diff options
author | aunsane <aunsane@gmail.com> | 2017-12-15 01:05:56 +0300 |
---|---|---|
committer | aunsane <aunsane@gmail.com> | 2017-12-15 01:05:56 +0300 |
commit | e124aa3611f38573898aa79c6eabe77bc874e58f (patch) | |
tree | 819464260f758bbc002b23c0c8a77f93751dcb42 /libs/libsodium/src/crypto_aead/aes256gcm | |
parent | bbd9647d47f20d10b39570def918a0ac68c305c9 (diff) |
preparing to build tox from sources
Diffstat (limited to 'libs/libsodium/src/crypto_aead/aes256gcm')
-rw-r--r-- | libs/libsodium/src/crypto_aead/aes256gcm/aesni/aead_aes256gcm_aesni.c | 1079 |
1 files changed, 1079 insertions, 0 deletions
diff --git a/libs/libsodium/src/crypto_aead/aes256gcm/aesni/aead_aes256gcm_aesni.c b/libs/libsodium/src/crypto_aead/aes256gcm/aesni/aead_aes256gcm_aesni.c new file mode 100644 index 0000000000..dc54bca76b --- /dev/null +++ b/libs/libsodium/src/crypto_aead/aes256gcm/aesni/aead_aes256gcm_aesni.c @@ -0,0 +1,1079 @@ + +/* + * AES256-GCM, based on the "Intel Carry-Less Multiplication Instruction and its Usage for Computing + * the GCM Mode" paper and reference code, using the aggregated reduction method. + * Originally adapted by Romain Dolbeau. + */ + +#include <errno.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> + +#include "core.h" +#include "crypto_aead_aes256gcm.h" +#include "export.h" +#include "private/common.h" +#include "private/sse2_64_32.h" +#include "randombytes.h" +#include "runtime.h" +#include "utils.h" + +#if defined(HAVE_TMMINTRIN_H) && defined(HAVE_WMMINTRIN_H) + +# ifdef __GNUC__ +# pragma GCC target("ssse3") +# pragma GCC target("aes") +# pragma GCC target("pclmul") +# endif + +#include <tmmintrin.h> +#include <wmmintrin.h> + +#ifndef ENOSYS +# define ENOSYS ENXIO +#endif + +#if defined(__INTEL_COMPILER) || defined(_bswap64) +#elif defined(_MSC_VER) +# define _bswap64(a) _byteswap_uint64(a) +#elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)) +# define _bswap64(a) __builtin_bswap64(a) +#else +static inline uint64_t +_bswap64(const uint64_t x) +{ + return + ((x << 56) & 0xFF00000000000000UL) | ((x << 40) & 0x00FF000000000000UL) | + ((x << 24) & 0x0000FF0000000000UL) | ((x << 8) & 0x000000FF00000000UL) | + ((x >> 8) & 0x00000000FF000000UL) | ((x >> 24) & 0x0000000000FF0000UL) | + ((x >> 40) & 0x000000000000FF00UL) | ((x >> 56) & 0x00000000000000FFUL); +} +#endif + +typedef struct context { + CRYPTO_ALIGN(16) unsigned char H[16]; + __m128i rkeys[16]; +} context; + +static inline void +aesni_key256_expand(const unsigned char *key, __m128i * const rkeys) +{ + __m128i X0, X1, X2, X3; + int i = 0; + + X0 = _mm_loadu_si128((const __m128i *) &key[0]); + rkeys[i++] = X0; + + X2 = _mm_loadu_si128((const __m128i *) &key[16]); + rkeys[i++] = X2; + +#define EXPAND_KEY_1(S) do { \ + X1 = _mm_shuffle_epi32(_mm_aeskeygenassist_si128(X2, (S)), 0xff); \ + X3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(X3), _mm_castsi128_ps(X0), 0x10)); \ + X0 = _mm_xor_si128(X0, X3); \ + X3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(X3), _mm_castsi128_ps(X0), 0x8c)); \ + X0 = _mm_xor_si128(_mm_xor_si128(X0, X3), X1); \ + rkeys[i++] = X0; \ +} while (0) + +#define EXPAND_KEY_2(S) do { \ + X1 = _mm_shuffle_epi32(_mm_aeskeygenassist_si128(X0, (S)), 0xaa); \ + X3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(X3), _mm_castsi128_ps(X2), 0x10)); \ + X2 = _mm_xor_si128(X2, X3); \ + X3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(X3), _mm_castsi128_ps(X2), 0x8c)); \ + X2 = _mm_xor_si128(_mm_xor_si128(X2, X3), X1); \ + rkeys[i++] = X2; \ +} while (0) + + X3 = _mm_setzero_si128(); + EXPAND_KEY_1(0x01); EXPAND_KEY_2(0x01); + EXPAND_KEY_1(0x02); EXPAND_KEY_2(0x02); + EXPAND_KEY_1(0x04); EXPAND_KEY_2(0x04); + EXPAND_KEY_1(0x08); EXPAND_KEY_2(0x08); + EXPAND_KEY_1(0x10); EXPAND_KEY_2(0x10); + EXPAND_KEY_1(0x20); EXPAND_KEY_2(0x20); + EXPAND_KEY_1(0x40); +} + +/** single, by-the-book