diff options
author | Vadim Dashevskiy <watcherhd@gmail.com> | 2012-10-12 10:49:29 +0000 |
---|---|---|
committer | Vadim Dashevskiy <watcherhd@gmail.com> | 2012-10-12 10:49:29 +0000 |
commit | 557f2816f5cd30705dec989c97a8a67c026d36d1 (patch) | |
tree | 4900789ab5d52219bf065744a61f9ea5863b3428 /plugins/FreeImage/src/Quantizers.h | |
parent | 69fe21d6e2262d6fb2b14278b7a20364468cbdcf (diff) |
FreeImage: folders restructurization
git-svn-id: http://svn.miranda-ng.org/main/trunk@1884 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/FreeImage/src/Quantizers.h')
-rw-r--r-- | plugins/FreeImage/src/Quantizers.h | 225 |
1 files changed, 225 insertions, 0 deletions
diff --git a/plugins/FreeImage/src/Quantizers.h b/plugins/FreeImage/src/Quantizers.h new file mode 100644 index 0000000000..2a671fad1c --- /dev/null +++ b/plugins/FreeImage/src/Quantizers.h @@ -0,0 +1,225 @@ +// ============================================================= +// Quantizer objects and functions +// +// Design and implementation by: +// - Hervé Drolon <drolon@infonie.fr> +// +// This file is part of FreeImage 3 +// +// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY +// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES +// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE +// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED +// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT +// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY +// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL +// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER +// THIS DISCLAIMER. +// +// Use at your own risk! +// ============================================================= + +// +//////////////////////////////////////////////////////////////// + +#include "FreeImage.h" + +//////////////////////////////////////////////////////////////// + +/** + Xiaolin Wu color quantization algorithm +*/ +class WuQuantizer +{ +public: + +typedef struct tagBox { + int r0; // min value, exclusive + int r1; // max value, inclusive + int g0; + int g1; + int b0; + int b1; + int vol; +} Box; + +protected: + float *gm2; + LONG *wt, *mr, *mg, *mb; + WORD *Qadd; + + // DIB data + unsigned width, height; + unsigned pitch; + FIBITMAP *m_dib; + +protected: + void Hist3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2, int ReserveSize, RGBQUAD *ReservePalette); + void M3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2); + LONG Vol(Box *cube, LONG *mmt); + LONG Bottom(Box *cube, BYTE dir, LONG *mmt); + LONG Top(Box *cube, BYTE dir, int pos, LONG *mmt); + float Var(Box *cube); + float Maximize(Box *cube, BYTE dir, int first, int last , int *cut, + LONG whole_r, LONG whole_g, LONG whole_b, LONG whole_w); + bool Cut(Box *set1, Box *set2); + void Mark(Box *cube, int label, BYTE *tag); + +public: + // Constructor - Input parameter: DIB 24-bit to be quantized + WuQuantizer(FIBITMAP *dib); + // Destructor + ~WuQuantizer(); + // Quantizer - Return value: quantized 8-bit (color palette) DIB + FIBITMAP* Quantize(int PaletteSize, int ReserveSize, RGBQUAD *ReservePalette); +}; + + +/** + NEUQUANT Neural-Net quantization algorithm by Anthony Dekker +*/ + +// ---------------------------------------------------------------- +// Constant definitions +// ---------------------------------------------------------------- + +/** number of colours used: + for 256 colours, fixed arrays need 8kb, plus space for the image +*/ +//static const int netsize = 256; + +/**@name network definitions */ +//@{ +//static const int maxnetpos = (netsize - 1); +/// bias for colour values +static const int netbiasshift = 4; +/// no. of learning cycles +static const int ncycles = 100; +//@} + +/**@name defs for freq and bias */ +//@{ +/// bias for fractions +static const int intbiasshift = 16; +static const int intbias = (((int)1) << intbiasshift); +/// gamma = 1024 +static const int gammashift = 10; +// static const int gamma = (((int)1) << gammashift); +/// beta = 1 / 1024 +static const int betashift = 10; +static const int beta = (intbias >> betashift); +static const int betagamma = (intbias << (gammashift-betashift)); +//@} + +/**@name defs for decreasing radius factor */ +//@{ +/// for 256 cols, radius starts +//static const int initrad = (netsize >> 3); +/// at 32.0 biased by 6 bits +static const int radiusbiasshift = 6; +static const int radiusbias = (((int)1) << radiusbiasshift); +/// and decreases by a +//static const int initradius = (initrad * radiusbias); +// factor of 1/30 each cycle +static const int radiusdec = 30; +//@} + +/**@name defs for decreasing alpha factor */ +//@{ +/// alpha starts at 1.0 +static const int alphabiasshift = 10; +static const int initalpha = (((int)1) << alphabiasshift); +//@} + +/**@name radbias and alpharadbias used for radpower calculation */ +//@{ +static const int radbiasshift = 8; +static const int radbias = (((int)1) << radbiasshift); +static const int alpharadbshift = (alphabiasshift+radbiasshift); +static const int alpharadbias = (((int)1) << alpharadbshift); +//@} + +class NNQuantizer +{ +protected: + /**@name image parameters */ + //@{ + /// pointer to input dib + FIBITMAP *dib_ptr; + /// image width + int img_width; + /// image height + int img_height; + /// image line length + int img_line; + //@} + + /**@name network parameters */ + //@{ + + int netsize, maxnetpos, initrad, initradius; + + /// BGRc + typedef int pixel[4]; + /// the network itself + pixel *network; + + /// for network lookup - really 256 + int netindex[256]; + + /// bias array for learning + int *bias; + /// freq array for learning + int *freq; + /// radpower for precomputation + int *radpower; + //@} + +protected: + /// Initialise network in range (0,0,0) to (255,255,255) and set parameters + void initnet(); + + /// Unbias network to give byte values 0..255 and record position i to prepare for sort + void unbiasnet(); + + /// Insertion sort of network and building of netindex[0..255] (to do after unbias) + void inxbuild(); + + /// Search for BGR values 0..255 (after net is unbiased) and return colour index + int inxsearch(int b, int g, int r); + + /// Search for biased BGR values + int contest(int b, int g, int r); + + /// Move neuron i towards biased (b,g,r) by factor alpha + void altersingle(int alpha, int i, int b, int g, int r); + + /// Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|] + void alterneigh(int rad, int i, int b, int g, int r); + + /** Main Learning Loop + @param sampling_factor sampling factor in [1..30] + */ + void learn(int sampling_factor); + + /// Get a pixel sample at position pos. Handle 4-byte boundary alignment. + void getSample(long pos, int *b, int *g, int *r); + + +public: + /// Constructor + NNQuantizer(int PaletteSize); + + /// Destructor + ~NNQuantizer(); + + /** Quantizer + @param dib input 24-bit dib to be quantized + @param sampling a sampling factor in range 1..30. + 1 => slower (but better), 30 => faster. Default value is 1 + @return returns the quantized 8-bit (color palette) DIB + */ + FIBITMAP* Quantize(FIBITMAP *dib, int ReserveSize, RGBQUAD *ReservePalette, int sampling = 1); + +}; + |