diff options
| author | George Hazan <george.hazan@gmail.com> | 2012-05-30 17:27:49 +0000 | 
|---|---|---|
| committer | George Hazan <george.hazan@gmail.com> | 2012-05-30 17:27:49 +0000 | 
| commit | 88708cffa15662dcd2755fce699112d24a10a087 (patch) | |
| tree | 55d362220b42a52b52eaef2254f894c9a61fb4fd /plugins/FreeImage/Source/LibJPEG/jidctfst.c | |
| parent | 7fa5563a954339f3feeb156285ef56bfde7cbec8 (diff) | |
update for zlib & FreeImage
git-svn-id: http://svn.miranda-ng.org/main/trunk@238 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jidctfst.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jidctfst.c | 736 | 
1 files changed, 368 insertions, 368 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jidctfst.c b/plugins/FreeImage/Source/LibJPEG/jidctfst.c index 078b8c444e..dba4216fb9 100644 --- a/plugins/FreeImage/Source/LibJPEG/jidctfst.c +++ b/plugins/FreeImage/Source/LibJPEG/jidctfst.c @@ -1,368 +1,368 @@ -/*
 - * jidctfst.c
 - *
 - * Copyright (C) 1994-1998, Thomas G. Lane.
 - * This file is part of the Independent JPEG Group's software.
 - * For conditions of distribution and use, see the accompanying README file.
 - *
 - * This file contains a fast, not so accurate integer implementation of the
 - * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 - * must also perform dequantization of the input coefficients.
 - *
 - * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 - * on each row (or vice versa, but it's more convenient to emit a row at
 - * a time).  Direct algorithms are also available, but they are much more
 - * complex and seem not to be any faster when reduced to code.
 - *
 - * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 - * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 - * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 - * JPEG textbook (see REFERENCES section in file README).  The following code
 - * is based directly on figure 4-8 in P&M.
 - * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 - * possible to arrange the computation so that many of the multiplies are
 - * simple scalings of the final outputs.  These multiplies can then be
 - * folded into the multiplications or divisions by the JPEG quantization
 - * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 - * to be done in the DCT itself.
 - * The primary disadvantage of this method is that with fixed-point math,
 - * accuracy is lost due to imprecise representation of the scaled
 - * quantization values.  The smaller the quantization table entry, the less
 - * precise the scaled value, so this implementation does worse with high-
 - * quality-setting files than with low-quality ones.
 - */
 -
 -#define JPEG_INTERNALS
 -#include "jinclude.h"
 -#include "jpeglib.h"
 -#include "jdct.h"		/* Private declarations for DCT subsystem */
 -
 -#ifdef DCT_IFAST_SUPPORTED
 -
 -
 -/*
 - * This module is specialized to the case DCTSIZE = 8.
 - */
 -
 -#if DCTSIZE != 8
 -  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
 -#endif
 -
 -
 -/* Scaling decisions are generally the same as in the LL&M algorithm;
 - * see jidctint.c for more details.  However, we choose to descale
 - * (right shift) multiplication products as soon as they are formed,
 - * rather than carrying additional fractional bits into subsequent additions.
 - * This compromises accuracy slightly, but it lets us save a few shifts.
 - * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
 - * everywhere except in the multiplications proper; this saves a good deal
 - * of work on 16-bit-int machines.
 - *
 - * The dequantized coefficients are not integers because the AA&N scaling
 - * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
 - * so that the first and second IDCT rounds have the same input scaling.
 - * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
 - * avoid a descaling shift; this compromises accuracy rather drastically
 - * for small quantization table entries, but it saves a lot of shifts.
 - * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
 - * so we use a much larger scaling factor to preserve accuracy.
 - *
 - * A final compromise is to represent the multiplicative constants to only
 - * 8 fractional bits, rather than 13.  This saves some shifting work on some
 - * machines, and may also reduce the cost of multiplication (since there
 - * are fewer one-bits in the constants).
 - */
 -
 -#if BITS_IN_JSAMPLE == 8
 -#define CONST_BITS  8
 -#define PASS1_BITS  2
 -#else
 -#define CONST_BITS  8
 -#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
 -#endif
 -
 -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 - * causing a lot of useless floating-point operations at run time.