AES encryption with AES-NI */ +static inline void +aesni_encrypt1(unsigned char *out, __m128i nv, const __m128i *rkeys) +{ + __m128i temp = _mm_xor_si128(nv, rkeys[0]); + + temp = _mm_aesenc_si128(temp, rkeys[1]); + temp = _mm_aesenc_si128(temp, rkeys[2]); + temp = _mm_aesenc_si128(temp, rkeys[3]); + temp = _mm_aesenc_si128(temp, rkeys[4]); + temp = _mm_aesenc_si128(temp, rkeys[5]); + temp = _mm_aesenc_si128(temp, rkeys[6]); + temp = _mm_aesenc_si128(temp, rkeys[7]); + temp = _mm_aesenc_si128(temp, rkeys[8]); + temp = _mm_aesenc_si128(temp, rkeys[9]); + temp = _mm_aesenc_si128(temp, rkeys[10]); + temp = _mm_aesenc_si128(temp, rkeys[11]); + temp = _mm_aesenc_si128(temp, rkeys[12]); + temp = _mm_aesenc_si128(temp, rkeys[13]); + + temp = _mm_aesenclast_si128(temp, rkeys[14]); + _mm_storeu_si128((__m128i *) out, temp); +} + +/** multiple-blocks-at-once AES encryption with AES-NI ; + on Haswell, aesenc has a latency of 7 and a throughput of 1 + so the sequence of aesenc should be bubble-free if you + have at least 8 blocks. Let's build an arbitratry-sized + function */ +/* Step 1 : loading the nonce */ +/* load & increment the n vector (non-vectorized, unused for now) */ +#define NVDECLx(a) \ + __m128i nv##a + +#define NVx(a) \ + nv##a = _mm_shuffle_epi8(_mm_load_si128((const __m128i *) n), pt); \ + n[3]++ + +/* Step 2 : define value in round one (xor with subkey #0, aka key) */ +#define TEMPDECLx(a) \ + __m128i temp##a + +#define TEMPx(a) \ + temp##a = _mm_xor_si128(nv##a, rkeys[0]) + +/* Step 3: one round of AES */ +#define AESENCx(a) \ + temp##a = _mm_aesenc_si128(temp##a, rkeys[roundctr]) + +/* Step 4: last round of AES */ +#define AESENCLASTx(a) \ + temp##a = _mm_aesenclast_si128(temp##a, rkeys[14]) + +/* Step 5: store result */ +#define STOREx(a) \ + _mm_storeu_si128((__m128i *) (out + (a * 16)), temp##a) + +/* all the MAKE* macros are for automatic explicit unrolling */ +#define MAKE4(X) \ + X(0); \ + X(1); \ + X(2); \ + X(3) + +#define MAKE8(X) \ + X(0); \ + X(1); \ + X(2); \ + X(3); \ + X(4); \ + X(5); \ + X(6); \ + X(7) + +#define COUNTER_INC2(N) (N)[3] += 2 + +/* create a function of unrolling N ; the MAKEN is the unrolling + macro, defined above. The N in MAKEN must match N, obviously. */ +#define FUNC(N, MAKEN) \ + static inline void aesni_encrypt##N(unsigned char *out, uint32_t *n, const __m128i *rkeys) \ + { \ + const __m128i pt = _mm_set_epi8(12, 13, 14, 15, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); \ + int roundctr; \ + MAKEN(NVDECLx); \ + MAKEN(TEMPDECLx); \ + \ + MAKEN(NVx); \ + MAKEN(TEMPx); \ + for (roundctr = 1; roundctr < 14; roundctr++) { \ + MAKEN(AESENCx); \ + } \ + MAKEN(AESENCLASTx); \ + MAKEN(STOREx); \ + } + +FUNC(8, MAKE8) + +/* all GF(2^128) fnctions are by the book, meaning this one: + <https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf> +*/ + +static inline void +addmul(unsigned char *c, const unsigned char *a, unsigned int xlen, const unsigned char *b) +{ + const __m128i rev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); + __m128i A, B, C; + __m128i tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9; + __m128i tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17, tmp18; + __m128i tmp19, tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; + __m128i tmp28, tmp29, tmp30, tmp31, tmp32, tmp33, tmp34, tmp35, tmp36; + + if (xlen >= 16) { + A = _mm_loadu_si128((const __m128i *) a); + } else { + CRYPTO_ALIGN(16) unsigned char padded[16]; + unsigned int i; + + memset(padded, 0, 16); + for (i = 0; i < xlen; i++) { + padded[i] = a[i]; + } + A = _mm_load_si128((const __m128i *) padded); + } + A = _mm_shuffle_epi8(A, rev); + B = _mm_loadu_si128((const __m128i *) b); + C = _mm_loadu_si128((const __m128i *) c); + A = _mm_xor_si128(A, C); + tmp3 = _mm_clmulepi64_si128(A, B, 0x00); + tmp4 = _mm_clmulepi64_si128(A, B, 0x10); + tmp5 = _mm_clmulepi64_si128(A, B, 0x01); + tmp6 = _mm_clmulepi64_si128(A, B, 0x11); + tmp10 = _mm_xor_si128(tmp4, tmp5); + tmp13 = _mm_slli_si128(tmp10, 8); + tmp11 = _mm_srli_si128(tmp10, 8); + tmp15 = _mm_xor_si128(tmp3, tmp13); + tmp17 = _mm_xor_si128(tmp6, tmp11); + tmp7 = _mm_srli_epi32(tmp15, 31); + tmp8 = _mm_srli_epi32(tmp17, 31); + tmp16 = _mm_slli_epi32(tmp15, 1); + tmp18 = _mm_slli_epi32(tmp17, 1); + tmp9 = _mm_srli_si128(tmp7, 12); + tmp22 = _mm_slli_si128(tmp8, 4); + tmp25 = _mm_slli_si128(tmp7, 4); + tmp29 = _mm_or_si128(tmp16, tmp25); + tmp19 = _mm_or_si128(tmp18, tmp22); + tmp20 = _mm_or_si128(tmp19, tmp9); + tmp26 = _mm_slli_epi32(tmp29, 31); + tmp23 = _mm_slli_epi32(tmp29, 30); + tmp32 = _mm_slli_epi32(tmp29, 25); + tmp27 = _mm_xor_si128(tmp26, tmp23); + tmp28 = _mm_xor_si128(tmp27, tmp32); + tmp24 = _mm_srli_si128(tmp28, 4); + tmp33 = _mm_slli_si128(tmp28, 12); + tmp30 = _mm_xor_si128(tmp29, tmp33); + tmp2 = _mm_srli_epi32(tmp30, 1); + tmp12 = _mm_srli_epi32(tmp30, 2); + tmp14 = _mm_srli_epi32(tmp30, 7); + tmp34 = _mm_xor_si128(tmp2, tmp12); + tmp35 = _mm_xor_si128(tmp34, tmp14); + tmp36 = _mm_xor_si128(tmp35, tmp24); + tmp31 = _mm_xor_si128(tmp30, tmp36); + tmp21 = _mm_xor_si128(tmp20, tmp31); + _mm_storeu_si128((__m128i *) c, tmp21); +} + +/* pure multiplication, for pre-computing powers of H */ +static inline __m128i +mulv(__m128i A, __m128i B) +{ + __m128i tmp3 = _mm_clmulepi64_si128(A, B, 0x00); + __m128i tmp4 = _mm_clmulepi64_si128(A, B, 0x10); + __m128i tmp5 = _mm_clmulepi64_si128(A, B, 0x01); + __m128i tmp6 = _mm_clmulepi64_si128(A, B, 0x11); + __m128i tmp10 = _mm_xor_si128(tmp4, tmp5); + __m128i tmp13 = _mm_slli_si128(tmp10, 8); + __m128i tmp11 = _mm_srli_si128(tmp10, 8); + __m128i tmp15 = _mm_xor_si128(tmp3, tmp13); + __m128i tmp17 = _mm_xor_si128(tmp6, tmp11); + __m128i tmp7 = _mm_srli_epi32(tmp15, 31); + __m128i tmp8 = _mm_srli_epi32(tmp17, 31); + __m128i tmp16 = _mm_slli_epi32(tmp15, 1); + __m128i tmp18 = _mm_slli_epi32(tmp17, 1); + __m128i tmp9 = _mm_srli_si128(tmp7, 12); + __m128i tmp22 = _mm_slli_si128(tmp8, 4); + __m128i tmp25 = _mm_slli_si128(tmp7, 4); + __m128i tmp29 = _mm_or_si128(tmp16, tmp25); + __m128i tmp19 = _mm_or_si128(tmp18, tmp22); + __m128i tmp20 = _mm_or_si128(tmp19, tmp9); + __m128i tmp26 = _mm_slli_epi32(tmp29, 31); + __m128i tmp23 = _mm_slli_epi32(tmp29, 30); + __m128i tmp32 = _mm_slli_epi32(tmp29, 25); + __m128i tmp27 = _mm_xor_si128(tmp26, tmp23); + __m128i tmp28 = _mm_xor_si128(tmp27, tmp32); + __m128i tmp24 = _mm_srli_si128(tmp28, 4); + __m128i tmp33 = _mm_slli_si128(tmp28, 12); + __m128i tmp30 = _mm_xor_si128(tmp29, tmp33); + __m128i tmp2 = _mm_srli_epi32(tmp30, 1); + __m128i tmp12 = _mm_srli_epi32(tmp30, 2); + __m128i tmp14 = _mm_srli_epi32(tmp30, 7); + __m128i tmp34 = _mm_xor_si128(tmp2, tmp12); + __m128i tmp35 = _mm_xor_si128(tmp34, tmp14); + __m128i tmp36 = _mm_xor_si128(tmp35, tmp24); + __m128i tmp31 = _mm_xor_si128(tmp30, tmp36); + __m128i C = _mm_xor_si128(tmp20, tmp31); + + return C; +} + +/* 4 multiply-accumulate at once; again + <https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf> + for the Aggregated Reduction Method & sample code. + Algorithm by Krzysztof Jankowski, Pierre Laurent - Intel */ + +#define RED_DECL(a) __m128i H##a##_X##a##_lo, H##a##_X##a##_hi, tmp##a, tmp##a##B +#define RED_SHUFFLE(a) X##a = _mm_shuffle_epi8(X##a, rev) +#define RED_MUL_LOW(a) H##a##_X##a##_lo = _mm_clmulepi64_si128(H##a, X##a, 0x00) +#define RED_MUL_HIGH(a) H##a##_X##a##_hi = _mm_clmulepi64_si128(H##a, X##a, 0x11) +#define RED_MUL_MID(a) \ + tmp##a = _mm_shuffle_epi32(H##a, 0x4e); \ + tmp##a##B = _mm_shuffle_epi32(X##a, 0x4e); \ + tmp##a = _mm_xor_si128(tmp##a, H##a); \ + tmp##a##B = _mm_xor_si128(tmp##a##B, X##a); \ + tmp##a = _mm_clmulepi64_si128(tmp##a, tmp##a##B, 0x00) + +#define