diff options
author | Kirill Volinsky <mataes2007@gmail.com> | 2012-07-20 16:21:49 +0000 |
---|---|---|
committer | Kirill Volinsky <mataes2007@gmail.com> | 2012-07-20 16:21:49 +0000 |
commit | f424a18112032cf61d2871a6b91a5af607c171ae (patch) | |
tree | 88fedc4e28941ceecda7026f0b06eba6271f91d5 /plugins/CryptoPP/crypto/src/gf2n.h | |
parent | bfe1bd0fc087be44c70904aee0fe4276643d206d (diff) |
CryptoPP:
changed folder structure
git-svn-id: http://svn.miranda-ng.org/main/trunk@1083 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/CryptoPP/crypto/src/gf2n.h')
-rw-r--r-- | plugins/CryptoPP/crypto/src/gf2n.h | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/plugins/CryptoPP/crypto/src/gf2n.h b/plugins/CryptoPP/crypto/src/gf2n.h new file mode 100644 index 0000000000..c4500502ca --- /dev/null +++ b/plugins/CryptoPP/crypto/src/gf2n.h @@ -0,0 +1,367 @@ +#ifndef CRYPTOPP_GF2N_H
+#define CRYPTOPP_GF2N_H
+
+/*! \file */
+
+#include "cryptlib.h"
+#include "secblock.h"
+#include "misc.h"
+#include "algebra.h"
+
+#include <iosfwd>
+
+NAMESPACE_BEGIN(CryptoPP)
+
+//! Polynomial with Coefficients in GF(2)
+/*! \nosubgrouping */
+class CRYPTOPP_DLL PolynomialMod2
+{
+public:
+ //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
+ //@{
+ //! divide by zero exception
+ class DivideByZero : public Exception
+ {
+ public:
+ DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {}
+ };
+
+ typedef unsigned int RandomizationParameter;
+ //@}
+
+ //! \name CREATORS
+ //@{
+ //! creates the zero polynomial
+ PolynomialMod2();
+ //! copy constructor
+ PolynomialMod2(const PolynomialMod2& t);
+
+ //! convert from word
+ /*! value should be encoded with the least significant bit as coefficient to x^0
+ and most significant bit as coefficient to x^(WORD_BITS-1)
+ bitLength denotes how much memory to allocate initially
+ */
+ PolynomialMod2(word value, size_t bitLength=WORD_BITS);
+
+ //! convert from big-endian byte array
+ PolynomialMod2(const byte *encodedPoly, size_t byteCount)
+ {Decode(encodedPoly, byteCount);}
+
+ //! convert from big-endian form stored in a BufferedTransformation
+ PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
+ {Decode(encodedPoly, byteCount);}
+
+ //! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount
+ PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
+ {Randomize(rng, bitcount);}
+
+ //! return x^i
+ static PolynomialMod2 CRYPTOPP_API Monomial(size_t i);
+ //! return x^t0 + x^t1 + x^t2
+ static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);
+ //! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4
+ static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);
+ //! return x^(n-1) + ... + x + 1
+ static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n);
+
+ //!
+ static const PolynomialMod2 & CRYPTOPP_API Zero();
+ //!
+ static const PolynomialMod2 & CRYPTOPP_API One();
+ //@}
+
+ //! \name ENCODE/DECODE
+ //@{
+ //! minimum number of bytes to encode this polynomial
+ /*! MinEncodedSize of 0 is 1 */
+ unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}
+
+ //! encode in big-endian format
+ /*! if outputLen < MinEncodedSize, the most significant bytes will be dropped
+ if outputLen > MinEncodedSize, the most significant bytes will be padded
+ */
+ void Encode(byte *output, size_t outputLen) const;
+ //!
+ void Encode(BufferedTransformation &bt, size_t outputLen) const;
+
+ //!
+ void Decode(const byte *input, size_t inputLen);
+ //!
+ //* Precondition: bt.MaxRetrievable() >= inputLen
+ void Decode(BufferedTransformation &bt, size_t inputLen);
+
+ //! encode value as big-endian octet string
+ void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
+ //! decode value as big-endian octet string
+ void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
+ //@}
+
+ //! \name ACCESSORS
+ //@{
+ //! number of significant bits = Degree() + 1
+ unsigned int BitCount() const;
+ //! number of significant bytes = ceiling(BitCount()/8)
+ unsigned int ByteCount() const;
+ //! number of significant words = ceiling(ByteCount()/sizeof(word))
+ unsigned int WordCount() const;
+
+ //! return the n-th bit, n=0 being the least significant bit
+ bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}
+ //! return the n-th byte
+ byte GetByte(size_t n) const;
+
+ //! the zero polynomial will return a degree of -1
+ signed int Degree() const {return BitCount()-1;}
+ //! degree + 1
+ unsigned int CoefficientCount() const {return BitCount();}
+ //! return coefficient for x^i
+ int GetCoefficient(size_t i) const
+ {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}
+ //! return coefficient for x^i
+ int operator[](unsigned int i) const {return GetCoefficient(i);}
+
+ //!
+ bool IsZero() const {return !*this;}
+ //!
+ bool Equals(const PolynomialMod2 &rhs) const;
+ //@}
+
+ //! \name MANIPULATORS
+ //@{
+ //!
+ PolynomialMod2& operator=(const PolynomialMod2& t);
+ //!
+ PolynomialMod2& operator&=(const PolynomialMod2& t);
+ //!
+ PolynomialMod2& operator^=(const PolynomialMod2& t);
+ //!
+ PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;}
+ //!
+ PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;}
+ //!
+ PolynomialMod2& operator*=(const PolynomialMod2& t);
+ //!
+ PolynomialMod2& operator/=(const PolynomialMod2& t);
+ //!