 - * To get around this we use the following pre-calculated constants.
 - * If you change CONST_BITS you may want to add appropriate values.
 - * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 - */
 -
 -#if CONST_BITS == 8
 -#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
 -#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
 -#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
 -#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
 -#else
 -#define FIX_1_082392200  FIX(1.082392200)
 -#define FIX_1_414213562  FIX(1.414213562)
 -#define FIX_1_847759065  FIX(1.847759065)
 -#define FIX_2_613125930  FIX(2.613125930)
 -#endif
 -
 -
 -/* We can gain a little more speed, with a further compromise in accuracy,
 - * by omitting the addition in a descaling shift.  This yields an incorrectly
 - * rounded result half the time...
 - */
 -
 -#ifndef USE_ACCURATE_ROUNDING
 -#undef DESCALE
 -#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
 -#endif
 -
 -
 -/* Multiply a DCTELEM variable by an INT32 constant, and immediately
 - * descale to yield a DCTELEM result.
 - */
 -
 -#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
 -
 -
 -/* Dequantize a coefficient by multiplying it by the multiplier-table
 - * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
 - * multiplication will do.  For 12-bit data, the multiplier table is
 - * declared INT32, so a 32-bit multiply will be used.
 - */
 -
 -#if BITS_IN_JSAMPLE == 8
 -#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
 -#else
 -#define DEQUANTIZE(coef,quantval)  \
 -	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
 -#endif
 -
 -
 -/* Like DESCALE, but applies to a DCTELEM and produces an int.
 - * We assume that int right shift is unsigned if INT32 right shift is.
 - */
 -
 -#ifdef RIGHT_SHIFT_IS_UNSIGNED
 -#define ISHIFT_TEMPS	DCTELEM ishift_temp;
 -#if BITS_IN_JSAMPLE == 8
 -#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
 -#else
 -#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
 -#endif
 -#define IRIGHT_SHIFT(x,shft)  \
 -    ((ishift_temp = (x)) < 0 ? \
 -     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
 -     (ishift_temp >> (shft)))
 -#else
 -#define ISHIFT_TEMPS
 -#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
 -#endif
 -
 -#ifdef USE_ACCURATE_ROUNDING
 -#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
 -#else
 -#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
 -#endif
 -
 -
 -/*
 - * Perform dequantization and inverse DCT on one block of coefficients.
 - */
 -
 -GLOBAL(void)
 -jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 -		 JCOEFPTR coef_block,
 -		 JSAMPARRAY output_buf, JDIMENSION output_col)
 -{
 -  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 -  DCTELEM tmp10, tmp11, tmp12, tmp13;
 -  DCTELEM z5, z10, z11, z12, z13;
 -  JCOEFPTR inptr;
 -  IFAST_MULT_TYPE * quantptr;
 -  int * wsptr;
 -  JSAMPROW outptr;
 -  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
 -  int ctr;
 -  int workspace[DCTSIZE2];	/* buffers data between passes */
 -  SHIFT_TEMPS			/* for DESCALE */
 -  ISHIFT_TEMPS			/* for IDESCALE */
 -
 -  /* Pass 1: process columns from input, store into work array. */
 -
 -  inptr = coef_block;
 -  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
 -  wsptr = workspace;
 -  for (ctr = DCTSIZE; ctr > 0; ctr--) {
 -    /* Due to quantization, we will usually find that many of the input
 -     * coefficients are zero, especially the AC terms.  We can exploit this
 -     * by short-circuiting the IDCT calculation for any column in which all
 -     * the AC terms are zero.  In that case each output is equal to the
 -     * DC coefficient (with scale factor as needed).
 -     * With typical images and quantization tables, half or more of the
 -     * column DCT calculations can be simplified this way.
