedef void const *voidpc; - typedef void FAR *voidpf; - typedef void *voidp; -#else - typedef Byte const *voidpc; - typedef Byte FAR *voidpf; - typedef Byte *voidp; -#endif - -#ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ -# define Z_HAVE_UNISTD_H -#endif - -#ifdef STDC -# include <sys/types.h> /* for off_t */ -#endif - -/* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and - * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even - * though the former does not conform to the LFS document), but considering - * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as - * equivalently requesting no 64-bit operations - */ -#if -_LARGEFILE64_SOURCE - -1 == 1 -# undef _LARGEFILE64_SOURCE -#endif - -#if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) -# include <unistd.h> /* for SEEK_* and off_t */ -# ifdef VMS -# include <unixio.h> /* for off_t */ -# endif -# ifndef z_off_t -# define z_off_t off_t -# endif -#endif - -#ifndef SEEK_SET -# define SEEK_SET 0 /* Seek from beginning of file. */ -# define SEEK_CUR 1 /* Seek from current position. */ -# define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ -#endif - -#ifndef z_off_t -# define z_off_t long -#endif - -#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 -# define z_off64_t off64_t -#else -# define z_off64_t z_off_t -#endif - -#if defined(__OS400__) -# define NO_vsnprintf -#endif - -#if defined(__MVS__) -# define NO_vsnprintf -#endif - -/* MVS linker does not support external names larger than 8 bytes */ -#if defined(__MVS__) - #pragma map(deflateInit_,"DEIN") - #pragma map(deflateInit2_,"DEIN2") - #pragma map(deflateEnd,"DEEND") - #pragma map(deflateBound,"DEBND") - #pragma map(inflateInit_,"ININ") - #pragma map(inflateInit2_,"ININ2") - #pragma map(inflateEnd,"INEND") - #pragma map(inflateSync,"INSY") - #pragma map(inflateSetDictionary,"INSEDI") - #pragma map(compressBound,"CMBND") - #pragma map(inflate_table,"INTABL") - #pragma map(inflate_fast,"INFA") - #pragma map(inflate_copyright,"INCOPY") -#endif - -#endif /* ZCONF_H */ diff --git a/protocols/MRA/src/Sdk/zlib.h b/protocols/MRA/src/Sdk/zlib.h deleted file mode 100644 index 62d0e4675b..0000000000 --- a/protocols/MRA/src/Sdk/zlib.h +++ /dev/null @@ -1,1357 +0,0 @@ -/* zlib.h -- interface of the 'zlib' general purpose compression library
- version 1.2.3, July 18th, 2005
-
- Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler
-
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the authors be held liable for any damages
- arising from the use of this software.
-
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
-
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
-
- Jean-loup Gailly Mark Adler
- jloup@gzip.org madler@alumni.caltech.edu
-
-
- The data format used by the zlib library is described by RFCs (Request for
- Comments) 1950 to 1952 in the files http://www.ietf.org/rfc/rfc1950.txt
- (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
-*/
-
-#ifndef ZLIB_H
-#define ZLIB_H
-
-#include "zconf.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#define ZLIB_VERSION "1.2.3"
-#define ZLIB_VERNUM 0x1230
-
-/*
- The 'zlib' compression library provides in-memory compression and
- decompression functions, including integrity checks of the uncompressed
- data. This version of the library supports only one compression method
- (deflation) but other algorithms will be added later and will have the same
- stream interface.
-
- Compression can be done in a single step if the buffers are large
- enough (for example if an input file is mmap'ed), or can be done by
- repeated calls of the compression function. In the latter case, the
- application must provide more input and/or consume the output
- (providing more output space) before each call.
-
- The compressed data format used by default by the in-memory functions is
- the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
- around a deflate stream, which is itself documented in RFC 1951.
-
- The library also supports reading and writing files in gzip (.gz) format
- with an interface similar to that of stdio using the functions that start
- with "gz". The gzip format is different from the zlib format. gzip is a
- gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
-
- This library can optionally read and write gzip streams in memory as well.
-
- The zlib format was designed to be compact and fast for use in memory
- and on communications channels. The gzip format was designed for single-
- file compression on file systems, has a larger header than zlib to maintain
- directory information, and uses a different, slower check method than zlib.
-
- The library does not install any signal handler. The decoder checks
- the consistency of the compressed data, so the library should never
- crash even in case of corrupted input.
-*/
-
-typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
-typedef void (*free_func) OF((voidpf opaque, voidpf address));
-
-struct internal_state;
-
-typedef struct z_stream_s {
- Bytef *next_in; /* next input byte */
- uInt avail_in; /* number of bytes available at next_in */
- uLong total_in; /* total nb of input bytes read so far */
-
- Bytef *next_out; /* next output byte should be put there */
- uInt avail_out; /* remaining free space at next_out */
- uLong total_out; /* total nb of bytes output so far */
-
- char *msg; /* last error message, NULL if no error */
- struct internal_state FAR *state; /* not visible by applications */
-
- alloc_func zalloc; /* used to allocate the internal state */
- free_func zfree; /* used to free the internal state */
- voidpf opaque; /* private data object passed to zalloc and zfree */
-
- int data_type; /* best guess about the data type: binary or text */
- uLong adler; /* adler32 value of the uncompressed data */
- uLong reserved; /* reserved for future use */
-} z_stream;
-
-typedef z_stream FAR *z_streamp;
-
-/*
- gzip header information passed to and from zlib routines. See RFC 1952
- for more details on the meanings of these fields.
