diff options
author | Kirill Volinsky <mataes2007@gmail.com> | 2012-05-19 18:01:32 +0000 |
---|---|---|
committer | Kirill Volinsky <mataes2007@gmail.com> | 2012-05-19 18:01:32 +0000 |
commit | b1509f22892dc98057c750e7fae39ded5cea3b09 (patch) | |
tree | 6bdcc9379ae86339a67022b758575729d1304074 /plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c | |
parent | e7a776a6f5ab323cd9dd824e815846ef268fa7f1 (diff) |
added MirOTR
git-svn-id: http://svn.miranda-ng.org/main/trunk@83 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c')
-rw-r--r-- | plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c | 709 |
1 files changed, 709 insertions, 0 deletions
diff --git a/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c b/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c new file mode 100644 index 0000000000..4a3a5f8c08 --- /dev/null +++ b/plugins/MirOTR/libgcrypt-1.4.6/mpi/ec.c @@ -0,0 +1,709 @@ +/* ec.c - Elliptic Curve functions + Copyright (C) 2007 Free Software Foundation, Inc. + + This file is part of Libgcrypt. + + Libgcrypt is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as + published by the Free Software Foundation; either version 2.1 of + the License, or (at your option) any later version. + + Libgcrypt is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, + USA. */ + + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> + +#include "mpi-internal.h" +#include "longlong.h" +#include "g10lib.h" + + +#define point_init(a) _gcry_mpi_ec_point_init ((a)) +#define point_free(a) _gcry_mpi_ec_point_free ((a)) + + +/* Object to represent a point in projective coordinates. */ +/* Currently defined in mpi.h */ + +/* This context is used with all our EC functions. */ +struct mpi_ec_ctx_s +{ + /* Domain parameters. */ + gcry_mpi_t p; /* Prime specifying the field GF(p). */ + gcry_mpi_t a; /* First coefficient of the Weierstrass equation. */ + + int a_is_pminus3; /* True if A = P - 3. */ + + /* Some often used constants. */ + gcry_mpi_t one; + gcry_mpi_t two; + gcry_mpi_t three; + gcry_mpi_t four; + gcry_mpi_t eight; + gcry_mpi_t two_inv_p; + + /* Scratch variables. */ + gcry_mpi_t scratch[11]; + + /* Helper for fast reduction. */ +/* int nist_nbits; /\* If this is a NIST curve, the number of bits. *\/ */ +/* gcry_mpi_t s[10]; */ +/* gcry_mpi_t c; */ + +}; + + + +/* Initialized a point object. gcry_mpi_ec_point_free shall be used + to release this object. */ +void +_gcry_mpi_ec_point_init (mpi_point_t *p) +{ + p->x = mpi_new (0); + p->y = mpi_new (0); + p->z = mpi_new (0); +} + + +/* Release a point object. */ +void +_gcry_mpi_ec_point_free (mpi_point_t *p) +{ + mpi_free (p->x); p->x = NULL; + mpi_free (p->y); p->y = NULL; + mpi_free (p->z); p->z = NULL; +} + +/* Set the value from S into D. */ +static void +point_set (mpi_point_t *d, mpi_point_t *s) +{ + mpi_set (d->x, s->x); + mpi_set (d->y, s->y); + mpi_set (d->z, s->z); +} + + + +static void +ec_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx) +{ + mpi_addm (w, u, v, ctx->p); +} + +static void +ec_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx) +{ + mpi_subm (w, u, v, ctx->p); +} + +static void +ec_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx) +{ +#if 0 + /* NOTE: This code works only for limb sizes of 32 bit. */ + mpi_limb_t *wp, *sp; + + if (ctx->nist_nbits == 192) + { + mpi_mul (w, u, v); + mpi_resize (w, 12); + wp = w->d; + + sp = ctx->s[0]->d; + sp[0*2+0] = wp[0*2+0]; + sp[0*2+1] = wp[0*2+1]; + sp[1*2+0] = wp[1*2+0]; + sp[1*2+1] = wp[1*2+1]; + sp[2*2+0] = wp[2*2+0]; + sp[2*2+1] = wp[2*2+1]; + + sp = ctx->s[1]->d; + sp[0*2+0] = wp[3*2+0]; + sp[0*2+1] = wp[3*2+1]; + sp[1*2+0] = wp[3*2+0]; + sp[1*2+1] = wp[3*2+1]; + sp[2*2+0] = 0; + sp[2*2+1] = 0; + + sp = ctx->s[2]->d; + sp[0*2+0] = 0; + sp[0*2+1] = 0; + sp[1*2+0] = wp[4*2+0]; + sp[1*2+1] = wp[4*2+1]; + sp[2*2+0] = wp[4*2+0]; + sp[2*2+1] = wp[4*2+1]; + + sp = ctx->s[3]->d; + sp[0*2+0] = wp[5*2+0]; + sp[0*2+1] = wp[5*2+1]; + sp[1*2+0] = wp[5*2+0]; + sp[1*2+1] = wp[5*2+1]; + sp[2*2+0] = wp[5*2+0]; + sp[2*2+1] = wp[5*2+1]; + + ctx->s[0]->nlimbs = 6; + ctx->s[1]->nlimbs = 6; + ctx->s[2]->nlimbs = 6; + ctx->s[3]->nlimbs = 6; + + mpi_add (ctx->c, ctx->s[0], ctx->s[1]); + mpi_add (ctx->c, ctx->c, ctx->s[2]); + mpi_add (ctx->c, ctx->c, ctx->s[3]); + + while ( mpi_cmp (ctx->c, ctx->p ) >= 0 ) + mpi_sub ( ctx->c, ctx->c, ctx->p ); + mpi_set (w, ctx->c); + } + else if (ctx->nist_nbits == 384) + { + int i; + mpi_mul (w, u, v); + mpi_resize (w, 24); + wp = w->d; + +#define NEXT(a) do { ctx->s[(a)]->nlimbs = 12; \ + sp = ctx->s[(a)]->d; \ + i = 0; } while (0) +#define X(a) do { sp[i++] = wp[(a)];} while (0) +#define X0(a) do { sp[i++] = 0; } while (0) + NEXT(0); + X(0);X(1);X(2);X(3);X(4);X(5);X(6);X(7);X(8);X(9);X(10);X(11); + NEXT(1); + X0();X0();X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0(); + NEXT(2); + X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);X(23); + NEXT(3); + X(21);X(22);X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20); + NEXT(4); + X0();X(23);X0();X(20);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19); + NEXT(5); + X0();X0();X0();X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0(); + NEXT(6); + X(20);X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();X0(); + NEXT(7); + X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22); + NEXT(8); + X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();X0(); + NEXT(9); + X0();X0();X0();X(23);X(23);X0();X0();X0();X0();X0();X0();X0(); +#undef X0 +#undef X +#undef NEXT + mpi_add (ctx->c, ctx->s[0], ctx->s[1]); + mpi_add (ctx->c, ctx->c, ctx->s[1]); + mpi_add (ctx->c, ctx->c, ctx->s[2]); + mpi_add (ctx->c, ctx->c, ctx->s[3]); + mpi_add (ctx->c, ctx->c, ctx->s[4]); + mpi_add (ctx->c, ctx->c, ctx->s[5]); + mpi_add (ctx->c, ctx->c, ctx->s[6]); + mpi_sub (ctx->c, ctx->c, ctx->s[7]); + mpi_sub (ctx->c, ctx->c, ctx->s[8]); + mpi_sub (ctx->c, ctx->c, ctx->s[9]); + + while ( mpi_cmp (ctx->c, ctx->p ) >= 0 ) + mpi_sub ( ctx->c, ctx->c, ctx->p ); + while ( ctx->c->sign ) + mpi_add ( ctx->c, ctx->c, ctx->p ); + mpi_set (w, ctx->c); + } + else +#endif /*0*/ + mpi_mulm (w, u, v, ctx->p); +} + +static void +ec_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e, + mpi_ec_t ctx) +{ + mpi_powm (w, b, e, ctx->p); +} + +static void +ec_invm (gcry_mpi_t x, gcry_mpi_t a, mpi_ec_t ctx) +{ + mpi_invm (x, a, ctx->p); +} + + + +/* This function returns a new context for elliptic curve based on the + field GF(p). P is the prime specifying thuis field, A is the first + coefficient. + + This context needs to be released using _gcry_mpi_ec_free. */ +mpi_ec_t +_gcry_mpi_ec_init (gcry_mpi_t p, gcry_mpi_t a) +{ + int i; + mpi_ec_t ctx; + gcry_mpi_t tmp; + + mpi_normalize (p); + mpi_normalize (a); + + /* Fixme: Do we want to check some constraints? e.g. + a < p + */ + + ctx = gcry_xcalloc (1, sizeof *ctx); + + ctx->p = mpi_copy (p); + ctx->a = mpi_copy (a); + + tmp = mpi_alloc_like (ctx->p); + mpi_sub_ui (tmp, ctx->p, 3); + ctx->a_is_pminus3 = !mpi_cmp (ctx->a, tmp); + mpi_free (tmp); + + + /* Allocate constants. */ + ctx->one = mpi_alloc_set_ui (1); + ctx->two = mpi_alloc_set_ui (2); + ctx->three = mpi_alloc_set_ui (3); + ctx->four = mpi_alloc_set_ui (4); + ctx->eight = mpi_alloc_set_ui (8); + ctx->two_inv_p = mpi_alloc (0); + ec_invm (ctx->two_inv_p, ctx->two, ctx); + + /* Allocate scratch variables. */ + for (i=0; i< DIM(ctx->scratch); i++) + ctx->scratch[i] = mpi_alloc_like (ctx->p); + + /* Prepare for fast reduction. */ + /* FIXME: need a test for NIST values. However it does not gain us + any real advantage, for 384 bits it is actually slower than using + mpi_mulm. */ +/* ctx->nist_nbits = mpi_get_nbits (ctx->p); */ +/* if (ctx->nist_nbits == 192) */ +/* { */ +/* for (i=0; i < 4; i++) */ +/* ctx->s[i] = mpi_new (192); */ +/* ctx->c = mpi_new (192*2); */ +/* } */ +/* else if (ctx->nist_nbits == 384) */ +/* { */ +/* for (i=0; i < 10; i++) */ +/* ctx->s[i] = mpi_new (384); */ +/* ctx->c = mpi_new (384*2); */ +/* } */ + + return ctx; +} + +void +_gcry_mpi_ec_free (mpi_ec_t ctx) +{ + int i; + + if (!ctx) + return; + + mpi_free (ctx->p); + mpi_free (ctx->a); + + mpi_free (ctx->one); + mpi_free (ctx->two); + mpi_free (ctx->three); + mpi_free (ctx->four); + mpi_free (ctx->eight); + + mpi_free (ctx->two_inv_p); + + for (i=0; i< DIM(ctx->scratch); i++) + mpi_free (ctx->scratch[i]); + +/* if (ctx->nist_nbits == 