 -     */
 -    
 -    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
 -	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
 -	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
 -	inptr[DCTSIZE*7] == 0) {
 -      /* AC terms all zero */
 -      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 -
 -      wsptr[DCTSIZE*0] = dcval;
 -      wsptr[DCTSIZE*1] = dcval;
 -      wsptr[DCTSIZE*2] = dcval;
 -      wsptr[DCTSIZE*3] = dcval;
 -      wsptr[DCTSIZE*4] = dcval;
 -      wsptr[DCTSIZE*5] = dcval;
 -      wsptr[DCTSIZE*6] = dcval;
 -      wsptr[DCTSIZE*7] = dcval;
 -      
 -      inptr++;			/* advance pointers to next column */
 -      quantptr++;
 -      wsptr++;
 -      continue;
 -    }
 -    
 -    /* Even part */
 -
 -    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 -    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
 -    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
 -    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
 -
 -    tmp10 = tmp0 + tmp2;	/* phase 3 */
 -    tmp11 = tmp0 - tmp2;
 -
 -    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
 -    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
 -
 -    tmp0 = tmp10 + tmp13;	/* phase 2 */
 -    tmp3 = tmp10 - tmp13;
 -    tmp1 = tmp11 + tmp12;
 -    tmp2 = tmp11 - tmp12;
 -    
 -    /* Odd part */
 -
 -    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
 -    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
 -    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
 -    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
 -
 -    z13 = tmp6 + tmp5;		/* phase 6 */
 -    z10 = tmp6 - tmp5;
 -    z11 = tmp4 + tmp7;
 -    z12 = tmp4 - tmp7;
 -
 -    tmp7 = z11 + z13;		/* phase 5 */
 -    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
 -
 -    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
 -    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
 -    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
 -
 -    tmp6 = tmp12 - tmp7;	/* phase 2 */
 -    tmp5 = tmp11 - tmp6;
 -    tmp4 = tmp10 + tmp5;
 -
 -    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
 -    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
 -    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
 -    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
 -    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
 -    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
 -    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
 -    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
 -
 -    inptr++;			/* advance pointers to next column */
 -    quantptr++;
 -    wsptr++;
 -  }
 -  
 -  /* Pass 2: process rows from work array, store into output array. */
 -  /* Note that we must descale the results by a factor of 8 == 2**3, */
 -  /* and also undo the PASS1_BITS scaling. */
 -
 -  wsptr = workspace;
 -  for (ctr = 0; ctr < DCTSIZE; ctr++) {
 -    outptr = output_buf[ctr] + output_col;
 -    /* Rows of zeroes can be exploited in the same way as we did with columns.
 -     * However, the column calculation has created many nonzero AC terms, so
 -     * the simplification applies less often (typically 5% to 10% of the time).
 -     * On machines with very fast multiplication, it's possible that the
 -     * test takes more time than it's worth.  In that case this section
 -     * may be commented out.
 -     */
 -    
 -#ifndef NO_ZERO_ROW_TEST
 -    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
 -	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
 -      /* AC terms all zero */
 -      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
 -				  & RANGE_MASK];
 -      
 -      outptr[0] = dcval;
 -      outptr[1] = dcval;
 -      outptr[2] = dcval;
 -      outptr[3] = dcval;
 -      outptr[4] = dcval;
 -      outptr[5] = dcval;
 -      outptr[6] = dcval;
 -      outptr[7] = dcval;
 -
 -      wsptr += DCTSIZE;		/* advance pointer to next row */
 -      continue;
 -    }
 -#endif
 -    
 -    /* Even part */
 -
 -    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
 -    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
 -
 -    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
 -    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
 -	    - tmp13;
 -
 -    tmp0 = tmp10 + tmp13;
 -    tmp3 = tmp10 - tmp13;
 -    tmp1 = tmp11 + tmp12;
 -    tmp2 = tmp11 - tmp12;
 -
 -    /* Odd part */
 -
 -    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
 -    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
 -    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
 -    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
 -
 -    tmp7 = z11 + z13;		/* phase 5 */
 -    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
 -
 -    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
 -    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
 -    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
 -
 -    tmp6 = tmp12 - tmp7;	/* phase 2 */
 -    tmp5 = tmp11 - tmp6;
 -    tmp4 = tmp10 + tmp5;
 -
 -    /* Final output stage: scale down by a factor of 8 and range-limit */
 -
 -    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
 -			    & RANGE_MASK];
 -
 -    wsptr += DCTSIZE;		/* advance pointer to next row */
 -  }
 -}
 -
 -#endif /* DCT_IFAST_SUPPORTED */