-*/
-typedef struct gz_header_s {
- int text; /* true if compressed data believed to be text */
- uLong time; /* modification time */
- int xflags; /* extra flags (not used when writing a gzip file) */
- int os; /* operating system */
- Bytef *extra; /* pointer to extra field or Z_NULL if none */
- uInt extra_len; /* extra field length (valid if extra != Z_NULL) */
- uInt extra_max; /* space at extra (only when reading header) */
- Bytef *name; /* pointer to zero-terminated file name or Z_NULL */
- uInt name_max; /* space at name (only when reading header) */
- Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */
- uInt comm_max; /* space at comment (only when reading header) */
- int hcrc; /* true if there was or will be a header crc */
- int done; /* true when done reading gzip header (not used
- when writing a gzip file) */
-} gz_header;
-
-typedef gz_header FAR *gz_headerp;
-
-/*
- The application must update next_in and avail_in when avail_in has
- dropped to zero. It must update next_out and avail_out when avail_out
- has dropped to zero. The application must initialize zalloc, zfree and
- opaque before calling the init function. All other fields are set by the
- compression library and must not be updated by the application.
-
- The opaque value provided by the application will be passed as the first
- parameter for calls of zalloc and zfree. This can be useful for custom
- memory management. The compression library attaches no meaning to the
- opaque value.
-
- zalloc must return Z_NULL if there is not enough memory for the object.
- If zlib is used in a multi-threaded application, zalloc and zfree must be
- thread safe.
-
- On 16-bit systems, the functions zalloc and zfree must be able to allocate
- exactly 65536 bytes, but will not be required to allocate more than this
- if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
- pointers returned by zalloc for objects of exactly 65536 bytes *must*
- have their offset normalized to zero. The default allocation function
- provided by this library ensures this (see zutil.c). To reduce memory
- requirements and avoid any allocation of 64K objects, at the expense of
- compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
-
- The fields total_in and total_out can be used for statistics or
- progress reports. After compression, total_in holds the total size of
- the uncompressed data and may be saved for use in the decompressor
- (particularly if the decompressor wants to decompress everything in
- a single step).
-*/
-
- /* constants */
-
-#define Z_NO_FLUSH 0
-#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
-#define Z_SYNC_FLUSH 2
-#define Z_FULL_FLUSH 3
-#define Z_FINISH 4
-#define Z_BLOCK 5
-/* Allowed flush values; see deflate() and inflate() below for details */
-
-#define Z_OK 0
-#define Z_STREAM_END 1
-#define Z_NEED_DICT 2
-#define Z_ERRNO (-1)
-#define Z_STREAM_ERROR (-2)
-#define Z_DATA_ERROR (-3)
-#define Z_MEM_ERROR (-4)
-#define Z_BUF_ERROR (-5)
-#define Z_VERSION_ERROR (-6)
-/* Return codes for the compression/decompression functions. Negative
- * values are errors, positive values are used for special but normal events.
- */
-
-#define Z_NO_COMPRESSION 0
-#define Z_BEST_SPEED 1
-#define Z_BEST_COMPRESSION 9
-#define Z_DEFAULT_COMPRESSION (-1)
-/* compression levels */
-
-#define Z_FILTERED 1
-#define Z_HUFFMAN_ONLY 2
-#define Z_RLE 3
-#define Z_FIXED 4
-#define Z_DEFAULT_STRATEGY 0
-/* compression strategy; see deflateInit2() below for details */
-
-#define Z_BINARY 0
-#define Z_TEXT 1
-#define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */
-#define Z_UNKNOWN 2
-/* Possible values of the data_type field (though see inflate()) */
-
-#define Z_DEFLATED 8
-/* The deflate compression method (the only one supported in this version) */
-
-#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
-
-#define zlib_version zlibVersion()
-/* for compatibility with versions < 1.0.2 */
-
- /* basic functions */
-
-ZEXTERN const char * ZEXPORT zlibVersion OF((void));
-/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
- If the first character differs, the library code actually used is
- not compatible with the zlib.h header file used by the application.
- This check is automatically made by deflateInit and inflateInit.
- */
-
-/*
-ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
-
- Initializes the internal stream state for compression. The fields
- zalloc, zfree and opaque must be initialized before by the caller.
- If zalloc and zfree are set to Z_NULL, deflateInit updates them to
- use default allocation functions.
-
- The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
- 1 gives best speed, 9 gives best compression, 0 gives no compression at
- all (the input data is simply copied a block at a time).
- Z_DEFAULT_COMPRESSION requests a default compromise between speed and
- compression (currently equivalent to level 6).
-
- deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if level is not a valid compression level,
- Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
- with the version assumed by the caller (ZLIB_VERSION).
- msg is set to null if there is no error message. deflateInit does not
- perform any compression: this will be done by deflate().
-*/
-
-
-ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
-/*
- deflate compresses as much data as possible, and stops when the input
- buffer becomes empty or the output buffer becomes full. It may introduce some
- output latency (reading input without producing any output) except when
- forced to flush.
-
- The detailed semantics are as follows. deflate performs one or both of the
- following actions:
-
- - Compress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in and avail_in are updated and
- processing will resume at this point for the next call of deflate().
-
- - Provide more output starting at next_out and update next_out and avail_out
- accordingly. This action is forced if the parameter flush is non zero.
- Forcing flush frequently degrades the compression ratio, so this parameter
- should be set only when necessary (in interactive applications).
- Some output may be provided even if flush is not set.
-
- Before the call of deflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming
- more output, and updating avail_in or avail_out accordingly; avail_out
- should never be zero before the call. The application can consume the
- compressed output when it wants, for example when the output buffer is full
- (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
- and with zero avail_out, it must be called again after making room in the
- output buffer because there might be more output pending.
-
- Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
- decide how much data to accumualte before producing output, in order to
- maximize compression.
-
- If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
- flushed to the output buffer and the output is aligned on a byte boundary, so
- that the decompressor can get all input data available so far. (In particular
- avail_in is zero after the call if enough output space has been provided
- before the call.) Flushing may degrade compression for some compression
- algorithms and so it should be used only when necessary.
-
- If flush is set to Z_FULL_FLUSH, all output is flushed as with
- Z_SYNC_FLUSH, and the compression state is reset so that decompression can
- restart from this point if previous compressed data has been damaged or if
- random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
- compression.
-
- If deflate returns with avail_out == 0, this function must be called again
- with the same value of the flush parameter and more output space (updated
- avail_out), until the flush is complete (deflate returns with non-zero
- avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
- avail_out is greater than six to avoid repeated flush markers due to
- avail_out == 0 on return.
