summaryrefslogtreecommitdiff
path: root/plugins/CryptoPP/crypto/des.cpp
diff options
context:
space:
mode:
authorVadim Dashevskiy <watcherhd@gmail.com>2012-05-15 10:38:20 +0000
committerVadim Dashevskiy <watcherhd@gmail.com>2012-05-15 10:38:20 +0000
commit48540940b6c28bb4378abfeb500ec45a625b37b6 (patch)
tree2ef294c0763e802f91d868bdef4229b6868527de /plugins/CryptoPP/crypto/des.cpp
parent5c350913f011e119127baeb32a6aedeb4f0d33bc (diff)
initial commit
git-svn-id: http://svn.miranda-ng.org/main/trunk@2 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/CryptoPP/crypto/des.cpp')
-rw-r--r--plugins/CryptoPP/crypto/des.cpp449
1 files changed, 449 insertions, 0 deletions
diff --git a/plugins/CryptoPP/crypto/des.cpp b/plugins/CryptoPP/crypto/des.cpp
new file mode 100644
index 0000000000..5002f26588
--- /dev/null
+++ b/plugins/CryptoPP/crypto/des.cpp
@@ -0,0 +1,449 @@
+// des.cpp - modified by Wei Dai from Phil Karn's des.c
+// The original code and all modifications are in the public domain.
+
+/*
+ * This is a major rewrite of my old public domain DES code written
+ * circa 1987, which in turn borrowed heavily from Jim Gillogly's 1977
+ * public domain code. I pretty much kept my key scheduling code, but
+ * the actual encrypt/decrypt routines are taken from from Richard
+ * Outerbridge's DES code as printed in Schneier's "Applied Cryptography."
+ *
+ * This code is in the public domain. I would appreciate bug reports and
+ * enhancements.
+ *
+ * Phil Karn KA9Q, karn@unix.ka9q.ampr.org, August 1994.
+ */
+
+#include "pch.h"
+#include "misc.h"
+#include "des.h"
+
+NAMESPACE_BEGIN(CryptoPP)
+
+typedef BlockGetAndPut<word32, BigEndian> Block;
+
+// Richard Outerbridge's initial permutation algorithm
+/*
+inline void IPERM(word32 &left, word32 &right)
+{
+ word32 work;
+
+ work = ((left >> 4) ^ right) & 0x0f0f0f0f;
+ right ^= work;
+ left ^= work << 4;
+ work = ((left >> 16) ^ right) & 0xffff;
+ right ^= work;
+ left ^= work << 16;
+ work = ((right >> 2) ^ left) & 0x33333333;
+ left ^= work;
+ right ^= (work << 2);
+ work = ((right >> 8) ^ left) & 0xff00ff;
+ left ^= work;
+ right ^= (work << 8);
+ right = rotl(right, 1);
+ work = (left ^ right) & 0xaaaaaaaa;
+ left ^= work;
+ right ^= work;
+ left = rotl(left, 1);
+}
+inline void FPERM(word32 &left, word32 &right)
+{
+ word32 work;
+
+ right = rotr(right, 1);
+ work = (left ^ right) & 0xaaaaaaaa;
+ left ^= work;
+ right ^= work;
+ left = rotr(left, 1);
+ work = ((left >> 8) ^ right) & 0xff00ff;
+ right ^= work;
+ left ^= work << 8;
+ work = ((left >> 2) ^ right) & 0x33333333;
+ right ^= work;
+ left ^= work << 2;
+ work = ((right >> 16) ^ left) & 0xffff;
+ left ^= work;
+ right ^= work << 16;
+ work = ((right >> 4) ^ left) & 0x0f0f0f0f;
+ left ^= work;
+ right ^= work << 4;
+}
+*/
+
+// Wei Dai's modification to Richard Outerbridge's initial permutation
+// algorithm, this one is faster if you have access to rotate instructions
+// (like in MSVC)
+static inline void IPERM(word32 &left, word32 &right)
+{
+ word32 work;
+
