summaryrefslogtreecommitdiff
path: root/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c
diff options
context:
space:
mode:
authorKirill Volinsky <mataes2007@gmail.com>2012-05-19 18:01:32 +0000
committerKirill Volinsky <mataes2007@gmail.com>2012-05-19 18:01:32 +0000
commitb1509f22892dc98057c750e7fae39ded5cea3b09 (patch)
tree6bdcc9379ae86339a67022b758575729d1304074 /plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c
parente7a776a6f5ab323cd9dd824e815846ef268fa7f1 (diff)
added MirOTR
git-svn-id: http://svn.miranda-ng.org/main/trunk@83 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c')
-rw-r--r--plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c709
1 files changed, 709 insertions, 0 deletions
diff --git a/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c b/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c
new file mode 100644
index 0000000000..4a3a5f8c08
--- /dev/null
+++ b/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c
@@ -0,0 +1,709 @@
+/* ec.c - Elliptic Curve functions
+ Copyright (C) 2007 Free Software Foundation, Inc.
+
+ This file is part of Libgcrypt.
+
+ Libgcrypt is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License as
+ published by the Free Software Foundation; either version 2.1 of
+ the License, or (at your option) any later version.
+
+ Libgcrypt is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
+ USA. */
+
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "mpi-internal.h"
+#include "longlong.h"
+#include "g10lib.h"
+
+
+#define point_init(a) _gcry_mpi_ec_point_init ((a))
+#define point_free(a) _gcry_mpi_ec_point_free ((a))
+
+
+/* Object to represent a point in projective coordinates. */
+/* Currently defined in mpi.h */
+
+/* This context is used with all our EC functions. */
+struct mpi_ec_ctx_s
+{
+ /* Domain parameters. */
+ gcry_mpi_t p; /* Prime specifying the field GF(p). */
+ gcry_mpi_t a; /* First coefficient of the Weierstrass equation. */
+
+ int a_is_pminus3; /* True if A = P - 3. */
+
+ /* Some often used constants. */
+ gcry_mpi_t one;
+ gcry_mpi_t two;
+ gcry_mpi_t three;
+ gcry_mpi_t four;
+ gcry_mpi_t eight;
+ gcry_mpi_t two_inv_p;
+
+ /* Scratch variables. */
+ gcry_mpi_t scratch[11];
+
+ /* Helper for fast reduction. */
+/* int nist_nbits; /\* If this is a NIST curve, the number of bits. *\/ */
+/* gcry_mpi_t s[10]; */
+/* gcry_mpi_t c; */
+
+};
+
+
+
+/* Initialized a point object. gcry_mpi_ec_point_free shall be used
+ to release this object. */
+void
+_gcry_mpi_ec_point_init (mpi_point_t *p)
+{
+ p->x = mpi_new (0);
+ p->y = mpi_new (0);
+ p->z = mpi_new (0);
+}
+
+
+/* Release a point object. */
+void
+_gcry_mpi_ec_point_free (mpi_point_t *p)
+{
+ mpi_free (p->x); p->x = NULL;
+ mpi_free (p->y); p->y = NULL;
+ mpi_free (p->z); p->z = NULL;
+}
+
+/* Set the value from S into D. */
+static void
+point_set (mpi_point_t *d, mpi_point_t *s)
+{
+ mpi_set (d->x, s->x);
+ mpi_set (d->y, s->y);
+ mpi_set (d->z, s->z);
+}
+
+
+
+static void
+ec_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
+{
+ mpi_addm (w, u, v, ctx->p);
+}
+
+static void
+ec_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
+{
+ mpi_subm (w, u, v, ctx->p);
+}
+
+static void
+ec_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
+{
+#if 0
