diff options
| author | George Hazan <george.hazan@gmail.com> | 2012-05-30 17:27:49 +0000 | 
|---|---|---|
| committer | George Hazan <george.hazan@gmail.com> | 2012-05-30 17:27:49 +0000 | 
| commit | 88708cffa15662dcd2755fce699112d24a10a087 (patch) | |
| tree | 55d362220b42a52b52eaef2254f894c9a61fb4fd /plugins/FreeImage/Source/LibJPEG/jcsample.c | |
| parent | 7fa5563a954339f3feeb156285ef56bfde7cbec8 (diff) | |
update for zlib & FreeImage
git-svn-id: http://svn.miranda-ng.org/main/trunk@238 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jcsample.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jcsample.c | 1090 | 
1 files changed, 545 insertions, 545 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jcsample.c b/plugins/FreeImage/Source/LibJPEG/jcsample.c index 1aef8a6fc7..4d36f85f35 100644 --- a/plugins/FreeImage/Source/LibJPEG/jcsample.c +++ b/plugins/FreeImage/Source/LibJPEG/jcsample.c @@ -1,545 +1,545 @@ -/*
 - * jcsample.c
 - *
 - * Copyright (C) 1991-1996, Thomas G. Lane.
 - * This file is part of the Independent JPEG Group's software.
 - * For conditions of distribution and use, see the accompanying README file.
 - *
 - * This file contains downsampling routines.
 - *
 - * Downsampling input data is counted in "row groups".  A row group
 - * is defined to be max_v_samp_factor pixel rows of each component,
 - * from which the downsampler produces v_samp_factor sample rows.
 - * A single row group is processed in each call to the downsampler module.
 - *
 - * The downsampler is responsible for edge-expansion of its output data
 - * to fill an integral number of DCT blocks horizontally.  The source buffer
 - * may be modified if it is helpful for this purpose (the source buffer is
 - * allocated wide enough to correspond to the desired output width).
 - * The caller (the prep controller) is responsible for vertical padding.
 - *
 - * The downsampler may request "context rows" by setting need_context_rows
 - * during startup.  In this case, the input arrays will contain at least
 - * one row group's worth of pixels above and below the passed-in data;
 - * the caller will create dummy rows at image top and bottom by replicating
 - * the first or last real pixel row.
 - *
 - * An excellent reference for image resampling is
 - *   Digital Image Warping, George Wolberg, 1990.
 - *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
 - *
 - * The downsampling algorithm used here is a simple average of the source
 - * pixels covered by the output pixel.  The hi-falutin sampling literature
 - * refers to this as a "box filter".  In general the characteristics of a box
 - * filter are not very good, but for the specific cases we normally use (1:1
 - * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
 - * nearly so bad.  If you intend to use other sampling ratios, you'd be well
 - * advised to improve this code.
 - *
 - * A simple input-smoothing capability is provided.  This is mainly intended
 - * for cleaning up color-dithered GIF input files (if you find it inadequate,
 - * we suggest using an external filtering program such as pnmconvol).  When
 - * enabled, each input pixel P is replaced by a weighted sum of itself and its
 - * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
 - * where SF = (smoothing_factor / 1024).
 - * Currently, smoothing is only supported for 2h2v sampling factors.
 - */
 -
 -#define JPEG_INTERNALS
 -#include "jinclude.h"
 -#include "jpeglib.h"
 -
 -
 -/* Pointer to routine to downsample a single component */
 -typedef JMETHOD(void, downsample1_ptr,
 -		(j_compress_ptr cinfo, jpeg_component_info * compptr,
 -		 JSAMPARRAY input_data, JSAMPARRAY output_data));
 -
 -/* Private subobject */
 -
 -typedef struct {
 -  struct jpeg_downsampler pub;	/* public fields */
 -
 -  /* Downsampling method pointers, one per component */
 -  downsample1_ptr methods[MAX_COMPONENTS];
 -
 -  /* Height of an output row group for each component. */
 -  int rowgroup_height[MAX_COMPONENTS];
 -
 -  /* These arrays save pixel expansion factors so that int_downsample need not
 -   * recompute them each time.  They are unused for other downsampling methods.
 -   */
 -  UINT8 h_expand[MAX_COMPONENTS];
 -  UINT8 v_expand[MAX_COMPONENTS];
 -} my_downsampler;
 -
 -typedef my_downsampler * my_downsample_ptr;
 -
 -
 -/*
 - * Initialize for a downsampling pass.