+ right = rotlFixed(right, 4U);
+ work = (left ^ right) & 0xf0f0f0f0;
+ left ^= work;
+ right = rotrFixed(right^work, 20U);
+ work = (left ^ right) & 0xffff0000;
+ left ^= work;
+ right = rotrFixed(right^work, 18U);
+ work = (left ^ right) & 0x33333333;
+ left ^= work;
+ right = rotrFixed(right^work, 6U);
+ work = (left ^ right) & 0x00ff00ff;
+ left ^= work;
+ right = rotlFixed(right^work, 9U);
+ work = (left ^ right) & 0xaaaaaaaa;
+ left = rotlFixed(left^work, 1U);
+ right ^= work;
+}
+
+static inline void FPERM(word32 &left, word32 &right)
+{
+ word32 work;
+
+ right = rotrFixed(right, 1U);
+ work = (left ^ right) & 0xaaaaaaaa;
+ right ^= work;
+ left = rotrFixed(left^work, 9U);
+ work = (left ^ right) & 0x00ff00ff;
+ right ^= work;
+ left = rotlFixed(left^work, 6U);
+ work = (left ^ right) & 0x33333333;
+ right ^= work;
+ left = rotlFixed(left^work, 18U);
+ work = (left ^ right) & 0xffff0000;
+ right ^= work;
+ left = rotlFixed(left^work, 20U);
+ work = (left ^ right) & 0xf0f0f0f0;
+ right ^= work;
+ left = rotrFixed(left^work, 4U);
+}
+
+void DES::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &)
+{
+ AssertValidKeyLength(length);
+
+ RawSetKey(GetCipherDirection(), userKey);
+}
+
+#ifndef CRYPTOPP_IMPORTS
+
+/* Tables defined in the Data Encryption Standard documents
+ * Three of these tables, the initial permutation, the final
+ * permutation and the expansion operator, are regular enough that
+ * for speed, we hard-code them. They're here for reference only.
+ * Also, the S and P boxes are used by a separate program, gensp.c,
+ * to build the combined SP box, Spbox[]. They're also here just
+ * for reference.
+ */
+#ifdef notdef
+/* initial permutation IP */
+static byte ip[] = {
+ 58, 50, 42, 34, 26, 18, 10, 2,
+ 60, 52, 44, 36, 28, 20, 12, 4,
+ 62, 54, 46, 38, 30, 22, 14, 6,
+ 64, 56, 48, 40, 32, 24, 16, 8,
+ 57, 49, 41, 33, 25, 17, 9, 1,
+ 59, 51, 43, 35, 27, 19, 11, 3,
+ 61, 53, 45, 37, 29, 21, 13, 5,
+ 63, 55, 47, 39, 31, 23, 15, 7
+};
+
+/* final permutation IP^-1 */
+static byte fp[] = {
+ 40, 8, 48, 16, 56, 24, 64, 32,
+ 39, 7, 47, 15, 55, 23, 63, 31,
+ 38, 6, 46, 14, 54, 22, 62, 30,
+ 37, 5, 45, 13, 53, 21, 61, 29,
+ 36, 4, 44, 12, 52, 20, 60, 28,
+ 35, 3, 43, 11, 51, 19, 59, 27,
+ 34, 2, 42, 10, 50, 18, 58, 26,
+ 33, 1, 41, 9, 49, 17, 57, 25
+};
+/* expansion operation matrix */
+static byte ei[] = {
+ 32, 1, 2, 3, 4, 5,
+ 4, 5, 6, 7, 8, 9,
+ 8, 9, 10, 11, 12, 13,
+ 12, 13, 14, 15, 16, 17,
+ 16, 17, 18, 19, 20, 21,
+ 20, 21, 22, 23, 24, 25,
+ 24, 25, 26, 27, 28, 29,
+ 28, 29, 30, 31, 32, 1
+};
+/* The (in)famous S-boxes */
+static byte sbox[8][64] = {
+ /* S1 */
+ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
+
+ /* S2 */
+ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
+
+ /* S3 */
+ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
+
+ /* S4 */
+ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
+
+ /* S5 */
+ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
+
+ /* S6 */
+ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
+