-
- If the parameter flush is set to Z_FINISH, pending input is processed,
- pending output is flushed and deflate returns with Z_STREAM_END if there
- was enough output space; if deflate returns with Z_OK, this function must be
- called again with Z_FINISH and more output space (updated avail_out) but no
- more input data, until it returns with Z_STREAM_END or an error. After
- deflate has returned Z_STREAM_END, the only possible operations on the
- stream are deflateReset or deflateEnd.
-
- Z_FINISH can be used immediately after deflateInit if all the compression
- is to be done in a single step. In this case, avail_out must be at least
- the value returned by deflateBound (see below). If deflate does not return
- Z_STREAM_END, then it must be called again as described above.
-
- deflate() sets strm->adler to the adler32 checksum of all input read
- so far (that is, total_in bytes).
-
- deflate() may update strm->data_type if it can make a good guess about
- the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered
- binary. This field is only for information purposes and does not affect
- the compression algorithm in any manner.
-
- deflate() returns Z_OK if some progress has been made (more input
- processed or more output produced), Z_STREAM_END if all input has been
- consumed and all output has been produced (only when flush is set to
- Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
- if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
- (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not
- fatal, and deflate() can be called again with more input and more output
- space to continue compressing.
-*/
-
-
-ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
-/*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any
- pending output.
-
- deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
- stream state was inconsistent, Z_DATA_ERROR if the stream was freed
- prematurely (some input or output was discarded). In the error case,
- msg may be set but then points to a static string (which must not be
- deallocated).
-*/
-
-
-/*
-ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
-
- Initializes the internal stream state for decompression. The fields
- next_in, avail_in, zalloc, zfree and opaque must be initialized before by
- the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
- value depends on the compression method), inflateInit determines the
- compression method from the zlib header and allocates all data structures
- accordingly; otherwise the allocation will be deferred to the first call of
- inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to
- use default allocation functions.
-
- inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
- version assumed by the caller. msg is set to null if there is no error
- message. inflateInit does not perform any decompression apart from reading
- the zlib header if present: this will be done by inflate(). (So next_in and
- avail_in may be modified, but next_out and avail_out are unchanged.)
-*/
-
-
-ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
-/*
- inflate decompresses as much data as possible, and stops when the input
- buffer becomes empty or the output buffer becomes full. It may introduce
- some output latency (reading input without producing any output) except when
- forced to flush.
-
- The detailed semantics are as follows. inflate performs one or both of the
- following actions:
-
- - Decompress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in is updated and processing
- will resume at this point for the next call of inflate().
-
- - Provide more output starting at next_out and update next_out and avail_out
- accordingly. inflate() provides as much output as possible, until there
- is no more input data or no more space in the output buffer (see below
- about the flush parameter).
-
- Before the call of inflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming
- more output, and updating the next_* and avail_* values accordingly.
- The application can consume the uncompressed output when it wants, for
- example when the output buffer is full (avail_out == 0), or after each
- call of inflate(). If inflate returns Z_OK and with zero avail_out, it
- must be called again after making room in the output buffer because there
- might be more output pending.
-
- The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH,
- Z_FINISH, or Z_BLOCK. Z_SYNC_FLUSH requests that inflate() flush as much
- output as possible to the output buffer. Z_BLOCK requests that inflate() stop
- if and when it gets to the next deflate block boundary. When decoding the
- zlib or gzip format, this will cause inflate() to return immediately after
- the header and before the first block. When doing a raw inflate, inflate()
- will go ahead and process the first block, and will return when it gets to
- the end of that block, or when it runs out of data.
-
- The Z_BLOCK option assists in appending to or combining deflate streams.
- Also to assist in this, on return inflate() will set strm->data_type to the
- number of unused bits in the last byte taken from strm->next_in, plus 64
- if inflate() is currently decoding the last block in the deflate stream,
- plus 128 if inflate() returned immediately after decoding an end-of-block
- code or decoding the complete header up to just before the first byte of the
- deflate stream. The end-of-block will not be indicated until all of the
- uncompressed data from that block has been written to strm->next_out. The
- number of unused bits may in general be greater than seven, except when
- bit 7 of data_type is set, in which case the number of unused bits will be
- less than eight.
-
- inflate() should normally be called until it returns Z_STREAM_END or an
- error. However if all decompression is to be performed in a single step
- (a single call of inflate), the parameter flush should be set to
- Z_FINISH. In this case all pending input is processed and all pending
- output is flushed; avail_out must be large enough to hold all the
- uncompressed data. (The size of the uncompressed data may have been saved
- by the compressor for this purpose.) The next operation on this stream must
- be inflateEnd to deallocate the decompression state. The use of Z_FINISH
- is never required, but can be used to inform inflate that a faster approach
- may be used for the single inflate() call.
-
- In this implementation, inflate() always flushes as much output as
- possible to the output buffer, and always uses the faster approach on the
- first call. So the only effect of the flush parameter in this implementation
- is on the return value of inflate(), as noted below, or when it returns early
- because Z_BLOCK is used.
-
- If a preset dictionary is needed after this call (see inflateSetDictionary
- below), inflate sets strm->adler to the adler32 checksum of the dictionary
- chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
- strm->adler to the adler32 checksum of all output produced so far (that is,
- total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
- below. At the end of the stream, inflate() checks that its computed adler32
- checksum is equal to that saved by the compressor and returns Z_STREAM_END
- only if the checksum is correct.
-
- inflate() will decompress and check either zlib-wrapped or gzip-wrapped
- deflate data. The header type is detected automatically. Any information
- contained in the gzip header is not retained, so applications that need that
- information should instead use raw inflate, see inflateInit2() below, or
- inflateBack() and perform their own processing of the gzip header and
- trailer.