MULREDUCE4(rev, H0_, H1_, H2_, H3_, X0_, X1_, X2_, X3_, accv) \ +do { \ + MAKE4(RED_DECL); \ + __m128i lo, hi; \ + __m128i tmp8, tmp9; \ + __m128i H0 = H0_; \ + __m128i H1 = H1_; \ + __m128i H2 = H2_; \ + __m128i H3 = H3_; \ + __m128i X0 = X0_; \ + __m128i X1 = X1_; \ + __m128i X2 = X2_; \ + __m128i X3 = X3_; \ +\ +/* byte-revert the inputs & xor the first one into the accumulator */ \ +\ + MAKE4(RED_SHUFFLE); \ + X3 = _mm_xor_si128(X3, accv); \ +\ +/* 4 low H*X (x0*h0) */ \ +\ + MAKE4(RED_MUL_LOW); \ + lo = _mm_xor_si128(H0_X0_lo, H1_X1_lo); \ + lo = _mm_xor_si128(lo, H2_X2_lo); \ + lo = _mm_xor_si128(lo, H3_X3_lo); \ +\ +/* 4 high H*X (x1*h1) */ \ +\ + MAKE4(RED_MUL_HIGH); \ + hi = _mm_xor_si128(H0_X0_hi, H1_X1_hi); \ + hi = _mm_xor_si128(hi, H2_X2_hi); \ + hi = _mm_xor_si128(hi, H3_X3_hi); \ +\ +/* 4 middle H*X, using Karatsuba, i.e. \ + x1*h0+x0*h1 =(x1+x0)*(h1+h0)-x1*h1-x0*h0 \ + we already have all x1y1 & x0y0 (accumulated in hi & lo) \ + (0 is low half and 1 is high half) \ + */ \ +/* permute the high and low 64 bits in H1 & X1, \ + so create (h0,h1) from (h1,h0) and (x0,x1) from (x1,x0), \ + then compute (h0+h1,h1+h0) and (x0+x1,x1+x0), \ + and finally multiply \ + */ \ + MAKE4(RED_MUL_MID); \ +\ +/* substracts x1*h1 and x0*h0 */ \ + tmp0 = _mm_xor_si128(tmp0, lo); \ + tmp0 = _mm_xor_si128(tmp0, hi); \ + tmp0 = _mm_xor_si128(tmp1, tmp0); \ + tmp0 = _mm_xor_si128(tmp2, tmp0); \ + tmp0 = _mm_xor_si128(tmp3, tmp0);\ +\ + /* reduction */ \ + tmp0B = _mm_slli_si128(tmp0, 8); \ + tmp0 = _mm_srli_si128(tmp0, 8); \ + lo = _mm_xor_si128(tmp0B, lo); \ + hi = _mm_xor_si128(tmp0, hi); \ + tmp3 = lo; \ + tmp2B = hi; \ + tmp3B = _mm_srli_epi32(tmp3, 31); \ + tmp8 = _mm_srli_epi32(tmp2B, 31); \ + tmp3 = _mm_slli_epi32(tmp3, 1); \ + tmp2B = _mm_slli_epi32(tmp2B, 1); \ + tmp9 = _mm_srli_si128(tmp3B, 12); \ + tmp8 = _mm_slli_si128(tmp8, 4); \ + tmp3B = _mm_slli_si128(tmp3B, 4); \ + tmp3 = _mm_or_si128(tmp3, tmp3B); \ + tmp2B = _mm_or_si128(tmp2B, tmp8); \ + tmp2B = _mm_or_si128(tmp2B, tmp9); \ + tmp3B = _mm_slli_epi32(tmp3, 31); \ + tmp8 = _mm_slli_epi32(tmp3, 30); \ + tmp9 = _mm_slli_epi32(tmp3, 25); \ + tmp3B = _mm_xor_si128(tmp3B, tmp8); \ + tmp3B = _mm_xor_si128(tmp3B, tmp9); \ + tmp8 = _mm_srli_si128(tmp3B, 4); \ + tmp3B = _mm_slli_si128(tmp3B, 12); \ + tmp3 = _mm_xor_si128(tmp3, tmp3B); \ + tmp2 = _mm_srli_epi32(tmp3, 1); \ + tmp0B = _mm_srli_epi32(tmp3, 2); \ + tmp1B = _mm_srli_epi32(tmp3, 7); \ + tmp2 = _mm_xor_si128(tmp2, tmp0B); \ + tmp2 = _mm_xor_si128(tmp2, tmp1B); \ + tmp2 = _mm_xor_si128(tmp2, tmp8); \ + tmp3 = _mm_xor_si128(tmp3, tmp2); \ + tmp2B = _mm_xor_si128(tmp2B, tmp3); \ +\ + accv = tmp2B; \ +} while(0) + +#define XORx(a) \ + temp##a = _mm_xor_si128(temp##a, \ + _mm_loadu_si128((const __m128i *) (in + a * 16))) + +#define LOADx(a) \ + __m128i in##a = _mm_loadu_si128((const __m128i *) (in + a * 16)) + +/* full encrypt & checksum 8 blocks at once */ +#define aesni_encrypt8full(out_, n_, rkeys, in_, accum, hv_, h2v_, h3v_, h4v_, rev) \ +do { \ + unsigned char *out = out_; \ + uint32_t *n = n_; \ + const unsigned char *in = in_; \ + const __m128i hv = hv_; \ + const __m128i h2v = h2v_; \ + const __m128i h3v = h3v_; \ + const __m128i h4v = h4v_; \ + const __m128i pt = _mm_set_epi8(12, 13, 14, 15, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); \ + __m128i accv_; \ + int roundctr; \ + \ + MAKE8(NVDECLx); \ + MAKE8(TEMPDECLx); \ + MAKE8(NVx); \ + MAKE8(TEMPx); \ + for (roundctr = 1; roundctr < 14; roundctr++) { \ + MAKE8(AESENCx); \ + } \ + MAKE8(AESENCLASTx); \ + MAKE8(XORx); \ + MAKE8(STOREx); \ + accv_ = _mm_load_si128((const __m128i *) accum); \ + MULREDUCE4(rev, hv, h2v, h3v, h4v, temp3, temp2, temp1, temp0, accv_); \ + MULREDUCE4(rev, hv, h2v, h3v, h4v, temp7, temp6, temp5, temp4, accv_); \ + _mm_store_si128((__m128i *) accum, accv_); \ +} while(0) + +/* checksum 8 blocks at once */ +#define aesni_addmul8full(in_, accum, hv_, h2v_, h3v_, h4v_, rev) \ +do { \ + const unsigned char *in = in_; \ + const __m128i hv = hv_; \ + const __m128i h2v = h2v_; \ + const __m128i h3v = h3v_; \ + const __m128i h4v = h4v_; \ + __m128i accv_; \ + \ + MAKE8(LOADx); \ + accv_ = _mm_load_si128((const __m128i *) accum); \ + MULREDUCE4(rev, hv, h2v, h3v, h4v, in3, in2, in1, in0, accv_); \ + MULREDUCE4(rev, hv, h2v, h3v, h4v, in7, in6, in5, in4, accv_); \ + _mm_store_si128((__m128i *) accum, accv_); \ +} while(0) + +/* decrypt 8 blocks at once */ +#define aesni_decrypt8full(out_, n_, rkeys, in_) \ +do { \ + unsigned char *out = out_; \ + uint32_t *n = n_; \ + const unsigned char *in = in_; \ + const __m128i pt = _mm_set_epi8(12, 13, 14, 15, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); \ + int roundctr; \ +\ + MAKE8(NVDECLx); \ + MAKE8(TEMPDECLx); \ + MAKE8(NVx); \ + MAKE8(TEMPx); \ + for (roundctr = 1; roundctr < 14; roundctr++) { \ + MAKE8(AESENCx); \ + } \ + MAKE8(AESENCLASTx); \ + MAKE8(XORx); \ + MAKE8(STOREx); \ +} while(0) + +int +crypto_aead_aes256gcm_beforenm(crypto_aead_aes256gcm_state *ctx_, + const unsigned char *k) +{ + context *ctx = (context *) ctx_; + __m128i *rkeys = ctx->rkeys; + __m128i zero = _mm_setzero_si128(); + unsigned char *H = ctx->H; + + COMPILER_ASSERT((sizeof *ctx_) >= (sizeof *ctx)); + aesni_key256_expand(k, rkeys); + aesni_encrypt1(H, zero, rkeys); + + return 0; +} + +int +crypto_aead_aes256gcm_encrypt_detached_afternm(unsigned char *c, + unsigned char *mac, unsigned long long *maclen_p, + const unsigned char *m, unsigned long long mlen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *nsec, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + const __m128i rev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); + const context *ctx = (const context *) ctx_; + const __m128i *rkeys = ctx->rkeys; + __m128i Hv, H2v, H3v, H4v, accv; + unsigned long long i, j; + unsigned long long adlen_rnd64 = adlen & ~63ULL; + unsigned long long mlen_rnd128 = mlen & ~127ULL; + CRYPTO_ALIGN(16) uint32_t n2[4]; + CRYPTO_ALIGN(16) unsigned char H[16]; + CRYPTO_ALIGN(16) unsigned char T[16]; + CRYPTO_ALIGN(16) unsigned char accum[16]; + CRYPTO_ALIGN(16) unsigned char fb[16]; + + (void) nsec; + memcpy(H, ctx->H, sizeof H); + if (mlen > crypto_aead_aes256gcm_MESSAGEBYTES_MAX) { + sodium_misuse(); /* LCOV_EXCL_LINE */ + } + memcpy(&n2[0], npub, 3 * 4); + n2[3] = 0x01000000; + aesni_encrypt1(T, _mm_load_si128((const __m128i *) n2), rkeys); + { + uint64_t x; + x = _bswap64((uint64_t) (8 * adlen)); + memcpy(&fb[0], &x, sizeof x); + x = _bswap64((uint64_t) (8 * mlen)); + memcpy(&fb[8], &x, sizeof x); + } + /* we store H (and it's power) byte-reverted once and for all */ + Hv = _mm_shuffle_epi8(_mm_load_si128((const __m128i *) H), rev); + _mm_store_si128((__m128i *) H, Hv); + H2v = mulv(Hv, Hv); + H3v = mulv(H2v, Hv); + H4v = mulv(H3v, Hv); + + accv = _mm_setzero_si128(); + /* unrolled by 4 GCM (by 8 doesn't improve using MULREDUCE4) */ + for (i = 0; i < adlen_rnd64; i += 64) { + __m128i X4_ = _mm_loadu_si128((const __m128i *) (ad + i + 0)); + __m128i X3_ = _mm_loadu_si128((const __m128i *) (ad + i + 16)); + __m128i X2_ = _mm_loadu_si128((const __m128i *) (ad + i + 32)); + __m128i X1_ = _mm_loadu_si128((const __m128i *) (ad + i + 48)); + MULREDUCE4(rev, Hv, H2v, H3v, H4v, X1_, X2_, X3_, X4_, accv); + } + _mm_store_si128((__m128i *) accum, accv); + + /* GCM remainder loop */ + for (i = adlen_rnd64; i < adlen; i += 16) { + unsigned int blocklen = 16; + + if (i + (unsigned long long) blocklen > adlen) { + blocklen = (unsigned int) (adlen - i); + } + addmul(accum, ad + i, blocklen, H); + } + +/* this only does 8 full blocks, so no fancy bounds checking is necessary*/ +#define LOOPRND128 \ + do { \ + const int iter = 8; \ + const