192) */ +/* { */ +/* for (i=0; i < 4; i++) */ +/* mpi_free (ctx->s[i]); */ +/* mpi_free (ctx->c); */ +/* } */ +/* else if (ctx->nist_nbits == 384) */ +/* { */ +/* for (i=0; i < 10; i++) */ +/* mpi_free (ctx->s[i]); */ +/* mpi_free (ctx->c); */ +/* } */ + + gcry_free (ctx); +} + +/* Compute the affine coordinates from the projective coordinates in + POINT. Set them into X and Y. If one coordinate is not required, + X or Y may be passed as NULL. CTX is the usual context. Returns: 0 + on success or !0 if POINT is at infinity. */ +int +_gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, mpi_point_t *point, + mpi_ec_t ctx) +{ + gcry_mpi_t z1, z2, z3; + + if (!mpi_cmp_ui (point->z, 0)) + return -1; + + z1 = mpi_new (0); + z2 = mpi_new (0); + ec_invm (z1, point->z, ctx); /* z1 = z^(-1) mod p */ + ec_mulm (z2, z1, z1, ctx); /* z2 = z^(-2) mod p */ + + if (x) + ec_mulm (x, point->x, z2, ctx); + + if (y) + { + z3 = mpi_new (0); + ec_mulm (z3, z2, z1, ctx); /* z3 = z^(-3) mod p */ + ec_mulm (y, point->y, z3, ctx); + mpi_free (z3); + } + + mpi_free (z2); + mpi_free (z1); + return 0; +} + + + + + +/* RESULT = 2 * POINT */ +void +_gcry_mpi_ec_dup_point (mpi_point_t *result, mpi_point_t *point, mpi_ec_t ctx) +{ +#define x3 (result->x) +#define y3 (result->y) +#define z3 (result->z) +#define t1 (ctx->scratch[0]) +#define t2 (ctx->scratch[1]) +#define t3 (ctx->scratch[2]) +#define l1 (ctx->scratch[3]) +#define l2 (ctx->scratch[4]) +#define l3 (ctx->scratch[5]) + + if (!mpi_cmp_ui (point->y, 0) || !mpi_cmp_ui (point->z, 0)) + { + /* P_y == 0 || P_z == 0 => [1:1:0] */ + mpi_set_ui (x3, 1); + mpi_set_ui (y3, 1); + mpi_set_ui (z3, 0); + } + else + { + if (ctx->a_is_pminus3) /* Use the faster case. */ + { + /* L1 = 3(X - Z^2)(X + Z^2) */ + /* T1: used for Z^2. */ + /* T2: used for the right term. */ + ec_powm (t1, point->z, ctx->two, ctx); + ec_subm (l1, point->x, t1, ctx); + ec_mulm (l1, l1, ctx->three, ctx); + ec_addm (t2, point->x, t1, ctx); + ec_mulm (l1, l1, t2, ctx); + } + else /* Standard case. */ + { + /* L1 = 3X^2 + aZ^4 */ + /* T1: used for aZ^4. */ + ec_powm (l1, point->x, ctx->two, ctx); + ec_mulm (l1, l1, ctx->three, ctx); + ec_powm (t1, point->z, ctx->four, ctx); + ec_mulm (t1, t1, ctx->a, ctx); + ec_addm (l1, l1, t1, ctx); + } + /* Z3 = 2YZ */ + ec_mulm (z3, point->y, point->z, ctx); + ec_mulm (z3, z3, ctx->two, ctx); + + /* L2 = 4XY^2 */ + /* T2: used for Y2; required later. */ + ec_powm (t2, point->y, ctx->two, ctx); + ec_mulm (l2, t2, point->x, ctx); + ec_mulm (l2, l2, ctx->four, ctx); + + /* X3 = L1^2 - 2L2 */ + /* T1: used for L2^2. */ + ec_powm (x3, l1, ctx->two, ctx); + ec_mulm (t1, l2, ctx->two, ctx); + ec_subm (x3, x3, t1, ctx); + + /* L3 = 8Y^4 */ + /* T2: taken from above. */ + ec_powm (t2, t2, ctx->two, ctx); + ec_mulm (l3, t2, ctx->eight, ctx); + + /* Y3 = L1(L2 - X3) - L3 */ + ec_subm (y3, l2, x3, ctx); + ec_mulm (y3, y3, l1, ctx); + ec_subm (y3, y3, l3, ctx); + } + +#undef x3 +#undef y3 +#undef z3 +#undef t1 +#undef t2 +#undef t3 +#undef l1 +#undef l2 +#undef l3 +} + + + +/* RESULT = P1 + P2 */ +void +_gcry_mpi_ec_add_points (mpi_point_t *result, + mpi_point_t *p1, mpi_point_t *p2, + mpi_ec_t ctx) +{ +#define x1 (p1->x ) +#define y1 (p1->y ) +#define z1 (p1->z ) +#define x2 (p2->x ) +#define y2 (p2->y ) +#define z2 (p2->z ) +#define x3 (result->x) +#define y3 (result->y) +#define z3 (result->z) +#define l1 (ctx->scratch[0]) +#define l2 (ctx->scratch[1]) +#define l3 (ctx->scratch[2]) +#define l4 (ctx->scratch[3]) +#define l5 (ctx->scratch[4]) +#define l6 (ctx->scratch[5]) +#define l7 (ctx->scratch[6]) +#define l8 (ctx->scratch[7]) +#define l9 (ctx->scratch[8]) +#define t1 (ctx->scratch[9]) +#define t2 (ctx->scratch[10]) + + if ( (!mpi_cmp (x1, x2)) && (!mpi_cmp (y1, y2)) && (!mpi_cmp (z1, z2)) ) + { + /* Same point; need to call the duplicate function. */ + _gcry_mpi_ec_dup_point (result, p1, ctx); + } + else if (!mpi_cmp_ui (z1, 0)) + { + /* P1 is at infinity. */ + mpi_set (x3, p2->x); + mpi_set (y3, p2->y); + mpi_set (z3, p2->z); + } + else if (!mpi_cmp_ui (z2, 0)) + { + /* P2 is at infinity. */ + mpi_set (x3, p1->x); + mpi_set (y3, p1->y); + mpi_set (z3, p1->z); + } + else + { + int z1_is_one = !mpi_cmp_ui (z1, 1); + int z2_is_one = !mpi_cmp_ui (z2, 1); + + /* l1 = x1 z2^2 */ + /* l2 = x2 z1^2 */ + if (z2_is_one) + mpi_set (l1, x1); + else + { + ec_powm (l1, z2, ctx->two, ctx); + ec_mulm (l1, l1, x1, ctx); + } + if (z1_is_one) + mpi_set (l2, x1); + else + { + ec_powm (l2, z1, ctx->two, ctx); + ec_mulm (l2, l2, x2, ctx); + } + /* l3 = l1 - l2 */ + ec_subm (l3, l1, l2, ctx); + /* l4 = y1 z2^3 */ + ec_powm (l4, z2, ctx->three, ctx); + ec_mulm (l4, l4, y1, ctx); + /* l5 = y2 z1^3 */ + ec_powm (l5, z1, ctx->three, ctx); + ec_mulm (l5, l5, y2, ctx); + /* l6 = l4 - l5 */ + ec_subm (l6, l4, l5, ctx); + + if (!mpi_cmp_ui (l3, 0)) + { + if (!mpi_cmp_ui (l6, 0)) + { + /* P1 and P2 are the same - use duplicate function. */ + _gcry_mpi_ec_dup_point (result, p1, ctx); + } + else + { + /* P1 is the inverse of P2. */ + mpi_set_ui (x3, 1); + mpi_set_ui (y3, 1); + mpi_set_ui (z3, 0); + } + } + else + { + /* l7 = l1 + l2 */ + ec_addm (l7, l1, l2, ctx); + /* l8 = l4 + l5 */ + ec_addm (l8, l4, l5, ctx); + /* z3 = z1 z2 l3 */ + ec_mulm (z3, z1, z2, ctx); + ec_mulm (z3, z3, l3, ctx); + /* x3 = l6^2 - l7 l3^2 */ + ec_powm (t1, l6, ctx->two, ctx); + ec_powm (t2, l3, ctx->two, ctx); + ec_mulm (t2, t2, l7, ctx); + ec_subm (x3, t1, t2, ctx); + /* l9 = l7 l3^2 - 2 x3 */ + ec_mulm (t1, x3, ctx->two, ctx); + ec_subm (l9, t2, t1, ctx); + /* y3 = (l9 l6 - l8 l3^3)/2 */ + ec_mulm (l9, l9, l6, ctx); + ec_powm (t1, l3, ctx->three, ctx); /* fixme: Use saved value*/ + ec_mulm (t1, t1, l8, ctx); + ec_subm (y3, l9, t1, ctx); + ec_mulm (y3, y3, ctx->two_inv_p, ctx); + } + } + +#undef x1 +#undef y1 +#undef z1 +#undef x2 +#undef y2 +#undef z2 +#undef x3 +#undef y3 +#undef z3 +#undef l1 +#undef l2 +#undef l3 +#undef l4 +#undef l5 +#undef l6 +#undef l7 +#undef l8 +#undef l9 +#undef t1 +#undef t2 +} + + + +/* Scalar point multiplication - the main function for ECC. If takes + an integer SCALAR and a POINT as well as the usual context CTX. + RESULT will be set to the resulting point. */ +void +_gcry_mpi_ec_mul_point (mpi_point_t *result, + gcry_mpi_t scalar, mpi_point_t *point, + mpi_ec_t ctx) +{ +#if 0 + /* Simple left to right binary method. GECC Algorithm 3.27 */ + unsigned int nbits; + int i; + + nbits = mpi_get_nbits (scalar); + mpi_set_ui (result->x, 1); + mpi_set_ui (result->y, 1); + mpi_set_ui (result->z, 0); + + for (i=nbits-1; i >= 0; i--) + { + _gcry_mpi_ec_dup_point (result, result, ctx); + if (mpi_test_bit (scalar, i) == 1) + _gcry_mpi_ec_add_points (result, result, point, ctx); + } + +#else + gcry_mpi_t x1, y1, z1, k, h, yy; + unsigned int i, loops; + mpi_point_t p1, p2, p1inv; + + x1 = mpi_alloc_like (ctx->p); + y1 = mpi_alloc_like (ctx->p); + h = mpi_alloc_like (ctx->p); + k = mpi_copy (scalar); + yy = mpi_copy (point->y); + + if ( mpi_is_neg (k) ) + { + k->sign = 0; + ec_invm (yy, yy, ctx); + } + + if (!mpi_cmp_ui (point->z, 1)) + { + mpi_set (x1, point->x); + mpi_set (y1, yy); + } + else + { + gcry_mpi_t z2, z3; + + z2 = mpi_alloc_like (ctx->p); + z3 = mpi_alloc_like (ctx->p); + ec_mulm (z2, point->z, point->z, ctx); + ec_mulm (z3, point->z, z2, ctx); + ec_invm (z2, z2, ctx); + ec_mulm (x1, point->x, z2, ctx); + ec_invm (z3, z3, ctx); + ec_mulm (y1, yy, z3, ctx); + mpi_free (z2); + mpi_free (z3); + } + z1 = mpi_copy (ctx->one); + + mpi_mul (h, k, ctx->three); /* h = 3k */ + loops = mpi_get_nbits (h); + + mpi_set (result->x, point->x); + mpi_set (result->y, yy); mpi_free (yy); yy = NULL; + mpi_set (result->z, point->z); + + p1.x = x1; x1 = NULL; + p1.y = y1; y1 = NULL; + p1.z = z1; z1 = NULL; + point_init (&p2); + point_init (&p1inv); + + for (i=loops-2; i > 0; i--) + { + _gcry_mpi_ec_dup_point (result, result, ctx); + if (mpi_test_bit (h, i) == 1 && mpi_test_bit (k, i) == 0) + { + point_set (&p2, result); + _gcry_mpi_ec_add_points (result, &p2, &p1, ctx); + } + if (mpi_test_bit (h, i) == 0 && mpi_test_bit (k, i) == 1) + { + point_set (&p2, result); + /* Invert point: y = p - y mod p */ + point_set (&p1inv, &p1); + ec_subm (p1inv.y, ctx->p, p1inv.y, ctx); + _gcry_mpi_ec_add_points (result, &p2, &p1inv, ctx); + } + } + + point_free (&p1); + point_free (&p2); + point_free (&p1inv); + mpi_free (h); + mpi_free (k); +#endif +} + |