summaryrefslogtreecommitdiff
path: root/protocols/Sametime/src/glib/gslice.c
diff options
context:
space:
mode:
authorGeorge Hazan <george.hazan@gmail.com>2014-03-22 13:34:19 +0000
committerGeorge Hazan <george.hazan@gmail.com>2014-03-22 13:34:19 +0000
commit79b554fe05162550656da3c4e459fb717dc4dadf (patch)
tree34b5856bb397b145e2a6e6b317742b73ff53ec9f /protocols/Sametime/src/glib/gslice.c
parent739fd4137010dc56881cf8328770b3175a2f2696 (diff)
glib inlined into SameTime
git-svn-id: http://svn.miranda-ng.org/main/trunk@8685 1316c22d-e87f-b044-9b9b-93d7a3e3ba9c
Diffstat (limited to 'protocols/Sametime/src/glib/gslice.c')
-rw-r--r--protocols/Sametime/src/glib/gslice.c1495
1 files changed, 1495 insertions, 0 deletions
diff --git a/protocols/Sametime/src/glib/gslice.c b/protocols/Sametime/src/glib/gslice.c
new file mode 100644
index 0000000000..05de6b3681
--- /dev/null
+++ b/protocols/Sametime/src/glib/gslice.c
@@ -0,0 +1,1495 @@
+/* GLIB sliced memory - fast concurrent memory chunk allocator
+ * Copyright (C) 2005 Tim Janik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+/* MT safe */
+
+#include "config.h"
+#include "glibconfig.h"
+
+#if defined HAVE_POSIX_MEMALIGN && defined POSIX_MEMALIGN_WITH_COMPLIANT_ALLOCS
+# define HAVE_COMPLIANT_POSIX_MEMALIGN 1
+#endif
+
+#ifdef HAVE_COMPLIANT_POSIX_MEMALIGN
+#define _XOPEN_SOURCE 600 /* posix_memalign() */
+#endif
+#include <stdlib.h> /* posix_memalign() */
+#include <string.h>
+#include <errno.h>
+
+#ifdef HAVE_UNISTD_H
+#include <unistd.h> /* sysconf() */
+#endif
+#ifdef G_OS_WIN32
+#include <windows.h>
+#include <process.h>
+#endif
+
+#include <stdio.h> /* fputs/fprintf */
+
+#include "gslice.h"
+
+#include "gmain.h"
+#include "gmem.h" /* gslice.h */
+#include "gstrfuncs.h"
+#include "gutils.h"
+#include "gtestutils.h"
+#include "gthread.h"
+#include "gthreadprivate.h"
+#include "glib_trace.h"
+
+/* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
+ * allocator and magazine extensions as outlined in:
+ * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
+ * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
+ * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
+ * slab allocator to many cpu's and arbitrary resources.
+ * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
+ * the layers are:
+ * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
+ * of recently freed and soon to be allocated chunks is maintained per thread.
+ * this way, most alloc/free requests can be quickly satisfied from per-thread
+ * free lists which only require one g_private_get() call to retrive the
+ * thread handle.
+ * - the magazine cache. allocating and freeing chunks to/from threads only
+ * occours at magazine sizes from a global depot of magazines. the depot
+ * maintaines a 15 second working set of allocated magazines, so full
+ * magazines are not allocated and released too often.
+ * the chunk size dependent magazine sizes automatically adapt (within limits,
+ * see [3]) to lock contention to properly scale performance across a variety
+ * of SMP systems.
+ * - the slab allocator. this allocator allocates slabs (blocks of memory) close
+ * to the system page size or multiples thereof which have to be page aligned.
+ * the blocks are divided into smaller chunks which are used to satisfy
+ * allocations from the upper layers. the space provided by the reminder of
+ * the chunk size division is used for cache colorization (random distribution
+ * of chunk addresses) to improve processor cache utilization. multiple slabs
+ * with the same chunk size are kept in a partially sorted ring to allow O(1)
+ * freeing and allocation of chunks (as long as the allocation of an entirely
+ * new slab can be avoided).
+ * - the page allocator. on most modern systems, posix_memalign(3) or
+ * memalign(3) should be available, so this is used to allocate blocks with
+ * system page size based alignments and sizes or multiples thereof.
+ * if no memalign variant is provided, valloc() is used instead and
+ * block sizes are limited to the system page size (no multiples thereof).
+ * as a fallback, on system without even valloc(), a malloc(3)-based page
+ * allocator with alloc-only behaviour is used.
+ *
+ * NOTES:
+ * [1] some systems memalign(3) implementations may rely on boundary tagging for
+ * the handed out memory chunks. to avoid excessive page-wise fragmentation,
+ * we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
+ * specified in NATIVE_MALLOC_PADDING.