+ PolynomialMod2& operator%=(const PolynomialMod2& t);
+ //!
+ PolynomialMod2& operator<<=(unsigned int);
+ //!
+ PolynomialMod2& operator>>=(unsigned int);
+
+ //!
+ void Randomize(RandomNumberGenerator &rng, size_t bitcount);
+
+ //!
+ void SetBit(size_t i, int value = 1);
+ //! set the n-th byte to value
+ void SetByte(size_t n, byte value);
+
+ //!
+ void SetCoefficient(size_t i, int value) {SetBit(i, value);}
+
+ //!
+ void swap(PolynomialMod2 &a) {reg.swap(a.reg);}
+ //@}
+
+ //! \name UNARY OPERATORS
+ //@{
+ //!
+ bool operator!() const;
+ //!
+ PolynomialMod2 operator+() const {return *this;}
+ //!
+ PolynomialMod2 operator-() const {return *this;}
+ //@}
+
+ //! \name BINARY OPERATORS
+ //@{
+ //!
+ PolynomialMod2 And(const PolynomialMod2 &b) const;
+ //!
+ PolynomialMod2 Xor(const PolynomialMod2 &b) const;
+ //!
+ PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}
+ //!
+ PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}
+ //!
+ PolynomialMod2 Times(const PolynomialMod2 &b) const;
+ //!
+ PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;
+ //!
+ PolynomialMod2 Modulo(const PolynomialMod2 &b) const;
+
+ //!
+ PolynomialMod2 operator>>(unsigned int n) const;
+ //!
+ PolynomialMod2 operator<<(unsigned int n) const;
+ //@}
+
+ //! \name OTHER ARITHMETIC FUNCTIONS
+ //@{
+ //! sum modulo 2 of all coefficients
+ unsigned int Parity() const;
+
+ //! check for irreducibility
+ bool IsIrreducible() const;
+
+ //! is always zero since we're working modulo 2
+ PolynomialMod2 Doubled() const {return Zero();}
+ //!
+ PolynomialMod2 Squared() const;
+
+ //! only 1 is a unit
+ bool IsUnit() const {return Equals(One());}
+ //! return inverse if *this is a unit, otherwise return 0
+ PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}
+
+ //! greatest common divisor
+ static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n);
+ //! calculate multiplicative inverse of *this mod n
+ PolynomialMod2 InverseMod(const PolynomialMod2 &) const;
+
+ //! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
+ static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d);
+ //@}
+
+ //! \name INPUT/OUTPUT
+ //@{
+ //!
+ friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);
+ //@}
+
+private:
+ friend class GF2NT;
+
+ SecWordBlock reg;
+};
+
+//!
+inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
+{return a.Equals(b);}
+//!
+inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
+{return !(a==b);}
+//! compares degree
+inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
+{return a.Degree() > b.Degree();}
+//! compares degree
+inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
+{return a.Degree() >= b.Degree();}
+//! compares degree
+inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
+{return a.Degree() < b.Degree();}
+//! compares degree
+inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
+{return a.Degree() <= b.Degree();}
+//!
+inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}
+//!
+inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}
+//!
+inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}
+//!
+inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}
+//!
+inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}
+//!
+inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}
+//!
+inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}
+
+// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,
+// but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003
+CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>;
+CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>;
+CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>;
+CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>;
+CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >;
+
+//! GF(2^n) with Polynomial Basis
+class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> >
+{
+public:
+ GF2NP(const PolynomialMod2 &modulus);
+
+ virtual GF2NP * Clone() const {return new GF2NP(*this);}
+ virtual void DEREncode(BufferedTransformation &bt) const
+ {assert(false);} // no ASN.1 syntax yet for general polynomial basis
+
+ void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
+ void BERDecodeElement(BufferedTransformation &in, Element &a) const;
+
+ bool Equal(const Element &a, const Element &b) const
+ {assert(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}
+
+ bool IsUnit(const Element &a) const
+ {assert(a.Degree() < m_modulus.Degree()); return !!a;}
+
+ unsigned int MaxElementBitLength() const
+ {return m;}
+
+ unsigned int MaxElementByteLength() const
+ {return (unsigned int)BitsToBytes(MaxElementBitLength());}
+
+ Element SquareRoot(const Element &a) const;
+
+ Element HalfTrace(const Element &a) const;
+
+ // returns z such that z^2 + z == a
+ Element SolveQuadraticEquation(const Element &a) const;
+
+protected:
+ unsigned int m;
+};
+
+//! GF(2^n) with Trinomial Basis
+class CRYPTOPP_DLL GF2NT : public GF2NP
+{
+public:
+ // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
+ GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);
+
+ GF2NP * Clone() const {return new GF2NT(*this);}
+ void DEREncode(BufferedTransformation &bt) const;
+
+ const Element& Multiply(const Element &a, const Element &b) const;
+
+ const Element& Square(const Element &a) const
+ {return Reduced(a.Squared());}
+
+ const Element& MultiplicativeInverse(const Element &a) const;
+
+private:
+ const Element& Reduced(const Element &a) const;
+
+ unsigned int t0, t1;
+ mutable PolynomialMod2 result;
+};
+
+//! GF(2^n) with Pentanomial Basis
+class CRYPTOPP_DLL GF2NPP : public GF2NP
+{
+public:
+ // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4
+ GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)
+ : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {}
+
+ GF2NP * Clone() const {return new GF2NPP(*this);}
+ void DEREncode(BufferedTransformation &bt) const;
+
+private:
+ unsigned int t0, t1, t2, t3;
+};
+
+// construct new GF2NP from the ASN.1 sequence Characteristic-two
+CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);
+
+NAMESPACE_END
+
+NAMESPACE_BEGIN(std)
+template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
+{
+ a.swap(b);
+}
+NAMESPACE_END
+
+#endif
|