 - */
 -
 -METHODDEF(void)
 -start_pass_downsample (j_compress_ptr cinfo)
 -{
 -  /* no work for now */
 -}
 -
 -
 -/*
 - * Expand a component horizontally from width input_cols to width output_cols,
 - * by duplicating the rightmost samples.
 - */
 -
 -LOCAL(void)
 -expand_right_edge (JSAMPARRAY image_data, int num_rows,
 -		   JDIMENSION input_cols, JDIMENSION output_cols)
 -{
 -  register JSAMPROW ptr;
 -  register JSAMPLE pixval;
 -  register int count;
 -  int row;
 -  int numcols = (int) (output_cols - input_cols);
 -
 -  if (numcols > 0) {
 -    for (row = 0; row < num_rows; row++) {
 -      ptr = image_data[row] + input_cols;
 -      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
 -      for (count = numcols; count > 0; count--)
 -	*ptr++ = pixval;
 -    }
 -  }
 -}
 -
 -
 -/*
 - * Do downsampling for a whole row group (all components).
 - *
 - * In this version we simply downsample each component independently.
 - */
 -
 -METHODDEF(void)
 -sep_downsample (j_compress_ptr cinfo,
 -		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
 -		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
 -{
 -  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
 -  int ci;
 -  jpeg_component_info * compptr;
 -  JSAMPARRAY in_ptr, out_ptr;
 -
 -  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 -       ci++, compptr++) {
 -    in_ptr = input_buf[ci] + in_row_index;
 -    out_ptr = output_buf[ci] +
 -	      (out_row_group_index * downsample->rowgroup_height[ci]);
 -    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
 -  }
 -}
 -
 -
 -/*
 - * Downsample pixel values of a single component.
 - * One row group is processed per call.
 - * This version handles arbitrary integral sampling ratios, without smoothing.
 - * Note that this version is not actually used for customary sampling ratios.
 - */
 -
 -METHODDEF(void)
 -int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -		JSAMPARRAY input_data, JSAMPARRAY output_data)
 -{
 -  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
 -  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
 -  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
 -  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
 -  JSAMPROW inptr, outptr;
 -  INT32 outvalue;
 -
 -  h_expand = downsample->h_expand[compptr->component_index];
 -  v_expand = downsample->v_expand[compptr->component_index];
 -  numpix = h_expand * v_expand;
 -  numpix2 = numpix/2;
 -
 -  /* Expand input data enough to let all the output samples be generated
 -   * by the standard loop.  Special-casing padded output would be more
 -   * efficient.
 -   */
 -  expand_right_edge(input_data, cinfo->max_v_samp_factor,
 -		    cinfo->image_width, output_cols * h_expand);
 -
 -  inrow = outrow = 0;
 -  while (inrow < cinfo->max_v_samp_factor) {
 -    outptr = output_data[outrow];
 -    for (outcol = 0, outcol_h = 0; outcol < output_cols;
 -	 outcol++, outcol_h += h_expand) {
 -      outvalue = 0;
 -      for (v = 0; v < v_expand; v++) {
 -	inptr = input_data[inrow+v] + outcol_h;
 -	for (h = 0; h < h_expand; h++) {
 -	  outvalue += (INT32) GETJSAMPLE(*inptr++);
 -	}
 -      }
 -      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
 -    }
 -    inrow += v_expand;
 -    outrow++;
 -  }
 -}
 -
 -
 -/*
 - * Downsample pixel values of a single component.
 - * This version handles the special case of a full-size component,
 - * without smoothing.
 - */
 -
 -METHODDEF(void)
 -fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -		     JSAMPARRAY input_data, JSAMPARRAY output_data)
 -{
 -  /* Copy the data */
 -  jcopy_sample_rows(input_data, 0, output_data, 0,
 -		    cinfo->max_v_samp_factor, cinfo->image_width);
 -  /* Edge-expand */
 -  expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
 -		    compptr->width_in_blocks * compptr->DCT_h_scaled_size);
 -}
 -
 -
 -/*
 - * Downsample pixel values of a single component.
 - * This version handles the common case of 2:1 horizontal and 1:1 vertical,
 - * without smoothing.