+ /* NOTE: This code works only for limb sizes of 32 bit. */
+ mpi_limb_t *wp, *sp;
+
+ if (ctx->nist_nbits == 192)
+ {
+ mpi_mul (w, u, v);
+ mpi_resize (w, 12);
+ wp = w->d;
+
+ sp = ctx->s[0]->d;
+ sp[0*2+0] = wp[0*2+0];
+ sp[0*2+1] = wp[0*2+1];
+ sp[1*2+0] = wp[1*2+0];
+ sp[1*2+1] = wp[1*2+1];
+ sp[2*2+0] = wp[2*2+0];
+ sp[2*2+1] = wp[2*2+1];
+
+ sp = ctx->s[1]->d;
+ sp[0*2+0] = wp[3*2+0];
+ sp[0*2+1] = wp[3*2+1];
+ sp[1*2+0] = wp[3*2+0];
+ sp[1*2+1] = wp[3*2+1];
+ sp[2*2+0] = 0;
+ sp[2*2+1] = 0;
+
+ sp = ctx->s[2]->d;
+ sp[0*2+0] = 0;
+ sp[0*2+1] = 0;
+ sp[1*2+0] = wp[4*2+0];
+ sp[1*2+1] = wp[4*2+1];
+ sp[2*2+0] = wp[4*2+0];
+ sp[2*2+1] = wp[4*2+1];
+
+ sp = ctx->s[3]->d;
+ sp[0*2+0] = wp[5*2+0];
+ sp[0*2+1] = wp[5*2+1];
+ sp[1*2+0] = wp[5*2+0];
+ sp[1*2+1] = wp[5*2+1];
+ sp[2*2+0] = wp[5*2+0];
+ sp[2*2+1] = wp[5*2+1];
+
+ ctx->s[0]->nlimbs = 6;
+ ctx->s[1]->nlimbs = 6;
+ ctx->s[2]->nlimbs = 6;
+ ctx->s[3]->nlimbs = 6;
+
+ mpi_add (ctx->c, ctx->s[0], ctx->s[1]);
+ mpi_add (ctx->c, ctx->c, ctx->s[2]);
+ mpi_add (ctx->c, ctx->c, ctx->s[3]);
+
+ while ( mpi_cmp (ctx->c, ctx->p ) >= 0 )
+ mpi_sub ( ctx->c, ctx->c, ctx->p );
+ mpi_set (w, ctx->c);
+ }
+ else if (ctx->nist_nbits == 384)
+ {
+ int i;
+ mpi_mul (w, u, v);
+ mpi_resize (w, 24);
+ wp = w->d;
+
+#define NEXT(a) do { ctx->s[(a)]->nlimbs = 12; \
+ sp = ctx->s[(a)]->d; \
+ i = 0; } while (0)
+#define X(a) do { sp[i++] = wp[(a)];} while (0)
+#define X0(a) do { sp[i++] = 0; } while (0)
+ NEXT(0);
+ X(0);X(1);X(2);X(3);X(4);X(5);X(6);X(7);X(8);X(9);X(10);X(11);
+ NEXT(1);
+ X0();X0();X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();
+ NEXT(2);
+ X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);X(23);
+ NEXT(3);
+ X(21);X(22);X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);
+ NEXT(4);
+ X0();X(23);X0();X(20);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);
+ NEXT(5);
+ X0();X0();X0();X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();
+ NEXT(6);
+ X(20);X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();
+ NEXT(7);
+ X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);
+ NEXT(8);
+ X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();X0();
+ NEXT(9);
+ X0();X0();X0();X(23);X(23);X0();X0();X0();X0();X0();X0();X0();
+#undef X0
+#undef X
+#undef NEXT
+ mpi_add (ctx->c, ctx->s[0], ctx->s[1]);
+ mpi_add (ctx->c, ctx->c, ctx->s[1]);
+ mpi_add (ctx->c, ctx->c, ctx->s[2]);
+ mpi_add (ctx->c, ctx->c, ctx->s[3]);
+ mpi_add (ctx->c, ctx->c, ctx->s[4]);
+ mpi_add (ctx->c, ctx->c, ctx->s[5]);
+ mpi_add (ctx->c, ctx->c, ctx->s[6]);
+ mpi_sub (ctx->c, ctx->c, ctx->s[7]);
+ mpi_sub (ctx->c, ctx->c, ctx->s[8]);
+ mpi_sub (ctx->c, ctx->c, ctx->s[9]);
+
+ while ( mpi_cmp (ctx->c, ctx->p ) >= 0 )
+ mpi_sub ( ctx->c, ctx->c, ctx->p );
+ while ( ctx->c->sign )
+ mpi_add ( ctx->c, ctx->c, ctx->p );
+ mpi_set (w, ctx->c);
+ }
+ else
+#endif /*0*/
+ mpi_mulm (w, u, v, ctx->p);
+}
+
+static void
+ec_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e,
+ mpi_ec_t ctx)
+{
+ mpi_powm (w, b, e, ctx->p);
+}
+
+static void
+ec_invm (gcry_mpi_t x, gcry_mpi_t a, mpi_ec_t ctx)
+{
+ mpi_invm (x, a, ctx->p);
+}
+
+
+
+/* This function returns a new context for elliptic curve based on the
+ field GF(p). P is the prime specifying thuis field, A is the first
+ coefficient.