+ * [2] using the slab allocator alone already provides for a fast and efficient
+ * allocator, it doesn't properly scale beyond single-threaded uses though.
+ * also, the slab allocator implements eager free(3)-ing, i.e. does not
+ * provide any form of caching or working set maintenance. so if used alone,
+ * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
+ * at certain thresholds.
+ * [3] magazine sizes are bound by an implementation specific minimum size and
+ * a chunk size specific maximum to limit magazine storage sizes to roughly
+ * 16KB.
+ * [4] allocating ca. 8 chunks per block/page keeps a good balance between
+ * external and internal fragmentation (<= 12.5%). [Bonwick94]
+ */
+
+/* --- macros and constants --- */
+#define LARGEALIGNMENT (256)
+#define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
+#define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base)))
+#define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */
+#define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
+#define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */
+#define MIN_MAGAZINE_SIZE (4)
+#define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */
+#define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */
+#define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
+#define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */
+#define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
+#define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
+
+/* optimized version of ALIGN (size, P2ALIGNMENT) */
+#if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */
+#define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7)
+#elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
+#define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf)
+#else
+#define P2ALIGN(size) ALIGN (size, P2ALIGNMENT)
+#endif
+
+/* special helpers to avoid gmessage.c dependency */
+static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
+#define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
+
+/* --- structures --- */
+typedef struct _ChunkLink ChunkLink;
+typedef struct _SlabInfo SlabInfo;
+typedef struct _CachedMagazine CachedMagazine;
+struct _ChunkLink {
+ ChunkLink *next;
+ ChunkLink *data;
+};
+struct _SlabInfo {
+ ChunkLink *chunks;
+ guint n_allocated;
+ SlabInfo *next, *prev;
+};
+typedef struct {
+ ChunkLink *chunks;
+ gsize count; /* approximative chunks list length */
+} Magazine;
+typedef struct {
+ Magazine *magazine1; /* array of MAX_SLAB_INDEX (allocator) */
+ Magazine *magazine2; /* array of MAX_SLAB_INDEX (allocator) */
+} ThreadMemory;
+typedef struct {
+ gboolean always_malloc;
+ gboolean bypass_magazines;
+ gboolean debug_blocks;
+ gsize working_set_msecs;
+ guint color_increment;
+} SliceConfig;
+typedef struct {
+ /* const after initialization */
+ gsize min_page_size, max_page_size;
+ SliceConfig config;
+ gsize max_slab_chunk_size_for_magazine_cache;
+ /* magazine cache */
+ GMutex *magazine_mutex;
+ ChunkLink **magazines; /* array of MAX_SLAB_INDEX (allocator) */
+ guint *contention_counters; /* array of MAX_SLAB_INDEX (allocator) */
+ gint mutex_counter;
+ guint stamp_counter;
+ guint last_stamp;
+ /* slab allocator */
+ GMutex *slab_mutex;
+ SlabInfo **slab_stack; /* array of MAX_SLAB_INDEX (allocator) */
+ guint color_accu;
+} Allocator;
+
+/* --- g-slice prototypes --- */
+static gpointer slab_allocator_alloc_chunk (gsize chunk_size);
+static void slab_allocator_free_chunk (gsize chunk_size,
+ gpointer mem);
+static void private_thread_memory_cleanup (gpointer data);
+static gpointer allocator_memalign (gsize alignment,
+ gsize memsize);
+static void allocator_memfree (gsize memsize,
+ gpointer mem);
+static inline void magazine_cache_update_stamp (void);
+static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
+ guint ix);
+
+/* --- g-slice memory checker --- */
+static void smc_notify_alloc (void *pointer,
+ size_t size);
+static int smc_notify_free (void *pointer,
+ size_t size);
+
+/* --- variables --- */
+static GPrivate *private_thread_memory = NULL;
+static gsize sys_page_size = 0;
+static Allocator allocator[1] = { { 0, }, };
+static SliceConfig slice_config = {
+ FALSE, /* always_malloc */
+ FALSE, /* bypass_magazines */
+ FALSE, /* debug_blocks */
+ 15 * 1000, /* working_set_msecs */
+ 1, /* color increment, alt: 0x7fffffff */
+};
+static GMutex *smc_tree_mutex = NULL; /* mutex for G_SLICE=debug-blocks */
+
+/* --- auxillary funcitons --- */
+void
+g_slice_set_config (GSliceConfig ckey,
+ gint64 value)
+{
+ g_return_if_fail (sys_page_size == 0);
+ switch (ckey)
+ {
+ case G_SLICE_CONFIG_ALWAYS_MALLOC:
+ slice_config.always_malloc = value != 0;