 +/* + * jidctfst.c + * + * Copyright (C) 1994-1998, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a fast, not so accurate integer implementation of the + * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine + * must also perform dequantization of the input coefficients. + * + * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT + * on each row (or vice versa, but it's more convenient to emit a row at + * a time).  Direct algorithms are also available, but they are much more + * complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README).  The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs.  These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries.  The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with fixed-point math, + * accuracy is lost due to imprecise representation of the scaled + * quantization values.  The smaller the quantization table entry, the less + * precise the scaled value, so this implementation does worse with high- + * quality-setting files than with low-quality ones. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef DCT_IFAST_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Scaling decisions are generally the same as in the LL&M algorithm; + * see jidctint.c for more details.  However, we choose to descale + * (right shift) multiplication products as soon as they are formed, + * rather than carrying additional fractional bits into subsequent additions. + * This compromises accuracy slightly, but it lets us save a few shifts. + * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) + * everywhere except in the multiplications proper; this saves a good deal + * of work on 16-bit-int machines. + * + * The dequantized coefficients are not integers because the AA&N scaling + * factors have been incorporated.  We represent them scaled up by PASS1_BITS, + * so that the first and second IDCT rounds have the same input scaling. + * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to + * avoid a descaling shift; this compromises accuracy rather drastically + * for small quantization table entries, but it saves a lot of shifts. + * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, + * so we use a much larger scaling factor to preserve accuracy. + * + * A final compromise is to represent the multiplicative constants to only + * 8 fractional bits, rather than 13.  This saves some shifting work on some + * machines, and may also reduce the cost of multiplication (since there + * are fewer one-bits in the constants). + */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS  8 +#define PASS1_BITS  2 +#else +#define CONST_BITS  8 +#define PASS1_BITS  1		/* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 8 +#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */ +#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */ +#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */ +#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */ +#else +#define FIX_1_082392200  FIX(1.082392200) +#define FIX_1_414213562  FIX(1.414213562) +#define FIX_1_847759065  FIX(1.847759065) +#define FIX_2_613125930  FIX(2.613125930) +#endif + + +/* We can gain a little more speed, with a further compromise in accuracy, + * by omitting the addition in a descaling shift.  This yields an incorrectly + * rounded result half the time... + */ + +#ifndef USE_ACCURATE_ROUNDING +#undef DESCALE +#define DESCALE(x,n)  RIGHT_SHIFT(x, n) +#endif + + +/* Multiply a DCTELEM variable by an INT32 constant, and immediately + * descale to yield a DCTELEM result. + */ + +#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16 + * multiplication will do.  For 12-bit data, the multiplier table is + * declared INT32, so a 32-bit multiply will be used. + */ + +#if BITS_IN_JSAMPLE == 8 +#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval)) +#else +#define DEQUANTIZE(coef,quantval)  \ +	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) +#endif + + +/* Like DESCALE, but applies to a DCTELEM and produces an int. + * We assume that int right shift is unsigned if INT32 right shift is. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define ISHIFT_TEMPS	DCTELEM ishift_temp; +#if BITS_IN_JSAMPLE == 8 +#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */ +#else +#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */ +#endif +#define IRIGHT_SHIFT(x,shft)  \ +    ((ishift_temp = (x)) < 0 ? \ +     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ +     (ishift_temp >> (shft))) +#else +#define ISHIFT_TEMPS +#define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) +#endif + +#ifdef USE_ACCURATE_ROUNDING +#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) +#else +#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n)) +#endif + + +/* + * Perform dequantization and inverse DCT on one block of coefficients. + */ + +GLOBAL(void) +jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, +		 JCOEFPTR coef_block, +		 JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; +  DCTELEM tmp10, tmp11, tmp12, tmp13; +  DCTELEM z5, z10, z11, z12, z13; +  JCOEFPTR inptr; +  IFAST_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE2];	/* buffers data between passes */ +  SHIFT_TEMPS			/* for DESCALE */ +  ISHIFT_TEMPS			/* for IDESCALE */ + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; ctr--) { +    /* Due to quantization, we will usually find that many of the input +     * coefficients are zero, especially the AC terms.  