-
- inflate() returns Z_OK if some progress has been made (more input processed
- or more output produced), Z_STREAM_END if the end of the compressed data has
- been reached and all uncompressed output has been produced, Z_NEED_DICT if a
- preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
- corrupted (input stream not conforming to the zlib format or incorrect check
- value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
- if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory,
- Z_BUF_ERROR if no progress is possible or if there was not enough room in the
- output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
- inflate() can be called again with more input and more output space to
- continue decompressing. If Z_DATA_ERROR is returned, the application may then
- call inflateSync() to look for a good compression block if a partial recovery
- of the data is desired.
-*/
-
-
-ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
-/*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any
- pending output.
-
- inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
- was inconsistent. In the error case, msg may be set but then points to a
- static string (which must not be deallocated).
-*/
-
- /* Advanced functions */
-
-/*
- The following functions are needed only in some special applications.
-*/
-
-/*
-ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
- int level,
- int method,
- int windowBits,
- int memLevel,
- int strategy));
-
- This is another version of deflateInit with more compression options. The
- fields next_in, zalloc, zfree and opaque must be initialized before by
- the caller.
-
- The method parameter is the compression method. It must be Z_DEFLATED in
- this version of the library.
-
- The windowBits parameter is the base two logarithm of the window size
- (the size of the history buffer). It should be in the range 8..15 for this
- version of the library. Larger values of this parameter result in better
- compression at the expense of memory usage. The default value is 15 if
- deflateInit is used instead.
-
- windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
- determines the window size. deflate() will then generate raw deflate data
- with no zlib header or trailer, and will not compute an adler32 check value.
-
- windowBits can also be greater than 15 for optional gzip encoding. Add
- 16 to windowBits to write a simple gzip header and trailer around the
- compressed data instead of a zlib wrapper. The gzip header will have no
- file name, no extra data, no comment, no modification time (set to zero),
- no header crc, and the operating system will be set to 255 (unknown). If a
- gzip stream is being written, strm->adler is a crc32 instead of an adler32.
-
- The memLevel parameter specifies how much memory should be allocated
- for the internal compression state. memLevel=1 uses minimum memory but
- is slow and reduces compression ratio; memLevel=9 uses maximum memory
- for optimal speed. The default value is 8. See zconf.h for total memory
- usage as a function of windowBits and memLevel.
-
- The strategy parameter is used to tune the compression algorithm. Use the
- value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
- filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
- string match), or Z_RLE to limit match distances to one (run-length
- encoding). Filtered data consists mostly of small values with a somewhat
- random distribution. In this case, the compression algorithm is tuned to
- compress them better. The effect of Z_FILTERED is to force more Huffman
- coding and less string matching; it is somewhat intermediate between
- Z_DEFAULT and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as
- Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy
- parameter only affects the compression ratio but not the correctness of the
- compressed output even if it is not set appropriately. Z_FIXED prevents the
- use of dynamic Huffman codes, allowing for a simpler decoder for special
- applications.
-
- deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
- method). msg is set to null if there is no error message. deflateInit2 does
- not perform any compression: this will be done by deflate().
-*/
-
-ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
- const Bytef *dictionary,
- uInt dictLength));
-/*
- Initializes the compression dictionary from the given byte sequence
- without producing any compressed output. This function must be called
- immediately after deflateInit, deflateInit2 or deflateReset, before any
- call of deflate. The compressor and decompressor must use exactly the same
- dictionary (see inflateSetDictionary).
-
- The dictionary should consist of strings (byte sequences) that are likely
- to be encountered later in the data to be compressed, with the most commonly
- used strings preferably put towards the end of the dictionary. Using a
- dictionary is most useful when the data to be compressed is short and can be
- predicted with good accuracy; the data can then be compressed better than
- with the default empty dictionary.
-
- Depending on the size of the compression data structures selected by
- deflateInit or deflateInit2, a part of the dictionary may in effect be
- discarded, for example if the dictionary is larger than the window size in
- deflate or deflate2. Thus the strings most likely to be useful should be
- put at the end of the dictionary, not at the front. In addition, the
- current implementation of deflate will use at most the window size minus
- 262 bytes of the provided dictionary.
-
- Upon return of this function, strm->adler is set to the adler32 value
- of the dictionary; the decompressor may later use this value to determine
- which dictionary has been used by the compressor. (The adler32 value
- applies to the whole dictionary even if only a subset of the dictionary is
- actually used by the compressor.) If a raw deflate was requested, then the
- adler32 value is not computed and strm->adler is not set.
-
- deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
- parameter is invalid (such as NULL dictionary) or the stream state is
- inconsistent (for example if deflate has already been called for this stream
- or if the compression method is bsort). deflateSetDictionary does not
- perform any compression: this will be done by deflate().
-*/
-
-ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
- z_streamp source));
-/*
- Sets the destination stream as a complete copy of the source stream.
-
- This function can be useful when several compression strategies will be
- tried, for example when there are several ways of pre-processing the input
- data with a filter. The streams that will be discarded should then be freed
- by calling deflateEnd. Note that deflateCopy duplicates the internal
- compression state which can be quite large, so this strategy is slow and
- can consume lots of memory.
-
- deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being NULL). msg is left unchanged in both source and
- destination.
-*/
-
-ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
-/*
- This function is equivalent to deflateEnd followed by deflateInit,
- but does not free and reallocate all the internal compression state.
- The stream will keep the same compression level and any other attributes
- that may have been set by deflateInit2.
-
- deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being NULL).
-*/
-
-ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
- int level,
- int strategy));
-/*
- Dynamically update the compression level and compression strategy. The
- interpretation of level and strategy is as in deflateInit2. This can be
- used to switch between compression and straight copy of the input data, or
- to switch to a different kind of input data requiring a different
- strategy. If the compression level is changed, the input available so far
- is compressed with the old level (and may be flushed); the new level will
- take effect only at the next call of deflate().
-
- Before the call of deflateParams, the stream state must be set as for
- a call of deflate(), since the currently available input may have to
- be compressed and flushed. In particular, strm->avail_out must be non-zero.
-
- deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
- stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
- if strm->avail_out was zero.