 - *
 - * A note about the "bias" calculations: when rounding fractional values to
 - * integer, we do not want to always round 0.5 up to the next integer.
 - * If we did that, we'd introduce a noticeable bias towards larger values.
 - * Instead, this code is arranged so that 0.5 will be rounded up or down at
 - * alternate pixel locations (a simple ordered dither pattern).
 - */
 -
 -METHODDEF(void)
 -h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -		 JSAMPARRAY input_data, JSAMPARRAY output_data)
 -{
 -  int inrow;
 -  JDIMENSION outcol;
 -  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
 -  register JSAMPROW inptr, outptr;
 -  register int bias;
 -
 -  /* Expand input data enough to let all the output samples be generated
 -   * by the standard loop.  Special-casing padded output would be more
 -   * efficient.
 -   */
 -  expand_right_edge(input_data, cinfo->max_v_samp_factor,
 -		    cinfo->image_width, output_cols * 2);
 -
 -  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
 -    outptr = output_data[inrow];
 -    inptr = input_data[inrow];
 -    bias = 0;			/* bias = 0,1,0,1,... for successive samples */
 -    for (outcol = 0; outcol < output_cols; outcol++) {
 -      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
 -			      + bias) >> 1);
 -      bias ^= 1;		/* 0=>1, 1=>0 */
 -      inptr += 2;
 -    }
 -  }
 -}
 -
 -
 -/*
 - * Downsample pixel values of a single component.
 - * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
 - * without smoothing.
 - */
 -
 -METHODDEF(void)
 -h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -		 JSAMPARRAY input_data, JSAMPARRAY output_data)
 -{
 -  int inrow, outrow;
 -  JDIMENSION outcol;
 -  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
 -  register JSAMPROW inptr0, inptr1, outptr;
 -  register int bias;
 -
 -  /* Expand input data enough to let all the output samples be generated
 -   * by the standard loop.  Special-casing padded output would be more
 -   * efficient.
 -   */
 -  expand_right_edge(input_data, cinfo->max_v_samp_factor,
 -		    cinfo->image_width, output_cols * 2);
 -
 -  inrow = outrow = 0;
 -  while (inrow < cinfo->max_v_samp_factor) {
 -    outptr = output_data[outrow];
 -    inptr0 = input_data[inrow];
 -    inptr1 = input_data[inrow+1];
 -    bias = 1;			/* bias = 1,2,1,2,... for successive samples */
 -    for (outcol = 0; outcol < output_cols; outcol++) {
 -      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 -			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
 -			      + bias) >> 2);
 -      bias ^= 3;		/* 1=>2, 2=>1 */
 -      inptr0 += 2; inptr1 += 2;
 -    }
 -    inrow += 2;
 -    outrow++;
 -  }
 -}
 -
 -
 -#ifdef INPUT_SMOOTHING_SUPPORTED
 -
 -/*
 - * Downsample pixel values of a single component.
 - * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
 - * with smoothing.  One row of context is required.
 - */
 -
 -METHODDEF(void)
 -h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -			JSAMPARRAY input_data, JSAMPARRAY output_data)
 -{
 -  int inrow, outrow;
 -  JDIMENSION colctr;
 -  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
 -  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
 -  INT32 membersum, neighsum, memberscale, neighscale;
 -
 -  /* Expand input data enough to let all the output samples be generated
 -   * by the standard loop.  Special-casing padded output would be more
 -   * efficient.
 -   */
 -  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
 -		    cinfo->image_width, output_cols * 2);
 -
 -  /* We don't bother to form the individual "smoothed" input pixel values;
 -   * we can directly compute the output which is the average of the four
 -   * smoothed values.  Each of the four member pixels contributes a fraction
 -   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
 -   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
 -   * output.  The four corner-adjacent neighbor pixels contribute a fraction
 -   * SF to just one smoothed pixel, or SF/4 to the final output; while the
 -   * eight edge-adjacent neighbors contribute SF to each of two smoothed
 -   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
 -   * factors are scaled by 2^16 = 65536.
 -   * Also recall that SF = smoothing_factor / 1024.