+ break;
+ case G_SLICE_CONFIG_BYPASS_MAGAZINES:
+ slice_config.bypass_magazines = value != 0;
+ break;
+ case G_SLICE_CONFIG_WORKING_SET_MSECS:
+ slice_config.working_set_msecs = value;
+ break;
+ case G_SLICE_CONFIG_COLOR_INCREMENT:
+ slice_config.color_increment = value;
+ default: ;
+ }
+}
+
+gint64
+g_slice_get_config (GSliceConfig ckey)
+{
+ switch (ckey)
+ {
+ case G_SLICE_CONFIG_ALWAYS_MALLOC:
+ return slice_config.always_malloc;
+ case G_SLICE_CONFIG_BYPASS_MAGAZINES:
+ return slice_config.bypass_magazines;
+ case G_SLICE_CONFIG_WORKING_SET_MSECS:
+ return slice_config.working_set_msecs;
+ case G_SLICE_CONFIG_CHUNK_SIZES:
+ return MAX_SLAB_INDEX (allocator);
+ case G_SLICE_CONFIG_COLOR_INCREMENT:
+ return slice_config.color_increment;
+ default:
+ return 0;
+ }
+}
+
+gint64*
+g_slice_get_config_state (GSliceConfig ckey,
+ gint64 address,
+ guint *n_values)
+{
+ guint i = 0;
+ g_return_val_if_fail (n_values != NULL, NULL);
+ *n_values = 0;
+ switch (ckey)
+ {
+ gint64 array[64];
+ case G_SLICE_CONFIG_CONTENTION_COUNTER:
+ array[i++] = SLAB_CHUNK_SIZE (allocator, address);
+ array[i++] = allocator->contention_counters[address];
+ array[i++] = allocator_get_magazine_threshold (allocator, address);
+ *n_values = i;
+ return g_memdup (array, sizeof (array[0]) * *n_values);
+ default:
+ return NULL;
+ }
+}
+
+static void
+slice_config_init (SliceConfig *config)
+{
+ /* don't use g_malloc/g_message here */
+ gchar buffer[1024];
+ const gchar *val = _g_getenv_nomalloc ("G_SLICE", buffer);
+ const GDebugKey keys[] = {
+ { "always-malloc", 1 << 0 },
+ { "debug-blocks", 1 << 1 },
+ };
+ gint flags = !val ? 0 : g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
+ *config = slice_config;
+ if (flags & (1 << 0)) /* always-malloc */
+ config->always_malloc = TRUE;
+ if (flags & (1 << 1)) /* debug-blocks */
+ config->debug_blocks = TRUE;
+}
+
+static void
+g_slice_init_nomessage (void)
+{
+ /* we may not use g_error() or friends here */
+ mem_assert (sys_page_size == 0);
+ mem_assert (MIN_MAGAZINE_SIZE >= 4);
+
+#ifdef G_OS_WIN32
+ {
+ SYSTEM_INFO system_info;
+ GetSystemInfo (&system_info);
+ sys_page_size = system_info.dwPageSize;
+ }
+#else
+ sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
+#endif
+ mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
+ mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
+ slice_config_init (&allocator->config);
+ allocator->min_page_size = sys_page_size;
+#if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN
+ /* allow allocation of pages up to 8KB (with 8KB alignment).
+ * this is useful because many medium to large sized structures
+ * fit less than 8 times (see [4]) into 4KB pages.
+ * we allow very small page sizes here, to reduce wastage in
+ * threads if only small allocations are required (this does
+ * bear the risk of incresing allocation times and fragmentation
+ * though).
+ */
+ allocator->min_page_size = MAX (allocator->min_page_size, 4096);
+ allocator->max_page_size = MAX (allocator->min_page_size, 8192);
+ allocator->min_page_size = MIN (allocator->min_page_size, 128);
+#else
+ /* we can only align to system page size */
+ allocator->max_page_size = sys_page_size;
+#endif
+ if (allocator->config.always_malloc)
+ {
+ allocator->contention_counters = NULL;
+ allocator->magazines = NULL;
+ allocator->slab_stack = NULL;
+ }
+ else
+ {
+ allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
+ allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
+ allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
+ }
+
+ allocator->magazine_mutex = NULL; /* _g_slice_thread_init_nomessage() */
+ allocator->mutex_counter = 0;
+ allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
+ allocator->last_stamp = 0;
+ allocator->slab_mutex = NULL; /* _g_slice_thread_init_nomessage() */
+ allocator->color_accu = 0;
+ magazine_cache_update_stamp();
+ /* values cached for performance reasons */
+ allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
+ if (allocator->config.always_malloc || allocator->config.bypass_magazines)
+ allocator->max_slab_chunk_size_for_magazine_cache = 0; /* non-optimized cases */
+ /* at this point, g_mem_gc_friendly() should be initialized, this
+ * should have been accomplished by the above g_malloc/g_new calls
+ */
+}
+
+static inline guint
+allocator_categorize (gsize aligned_chunk_size)
+{
+ /* speed up the likely path */
+ if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
+ return 1; /* use magazine cache */
+
+ /* the above will fail (max_slab_chunk_size_for_magazine_cache == 0) if the
+ * allocator is still uninitialized, or if we are not configured to use the
+ * magazine cache.
