diff options
author | Vadim Dashevskiy <watcherhd@gmail.com> | 2012-05-15 10:38:20 +0000 |
---|---|---|
committer | Vadim Dashevskiy <watcherhd@gmail.com> | 2012-05-15 10:38:20 +0000 |
commit | 48540940b6c28bb4378abfeb500ec45a625b37b6 (patch) | |
tree | 2ef294c0763e802f91d868bdef4229b6868527de /plugins/CryptoPP/crypto/rsa.cpp | |
parent | 5c350913f011e119127baeb32a6aedeb4f0d33bc (diff) |
initial commit
git-svn-id: http://svn.miranda-ng.org/main/trunk@2 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/CryptoPP/crypto/rsa.cpp')
-rw-r--r-- | plugins/CryptoPP/crypto/rsa.cpp | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/plugins/CryptoPP/crypto/rsa.cpp b/plugins/CryptoPP/crypto/rsa.cpp new file mode 100644 index 0000000000..9793de56c8 --- /dev/null +++ b/plugins/CryptoPP/crypto/rsa.cpp @@ -0,0 +1,304 @@ +// rsa.cpp - written and placed in the public domain by Wei Dai
+
+#include "pch.h"
+#include "rsa.h"
+#include "asn.h"
+#include "oids.h"
+#include "modarith.h"
+#include "nbtheory.h"
+#include "sha.h"
+#include "algparam.h"
+#include "fips140.h"
+
+#if !defined(NDEBUG) && !defined(CRYPTOPP_IS_DLL)
+#include "pssr.h"
+NAMESPACE_BEGIN(CryptoPP)
+void RSA_TestInstantiations()
+{
+ RSASS<PKCS1v15, SHA>::Verifier x1(1, 1);
+ RSASS<PKCS1v15, SHA>::Signer x2(NullRNG(), 1);
+ RSASS<PKCS1v15, SHA>::Verifier x3(x2);
+ RSASS<PKCS1v15, SHA>::Verifier x4(x2.GetKey());
+ RSASS<PSS, SHA>::Verifier x5(x3);
+#ifndef __MWERKS__
+ RSASS<PSSR, SHA>::Signer x6 = x2;
+ x3 = x2;
+ x6 = x2;
+#endif
+ RSAES<PKCS1v15>::Encryptor x7(x2);
+#ifndef __GNUC__
+ RSAES<PKCS1v15>::Encryptor x8(x3);
+#endif
+ RSAES<OAEP<SHA> >::Encryptor x9(x2);
+
+ x4 = x2.GetKey();
+}
+NAMESPACE_END
+#endif
+
+#ifndef CRYPTOPP_IMPORTS
+
+NAMESPACE_BEGIN(CryptoPP)
+
+OID RSAFunction::GetAlgorithmID() const
+{
+ return ASN1::rsaEncryption();
+}
+
+void RSAFunction::BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
+{
+ BERSequenceDecoder seq(bt);
+ m_n.BERDecode(seq);
+ m_e.BERDecode(seq);
+ seq.MessageEnd();
+}
+
+void RSAFunction::DEREncodePublicKey(BufferedTransformation &bt) const
+{
+ DERSequenceEncoder seq(bt);
+ m_n.DEREncode(seq);
+ m_e.DEREncode(seq);
+ seq.MessageEnd();
+}
+
+Integer RSAFunction::ApplyFunction(const Integer &x) const
+{
+ DoQuickSanityCheck();
+ return a_exp_b_mod_c(x, m_e, m_n);
+}
+
+bool RSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
+{
+ bool pass = true;
+ pass = pass && m_n > Integer::One() && m_n.IsOdd();
+ pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n;
+ return pass;
+}
+
+bool RSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
+{
+ return GetValueHelper(this, name, valueType, pValue).Assignable()
+ CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
+ CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)
+ ;
+}
+
+void RSAFunction::AssignFrom(const NameValuePairs &source)
+{
+ AssignFromHelper(this, source)
+ CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
+ CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)
+ ;
+}
+
+// *****************************************************************************
+
+class RSAPrimeSelector : public PrimeSelector
+{
+public:
+ RSAPrimeSelector(const Integer &e) : m_e(e) {}