+
+ This context needs to be released using _gcry_mpi_ec_free. */
+mpi_ec_t
+_gcry_mpi_ec_init (gcry_mpi_t p, gcry_mpi_t a)
+{
+ int i;
+ mpi_ec_t ctx;
+ gcry_mpi_t tmp;
+
+ mpi_normalize (p);
+ mpi_normalize (a);
+
+ /* Fixme: Do we want to check some constraints? e.g.
+ a < p
+ */
+
+ ctx = gcry_xcalloc (1, sizeof *ctx);
+
+ ctx->p = mpi_copy (p);
+ ctx->a = mpi_copy (a);
+
+ tmp = mpi_alloc_like (ctx->p);
+ mpi_sub_ui (tmp, ctx->p, 3);
+ ctx->a_is_pminus3 = !mpi_cmp (ctx->a, tmp);
+ mpi_free (tmp);
+
+
+ /* Allocate constants. */
+ ctx->one = mpi_alloc_set_ui (1);
+ ctx->two = mpi_alloc_set_ui (2);
+ ctx->three = mpi_alloc_set_ui (3);
+ ctx->four = mpi_alloc_set_ui (4);
+ ctx->eight = mpi_alloc_set_ui (8);
+ ctx->two_inv_p = mpi_alloc (0);
+ ec_invm (ctx->two_inv_p, ctx->two, ctx);
+
+ /* Allocate scratch variables. */
+ for (i=0; i< DIM(ctx->scratch); i++)
+ ctx->scratch[i] = mpi_alloc_like (ctx->p);
+
+ /* Prepare for fast reduction. */
+ /* FIXME: need a test for NIST values. However it does not gain us
+ any real advantage, for 384 bits it is actually slower than using
+ mpi_mulm. */
+/* ctx->nist_nbits = mpi_get_nbits (ctx->p); */
+/* if (ctx->nist_nbits == 192) */
+/* { */
+/* for (i=0; i < 4; i++) */
+/* ctx->s[i] = mpi_new (192); */
+/* ctx->c = mpi_new (192*2); */
+/* } */
+/* else if (ctx->nist_nbits == 384) */
+/* { */
+/* for (i=0; i < 10; i++) */
+/* ctx->s[i] = mpi_new (384); */
+/* ctx->c = mpi_new (384*2); */
+/* } */
+
+ return ctx;
+}
+
+void
+_gcry_mpi_ec_free (mpi_ec_t ctx)
+{
+ int i;
+
+ if (!ctx)
+ return;
+
+ mpi_free (ctx->p);
+ mpi_free (ctx->a);
+
+ mpi_free (ctx->one);
+ mpi_free (ctx->two);
+ mpi_free (ctx->three);
+ mpi_free (ctx->four);
+ mpi_free (ctx->eight);
+
+ mpi_free (ctx->two_inv_p);
+
+ for (i=0; i< DIM(ctx->scratch); i++)
+ mpi_free (ctx->scratch[i]);
+
+/* if (ctx->nist_nbits == 192) */
+/* { */
+/* for (i=0; i < 4; i++) */
+/* mpi_free (ctx->s[i]); */
+/* mpi_free (ctx->c); */
+/* } */
+/* else if (ctx->nist_nbits == 384) */
+/* { */
+/* for (i=0; i < 10; i++) */
+/* mpi_free (ctx->s[i]); */
+/* mpi_free (ctx->c); */
+/* } */
+
+ gcry_free (ctx);
+}
+
+/* Compute the affine coordinates from the projective coordinates in
+ POINT. Set them into X and Y. If one coordinate is not required,
+ X or Y may be passed as NULL. CTX is the usual context. Returns: 0
+ on success or !0 if POINT is at infinity. */
+int
+_gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, mpi_point_t *point,
+ mpi_ec_t ctx)
+{
+ gcry_mpi_t z1, z2, z3;
+
+ if (!mpi_cmp_ui (point->z, 0))
+ return -1;
+
+ z1 = mpi_new (0);
+ z2 = mpi_new (0);
+ ec_invm (z1, point->z, ctx); /* z1 = z^(-1) mod p */