 -   */
 -
 -  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
 -  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
 -
 -  inrow = outrow = 0;
 -  while (inrow < cinfo->max_v_samp_factor) {
 -    outptr = output_data[outrow];
 -    inptr0 = input_data[inrow];
 -    inptr1 = input_data[inrow+1];
 -    above_ptr = input_data[inrow-1];
 -    below_ptr = input_data[inrow+2];
 -
 -    /* Special case for first column: pretend column -1 is same as column 0 */
 -    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 -		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
 -    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
 -	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
 -	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
 -	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
 -    neighsum += neighsum;
 -    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
 -		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
 -    membersum = membersum * memberscale + neighsum * neighscale;
 -    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
 -
 -    for (colctr = output_cols - 2; colctr > 0; colctr--) {
 -      /* sum of pixels directly mapped to this output element */
 -      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 -		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
 -      /* sum of edge-neighbor pixels */
 -      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
 -		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
 -		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
 -		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
 -      /* The edge-neighbors count twice as much as corner-neighbors */
 -      neighsum += neighsum;
 -      /* Add in the corner-neighbors */
 -      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
 -		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
 -      /* form final output scaled up by 2^16 */
 -      membersum = membersum * memberscale + neighsum * neighscale;
 -      /* round, descale and output it */
 -      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
 -    }
 -
 -    /* Special case for last column */
 -    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
 -		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
 -    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
 -	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
 -	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
 -	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
 -    neighsum += neighsum;
 -    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
 -		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
 -    membersum = membersum * memberscale + neighsum * neighscale;
 -    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
 -
 -    inrow += 2;
 -    outrow++;
 -  }
 -}
 -
 -
 -/*
 - * Downsample pixel values of a single component.
 - * This version handles the special case of a full-size component,
 - * with smoothing.  One row of context is required.
 - */
 -
 -METHODDEF(void)
 -fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
 -			    JSAMPARRAY input_data, JSAMPARRAY output_data)
 -{
 -  int inrow;
 -  JDIMENSION colctr;
 -  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
 -  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
 -  INT32 membersum, neighsum, memberscale, neighscale;
 -  int colsum, lastcolsum, nextcolsum;
 -
 -  /* Expand input data enough to let all the output samples be generated
 -   * by the standard loop.  Special-casing padded output would be more
 -   * efficient.
 -   */
 -  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
 -		    cinfo->image_width, output_cols);
 -
 -  /* Each of the eight neighbor pixels contributes a fraction SF to the
 -   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
 -   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
 -   * Also recall that SF = smoothing_factor / 1024.
 -   */
 -
 -  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
 -  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
 -
 -  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
 -    outptr = output_data[inrow];
 -    inptr = input_data[inrow];
 -    above_ptr = input_data[inrow-1];
 -    below_ptr = input_data[inrow+1];
 -
 -    /* Special case for first column */
 -    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
 -	     GETJSAMPLE(*inptr);
 -    membersum = GETJSAMPLE(*inptr++);
 -    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
 -		 GETJSAMPLE(*inptr);
 -    neighsum = colsum + (colsum - membersum) + nextcolsum;
 -    membersum = membersum * memberscale + neighsum * neighscale;
 -    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -    lastcolsum = colsum; colsum = nextcolsum;
 -
 -    for (colctr = output_cols - 2; colctr > 0; colctr--) {
 -      membersum = GETJSAMPLE(*inptr++);
 -      above_ptr++; below_ptr++;
 -      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
 -		   GETJSAMPLE(*inptr);
 -      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
 -      membersum = membersum * memberscale + neighsum * neighscale;
 -      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
 -      lastcolsum = colsum; colsum = nextcolsum;
 -    }
 -
 -    /* Special case for last column */
 -    membersum = GETJSAMPLE(*inptr);
 -    neighsum = lastcolsum + (colsum - membersum) + colsum;
 -    membersum = membersum * memberscale + neighsum * neighscale;
 -    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
 -
 -  }
 -}
 -
 -#endif /* INPUT_SMOOTHING_SUPPORTED */
 -
 -
 -/*
 - * Module initialization routine for downsampling.
 - * Note that we must select a routine for each component.