+ /* S7 */
+ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
+
+ /* S8 */
+ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+};
+
+/* 32-bit permutation function P used on the output of the S-boxes */
+static byte p32i[] = {
+ 16, 7, 20, 21,
+ 29, 12, 28, 17,
+ 1, 15, 23, 26,
+ 5, 18, 31, 10,
+ 2, 8, 24, 14,
+ 32, 27, 3, 9,
+ 19, 13, 30, 6,
+ 22, 11, 4, 25
+};
+#endif
+
+/* permuted choice table (key) */
+static const byte pc1[] = {
+ 57, 49, 41, 33, 25, 17, 9,
+ 1, 58, 50, 42, 34, 26, 18,
+ 10, 2, 59, 51, 43, 35, 27,
+ 19, 11, 3, 60, 52, 44, 36,
+
+ 63, 55, 47, 39, 31, 23, 15,
+ 7, 62, 54, 46, 38, 30, 22,
+ 14, 6, 61, 53, 45, 37, 29,
+ 21, 13, 5, 28, 20, 12, 4
+};
+
+/* number left rotations of pc1 */
+static const byte totrot[] = {
+ 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
+};
+
+/* permuted choice key (table) */
+static const byte pc2[] = {
+ 14, 17, 11, 24, 1, 5,
+ 3, 28, 15, 6, 21, 10,
+ 23, 19, 12, 4, 26, 8,
+ 16, 7, 27, 20, 13, 2,
+ 41, 52, 31, 37, 47, 55,
+ 30, 40, 51, 45, 33, 48,
+ 44, 49, 39, 56, 34, 53,
+ 46, 42, 50, 36, 29, 32
+};
+
+/* End of DES-defined tables */
+
+/* bit 0 is left-most in byte */
+static const int bytebit[] = {
+ 0200,0100,040,020,010,04,02,01
+};
+
+/* Set key (initialize key schedule array) */
+void RawDES::RawSetKey(CipherDir dir, const byte *key)
+{
+ SecByteBlock buffer(56+56+8);
+ byte *const pc1m=buffer; /* place to modify pc1 into */
+ byte *const pcr=pc1m+56; /* place to rotate pc1 into */
+ byte *const ks=pcr+56;
+ register int i,j,l;
+ int m;
+
+ for (j=0; j<56; j++) { /* convert pc1 to bits of key */
+ l=pc1[j]-1; /* integer bit location */
+ m = l & 07; /* find bit */
+ pc1m[j]=(key[l>>3] & /* find which key byte l is in */
+ bytebit[m]) /* and which bit of that byte */
+ ? 1 : 0; /* and store 1-bit result */
+ }
+ for (i=0; i<16; i++) { /* key chunk for each iteration */
+ memset(ks,0,8); /* Clear key schedule */
+ for (j=0; j<56; j++) /* rotate pc1 the right amount */
+ pcr[j] = pc1m[(l=j+totrot[i])<(j<28? 28 : 56) ? l: l-28];
+ /* rotate left and right halves independently */
+ for (j=0; j<48; j++){ /* select bits individually */
+ /* check bit that goes to ks[j] */
+ if (pcr[pc2[j]-1]){
+ /* mask it in if it's there */
+ l= j % 6;
+ ks[j/6] |= bytebit[l] >> 2;
+ }
+ }
+ /* Now convert to odd/even interleaved form for use in F */
+ k[2*i] = ((word32)ks[0] << 24)
+ | ((word32)ks[2] << 16)
+ | ((word32)ks[4] << 8)
+ | ((word32)ks[6]);
+ k[2*i+1] = ((word32)ks[1] << 24)
+ | ((word32)ks[3] << 16)
+ | ((word32)ks[5] << 8)
+ | ((word32)ks[7]);
+ }
+
+ if (dir==DECRYPTION) // reverse key schedule order
+ for (i=0; i<16; i+=2)
+ {
+ std::swap(k[i], k[32-2-i]);
+ std::swap(k[i+1], k[32-1-i]);
+ }
+}
+
+void RawDES::RawProcessBlock(word32 &l_, word32 &r_) const
+{
+ word32 l = l_, r = r_;
+ const word32 *kptr=k;
+
+ for (unsigned i=0; i<8; i++)
+ {
+ word32 work = rotrFixed(r, 4U) ^ kptr[4*i+0];
+ l ^= Spbox[6][(work) & 0x3f]
+ ^ Spbox[4][(work >> 8) & 0x3f]
+ ^ Spbox[2][(work >> 16) & 0x3f]
+ ^ Spbox[0][(work >> 24) & 0x3f];