+ ec_mulm (z2, z1, z1, ctx); /* z2 = z^(-2) mod p */
+
+ if (x)
+ ec_mulm (x, point->x, z2, ctx);
+
+ if (y)
+ {
+ z3 = mpi_new (0);
+ ec_mulm (z3, z2, z1, ctx); /* z3 = z^(-3) mod p */
+ ec_mulm (y, point->y, z3, ctx);
+ mpi_free (z3);
+ }
+
+ mpi_free (z2);
+ mpi_free (z1);
+ return 0;
+}
+
+
+
+
+
+/* RESULT = 2 * POINT */
+void
+_gcry_mpi_ec_dup_point (mpi_point_t *result, mpi_point_t *point, mpi_ec_t ctx)
+{
+#define x3 (result->x)
+#define y3 (result->y)
+#define z3 (result->z)
+#define t1 (ctx->scratch[0])
+#define t2 (ctx->scratch[1])
+#define t3 (ctx->scratch[2])
+#define l1 (ctx->scratch[3])
+#define l2 (ctx->scratch[4])
+#define l3 (ctx->scratch[5])
+
+ if (!mpi_cmp_ui (point->y, 0) || !mpi_cmp_ui (point->z, 0))
+ {
+ /* P_y == 0 || P_z == 0 => [1:1:0] */
+ mpi_set_ui (x3, 1);
+ mpi_set_ui (y3, 1);
+ mpi_set_ui (z3, 0);
+ }
+ else
+ {
+ if (ctx->a_is_pminus3) /* Use the faster case. */
+ {
+ /* L1 = 3(X - Z^2)(X + Z^2) */
+ /* T1: used for Z^2. */
+ /* T2: used for the right term. */
+ ec_powm (t1, point->z, ctx->two, ctx);
+ ec_subm (l1, point->x, t1, ctx);
+ ec_mulm (l1, l1, ctx->three, ctx);
+ ec_addm (t2, point->x, t1, ctx);
+ ec_mulm (l1, l1, t2, ctx);
+ }
+ else /* Standard case. */
+ {
+ /* L1 = 3X^2 + aZ^4 */
+ /* T1: used for aZ^4. */
+ ec_powm (l1, point->x, ctx->two, ctx);
+ ec_mulm (l1, l1, ctx->three, ctx);
+ ec_powm (t1, point->z, ctx->four, ctx);
+ ec_mulm (t1, t1, ctx->a, ctx);
+ ec_addm (l1, l1, t1, ctx);
+ }
+ /* Z3 = 2YZ */
+ ec_mulm (z3, point->y, point->z, ctx);
+ ec_mulm (z3, z3, ctx->two, ctx);
+
+ /* L2 = 4XY^2 */
+ /* T2: used for Y2; required later. */
+ ec_powm (t2, point->y, ctx->two, ctx);
+ ec_mulm (l2, t2, point->x, ctx);
+ ec_mulm (l2, l2, ctx->four, ctx);
+
+ /* X3 = L1^2 - 2L2 */
+ /* T1: used for L2^2. */
+ ec_powm (x3, l1, ctx->two, ctx);
+ ec_mulm (t1, l2, ctx->two, ctx);
+ ec_subm (x3, x3, t1, ctx);
+
+ /* L3 = 8Y^4 */
+ /* T2: taken from above. */
+ ec_powm (t2, t2, ctx->two, ctx);
+ ec_mulm (l3, t2, ctx->eight, ctx);
+
+ /* Y3 = L1(L2 - X3) - L3 */
+ ec_subm (y3, l2, x3, ctx);
+ ec_mulm (y3, y3, l1, ctx);
+ ec_subm (y3, y3, l3, ctx);
+ }
+
+#undef x3
+#undef y3
+#undef z3
+#undef t1
+#undef t2
+#undef t3
+#undef l1
+#undef l2
+#undef l3
+}
+
+
+
+/* RESULT = P1 + P2 */
+void
+_gcry_mpi_ec_add_points (mpi_point_t *result,
+ mpi_point_t *p1, mpi_point_t *p2,
+ mpi_ec_t ctx)
+{
+#define x1 (p1->x )
+#define y1 (p1->y )
+#define z1 (p1->z )
+#define x2 (p2->x )
+#define y2 (p2->y )
+#define z2 (p2->z )
+#define x3 (result->x)
+#define y3 (result->y)
+#define z3 (result->z)
+#define l1 (ctx->scratch[0])
+#define l2 (ctx->scratch[1])
+#define l3 (ctx->scratch[2])