 - */
 -
 -GLOBAL(void)
 -jinit_downsampler (j_compress_ptr cinfo)
 -{
 -  my_downsample_ptr downsample;
 -  int ci;
 -  jpeg_component_info * compptr;
 -  boolean smoothok = TRUE;
 -  int h_in_group, v_in_group, h_out_group, v_out_group;
 -
 -  downsample = (my_downsample_ptr)
 -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				SIZEOF(my_downsampler));
 -  cinfo->downsample = (struct jpeg_downsampler *) downsample;
 -  downsample->pub.start_pass = start_pass_downsample;
 -  downsample->pub.downsample = sep_downsample;
 -  downsample->pub.need_context_rows = FALSE;
 -
 -  if (cinfo->CCIR601_sampling)
 -    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
 -
 -  /* Verify we can handle the sampling factors, and set up method pointers */
 -  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 -       ci++, compptr++) {
 -    /* Compute size of an "output group" for DCT scaling.  This many samples
 -     * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
 -     */
 -    h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
 -		  cinfo->min_DCT_h_scaled_size;
 -    v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
 -		  cinfo->min_DCT_v_scaled_size;
 -    h_in_group = cinfo->max_h_samp_factor;
 -    v_in_group = cinfo->max_v_samp_factor;
 -    downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
 -    if (h_in_group == h_out_group && v_in_group == v_out_group) {
 -#ifdef INPUT_SMOOTHING_SUPPORTED
 -      if (cinfo->smoothing_factor) {
 -	downsample->methods[ci] = fullsize_smooth_downsample;
 -	downsample->pub.need_context_rows = TRUE;
 -      } else
 -#endif
 -	downsample->methods[ci] = fullsize_downsample;
 -    } else if (h_in_group == h_out_group * 2 &&
 -	       v_in_group == v_out_group) {
 -      smoothok = FALSE;
 -      downsample->methods[ci] = h2v1_downsample;
 -    } else if (h_in_group == h_out_group * 2 &&
 -	       v_in_group == v_out_group * 2) {
 -#ifdef INPUT_SMOOTHING_SUPPORTED
 -      if (cinfo->smoothing_factor) {
 -	downsample->methods[ci] = h2v2_smooth_downsample;
 -	downsample->pub.need_context_rows = TRUE;
 -      } else
 -#endif
 -	downsample->methods[ci] = h2v2_downsample;
 -    } else if ((h_in_group % h_out_group) == 0 &&
 -	       (v_in_group % v_out_group) == 0) {
 -      smoothok = FALSE;
 -      downsample->methods[ci] = int_downsample;
 -      downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
 -      downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
 -    } else
 -      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
 -  }
 -
 -#ifdef INPUT_SMOOTHING_SUPPORTED
 -  if (cinfo->smoothing_factor && !smoothok)
 -    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
 -#endif
 -}
 +/* + * jcsample.c + * + * Copyright (C) 1991-1996, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains downsampling routines. + * + * Downsampling input data is counted in "row groups".  A row group + * is defined to be max_v_samp_factor pixel rows of each component, + * from which the downsampler produces v_samp_factor sample rows. + * A single row group is processed in each call to the downsampler module. + * + * The downsampler is responsible for edge-expansion of its output data + * to fill an integral number of DCT blocks horizontally.  The source buffer + * may be modified if it is helpful for this purpose (the source buffer is + * allocated wide enough to correspond to the desired output width). + * The caller (the prep controller) is responsible for vertical padding. + * + * The downsampler may request "context rows" by setting need_context_rows + * during startup.  In this case, the input arrays will contain at least + * one row group's worth of pixels above and below the passed-in data; + * the caller will create dummy rows at image top and bottom by replicating + * the first or last real pixel row. + * + * An excellent reference for image resampling is + *   Digital Image Warping, George Wolberg, 1990. + *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. + * + * The downsampling algorithm used here is a simple average of the source + * pixels covered by the output pixel.  The hi-falutin sampling literature + * refers to this as a "box filter".  In general the characteristics of a box + * filter are not very good, but for the specific cases we normally use (1:1 + * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not + * nearly so bad.  If you intend to use other sampling ratios, you'd be well + * advised to improve this code. + * + * A simple input-smoothing capability is provided.  This is mainly intended + * for cleaning up color-dithered GIF input files (if you find it inadequate, + * we suggest using an external filtering program such as pnmconvol).  When + * enabled, each input pixel P is replaced by a weighted sum of itself and its + * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF, + * where SF = (smoothing_factor / 1024). + * Currently, smoothing is only supported for 2h2v sampling factors. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Pointer to routine to downsample a single component */ +typedef JMETHOD(void, downsample1_ptr, +		(j_compress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY output_data)); + +/* Private subobject */ + +typedef struct { +  struct jpeg_downsampler pub;	/* public fields */ + +  /* Downsampling method pointers, one per component */ +  downsample1_ptr methods[MAX_COMPONENTS]; + +  /* Height of an output row group for each component. */ +  int rowgroup_height[MAX_COMPONENTS]; + +  /* These arrays save pixel expansion factors so that int_downsample need not +   * recompute them each time.  They are unused for other downsampling methods. +   */ +  UINT8 h_expand[MAX_COMPONENTS]; +  UINT8 v_expand[MAX_COMPONENTS]; +} my_downsampler; + +typedef my_downsampler * my_downsample_ptr; + + +/* + * Initialize for a downsampling pass. + */ + +METHODDEF(void) +start_pass_downsample (j_compress_ptr cinfo) +{ +  /* no work for now */ +} + + +/* + * Expand a component horizontally from width input_cols to width output_cols, + * by duplicating the rightmost samples. + */ + +LOCAL(void) +expand_right_edge (JSAMPARRAY image_data, int num_rows, +		   JDIMENSION input_cols, JDIMENSION output_cols) +{ +  register JSAMPROW ptr; +  register JSAMPLE pixval; +  register int count; +  int row; +  int numcols = (int) (output_cols - input_cols); + +  if (numcols > 0) { +    for (row = 0; row < num_rows; row++) { +      ptr = image_data[row] + input_cols; +      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */ +      for (count = numcols; count > 0; count--) +	*ptr++ = pixval; +    } +  } +} + + +/* + * Do downsampling for a whole row group (all components). + * + * In this version we simply downsample each component independently. + */ + +METHODDEF(void) +sep_downsample (j_compress_ptr cinfo, +		JSAMPIMAGE input_buf, JDIMENSION in_row_index, +		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) +{ +  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; +  int ci; +  jpeg_component_info * compptr; +  JSAMPARRAY in_ptr, out_ptr; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    in_ptr = input_buf[ci] + in_row_index; +    out_ptr = output_buf[ci] + +	      (out_row_group_index * downsample->rowgroup_height[ci]); +    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); +  } +} + + +/* + * Downsample pixel values of a single component. + * One row group is processed per call. + * This version handles arbitrary integral sampling ratios, without smoothing. + * Note that this version is not actually used for customary sampling ratios. + */ + +METHODDEF(void) +int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; +  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; +  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */ +  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; +  JSAMPROW inptr, outptr; +  INT32 outvalue; + +  h_expand = downsample->h_expand[compptr->component_index]; +  v_expand = downsample->v_expand[compptr->component_index]; +  numpix = h_expand * v_expand; +  numpix2 = numpix/2; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, output_cols * h_expand); + +  inrow = outrow = 0; +  while (inrow < cinfo->max_v_samp_factor) { +    outptr = output_data[outrow]; +    for (outcol = 0, outcol_h = 0; outcol < output_cols; +	 outcol++, outcol_h += h_expand) { +      outvalue = 0; +      for (v = 0; v < v_expand; v++) { +	inptr = input_data[inrow+v] + outcol_h; +	for (h = 0; h < h_expand; h++) { +	  outvalue += (INT32) GETJSAMPLE(*inptr++); +	} +      } +      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); +    } +    inrow += v_expand; +    outrow++; +  } +} + + +/* + * Downsample pixel values of a single component. + * This version handles the special case of a full-size component, + * without smoothing. + */ + +METHODDEF(void) +fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		     JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  /* Copy the data */ +  jcopy_sample_rows(input_data, 0, output_data, 0, +		    cinfo->max_v_samp_factor, cinfo->image_width); +  /* Edge-expand */ +  expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, +		    compptr->width_in_blocks * compptr->DCT_h_scaled_size); +} + + +/* + * Downsample pixel values of a single component. + * This version handles the common case of 2:1 horizontal and 1:1 vertical, + * without smoothing. + * + * A note about the "bias" calculations: when rounding fractional values to + * integer, we do not want to always round 0.5 up to the next integer. + * If we did that, we'd introduce a noticeable bias towards larger values. + * Instead, this code is arranged so that 0.5 will be rounded up or down at + * alternate pixel locations (a simple ordered dither pattern). + */ + +METHODDEF(void) +h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow; +  JDIMENSION outcol; +  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; +  register JSAMPROW inptr, outptr; +  register int bias; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, output_cols * 2); + +  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { +    outptr = output_data[inrow]; +    inptr = input_data[inrow]; +    bias = 0;			/* bias = 0,1,0,1,... for successive samples */ +    for (outcol = 0; outcol < output_cols; outcol++) { +      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) +			      + bias) >> 