+ */
+ if (!sys_page_size)
+ g_slice_init_nomessage ();
+ if (!allocator->config.always_malloc &&
+ aligned_chunk_size &&
+ aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
+ {
+ if (allocator->config.bypass_magazines)
+ return 2; /* use slab allocator, see [2] */
+ return 1; /* use magazine cache */
+ }
+ return 0; /* use malloc() */
+}
+
+void
+_g_slice_thread_init_nomessage (void)
+{
+ /* we may not use g_error() or friends here */
+ if (!sys_page_size)
+ g_slice_init_nomessage();
+ else
+ {
+ /* g_slice_init_nomessage() has been called already, probably due
+ * to a g_slice_alloc1() before g_thread_init().
+ */
+ }
+ private_thread_memory = g_private_new (private_thread_memory_cleanup);
+ allocator->magazine_mutex = g_mutex_new();
+ allocator->slab_mutex = g_mutex_new();
+ if (allocator->config.debug_blocks)
+ smc_tree_mutex = g_mutex_new();
+}
+
+static inline void
+g_mutex_lock_a (GMutex *mutex,
+ guint *contention_counter)
+{
+ gboolean contention = FALSE;
+ if (!g_mutex_trylock (mutex))
+ {
+ g_mutex_lock (mutex);
+ contention = TRUE;
+ }
+ if (contention)
+ {
+ allocator->mutex_counter++;
+ if (allocator->mutex_counter >= 1) /* quickly adapt to contention */
+ {
+ allocator->mutex_counter = 0;
+ *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
+ }
+ }
+ else /* !contention */
+ {
+ allocator->mutex_counter--;
+ if (allocator->mutex_counter < -11) /* moderately recover magazine sizes */
+ {
+ allocator->mutex_counter = 0;
+ *contention_counter = MAX (*contention_counter, 1) - 1;
+ }
+ }
+}
+
+static inline ThreadMemory*
+thread_memory_from_self (void)
+{
+ ThreadMemory *tmem = g_private_get (private_thread_memory);
+ if (G_UNLIKELY (!tmem))
+ {
+ static ThreadMemory *single_thread_memory = NULL; /* remember single-thread info for multi-threaded case */
+ if (single_thread_memory && g_thread_supported ())
+ {
+ g_mutex_lock (allocator->slab_mutex);
+ if (single_thread_memory)
+ {
+ /* GSlice has been used before g_thread_init(), and now
+ * we are running threaded. to cope with it, use the saved
+ * thread memory structure from when we weren't threaded.
+ */
+ tmem = single_thread_memory;
+ single_thread_memory = NULL; /* slab_mutex protected when multi-threaded */
+ }
+ g_mutex_unlock (allocator->slab_mutex);
+ }
+ if (!tmem)
+ {
+ const guint n_magazines = MAX_SLAB_INDEX (allocator);
+ tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
+ tmem->magazine1 = (Magazine*) (tmem + 1);
+ tmem->magazine2 = &tmem->magazine1[n_magazines];
+ }
+ /* g_private_get/g_private_set works in the single-threaded xor the multi-
+ * threaded case. but not *across* g_thread_init(), after multi-thread
+ * initialization it returns NULL for previously set single-thread data.
+ */
+ g_private_set (private_thread_memory, tmem);
+ /* save single-thread thread memory structure, in case we need to
+ * pick it up again after multi-thread initialization happened.
+ */
+ if (!single_thread_memory && !g_thread_supported ())
+ single_thread_memory = tmem; /* no slab_mutex created yet */
+ }
+ return tmem;
+}
+
+static inline ChunkLink*
+magazine_chain_pop_head (ChunkLink **magazine_chunks)
+{
+ /* magazine chains are linked via ChunkLink->next.
+ * each ChunkLink->data of the toplevel chain may point to a subchain,
+ * linked via ChunkLink->next. ChunkLink->data of the subchains just
+ * contains uninitialized junk.