+#define l4 (ctx->scratch[3])
+#define l5 (ctx->scratch[4])
+#define l6 (ctx->scratch[5])
+#define l7 (ctx->scratch[6])
+#define l8 (ctx->scratch[7])
+#define l9 (ctx->scratch[8])
+#define t1 (ctx->scratch[9])
+#define t2 (ctx->scratch[10])
+
+ if ( (!mpi_cmp (x1, x2)) && (!mpi_cmp (y1, y2)) && (!mpi_cmp (z1, z2)) )
+ {
+ /* Same point; need to call the duplicate function. */
+ _gcry_mpi_ec_dup_point (result, p1, ctx);
+ }
+ else if (!mpi_cmp_ui (z1, 0))
+ {
+ /* P1 is at infinity. */
+ mpi_set (x3, p2->x);
+ mpi_set (y3, p2->y);
+ mpi_set (z3, p2->z);
+ }
+ else if (!mpi_cmp_ui (z2, 0))
+ {
+ /* P2 is at infinity. */
+ mpi_set (x3, p1->x);
+ mpi_set (y3, p1->y);
+ mpi_set (z3, p1->z);
+ }
+ else
+ {
+ int z1_is_one = !mpi_cmp_ui (z1, 1);
+ int z2_is_one = !mpi_cmp_ui (z2, 1);
+
+ /* l1 = x1 z2^2 */
+ /* l2 = x2 z1^2 */
+ if (z2_is_one)
+ mpi_set (l1, x1);
+ else
+ {
+ ec_powm (l1, z2, ctx->two, ctx);
+ ec_mulm (l1, l1, x1, ctx);
+ }
+ if (z1_is_one)
+ mpi_set (l2, x1);
+ else
+ {
+ ec_powm (l2, z1, ctx->two, ctx);
+ ec_mulm (l2, l2, x2, ctx);
+ }
+ /* l3 = l1 - l2 */
+ ec_subm (l3, l1, l2, ctx);
+ /* l4 = y1 z2^3 */
+ ec_powm (l4, z2, ctx->three, ctx);
+ ec_mulm (l4, l4, y1, ctx);
+ /* l5 = y2 z1^3 */
+ ec_powm (l5, z1, ctx->three, ctx);
+ ec_mulm (l5, l5, y2, ctx);
+ /* l6 = l4 - l5 */
+ ec_subm (l6, l4, l5, ctx);
+
+ if (!mpi_cmp_ui (l3, 0))
+ {
+ if (!mpi_cmp_ui (l6, 0))
+ {
+ /* P1 and P2 are the same - use duplicate function. */
+ _gcry_mpi_ec_dup_point (result, p1, ctx);
+ }
+ else
+ {
+ /* P1 is the inverse of P2. */
+ mpi_set_ui (x3, 1);
+ mpi_set_ui (y3, 1);
+ mpi_set_ui (z3, 0);
+ }
+ }
+ else
+ {
+ /* l7 = l1 + l2 */
+ ec_addm (l7, l1, l2, ctx);
+ /* l8 = l4 + l5 */
+ ec_addm (l8, l4, l5, ctx);
+ /* z3 = z1 z2 l3 */
+ ec_mulm (z3, z1, z2, ctx);
+ ec_mulm (z3, z3, l3, ctx);
+ /* x3 = l6^2 - l7 l3^2 */
+ ec_powm (t1, l6, ctx->two, ctx);
+ ec_powm (t2, l3, ctx->two, ctx);
+ ec_mulm (t2, t2, l7, ctx);
+ ec_subm (x3, t1, t2, ctx);
+ /* l9 = l7 l3^2 - 2 x3 */
+ ec_mulm (t1, x3, ctx->two, ctx);
+ ec_subm (l9, t2, t1, ctx);
+ /* y3 = (l9 l6 - l8 l3^3)/2 */
+ ec_mulm (l9, l9, l6, ctx);
+ ec_powm (t1, l3, ctx->three, ctx); /* fixme: Use saved value*/
+ ec_mulm (t1, t1, l8, ctx);
+ ec_subm (y3, l9, t1, ctx);
+ ec_mulm (y3, y3, ctx->two_inv_p, ctx);
+ }
+ }
+
+#undef x1
+#undef y1
+#undef z1
+#undef x2
+#undef y2
+#undef z2
+#undef x3
+#undef y3
+#undef z3
+#undef l1
+#undef l2
+#undef l3
+#undef l4
+#undef l5
+#undef l6
+#undef l7
+#undef l8
+#undef l9
+#undef t1
+#undef t2
+}
+
+
+
+/* Scalar point multiplication - the main function for ECC. If takes
+ an integer SCALAR and a POINT as well as the usual context CTX.