1); +      bias ^= 1;		/* 0=>1, 1=>0 */ +      inptr += 2; +    } +  } +} + + +/* + * Downsample pixel values of a single component. + * This version handles the standard case of 2:1 horizontal and 2:1 vertical, + * without smoothing. + */ + +METHODDEF(void) +h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +		 JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow, outrow; +  JDIMENSION outcol; +  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; +  register JSAMPROW inptr0, inptr1, outptr; +  register int bias; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data, cinfo->max_v_samp_factor, +		    cinfo->image_width, output_cols * 2); + +  inrow = outrow = 0; +  while (inrow < cinfo->max_v_samp_factor) { +    outptr = output_data[outrow]; +    inptr0 = input_data[inrow]; +    inptr1 = input_data[inrow+1]; +    bias = 1;			/* bias = 1,2,1,2,... for successive samples */ +    for (outcol = 0; outcol < output_cols; outcol++) { +      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) +			      + bias) >> 2); +      bias ^= 3;		/* 1=>2, 2=>1 */ +      inptr0 += 2; inptr1 += 2; +    } +    inrow += 2; +    outrow++; +  } +} + + +#ifdef INPUT_SMOOTHING_SUPPORTED + +/* + * Downsample pixel values of a single component. + * This version handles the standard case of 2:1 horizontal and 2:1 vertical, + * with smoothing.  One row of context is required. + */ + +METHODDEF(void) +h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, +			JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow, outrow; +  JDIMENSION colctr; +  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; +  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; +  INT32 membersum, neighsum, memberscale, neighscale; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, +		    cinfo->image_width, output_cols * 2); + +  /* We don't bother to form the individual "smoothed" input pixel values; +   * we can directly compute the output which is the average of the four +   * smoothed values.  Each of the four member pixels contributes a fraction +   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three +   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final +   * output.  The four corner-adjacent neighbor pixels contribute a fraction +   * SF to just one smoothed pixel, or SF/4 to the final output; while the +   * eight edge-adjacent neighbors contribute SF to each of two smoothed +   * pixels, or SF/2 overall.  In order to use integer arithmetic, these +   * factors are scaled by 2^16 = 65536. +   * Also recall that SF = smoothing_factor / 1024. +   */ + +  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ +  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ + +  inrow = outrow = 0; +  while (inrow < cinfo->max_v_samp_factor) { +    outptr = output_data[outrow]; +    inptr0 = input_data[inrow]; +    inptr1 = input_data[inrow+1]; +    above_ptr = input_data[inrow-1]; +    below_ptr = input_data[inrow+2]; + +    /* Special case for first column: pretend column -1 is same as column 0 */ +    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); +    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + +	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + +	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + +	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); +    neighsum += neighsum; +    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + +		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; + +    for (colctr = output_cols - 2; colctr > 0; colctr--) { +      /* sum of pixels directly mapped to this output element */ +      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); +      /* sum of edge-neighbor pixels */ +      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + +		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + +		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + +		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); +      /* The edge-neighbors count twice as much as corner-neighbors */ +      neighsum += neighsum; +      /* Add in the corner-neighbors */ +      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + +		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); +      /* form final output scaled up by 2^16 */ +      membersum = membersum * memberscale + neighsum * neighscale; +      /* round, descale and output it */ +      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; +    } + +    /* Special case for last column */ +    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + +		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); +    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + +	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + +	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + +	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); +    neighsum += neighsum; +    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + +		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr = (JSAMPLE) ((membersum + 32768) >> 16); + +    inrow += 2; +    outrow++; +  } +} + + +/* + * Downsample pixel values of a single component. + * This version handles the special case of a full-size component, + * with smoothing.  