-*/
-
-ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
- int good_length,
- int max_lazy,
- int nice_length,
- int max_chain));
-/*
- Fine tune deflate's internal compression parameters. This should only be
- used by someone who understands the algorithm used by zlib's deflate for
- searching for the best matching string, and even then only by the most
- fanatic optimizer trying to squeeze out the last compressed bit for their
- specific input data. Read the deflate.c source code for the meaning of the
- max_lazy, good_length, nice_length, and max_chain parameters.
-
- deflateTune() can be called after deflateInit() or deflateInit2(), and
- returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
- */
-
-ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
- uLong sourceLen));
-/*
- deflateBound() returns an upper bound on the compressed size after
- deflation of sourceLen bytes. It must be called after deflateInit()
- or deflateInit2(). This would be used to allocate an output buffer
- for deflation in a single pass, and so would be called before deflate().
-*/
-
-ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
- int bits,
- int value));
-/*
- deflatePrime() inserts bits in the deflate output stream. The intent
- is that this function is used to start off the deflate output with the
- bits leftover from a previous deflate stream when appending to it. As such,
- this function can only be used for raw deflate, and must be used before the
- first deflate() call after a deflateInit2() or deflateReset(). bits must be
- less than or equal to 16, and that many of the least significant bits of
- value will be inserted in the output.
-
- deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
-*/
-
-ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
- gz_headerp head));
-/*
- deflateSetHeader() provides gzip header information for when a gzip
- stream is requested by deflateInit2(). deflateSetHeader() may be called
- after deflateInit2() or deflateReset() and before the first call of
- deflate(). The text, time, os, extra field, name, and comment information
- in the provided gz_header structure are written to the gzip header (xflag is
- ignored -- the extra flags are set according to the compression level). The
- caller must assure that, if not Z_NULL, name and comment are terminated with
- a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
- available there. If hcrc is true, a gzip header crc is included. Note that
- the current versions of the command-line version of gzip (up through version
- 1.3.x) do not support header crc's, and will report that it is a "multi-part
- gzip file" and give up.
-
- If deflateSetHeader is not used, the default gzip header has text false,
- the time set to zero, and os set to 255, with no extra, name, or comment
- fields. The gzip header is returned to the default state by deflateReset().
-
- deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
-*/
-
-/*
-ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
- int windowBits));
-
- This is another version of inflateInit with an extra parameter. The
- fields next_in, avail_in, zalloc, zfree and opaque must be initialized
- before by the caller.
-
- The windowBits parameter is the base two logarithm of the maximum window
- size (the size of the history buffer). It should be in the range 8..15 for
- this version of the library. The default value is 15 if inflateInit is used
- instead. windowBits must be greater than or equal to the windowBits value
- provided to deflateInit2() while compressing, or it must be equal to 15 if
- deflateInit2() was not used. If a compressed stream with a larger window
- size is given as input, inflate() will return with the error code
- Z_DATA_ERROR instead of trying to allocate a larger window.
-
- windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
- determines the window size. inflate() will then process raw deflate data,
- not looking for a zlib or gzip header, not generating a check value, and not
- looking for any check values for comparison at the end of the stream. This
- is for use with other formats that use the deflate compressed data format
- such as zip. Those formats provide their own check values. If a custom
- format is developed using the raw deflate format for compressed data, it is
- recommended that a check value such as an adler32 or a crc32 be applied to
- the uncompressed data as is done in the zlib, gzip, and zip formats. For
- most applications, the zlib format should be used as is. Note that comments
- above on the use in deflateInit2() applies to the magnitude of windowBits.
-
- windowBits can also be greater than 15 for optional gzip decoding. Add
- 32 to windowBits to enable zlib and gzip decoding with automatic header
- detection, or add 16 to decode only the gzip format (the zlib format will
- return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is
- a crc32 instead of an adler32.
-
- inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_STREAM_ERROR if a parameter is invalid (such as a null strm). msg
- is set to null if there is no error message. inflateInit2 does not perform
- any decompression apart from reading the zlib header if present: this will
- be done by inflate(). (So next_in and avail_in may be modified, but next_out
- and avail_out are unchanged.)
-*/
-
-ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
- const Bytef *dictionary,
- uInt dictLength));
-/*
- Initializes the decompression dictionary from the given uncompressed byte
- sequence. This function must be called immediately after a call of inflate,
- if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
- can be determined from the adler32 value returned by that call of inflate.
- The compressor and decompressor must use exactly the same dictionary (see
- deflateSetDictionary). For raw inflate, this function can be called
- immediately after inflateInit2() or inflateReset() and before any call of
- inflate() to set the dictionary. The application must insure that the
- dictionary that was used for compression is provided.
-
- inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
- parameter is invalid (such as NULL dictionary) or the stream state is
- inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
- expected one (incorrect adler32 value). inflateSetDictionary does not
- perform any decompression: this will be done by subsequent calls of
- inflate().
-*/
-
-ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
-/*
- Skips invalid compressed data until a full flush point (see above the
- description of deflate with Z_FULL_FLUSH) can be found, or until all
- available input is skipped. No output is provided.
-
- inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
- if no more input was provided, Z_DATA_ERROR if no flush point has been found,
- or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
- case, the application may save the current current value of total_in which
- indicates where valid compressed data was found. In the error case, the
- application may repeatedly call inflateSync, providing more input each time,
- until success or end of the input data.
-*/
-
-ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
- z_streamp source));
-/*
- Sets the destination stream as a complete copy of the source stream.
-
- This function can be useful when randomly accessing a large stream. The
- first pass through the stream can periodically record the inflate state,
- allowing restarting inflate at those points when randomly accessing the
- stream.
-
- inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being NULL). msg is left unchanged in both source and
- destination.
-*/
-
-ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
-/*
- This function is equivalent to inflateEnd followed by inflateInit,
- but does not free and reallocate all the internal decompression state.
- The stream will keep attributes that may have been set by inflateInit2.
-
- inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being NULL).