+ RESULT will be set to the resulting point. */
+void
+_gcry_mpi_ec_mul_point (mpi_point_t *result,
+ gcry_mpi_t scalar, mpi_point_t *point,
+ mpi_ec_t ctx)
+{
+#if 0
+ /* Simple left to right binary method. GECC Algorithm 3.27 */
+ unsigned int nbits;
+ int i;
+
+ nbits = mpi_get_nbits (scalar);
+ mpi_set_ui (result->x, 1);
+ mpi_set_ui (result->y, 1);
+ mpi_set_ui (result->z, 0);
+
+ for (i=nbits-1; i >= 0; i--)
+ {
+ _gcry_mpi_ec_dup_point (result, result, ctx);
+ if (mpi_test_bit (scalar, i) == 1)
+ _gcry_mpi_ec_add_points (result, result, point, ctx);
+ }
+
+#else
+ gcry_mpi_t x1, y1, z1, k, h, yy;
+ unsigned int i, loops;
+ mpi_point_t p1, p2, p1inv;
+
+ x1 = mpi_alloc_like (ctx->p);
+ y1 = mpi_alloc_like (ctx->p);
+ h = mpi_alloc_like (ctx->p);
+ k = mpi_copy (scalar);
+ yy = mpi_copy (point->y);
+
+ if ( mpi_is_neg (k) )
+ {
+ k->sign = 0;
+ ec_invm (yy, yy, ctx);
+ }
+
+ if (!mpi_cmp_ui (point->z, 1))
+ {
+ mpi_set (x1, point->x);
+ mpi_set (y1, yy);
+ }
+ else
+ {
+ gcry_mpi_t z2, z3;
+
+ z2 = mpi_alloc_like (ctx->p);
+ z3 = mpi_alloc_like (ctx->p);
+ ec_mulm (z2, point->z, point->z, ctx);
+ ec_mulm (z3, point->z, z2, ctx);
+ ec_invm (z2, z2, ctx);
+ ec_mulm (x1, point->x, z2, ctx);
+ ec_invm (z3, z3, ctx);
+ ec_mulm (y1, yy, z3, ctx);
+ mpi_free (z2);
+ mpi_free (z3);
+ }
+ z1 = mpi_copy (ctx->one);
+
+ mpi_mul (h, k, ctx->three); /* h = 3k */
+ loops = mpi_get_nbits (h);
+
+ mpi_set (result->x, point->x);
+ mpi_set (result->y, yy); mpi_free (yy); yy = NULL;
+ mpi_set (result->z, point->z);
+
+ p1.x = x1; x1 = NULL;
+ p1.y = y1; y1 = NULL;
+ p1.z = z1; z1 = NULL;
+ point_init (&p2);
+ point_init (&p1inv);
+
+ for (i=loops-2; i > 0; i--)
+ {
+ _gcry_mpi_ec_dup_point (result, result, ctx);
+ if (mpi_test_bit (h, i) == 1 && mpi_test_bit (k, i) == 0)
+ {
+ point_set (&p2, result);
+ _gcry_mpi_ec_add_points (result, &p2, &p1, ctx);
+ }
+ if (mpi_test_bit (h, i) == 0 && mpi_test_bit (k, i) == 1)
+ {
+ point_set (&p2, result);
+ /* Invert point: y = p - y mod p */
+ point_set (&p1inv, &p1);
+ ec_subm (p1inv.y, ctx->p, p1inv.y, ctx);
+ _gcry_mpi_ec_add_points (result, &p2, &p1inv, ctx);
+ }
+ }
+
+ point_free (&p1);
+ point_free (&p2);
+ point_free (&p1inv);
+ mpi_free (h);
+ mpi_free (k);
+#endif
+}
+