+ */
+ ChunkLink *chunk = (*magazine_chunks)->data;
+ if (G_UNLIKELY (chunk))
+ {
+ /* allocating from freed list */
+ (*magazine_chunks)->data = chunk->next;
+ }
+ else
+ {
+ chunk = *magazine_chunks;
+ *magazine_chunks = chunk->next;
+ }
+ return chunk;
+}
+
+#if 0 /* useful for debugging */
+static guint
+magazine_count (ChunkLink *head)
+{
+ guint count = 0;
+ if (!head)
+ return 0;
+ while (head)
+ {
+ ChunkLink *child = head->data;
+ count += 1;
+ for (child = head->data; child; child = child->next)
+ count += 1;
+ head = head->next;
+ }
+ return count;
+}
+#endif
+
+static inline gsize
+allocator_get_magazine_threshold (Allocator *allocator,
+ guint ix)
+{
+ /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
+ * which is required by the implementation. also, for moderately sized chunks
+ * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
+ * of chunks available per page/2 to avoid excessive traffic in the magazine
+ * cache for small to medium sized structures.
+ * the upper bound of the magazine size is effectively provided by
+ * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
+ * the content of a single magazine doesn't exceed ca. 16KB.
+ */
+ gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
+ guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
+ guint contention_counter = allocator->contention_counters[ix];
+ if (G_UNLIKELY (contention_counter)) /* single CPU bias */
+ {
+ /* adapt contention counter thresholds to chunk sizes */
+ contention_counter = contention_counter * 64 / chunk_size;
+ threshold = MAX (threshold, contention_counter);
+ }
+ return threshold;
+}
+
+/* --- magazine cache --- */
+static inline void
+magazine_cache_update_stamp (void)
+{
+ if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
+ {
+ GTimeVal tv;
+ g_get_current_time (&tv);
+ allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */
+ allocator->stamp_counter = 0;
+ }
+ else
+ allocator->stamp_counter++;
+}
+
+static inline ChunkLink*
+magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
+{
+ ChunkLink *chunk1;
+ ChunkLink *chunk2;
+ ChunkLink *chunk3;
+ ChunkLink *chunk4;
+ /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
+ /* ensure a magazine with at least 4 unused data pointers */
+ chunk1 = magazine_chain_pop_head (&magazine_chunks);
+ chunk2 = magazine_chain_pop_head (&magazine_chunks);
+ chunk3 = magazine_chain_pop_head (&magazine_chunks);
+ chunk4 = magazine_chain_pop_head (&magazine_chunks);
+ chunk4->next = magazine_chunks;
+ chunk3->next = chunk4;
+ chunk2->next = chunk3;
+ chunk1->next = chunk2;
+ return chunk1;
+}
+
+/* access the first 3 fields of a specially prepared magazine chain */
+#define magazine_chain_prev(mc) ((mc)->data)
+#define magazine_chain_stamp(mc) ((mc)->next->data)
+#define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data)
+#define magazine_chain_next(mc) ((mc)->next->next->data)
+#define magazine_chain_count(mc) ((mc)->next->next->next->data)
+
+static void
+magazine_cache_trim (Allocator *allocator,
+ guint ix,
+ guint stamp)
+{
+ /* g_mutex_lock (allocator->mutex); done by caller */
+ /* trim magazine cache from tail */
+ ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]);
+ ChunkLink *trash = NULL;
+ while (ABS (stamp - magazine_chain_uint_stamp (current)) >= allocator->config.working_set_msecs)
+ {
+ /* unlink */
+ ChunkLink *prev = magazine_chain_prev (current);
+ ChunkLink *next = magazine_chain_next (current);
+ magazine_chain_next (prev) = next;
+ magazine_chain_prev (next) = prev;
+ /* clear special fields, put on trash stack */
+ magazine_chain_next (current) = NULL;
+ magazine_chain_count (current) = NULL;
+ magazine_chain_stamp (current) = NULL;
+ magazine_chain_prev (current) = trash;
+ trash = current;
+ /* fixup list head if required */
+ if (current == allocator->magazines[ix])
+ {
+ allocator->magazines[ix] = NULL;
+ break;
+ }
+ current = prev;
+ }
+ g_mutex_unlock (allocator->magazine_mutex);
+ /* free trash */
+ if (trash)
+ {
+ const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
+ g_mutex_lock (allocator->slab_mutex);
+ while (trash)
+ {
+ current = trash;
+ trash = magazine_chain_prev (current);
+ magazine_chain_prev (current) = NULL; /* clear special field */
+ while (current)
+ {