One row of context is required. + */ + +METHODDEF(void) +fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, +			    JSAMPARRAY input_data, JSAMPARRAY output_data) +{ +  int inrow; +  JDIMENSION colctr; +  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; +  register JSAMPROW inptr, above_ptr, below_ptr, outptr; +  INT32 membersum, neighsum, memberscale, neighscale; +  int colsum, lastcolsum, nextcolsum; + +  /* Expand input data enough to let all the output samples be generated +   * by the standard loop.  Special-casing padded output would be more +   * efficient. +   */ +  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, +		    cinfo->image_width, output_cols); + +  /* Each of the eight neighbor pixels contributes a fraction SF to the +   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order +   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. +   * Also recall that SF = smoothing_factor / 1024. +   */ + +  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ +  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ + +  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { +    outptr = output_data[inrow]; +    inptr = input_data[inrow]; +    above_ptr = input_data[inrow-1]; +    below_ptr = input_data[inrow+1]; + +    /* Special case for first column */ +    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + +	     GETJSAMPLE(*inptr); +    membersum = GETJSAMPLE(*inptr++); +    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + +		 GETJSAMPLE(*inptr); +    neighsum = colsum + (colsum - membersum) + nextcolsum; +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +    lastcolsum = colsum; colsum = nextcolsum; + +    for (colctr = output_cols - 2; colctr > 0; colctr--) { +      membersum = GETJSAMPLE(*inptr++); +      above_ptr++; below_ptr++; +      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + +		   GETJSAMPLE(*inptr); +      neighsum = lastcolsum + (colsum - membersum) + nextcolsum; +      membersum = membersum * memberscale + neighsum * neighscale; +      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); +      lastcolsum = colsum; colsum = nextcolsum; +    } + +    /* Special case for last column */ +    membersum = GETJSAMPLE(*inptr); +    neighsum = lastcolsum + (colsum - membersum) + colsum; +    membersum = membersum * memberscale + neighsum * neighscale; +    *outptr = (JSAMPLE) ((membersum + 32768) >> 16); + +  } +} + +#endif /* INPUT_SMOOTHING_SUPPORTED */ + + +/* + * Module initialization routine for downsampling. + * Note that we must select a routine for each component. + */ + +GLOBAL(void) +jinit_downsampler (j_compress_ptr cinfo) +{ +  my_downsample_ptr downsample; +  int ci; +  jpeg_component_info * compptr; +  boolean smoothok = TRUE; +  int h_in_group, v_in_group, h_out_group, v_out_group; + +  downsample = (my_downsample_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_downsampler)); +  cinfo->downsample = (struct jpeg_downsampler *) downsample; +  downsample->pub.start_pass = start_pass_downsample; +  downsample->pub.downsample = sep_downsample; +  downsample->pub.need_context_rows = FALSE; + +  if (cinfo->CCIR601_sampling) +    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); + +  /* Verify we can handle the sampling factors, and set up method pointers */ +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Compute size of an "output group" for DCT scaling.  This many samples +     * are to be converted from max_h_samp_factor * max_v_samp_factor pixels. +     */ +    h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / +		  cinfo->min_DCT_h_scaled_size; +    v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / +		  cinfo->min_DCT_v_scaled_size; +    h_in_group = cinfo->max_h_samp_factor; +    v_in_group = cinfo->max_v_samp_factor; +    downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ +    if (h_in_group == h_out_group && v_in_group == v_out_group) { +#ifdef INPUT_SMOOTHING_SUPPORTED +      if (cinfo->smoothing_factor) { +	downsample->methods[ci] = fullsize_smooth_downsample; +	downsample->pub.need_context_rows = TRUE; +      } else +#endif +	downsample->methods[ci] = fullsize_downsample; +    } else if (h_in_group == h_out_group * 2 && +	       v_in_group == v_out_group) { +      smoothok = FALSE; +      downsample->methods[ci] = h2v1_downsample; +    } else if (h_in_group == h_out_group * 2 && +	       v_in_group == v_out_group * 2) { +#ifdef INPUT_SMOOTHING_SUPPORTED +      if (cinfo->smoothing_factor) { +	downsample->methods[ci] = h2v2_smooth_downsample; +	downsample->pub.need_context_rows = TRUE; +      } else +#endif +	downsample->methods[ci] = h2v2_downsample; +    } else if ((h_in_group % h_out_group) == 0 && +	       (v_in_group % v_out_group) == 0) { +      smoothok = FALSE; +      downsample->methods[ci] = int_downsample; +      downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); +      downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); +    } else +      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); +  } + +#ifdef INPUT_SMOOTHING_SUPPORTED +  if (cinfo->smoothing_factor && !smoothok) +    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); +#endif +}  | 