-*/
-
-ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
- int bits,
- int value));
-/*
- This function inserts bits in the inflate input stream. The intent is
- that this function is used to start inflating at a bit position in the
- middle of a byte. The provided bits will be used before any bytes are used
- from next_in. This function should only be used with raw inflate, and
- should be used before the first inflate() call after inflateInit2() or
- inflateReset(). bits must be less than or equal to 16, and that many of the
- least significant bits of value will be inserted in the input.
-
- inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
-*/
-
-ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
- gz_headerp head));
-/*
- inflateGetHeader() requests that gzip header information be stored in the
- provided gz_header structure. inflateGetHeader() may be called after
- inflateInit2() or inflateReset(), and before the first call of inflate().
- As inflate() processes the gzip stream, head->done is zero until the header
- is completed, at which time head->done is set to one. If a zlib stream is
- being decoded, then head->done is set to -1 to indicate that there will be
- no gzip header information forthcoming. Note that Z_BLOCK can be used to
- force inflate() to return immediately after header processing is complete
- and before any actual data is decompressed.
-
- The text, time, xflags, and os fields are filled in with the gzip header
- contents. hcrc is set to true if there is a header CRC. (The header CRC
- was valid if done is set to one.) If extra is not Z_NULL, then extra_max
- contains the maximum number of bytes to write to extra. Once done is true,
- extra_len contains the actual extra field length, and extra contains the
- extra field, or that field truncated if extra_max is less than extra_len.
- If name is not Z_NULL, then up to name_max characters are written there,
- terminated with a zero unless the length is greater than name_max. If
- comment is not Z_NULL, then up to comm_max characters are written there,
- terminated with a zero unless the length is greater than comm_max. When
- any of extra, name, or comment are not Z_NULL and the respective field is
- not present in the header, then that field is set to Z_NULL to signal its
- absence. This allows the use of deflateSetHeader() with the returned
- structure to duplicate the header. However if those fields are set to
- allocated memory, then the application will need to save those pointers
- elsewhere so that they can be eventually freed.
-
- If inflateGetHeader is not used, then the header information is simply
- discarded. The header is always checked for validity, including the header
- CRC if present. inflateReset() will reset the process to discard the header
- information. The application would need to call inflateGetHeader() again to
- retrieve the header from the next gzip stream.
-
- inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent.
-*/
-
-/*
-ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
- unsigned char FAR *window));
-
- Initialize the internal stream state for decompression using inflateBack()
- calls. The fields zalloc, zfree and opaque in strm must be initialized
- before the call. If zalloc and zfree are Z_NULL, then the default library-
- derived memory allocation routines are used. windowBits is the base two
- logarithm of the window size, in the range 8..15. window is a caller
- supplied buffer of that size. Except for special applications where it is
- assured that deflate was used with small window sizes, windowBits must be 15
- and a 32K byte window must be supplied to be able to decompress general
- deflate streams.
-
- See inflateBack() for the usage of these routines.
-
- inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
- the paramaters are invalid, Z_MEM_ERROR if the internal state could not
- be allocated, or Z_VERSION_ERROR if the version of the library does not
- match the version of the header file.
-*/
-
-typedef unsigned (*in_func) OF((void FAR *, unsigned char FAR * FAR *));
-typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
-
-ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
- in_func in, void FAR *in_desc,
- out_func out, void FAR *out_desc));
-/*
- inflateBack() does a raw inflate with a single call using a call-back
- interface for input and output. This is more efficient than inflate() for
- file i/o applications in that it avoids copying between the output and the
- sliding window by simply making the window itself the output buffer. This
- function trusts the application to not change the output buffer passed by
- the output function, at least until inflateBack() returns.
-
- inflateBackInit() must be called first to allocate the internal state
- and to initialize the state with the user-provided window buffer.
- inflateBack() may then be used multiple times to inflate a complete, raw
- deflate stream with each call. inflateBackEnd() is then called to free
- the allocated state.
-
- A raw deflate stream is one with no zlib or gzip header or trailer.
- This routine would normally be used in a utility that reads zip or gzip
- files and writes out uncompressed files. The utility would decode the
- header and process the trailer on its own, hence this routine expects
- only the raw deflate stream to decompress. This is different from the
- normal behavior of inflate(), which expects either a zlib or gzip header and
- trailer around the deflate stream.
-
- inflateBack() uses two subroutines supplied by the caller that are then
- called by inflateBack() for input and output. inflateBack() calls those
- routines until it reads a complete deflate stream and writes out all of the
- uncompressed data, or until it encounters an error. The function's
- parameters and return types are defined above in the in_func and out_func
- typedefs. inflateBack() will call in(in_desc, &buf) which should return the
- number of bytes of provided input, and a pointer to that input in buf. If
- there is no input available, in() must return zero--buf is ignored in that
- case--and inflateBack() will return a buffer error. inflateBack() will call
- out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out()
- should return zero on success, or non-zero on failure. If out() returns
- non-zero, inflateBack() will return with an error. Neither in() nor out()
- are permitted to change the contents of the window provided to
- inflateBackInit(), which is also the buffer that out() uses to write from.
- The length written by out() will be at most the window size. Any non-zero
- amount of input may be provided by in().
-
- For convenience, inflateBack() can be provided input on the first call by
- setting strm->next_in and strm->avail_in. If that input is exhausted, then
- in() will be called. Therefore strm->next_in must be initialized before
- calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called
- immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in
- must also be initialized, and then if strm->avail_in is not zero, input will
- initially be taken from strm->next_in[0 .. strm->avail_in - 1].
-
- The in_desc and out_desc parameters of inflateBack() is passed as the
- first parameter of in() and out() respectively when they are called. These
- descriptors can be optionally used to pass any information that the caller-
- supplied in() and out() functions need to do their job.