We can exploit this +     * by short-circuiting the IDCT calculation for any column in which all +     * the AC terms are zero.  In that case each output is equal to the +     * DC coefficient (with scale factor as needed). +     * With typical images and quantization tables, half or more of the +     * column DCT calculations can be simplified this way. +     */ +     +    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && +	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && +	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && +	inptr[DCTSIZE*7] == 0) { +      /* AC terms all zero */ +      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); + +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +      wsptr[DCTSIZE*2] = dcval; +      wsptr[DCTSIZE*3] = dcval; +      wsptr[DCTSIZE*4] = dcval; +      wsptr[DCTSIZE*5] = dcval; +      wsptr[DCTSIZE*6] = dcval; +      wsptr[DCTSIZE*7] = dcval; +       +      inptr++;			/* advance pointers to next column */ +      quantptr++; +      wsptr++; +      continue; +    } +     +    /* Even part */ + +    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); +    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); +    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + +    tmp10 = tmp0 + tmp2;	/* phase 3 */ +    tmp11 = tmp0 - tmp2; + +    tmp13 = tmp1 + tmp3;	/* phases 5-3 */ +    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ + +    tmp0 = tmp10 + tmp13;	/* phase 2 */ +    tmp3 = tmp10 - tmp13; +    tmp1 = tmp11 + tmp12; +    tmp2 = tmp11 - tmp12; +     +    /* Odd part */ + +    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); + +    z13 = tmp6 + tmp5;		/* phase 6 */ +    z10 = tmp6 - tmp5; +    z11 = tmp4 + tmp7; +    z12 = tmp4 - tmp7; + +    tmp7 = z11 + z13;		/* phase 5 */ +    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ + +    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ +    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ +    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ + +    tmp6 = tmp12 - tmp7;	/* phase 2 */ +    tmp5 = tmp11 - tmp6; +    tmp4 = tmp10 + tmp5; + +    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); +    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); +    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); +    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); +    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); +    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); +    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); +    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); + +    inptr++;			/* advance pointers to next column */ +    quantptr++; +    wsptr++; +  } +   +  /* Pass 2: process rows from work array, store into output array. */ +  /* Note that we must descale the results by a factor of 8 == 2**3, */ +  /* and also undo the PASS1_BITS scaling. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < DCTSIZE; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* Rows of zeroes can be exploited in the same way as we did with columns. +     * However, the column calculation has created many nonzero AC terms, so +     * the simplification applies less often (typically 5% to 10% of the time). +     * On machines with very fast multiplication, it's possible that the +     * test takes more time than it's worth.  In that case this section +     * may be commented out. +     */ +     +#ifndef NO_ZERO_ROW_TEST +    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && +	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +      outptr[2] = dcval; +      outptr[3] = dcval; +      outptr[4] = dcval; +      outptr[5] = dcval; +      outptr[6] = dcval; +      outptr[7] = dcval; + +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part */ + +    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); +    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); + +    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); +    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) +	    - tmp13; + +    tmp0 = tmp10 + tmp13; +    tmp3 = tmp10 - tmp13; +    tmp1 = tmp11 + tmp12; +    tmp2 = tmp11 - tmp12; + +    /* Odd part */ + +    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; +    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; +    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; +    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; + +    tmp7 = z11 + z13;		/* phase 5 */ +    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ + +    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ +    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ +    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ + +    tmp6 = tmp12 - tmp7;	/* phase 2 */ +    tmp5 = tmp11 - tmp6; +    tmp4 = tmp10 + tmp5; + +    /* Final output stage: scale down by a factor of 8 and range-limit */ + +    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) +			    & RANGE_MASK]; +    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) +			    & RANGE_MASK]; + +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + +#endif /* DCT_IFAST_SUPPORTED */  | 