+ bool IsAcceptable(const Integer &candidate) const {return RelativelyPrime(m_e, candidate-Integer::One());}
+ Integer m_e;
+};
+
+void InvertibleRSAFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
+{
+ int modulusSize = 2048;
+ alg.GetIntValue(Name::ModulusSize(), modulusSize) || alg.GetIntValue(Name::KeySize(), modulusSize);
+
+ if (modulusSize < 16)
+ throw InvalidArgument("InvertibleRSAFunction: specified modulus size is too small");
+
+ m_e = alg.GetValueWithDefault(Name::PublicExponent(), Integer(17));
+
+ if (m_e < 3 || m_e.IsEven())
+ throw InvalidArgument("InvertibleRSAFunction: invalid public exponent");
+
+ RSAPrimeSelector selector(m_e);
+ const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
+ (Name::PointerToPrimeSelector(), selector.GetSelectorPointer());
+ m_p.GenerateRandom(rng, primeParam);
+ m_q.GenerateRandom(rng, primeParam);
+
+ m_d = EuclideanMultiplicativeInverse(m_e, LCM(m_p-1, m_q-1));
+ assert(m_d.IsPositive());
+
+ m_dp = m_d % (m_p-1);
+ m_dq = m_d % (m_q-1);
+ m_n = m_p * m_q;
+ m_u = m_q.InverseMod(m_p);
+
+ if (FIPS_140_2_ComplianceEnabled())
+ {
+ RSASS<PKCS1v15, SHA>::Signer signer(*this);
+ RSASS<PKCS1v15, SHA>::Verifier verifier(signer);
+ SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);
+
+ RSAES<OAEP<SHA> >::Decryptor decryptor(*this);
+ RSAES<OAEP<SHA> >::Encryptor encryptor(decryptor);
+ EncryptionPairwiseConsistencyTest_FIPS_140_Only(encryptor, decryptor);
+ }
+}
+
+void InvertibleRSAFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e)
+{
+ GenerateRandom(rng, MakeParameters(Name::ModulusSize(), (int)keybits)(Name::PublicExponent(), e+e.IsEven()));
+}
+
+void InvertibleRSAFunction::Initialize(const Integer &n, const Integer &e, const Integer &d)
+{
+ if (n.IsEven() || e.IsEven() | d.IsEven())
+ throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");
+
+ m_n = n;
+ m_e = e;
+ m_d = d;
+
+ Integer r = --(d*e);
+ unsigned int s = 0;
+ while (r.IsEven())
+ {
+ r >>= 1;
+ s++;
+ }
+
+ ModularArithmetic modn(n);
+ for (Integer i = 2; ; ++i)
+ {
+ Integer a = modn.Exponentiate(i, r);
+ if (a == 1)
+ continue;
+ Integer b;
+ unsigned int j = 0;
+ while (a != n-1)
+ {
+ b = modn.Square(a);
+ if (b == 1)
+ {
+ m_p = GCD(a-1, n);
+ m_q = n/m_p;
+ m_dp = m_d % (m_p-1);
+ m_dq = m_d % (m_q-1);
+ m_u = m_q.InverseMod(m_p);
+ return;
+ }
+ if (++j == s)
+ throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");
+ a = b;
+ }
+ }
+}
+
+void InvertibleRSAFunction::BERDecodePrivateKey(BufferedTransformation &bt, bool, size_t)
+{
+ BERSequenceDecoder privateKey(bt);
+ word32 version;
+ BERDecodeUnsigned<word32>(privateKey, version, INTEGER, 0, 0); // check version
+ m_n.BERDecode(privateKey);
+ m_e.BERDecode(privateKey);
+ m_d.BERDecode(privateKey);
+ m_p.BERDecode(privateKey);
+ m_q.BERDecode(privateKey);
+ m_dp.BERDecode(privateKey);
+ m_dq.BERDecode(privateKey);
+ m_u.BERDecode(privateKey);
+ privateKey.MessageEnd();
+}
+
+void InvertibleRSAFunction::DEREncodePrivateKey(BufferedTransformation &bt) const
+{
+ DERSequenceEncoder privateKey(bt);
+ DEREncodeUnsigned<word32>(privateKey, 0); // version
+ m_n.DEREncode(privateKey);
+ m_e.DEREncode(privateKey);
+ m_d.DEREncode(privateKey);
+ m_p.DEREncode(privateKey);
+ m_q.DEREncode(privateKey);
+ m_dp.DEREncode(privateKey);
+ m_dq.DEREncode(privateKey);