-
- On return, inflateBack() will set strm->next_in and strm->avail_in to
- pass back any unused input that was provided by the last in() call. The
- return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
- if in() or out() returned an error, Z_DATA_ERROR if there was a format
- error in the deflate stream (in which case strm->msg is set to indicate the
- nature of the error), or Z_STREAM_ERROR if the stream was not properly
- initialized. In the case of Z_BUF_ERROR, an input or output error can be
- distinguished using strm->next_in which will be Z_NULL only if in() returned
- an error. If strm->next is not Z_NULL, then the Z_BUF_ERROR was due to
- out() returning non-zero. (in() will always be called before out(), so
- strm->next_in is assured to be defined if out() returns non-zero.) Note
- that inflateBack() cannot return Z_OK.
-*/
-
-ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
-/*
- All memory allocated by inflateBackInit() is freed.
-
- inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
- state was inconsistent.
-*/
-
-ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
-/* Return flags indicating compile-time options.
-
- Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
- 1.0: size of uInt
- 3.2: size of uLong
- 5.4: size of voidpf (pointer)
- 7.6: size of z_off_t
-
- Compiler, assembler, and debug options:
- 8: DEBUG
- 9: ASMV or ASMINF -- use ASM code
- 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
- 11: 0 (reserved)
-
- One-time table building (smaller code, but not thread-safe if true):
- 12: BUILDFIXED -- build static block decoding tables when needed
- 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
- 14,15: 0 (reserved)
-
- Library content (indicates missing functionality):
- 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
- deflate code when not needed)
- 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
- and decode gzip streams (to avoid linking crc code)
- 18-19: 0 (reserved)
-
- Operation variations (changes in library functionality):
- 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
- 21: FASTEST -- deflate algorithm with only one, lowest compression level
- 22,23: 0 (reserved)
-
- The sprintf variant used by gzprintf (zero is best):
- 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
- 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
- 26: 0 = returns value, 1 = void -- 1 means inferred string length returned
-
- Remainder:
- 27-31: 0 (reserved)
- */
-
-
- /* utility functions */
-
-/*
- The following utility functions are implemented on top of the
- basic stream-oriented functions. To simplify the interface, some
- default options are assumed (compression level and memory usage,
- standard memory allocation functions). The source code of these
- utility functions can easily be modified if you need special options.
-*/
-
-ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen));
-/*
- Compresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total
- size of the destination buffer, which must be at least the value returned
- by compressBound(sourceLen). Upon exit, destLen is the actual size of the
- compressed buffer.
- This function can be used to compress a whole file at once if the
- input file is mmap'ed.
- compress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer.
-*/
-
-ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen,
- int level));
-/*
- Compresses the source buffer into the destination buffer. The level
- parameter has the same meaning as in deflateInit. sourceLen is the byte
- length of the source buffer. Upon entry, destLen is the total size of the
- destination buffer, which must be at least the value returned by
- compressBound(sourceLen). Upon exit, destLen is the actual size of the
- compressed buffer.
-
- compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
- memory, Z_BUF_ERROR if there was not enough room in the output buffer,
- Z_STREAM_ERROR if the level parameter is invalid.
-*/
-
-ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
-/*
- compressBound() returns an upper bound on the compressed size after
- compress() or compress2() on sourceLen bytes. It would be used before
- a compress() or compress2() call to allocate the destination buffer.
-*/
-
-ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen));
-/*
- Decompresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total
- size of the destination buffer, which must be large enough to hold the
- entire uncompressed data. (The size of the uncompressed data must have
- been saved previously by the compressor and transmitted to the decompressor
- by some mechanism outside the scope of this compression library.)
- Upon exit, destLen is the actual size of the compressed buffer.
- This function can be used to decompress a whole file at once if the
- input file is mmap'ed.
-
- uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.
-*/
-
-
-typedef voidp gzFile;
-
-ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
-/*
- Opens a gzip (.gz) file for reading or writing. The mode parameter
- is as in fopen ("rb" or "wb") but can also include a compression level
- ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for
- Huffman only compression as in "wb1h", or 'R' for run-length encoding
- as in "wb1R". (See the description of deflateInit2 for more information
- about the strategy parameter.)
-
- gzopen can be used to read a file which is not in gzip format; in this
- case gzread will directly read from the file without decompression.
-
- gzopen returns NULL if the file could not be opened or if there was
- insufficient memory to allocate the (de)compression state; errno
- can be checked to distinguish the two cases (if errno is zero, the
- zlib error is Z_MEM_ERROR). */
-
-ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
-/*
- gzdopen() associates a gzFile with the file descriptor fd. File
- descriptors are obtained from calls like open, dup, creat, pipe or
- fileno (in the file has been previously opened with fopen).
- The mode parameter is as in gzopen.
- The next call of gzclose on the returned gzFile will also close the
- file descriptor fd, just like fclose(fdopen(fd), mode) closes the file
- descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode).
- gzdopen returns NULL if there was insufficient memory to allocate
- the (de)compression state.
-*/
-
-ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
-/*
- Dynamically update the compression level or strategy. See the description
- of deflateInit2 for the meaning of these parameters.
- gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
- opened for writing.
-*/
-
-ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
-/*
- Reads the given number of uncompressed bytes from the compressed file.
- If the input file was not in gzip format, gzread copies the given number
- of bytes into the buffer.
- gzread returns the number of uncompressed bytes actually read (0 for
- end of file, -1 for error). */
-
-ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
- voidpc buf, unsigned len));
-/*
- Writes the given number of uncompressed bytes into the compressed file.
- gzwrite returns the number of uncompressed bytes actually written
- (0 in case of error).
-*/
-
-ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...));
-/*
- Converts, formats, and writes the args to the compressed file under
- control of the format string, as in fprintf. gzprintf returns the number of
- uncompressed bytes actually written (0 in case of error). The number of
- uncompressed bytes written is limited to 4095. The caller should assure that
- this limit is not exceeded. If it is exceeded, then gzprintf() will return
- return an error (0) with nothing written. In this case, there may also be a
- buffer overflow with unpredictable consequences, which is possible only if
- zlib was compiled with the insecure functions sprintf() or vsprintf()
- because the secure snprintf() or vsnprintf() functions were not available.
-*/
-
-ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
-/*
- Writes the given null-terminated string to the compressed file, excluding
- the terminating null character.