int lb = iter * 16; \ + \ + for (i = 0; i < mlen_rnd128; i += lb) { \ + aesni_encrypt8full(c + i, n2, rkeys, m + i, accum, Hv, H2v, H3v, H4v, rev); \ + } \ + } while(0) + +/* remainder loop, with the slower GCM update to accommodate partial blocks */ +#define LOOPRMD128 \ + do { \ + const int iter = 8; \ + const int lb = iter * 16; \ + \ + for (i = mlen_rnd128; i < mlen; i += lb) { \ + CRYPTO_ALIGN(16) unsigned char outni[8 * 16]; \ + unsigned long long mj = lb; \ + \ + aesni_encrypt8(outni, n2, rkeys); \ + if ((i + mj) >= mlen) { \ + mj = mlen - i; \ + } \ + for (j = 0; j < mj; j++) { \ + c[i + j] = m[i + j] ^ outni[j]; \ + } \ + for (j = 0; j < mj; j += 16) { \ + unsigned int bl = 16; \ + \ + if (j + (unsigned long long) bl >= mj) { \ + bl = (unsigned int) (mj - j); \ + } \ + addmul(accum, c + i + j, bl, H); \ + } \ + } \ + } while(0) + + n2[3] &= 0x00ffffff; + COUNTER_INC2(n2); + LOOPRND128; + LOOPRMD128; + + addmul(accum, fb, 16, H); + + for (i = 0; i < 16; ++i) { + mac[i] = T[i] ^ accum[15 - i]; + } + if (maclen_p != NULL) { + *maclen_p = 16; + } + return 0; +} + +int +crypto_aead_aes256gcm_encrypt_afternm(unsigned char *c, unsigned long long *clen_p, + const unsigned char *m, unsigned long long mlen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *nsec, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + int ret = crypto_aead_aes256gcm_encrypt_detached_afternm(c, + c + mlen, NULL, + m, mlen, + ad, adlen, + nsec, npub, ctx_); + if (clen_p != NULL) { + *clen_p = mlen + crypto_aead_aes256gcm_ABYTES; + } + return ret; +} + +int +crypto_aead_aes256gcm_decrypt_detached_afternm(unsigned char *m, unsigned char *nsec, + const unsigned char *c, unsigned long long clen, + const unsigned char *mac, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + const __m128i rev = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); + const context *ctx = (const context *) ctx_; + const __m128i *rkeys = ctx->rkeys; + __m128i Hv, H2v, H3v, H4v, accv; + unsigned long long i, j; + unsigned long long adlen_rnd64 = adlen & ~63ULL; + unsigned long long mlen; + unsigned long long mlen_rnd128; + CRYPTO_ALIGN(16) uint32_t n2[4]; + CRYPTO_ALIGN(16) unsigned char H[16]; + CRYPTO_ALIGN(16) unsigned char T[16]; + CRYPTO_ALIGN(16) unsigned char accum[16]; + CRYPTO_ALIGN(16) unsigned char fb[16]; + + (void) nsec; + if (clen > crypto_aead_aes256gcm_MESSAGEBYTES_MAX) { + sodium_misuse(); /* LCOV_EXCL_LINE */ + } + mlen = clen; + + memcpy(&n2[0], npub, 3 * 4); + n2[3] = 0x01000000; + aesni_encrypt1(T, _mm_load_si128((const __m128i *) n2), rkeys); + + { + uint64_t x; + x = _bswap64((uint64_t)(8 * adlen)); + memcpy(&fb[0], &x, sizeof x); + x = _bswap64((uint64_t)(8 * mlen)); + memcpy(&fb[8], &x, sizeof x); + } + + memcpy(H, ctx->H, sizeof H); + Hv = _mm_shuffle_epi8(_mm_load_si128((const __m128i *) H), rev); + _mm_store_si128((__m128i *) H, Hv); + H2v = mulv(Hv, Hv); + H3v = mulv(H2v, Hv); + H4v = mulv(H3v, Hv); + + accv = _mm_setzero_si128(); + for (i = 0; i < adlen_rnd64; i += 64) { + __m128i X4_ = _mm_loadu_si128((const __m128i *) (ad + i + 0)); + __m128i X3_ = _mm_loadu_si128((const __m128i *) (ad + i + 16)); + __m128i X2_ = _mm_loadu_si128((const __m128i *) (ad + i + 32)); + __m128i X1_ = _mm_loadu_si128((const __m128i *) (ad + i + 48)); + MULREDUCE4(rev, Hv, H2v, H3v, H4v, X1_, X2_, X3_, X4_, accv); + } + _mm_store_si128((__m128i *) accum, accv); + + for (i = adlen_rnd64; i < adlen; i += 16) { + unsigned int blocklen = 16; + if (i + (unsigned long long) blocklen > adlen) { + blocklen = (unsigned int) (adlen - i); + } + addmul(accum, ad + i, blocklen, H); + } + + mlen_rnd128 = mlen & ~127ULL; + +#define LOOPACCUMDRND128 \ + do { \ + const int iter = 8; \ + const int lb = iter * 16; \ + for (i = 0; i < mlen_rnd128; i += lb) { \ + aesni_addmul8full(c + i, accum, Hv, H2v, H3v, H4v, rev); \ + } \ + } while(0) + +#define LOOPDRND128 \ + do { \ + const int iter = 8; \ + const int lb = iter * 16; \ + \ + for (i = 0; i < mlen_rnd128; i += lb) { \ + aesni_decrypt8full(m + i, n2, rkeys, c + i); \ + } \ + } while(0) + +#define LOOPACCUMDRMD128 \ + do { \ + const int iter = 8; \ + const int lb = iter * 16; \ + \ + for (i = mlen_rnd128; i < mlen; i += lb) { \ + unsigned long long mj = lb; \ + \ + if ((i + mj) >= mlen) { \ + mj = mlen - i; \ + } \ + for (j = 0; j < mj; j += 16) { \ + unsigned int bl = 16; \ + \ + if (j + (unsigned long long) bl >= mj) { \ + bl = (unsigned int) (mj - j); \ + } \ + addmul(accum, c + i + j, bl, H); \ + } \ + } \ + } while(0) + +#define LOOPDRMD128 \ + do { \ + const int iter = 8; \ + const int lb = iter * 16; \ + \ + for (i = mlen_rnd128; i < mlen; i += lb) { \ + CRYPTO_ALIGN(16) unsigned char outni[8 * 16]; \ + unsigned long long mj = lb; \ + \ + if ((i + mj) >= mlen) { \ + mj = mlen - i; \ + } \ + aesni_encrypt8(outni, n2, rkeys); \ + for (j = 0; j < mj; j++) { \ + m[i + j] = c[i + j] ^ outni[j]; \ + } \ + } \ + } while(0) + + n2[3] &= 0x00ffffff; + + COUNTER_INC2(n2); + LOOPACCUMDRND128; + LOOPACCUMDRMD128; + addmul(accum, fb, 16, H); + { + unsigned char d = 0; + + for (i = 0; i < 16; i++) { + d |= (mac[i] ^ (T[i] ^ accum[15 - i])); + } + if (d != 0) { + if (m != NULL) { + memset(m, 0, mlen); + } + return -1; + } + if (m == NULL) { + return 0; + } + } + n2[3] = 0U; + COUNTER_INC2(n2); + LOOPDRND128; + LOOPDRMD128; + + return 0; +} + +int +crypto_aead_aes256gcm_decrypt_afternm(unsigned char *m, unsigned long long *mlen_p, + unsigned char *nsec, + const unsigned char *c, unsigned long long clen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + unsigned long long mlen = 0ULL; + int ret = -1; + + if (clen >= crypto_aead_aes256gcm_ABYTES) { + ret = crypto_aead_aes256gcm_decrypt_detached_afternm + (m, nsec, c, clen - crypto_aead_aes256gcm_ABYTES, + c + clen - crypto_aead_aes256gcm_ABYTES, + ad, adlen, npub, ctx_); + } + if (mlen_p != NULL) { + if (ret == 0) { + mlen = clen - crypto_aead_aes256gcm_ABYTES; + } + *mlen_p = mlen; + } + return ret; +} + +int +crypto_aead_aes256gcm_encrypt_detached(unsigned char *c, + unsigned char *mac, + unsigned long long *maclen_p, + const unsigned char *m, + unsigned long long mlen, + const unsigned char *ad, + unsigned long long adlen, + const unsigned char *nsec, + const unsigned char *npub, + const unsigned char *k) +{ + CRYPTO_ALIGN(16) crypto_aead_aes256gcm_state ctx; + + crypto_aead_aes256gcm_beforenm(&ctx, k); + + return crypto_aead_aes256gcm_encrypt_detached_afternm + (c, mac, maclen_p, m, mlen, ad, adlen, nsec, npub, + (const crypto_aead_aes256gcm_state *) &ctx); +} + +int +crypto_aead_aes256gcm_encrypt(unsigned char *c, + unsigned long long *clen_p, + const unsigned char *m, + unsigned long long mlen, + const unsigned char *ad, + unsigned long long adlen, + const unsigned char *nsec, + const unsigned char *npub, + const unsigned char *k) +{ + CRYPTO_ALIGN(16) crypto_aead_aes256gcm_state ctx; + int ret; + + crypto_aead_aes256gcm_beforenm(&ctx, k); + + ret = crypto_aead_aes256gcm_encrypt_afternm + (c, clen_p, m, mlen, ad, adlen, nsec, npub, + (const crypto_aead_aes256gcm_state *) &ctx); + sodium_memzero(ctx, sizeof ctx); + + return ret; +} + +int +crypto_aead_aes256gcm_decrypt_detached(unsigned char *m, + unsigned char *nsec, + const unsigned char *c, + unsigned long long clen, + const unsigned char *mac, + const unsigned char *ad, + unsigned long long adlen, + const unsigned char *npub, + const unsigned char *k) +{ + CRYPTO_ALIGN(16) crypto_aead_aes256gcm_state ctx; + + crypto_aead_aes256gcm_beforenm(&ctx, k); + + return crypto_aead_aes256gcm_decrypt_detached_afternm + (m, nsec, c, clen, mac, ad, adlen, npub, + (const crypto_aead_aes256gcm_state *) &ctx); +} + +int +crypto_aead_aes256gcm_decrypt(unsigned