+ m_u.DEREncode(privateKey);
+ privateKey.MessageEnd();
+}
+
+Integer InvertibleRSAFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
+{
+ DoQuickSanityCheck();
+ ModularArithmetic modn(m_n);
+ Integer r, rInv;
+ do { // do this in a loop for people using small numbers for testing
+ r.Randomize(rng, Integer::One(), m_n - Integer::One());
+ rInv = modn.MultiplicativeInverse(r);
+ } while (rInv.IsZero());
+ Integer re = modn.Exponentiate(r, m_e);
+ re = modn.Multiply(re, x); // blind
+ // here we follow the notation of PKCS #1 and let u=q inverse mod p
+ // but in ModRoot, u=p inverse mod q, so we reverse the order of p and q
+ Integer y = ModularRoot(re, m_dq, m_dp, m_q, m_p, m_u);
+ y = modn.Multiply(y, rInv); // unblind
+ if (modn.Exponentiate(y, m_e) != x) // check
+ throw Exception(Exception::OTHER_ERROR, "InvertibleRSAFunction: computational error during private key operation");
+ return y;
+}
+
+bool InvertibleRSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
+{
+ bool pass = RSAFunction::Validate(rng, level);
+ pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n;
+ pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n;
+ pass = pass && m_d > Integer::One() && m_d.IsOdd() && m_d < m_n;
+ pass = pass && m_dp > Integer::One() && m_dp.IsOdd() && m_dp < m_p;
+ pass = pass && m_dq > Integer::One() && m_dq.IsOdd() && m_dq < m_q;
+ pass = pass && m_u.IsPositive() && m_u < m_p;
+ if (level >= 1)
+ {
+ pass = pass && m_p * m_q == m_n;
+ pass = pass && m_e*m_d % LCM(m_p-1, m_q-1) == 1;
+ pass = pass && m_dp == m_d%(m_p-1) && m_dq == m_d%(m_q-1);
+ pass = pass && m_u * m_q % m_p == 1;
+ }
+ if (level >= 2)
+ pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
+ return pass;
+}
+
+bool InvertibleRSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
+{
+ return GetValueHelper<RSAFunction>(this, name, valueType, pValue).Assignable()
+ CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
+ CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
+ CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent)
+ CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime1PrivateExponent)
+ CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime2PrivateExponent)
+ CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
+ ;
+}
+
+void InvertibleRSAFunction::AssignFrom(const NameValuePairs &source)
+{
+ AssignFromHelper<RSAFunction>(this, source)
+ CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
+ CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
+ CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent)
+ CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime1PrivateExponent)
+ CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime2PrivateExponent)
+ CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
+ ;
+}
+
+// *****************************************************************************
+
+Integer RSAFunction_ISO::ApplyFunction(const Integer &x) const
+{
+ Integer t = RSAFunction::ApplyFunction(x);
+ return t % 16 == 12 ? t : m_n - t;
+}
+
+Integer InvertibleRSAFunction_ISO::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
+{
+ Integer t = InvertibleRSAFunction::CalculateInverse(rng, x);
+ return STDMIN(t, m_n-t);
+}
+
+NAMESPACE_END
+
+#endif
|