- gzputs returns the number of characters written, or -1 in case of error.
-*/
-
-ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
-/*
- Reads bytes from the compressed file until len-1 characters are read, or
- a newline character is read and transferred to buf, or an end-of-file
- condition is encountered. The string is then terminated with a null
- character.
- gzgets returns buf, or Z_NULL in case of error.
-*/
-
-ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
-/*
- Writes c, converted to an unsigned char, into the compressed file.
- gzputc returns the value that was written, or -1 in case of error.
-*/
-
-ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
-/*
- Reads one byte from the compressed file. gzgetc returns this byte
- or -1 in case of end of file or error.
-*/
-
-ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
-/*
- Push one character back onto the stream to be read again later.
- Only one character of push-back is allowed. gzungetc() returns the
- character pushed, or -1 on failure. gzungetc() will fail if a
- character has been pushed but not read yet, or if c is -1. The pushed
- character will be discarded if the stream is repositioned with gzseek()
- or gzrewind().
-*/
-
-ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
-/*
- Flushes all pending output into the compressed file. The parameter
- flush is as in the deflate() function. The return value is the zlib
- error number (see function gzerror below). gzflush returns Z_OK if
- the flush parameter is Z_FINISH and all output could be flushed.
- gzflush should be called only when strictly necessary because it can
- degrade compression.
-*/
-
-ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
- z_off_t offset, int whence));
-/*
- Sets the starting position for the next gzread or gzwrite on the
- given compressed file. The offset represents a number of bytes in the
- uncompressed data stream. The whence parameter is defined as in lseek(2);
- the value SEEK_END is not supported.
- If the file is opened for reading, this function is emulated but can be
- extremely slow. If the file is opened for writing, only forward seeks are
- supported; gzseek then compresses a sequence of zeroes up to the new
- starting position.
-
- gzseek returns the resulting offset location as measured in bytes from
- the beginning of the uncompressed stream, or -1 in case of error, in
- particular if the file is opened for writing and the new starting position
- would be before the current position.
-*/
-
-ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
-/*
- Rewinds the given file. This function is supported only for reading.
-
- gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
-*/
-
-ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
-/*
- Returns the starting position for the next gzread or gzwrite on the
- given compressed file. This position represents a number of bytes in the
- uncompressed data stream.
-
- gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
-*/
-
-ZEXTERN int ZEXPORT gzeof OF((gzFile file));
-/*
- Returns 1 when EOF has previously been detected reading the given
- input stream, otherwise zero.
-*/
-
-ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
-/*
- Returns 1 if file is being read directly without decompression, otherwise
- zero.
-*/
-
-ZEXTERN int ZEXPORT gzclose OF((gzFile file));
-/*
- Flushes all pending output if necessary, closes the compressed file
- and deallocates all the (de)compression state. The return value is the zlib
- error number (see function gzerror below).
-*/
-
-ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
-/*
- Returns the error message for the last error which occurred on the
- given compressed file. errnum is set to zlib error number. If an
- error occurred in the file system and not in the compression library,
- errnum is set to Z_ERRNO and the application may consult errno
- to get the exact error code.
-*/
-
-ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
-/*
- Clears the error and end-of-file flags for file. This is analogous to the
- clearerr() function in stdio. This is useful for continuing to read a gzip
- file that is being written concurrently.
-*/
-
- /* checksum functions */
-
-/*
- These functions are not related to compression but are exported
- anyway because they might be useful in applications using the
- compression library.
-*/
-
-ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
-/*
- Update a running Adler-32 checksum with the bytes buf[0..len-1] and
- return the updated checksum. If buf is NULL, this function returns
- the required initial value for the checksum.
- An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
- much faster. Usage example:
-
- uLong adler = adler32(0L, Z_NULL, 0);
-
- while (read_buffer(buffer, length) != EOF) {
- adler = adler32(adler, buffer, length);
- }
- if (adler != original_adler) error();
-*/
-
-ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
- z_off_t len2));
-/*
- Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
- and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
- each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
- seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.
-*/
-
-ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
-/*
- Update a running CRC-32 with the bytes buf[0..len-1] and return the
- updated CRC-32. If buf is NULL, this function returns the required initial
- value for the for the crc. Pre- and post-conditioning (one's complement) is
- performed within this function so it shouldn't be done by the application.
- Usage example:
-
- uLong crc = crc32(0L, Z_NULL, 0);
-
- while (read_buffer(buffer, length) != EOF) {
- crc = crc32(crc, buffer, length);
- }
- if (crc != original_crc) error();
-*/
-
-ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
-
-/*
- Combine two CRC-32 check values into one. For two sequences of bytes,
- seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
- calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
- check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
- len2.
-*/
-
-
- /* various hacks, don't look :) */
-
-/* deflateInit and inflateInit are macros to allow checking the zlib version
- * and the compiler's view of z_stream:
- */
-ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
- const char *version, int stream_size));
-ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
- const char *version, int stream_size));
-ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
- int windowBits, int memLevel,
- int strategy, const char *version,
- int stream_size));
-ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
- const char *version, int stream_size));
-ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
- unsigned char FAR *window,
- const char *version,
- int stream_size));
-#define deflateInit(strm, level) \
- deflateInit_((strm), (level), ZLIB_VERSION, sizeof(z_stream))
-#define inflateInit(strm) \
- inflateInit_((strm), ZLIB_VERSION, sizeof(z_stream))
-#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
- deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
- (strategy), ZLIB_VERSION, sizeof(z_stream))
-#define inflateInit2(strm, windowBits) \
- inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
-#define inflateBackInit(strm, windowBits, window) \
- inflateBackInit_((strm), (windowBits), (window), \
- ZLIB_VERSION, sizeof(z_stream))
-
-
-#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
- struct internal_state {int dummy;}; /* hack for buggy compilers */
-#endif
-
-ZEXTERN const char * ZEXPORT zError OF((int));
-ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp z));
-ZEXTERN const uLongf * ZEXPORT get_crc_table OF((void));
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* ZLIB_H */
|