char *m, + unsigned long long *mlen_p, + unsigned char *nsec, + const unsigned char *c, + unsigned long long clen, + const unsigned char *ad, + unsigned long long adlen, + const unsigned char *npub, + const unsigned char *k) +{ + CRYPTO_ALIGN(16) crypto_aead_aes256gcm_state ctx; + int ret; + + crypto_aead_aes256gcm_beforenm(&ctx, k); + + ret = crypto_aead_aes256gcm_decrypt_afternm + (m, mlen_p, nsec, c, clen, ad, adlen, npub, + (const crypto_aead_aes256gcm_state *) &ctx); + sodium_memzero(ctx, sizeof ctx); + + return ret; +} + +int +crypto_aead_aes256gcm_is_available(void) +{ + return sodium_runtime_has_pclmul() & sodium_runtime_has_aesni(); +} + +#else + +int +crypto_aead_aes256gcm_encrypt_detached(unsigned char *c, + unsigned char *mac, + unsigned long long *maclen_p, + const unsigned char *m, + unsigned long long mlen, + const unsigned char *ad, + unsigned long long adlen, + const unsigned char *nsec, + const unsigned char *npub, + const unsigned char *k) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_encrypt(unsigned char *c, unsigned long long *clen_p, + const unsigned char *m, unsigned long long mlen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *nsec, const unsigned char *npub, + const unsigned char *k) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_decrypt_detached(unsigned char *m, + unsigned char *nsec, + const unsigned char *c, + unsigned long long clen, + const unsigned char *mac, + const unsigned char *ad, + unsigned long long adlen, + const unsigned char *npub, + const unsigned char *k) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_decrypt(unsigned char *m, unsigned long long *mlen_p, + unsigned char *nsec, const unsigned char *c, + unsigned long long clen, const unsigned char *ad, + unsigned long long adlen, const unsigned char *npub, + const unsigned char *k) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_beforenm(crypto_aead_aes256gcm_state *ctx_, + const unsigned char *k) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_encrypt_detached_afternm(unsigned char *c, + unsigned char *mac, unsigned long long *maclen_p, + const unsigned char *m, unsigned long long mlen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *nsec, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_encrypt_afternm(unsigned char *c, unsigned long long *clen_p, + const unsigned char *m, unsigned long long mlen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *nsec, const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_decrypt_detached_afternm(unsigned char *m, unsigned char *nsec, + const unsigned char *c, unsigned long long clen, + const unsigned char *mac, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_decrypt_afternm(unsigned char *m, unsigned long long *mlen_p, + unsigned char *nsec, + const unsigned char *c, unsigned long long clen, + const unsigned char *ad, unsigned long long adlen, + const unsigned char *npub, + const crypto_aead_aes256gcm_state *ctx_) +{ + errno = ENOSYS; + return -1; +} + +int +crypto_aead_aes256gcm_is_available(void) +{ + return 0; +} + +#endif + +size_t +crypto_aead_aes256gcm_keybytes(void) +{ + return crypto_aead_aes256gcm_KEYBYTES; +} + +size_t +crypto_aead_aes256gcm_nsecbytes(void) +{ + return crypto_aead_aes256gcm_NSECBYTES; +} + +size_t +crypto_aead_aes256gcm_npubbytes(void) +{ + return crypto_aead_aes256gcm_NPUBBYTES; +} + +size_t +crypto_aead_aes256gcm_abytes(void) +{ + return crypto_aead_aes256gcm_ABYTES; +} + +size_t +crypto_aead_aes256gcm_statebytes(void) +{ + return (sizeof(crypto_aead_aes256gcm_state) + (size_t) 15U) & ~(size_t) 15U; +} + +size_t +crypto_aead_aes256gcm_messagebytes_max(void) +{ + return crypto_aead_aes256gcm_MESSAGEBYTES_MAX; +} + +void +crypto_aead_aes256gcm_keygen(unsigned char k[crypto_aead_aes256gcm_KEYBYTES]) +{ + randombytes_buf(k, crypto_aead_aes256gcm_KEYBYTES); +} |