+ ChunkLink *chunk = magazine_chain_pop_head (&current);
+ slab_allocator_free_chunk (chunk_size, chunk);
+ }
+ }
+ g_mutex_unlock (allocator->slab_mutex);
+ }
+}
+
+static void
+magazine_cache_push_magazine (guint ix,
+ ChunkLink *magazine_chunks,
+ gsize count) /* must be >= MIN_MAGAZINE_SIZE */
+{
+ ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
+ ChunkLink *next, *prev;
+ g_mutex_lock (allocator->magazine_mutex);
+ /* add magazine at head */
+ next = allocator->magazines[ix];
+ if (next)
+ prev = magazine_chain_prev (next);
+ else
+ next = prev = current;
+ magazine_chain_next (prev) = current;
+ magazine_chain_prev (next) = current;
+ magazine_chain_prev (current) = prev;
+ magazine_chain_next (current) = next;
+ magazine_chain_count (current) = (gpointer) count;
+ /* stamp magazine */
+ magazine_cache_update_stamp();
+ magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
+ allocator->magazines[ix] = current;
+ /* free old magazines beyond a certain threshold */
+ magazine_cache_trim (allocator, ix, allocator->last_stamp);
+ /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
+}
+
+static ChunkLink*
+magazine_cache_pop_magazine (guint ix,
+ gsize *countp)
+{
+ g_mutex_lock_a (allocator->magazine_mutex, &allocator->contention_counters[ix]);
+ if (!allocator->magazines[ix])
+ {
+ guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
+ gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
+ ChunkLink *chunk, *head;
+ g_mutex_unlock (allocator->magazine_mutex);
+ g_mutex_lock (allocator->slab_mutex);
+ head = slab_allocator_alloc_chunk (chunk_size);
+ head->data = NULL;
+ chunk = head;
+ for (i = 1; i < magazine_threshold; i++)
+ {
+ chunk->next = slab_allocator_alloc_chunk (chunk_size);
+ chunk = chunk->next;
+ chunk->data = NULL;
+ }
+ chunk->next = NULL;
+ g_mutex_unlock (allocator->slab_mutex);
+ *countp = i;
+ return head;
+ }
+ else
+ {
+ ChunkLink *current = allocator->magazines[ix];
+ ChunkLink *prev = magazine_chain_prev (current);
+ ChunkLink *next = magazine_chain_next (current);
+ /* unlink */
+ magazine_chain_next (prev) = next;
+ magazine_chain_prev (next) = prev;
+ allocator->magazines[ix] = next == current ? NULL : next;
+ g_mutex_unlock (allocator->magazine_mutex);
+ /* clear special fields and hand out */
+ *countp = (gsize) magazine_chain_count (current);
+ magazine_chain_prev (current) = NULL;
+ magazine_chain_next (current) = NULL;
+ magazine_chain_count (current) = NULL;
+ magazine_chain_stamp (current) = NULL;
+ return current;
+ }
+}
+
+/* --- thread magazines --- */
+static void
+private_thread_memory_cleanup (gpointer data)
+{
+ ThreadMemory *tmem = data;
+ const guint n_magazines = MAX_SLAB_INDEX (allocator);
+ guint ix;
+ for (ix = 0; ix < n_magazines; ix++)
+ {
+ Magazine *mags[2];
+ guint j;
+ mags[0] = &tmem->magazine1[ix];
+ mags[1] = &tmem->magazine2[ix];
+ for (j = 0; j < 2; j++)
+ {
+ Magazine *mag = mags[j];
+ if (mag->count >= MIN_MAGAZINE_SIZE)
+ magazine_cache_push_magazine (ix, mag->chunks, mag->count);
+ else
+ {
+ const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
+ g_mutex_lock (allocator->slab_mutex);
+ while (mag->chunks)
+ {
+ ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
+ slab_allocator_free_chunk (chunk_size, chunk);
+ }
+ g_mutex_unlock (allocator->slab_mutex);
+ }
+ }
+ }
+ g_free (tmem);
+}
+
+static void
+thread_memory_magazine1_reload (ThreadMemory *tmem,
+ guint ix)
+{
+ Magazine *mag = &tmem->magazine1[ix];
+ mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
+ mag->count = 0;
+ mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
+}
+
+static void
+thread_memory_magazine2_unload (ThreadMemory *tmem,
+ guint ix)
+{
+ Magazine *mag = &tmem->magazine2[ix];
+ magazine_cache_push_magazine (ix, mag->chunks, mag->count);
+ mag->chunks = NULL;
+ mag->count = 0;
+}
+
+static inline void
+thread_memory_swap_magazines (ThreadMemory *tmem,
+ guint ix)
+{
+ Magazine xmag = tmem->magazine1[ix];
+ tmem->magazine1[ix] = tmem->magazine2[ix];
+ tmem->magazine2[ix] = xmag;
+}
+
+static inline gboolean
+thread_memory_magazine1_is_empty (ThreadMemory *tmem,
+ guint ix)
+{
+ return tmem->magazine1[ix].chunks == NULL;
+}
+
+static inline gboolean
+thread_memory_magazine2_is_full (ThreadMemory *tmem,
+ guint ix)
+{
+ return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