+ work = r ^ kptr[4*i+1];
+ l ^= Spbox[7][(work) & 0x3f]
+ ^ Spbox[5][(work >> 8) & 0x3f]
+ ^ Spbox[3][(work >> 16) & 0x3f]
+ ^ Spbox[1][(work >> 24) & 0x3f];
+
+ work = rotrFixed(l, 4U) ^ kptr[4*i+2];
+ r ^= Spbox[6][(work) & 0x3f]
+ ^ Spbox[4][(work >> 8) & 0x3f]
+ ^ Spbox[2][(work >> 16) & 0x3f]
+ ^ Spbox[0][(work >> 24) & 0x3f];
+ work = l ^ kptr[4*i+3];
+ r ^= Spbox[7][(work) & 0x3f]
+ ^ Spbox[5][(work >> 8) & 0x3f]
+ ^ Spbox[3][(work >> 16) & 0x3f]
+ ^ Spbox[1][(work >> 24) & 0x3f];
+ }
+
+ l_ = l; r_ = r;
+}
+
+void DES_EDE2::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &)
+{
+ AssertValidKeyLength(length);
+
+ m_des1.RawSetKey(GetCipherDirection(), userKey);
+ m_des2.RawSetKey(ReverseCipherDir(GetCipherDirection()), userKey+8);
+}
+
+void DES_EDE2::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
+{
+ word32 l,r;
+ Block::Get(inBlock)(l)(r);
+ IPERM(l,r);
+ m_des1.RawProcessBlock(l, r);
+ m_des2.RawProcessBlock(r, l);
+ m_des1.RawProcessBlock(l, r);
+ FPERM(l,r);
+ Block::Put(xorBlock, outBlock)(r)(l);
+}
+
+void DES_EDE3::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &)
+{
+ AssertValidKeyLength(length);
+
+ m_des1.RawSetKey(GetCipherDirection(), userKey + (IsForwardTransformation() ? 0 : 16));
+ m_des2.RawSetKey(ReverseCipherDir(GetCipherDirection()), userKey + 8);
+ m_des3.RawSetKey(GetCipherDirection(), userKey + (IsForwardTransformation() ? 16 : 0));
+}
+
+void DES_EDE3::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
+{
+ word32 l,r;
+ Block::Get(inBlock)(l)(r);
+ IPERM(l,r);
+ m_des1.RawProcessBlock(l, r);
+ m_des2.RawProcessBlock(r, l);
+ m_des3.RawProcessBlock(l, r);
+ FPERM(l,r);
+ Block::Put(xorBlock, outBlock)(r)(l);
+}
+
+#endif // #ifndef CRYPTOPP_IMPORTS
+
+static inline bool CheckParity(byte b)
+{
+ unsigned int a = b ^ (b >> 4);
+ return ((a ^ (a>>1) ^ (a>>2) ^ (a>>3)) & 1) == 1;
+}
+
+bool DES::CheckKeyParityBits(const byte *key)
+{
+ for (unsigned int i=0; i<8; i++)
+ if (!CheckParity(key[i]))
+ return false;
+ return true;
+}
+
+void DES::CorrectKeyParityBits(byte *key)
+{
+ for (unsigned int i=0; i<8; i++)
+ if (!CheckParity(key[i]))
+ key[i] ^= 1;
+}
+
+// Encrypt or decrypt a block of data in ECB mode
+void DES::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
+{
+ word32 l,r;
+ Block::Get(inBlock)(l)(r);
+ IPERM(l,r);
+ RawProcessBlock(l, r);
+ FPERM(l,r);
+ Block::Put(xorBlock, outBlock)(r)(l);
+}
+
+void DES_XEX3::Base::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &)
+{
+ AssertValidKeyLength(length);
+
+ if (!m_des.get())
+ m_des.reset(new DES::Encryption);
+
+ memcpy(m_x1, key + (IsForwardTransformation() ? 0 : 16), BLOCKSIZE);
+ m_des->RawSetKey(GetCipherDirection(), key + 8);
+ memcpy(m_x3, key + (IsForwardTransformation() ? 16 : 0), BLOCKSIZE);
+}
+
+void DES_XEX3::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
+{
+ xorbuf(outBlock, inBlock, m_x1, BLOCKSIZE);
+ m_des->ProcessAndXorBlock(outBlock, xorBlock, outBlock);
+ xorbuf(outBlock, m_x3, BLOCKSIZE);
+}
+
+NAMESPACE_END