+}
+
+static inline gpointer
+thread_memory_magazine1_alloc (ThreadMemory *tmem,
+ guint ix)
+{
+ Magazine *mag = &tmem->magazine1[ix];
+ ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
+ if (G_LIKELY (mag->count > 0))
+ mag->count--;
+ return chunk;
+}
+
+static inline void
+thread_memory_magazine2_free (ThreadMemory *tmem,
+ guint ix,
+ gpointer mem)
+{
+ Magazine *mag = &tmem->magazine2[ix];
+ ChunkLink *chunk = mem;
+ chunk->data = NULL;
+ chunk->next = mag->chunks;
+ mag->chunks = chunk;
+ mag->count++;
+}
+
+/* --- API functions --- */
+gpointer
+g_slice_alloc (gsize mem_size)
+{
+ gsize chunk_size;
+ gpointer mem;
+ guint acat;
+ chunk_size = P2ALIGN (mem_size);
+ acat = allocator_categorize (chunk_size);
+ if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
+ {
+ ThreadMemory *tmem = thread_memory_from_self();
+ guint ix = SLAB_INDEX (allocator, chunk_size);
+ if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
+ {
+ thread_memory_swap_magazines (tmem, ix);
+ if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
+ thread_memory_magazine1_reload (tmem, ix);
+ }
+ mem = thread_memory_magazine1_alloc (tmem, ix);
+ }
+ else if (acat == 2) /* allocate through slab allocator */
+ {
+ g_mutex_lock (allocator->slab_mutex);
+ mem = slab_allocator_alloc_chunk (chunk_size);
+ g_mutex_unlock (allocator->slab_mutex);
+ }
+ else /* delegate to system malloc */
+ mem = g_malloc (mem_size);
+ if (G_UNLIKELY (allocator->config.debug_blocks))
+ smc_notify_alloc (mem, mem_size);
+
+ TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size));
+
+ return mem;
+}
+
+gpointer
+g_slice_alloc0 (gsize mem_size)
+{
+ gpointer mem = g_slice_alloc (mem_size);
+ if (mem)
+ memset (mem, 0, mem_size);
+ return mem;
+}
+
+gpointer
+g_slice_copy (gsize mem_size,
+ gconstpointer mem_block)
+{
+ gpointer mem = g_slice_alloc (mem_size);
+ if (mem)
+ memcpy (mem, mem_block, mem_size);
+ return mem;
+}
+
+void
+g_slice_free1 (gsize mem_size,
+ gpointer mem_block)
+{
+ gsize chunk_size = P2ALIGN (mem_size);
+ guint acat = allocator_categorize (chunk_size);
+ if (G_UNLIKELY (!mem_block))
+ return;
+ if (G_UNLIKELY (allocator->config.debug_blocks) &&
+ !smc_notify_free (mem_block, mem_size))
+ abort();
+ if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
+ {
+ ThreadMemory *tmem = thread_memory_from_self();
+ guint ix = SLAB_INDEX (allocator, chunk_size);
+ if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
+ {
+ thread_memory_swap_magazines (tmem, ix);
+ if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
+ thread_memory_magazine2_unload (tmem, ix);
+ }
+ if (G_UNLIKELY (g_mem_gc_friendly))
+ memset (mem_block, 0, chunk_size);
+ thread_memory_magazine2_free (tmem, ix, mem_block);
+ }
+ else if (acat == 2) /* allocate through slab allocator */
+ {
+ if (G_UNLIKELY (g_mem_gc_friendly))
+ memset (mem_block, 0, chunk_size);
+ g_mutex_lock (allocator->slab_mutex);
+ slab_allocator_free_chunk (chunk_size, mem_block);
+ g_mutex_unlock (allocator->slab_mutex);
+ }
+ else /* delegate to system malloc */
+ {
+ if (G_UNLIKELY (g_mem_gc_friendly))
+ memset (mem_block, 0, mem_size);
+ g_free (mem_block);
+ }
+ TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size));
+}
+
+void
+g_slice_free_chain_with_offset (gsize mem_size,
+ gpointer mem_chain,
+ gsize next_offset)
+{
+ gpointer slice = mem_chain;
+ /* while the thread magazines and the magazine cache are implemented so that
+ * they can easily be extended to allow for free lists containing more free
+ * lists for the first level nodes, which would allow O(1) freeing in this
+ * function, the benefit of such an extension is questionable, because:
+ * - the magazine size counts will become mere lower bounds which confuses
+ * the code adapting to lock contention;
+ * - freeing a single node to the thread magazines is very fast, so this
+ * O(list_length) operation is multiplied by a fairly small factor;
+ * - memory usage histograms on larger applications seem to indicate that
+ * the amount of released multi node lists is negligible in comparison
+ * to single node releases.
+ * - the major performance bottle neck, namely g_private_get() or
+ * g_mutex_lock()/g_mutex_unlock() has already been moved out of the
+ * inner loop for freeing chained slices.
+ */
+ gsize chunk_size = P2ALIGN (mem_size);
+ guint acat = allocator_categorize (chunk_size);
+ if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
+ {
+ ThreadMemory *tmem = thread_memory_from_self();
+ guint ix = SLAB_INDEX (allocator, chunk_size);
+ while (slice)
+ {
+ guint8 *current = slice;
+ slice = *(gpointer*) (current + next_offset);
+ if (G_UNLIKELY (allocator->config.debug_blocks) &&
+ !smc_notify_free (current, mem_size))
+ abort();
+ if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
+ {
+ thread_memory_swap_magazines (tmem, ix);
+ if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
+ thread_memory_magazine2_unload (tmem, ix);
+ }
+ if (G_UNLIKELY (g_mem_gc_friendly))
+ memset (current, 0, chunk_size);
+ thread_memory_magazine2_free (tmem, ix, current);
+ }
+ }
+ else if (acat == 2) /* allocate through slab allocator */
+ {
+ g_mutex_lock (allocator->slab_mutex);
+ while (slice)
+ {
+ guint8 *current = slice;
+ slice = *(gpointer*) (current + next_offset);
+ if (G_UNLIKELY (allocator->config.debug_blocks) &&
+ !smc_notify_free (current, mem_size))
+ abort();
+ if (G_UNLIKELY (g_mem_gc_friendly))
+ memset (current, 0, chunk_size);
+ slab_allocator_free_chunk (chunk_size, current);
+ }
+ g_mutex_unlock (allocator->slab_mutex);
+ }
+ else /* delegate to system malloc */
+ while (slice)
+ {
+ guint8 *current = slice;
+ slice = *(gpointer*) (current + next_offset);
+ if (G_UNLIKELY (allocator->config.debug_blocks) &&
+ !smc_notify_free (current, mem_size))
+ abort();
+ if (G_UNLIKELY (g_mem_gc_friendly))
+ memset (current, 0, mem_size);
+ g_free (current);
+ }
+}
+
+/* --- single page allocator --- */
+static void
+allocator_slab_stack_push (Allocator *allocator,
+ guint ix,
+ SlabInfo *sinfo)
+{
+ /* insert slab at slab ring head */
+ if (!allocator->slab_stack[ix])
+ {
+ sinfo->next = sinfo;
+ sinfo->prev = sinfo;
+ }
+ else
+ {
+ SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev;
+ next->prev = sinfo;
+ prev->next = sinfo;
+ sinfo->next = next;
+ sinfo->prev = prev;
+ }
+ allocator->slab_stack[ix] = sinfo;
+}
+
+static gsize
+allocator_aligned_page_size (Allocator *allocator,
+ gsize n_bytes)
+{
+ gsize val = 1 << g_bit_storage (n_bytes - 1);
+ val = MAX (val, allocator->min_page_size);
+ return val;
+}
+
+static void
+allocator_add_slab (Allocator *allocator,
+ guint ix,
+ gsize chunk_size)
+{
+ ChunkLink *chunk;
+ SlabInfo *sinfo;
+ gsize addr, padding, n_chunks, color = 0;
+ gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
+ /* allocate 1 page for the chunks and the slab */
+ gpointer aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
+ guint8 *mem = aligned_memory;
+ guint i;
+ if (!mem)
+ {
+ const gchar *syserr = "unknown error";
+#if HAVE_STRERROR
+ syserr = strerror (errno);
+#endif
+ mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
+ (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
+ }
+ /* mask page adress */
+ addr = ((gsize) mem / page_size) * page_size;
+ /* assert alignment */
+ mem_assert (aligned_memory == (gpointer) addr);
+ /* basic slab info setup */
+ sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
+ sinfo->n_allocated = 0;
+ sinfo->chunks = NULL;
+ /* figure cache colorization */
+ n_chunks = ((guint8*) sinfo - mem) / chunk_size;
+ padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
+ if (padding)
+ {
+ color = (allocator->color_accu * P2ALIGNMENT) % padding;
+ allocator->color_accu += allocator->config.color_increment;
+ }
+ /* add chunks to free list */
+ chunk = (ChunkLink*) (mem + color);
+ sinfo->chunks = chunk;
+ for (i = 0; i < n_chunks - 1; i++)
+ {
+ chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
+ chunk = chunk->next;
+ }
+ chunk->next = NULL; /* last chunk */
+ /* add slab to slab ring */
+ allocator_slab_stack_push (allocator, ix, sinfo);
+}
+
+static gpointer
+slab_allocator_alloc_chunk (gsize chunk_size)
+{
+ ChunkLink *chunk;
+ guint ix = SLAB_INDEX (allocator, chunk_size);
+ /* ensure non-empty slab */
+ if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
+ allocator_add_slab (allocator, ix, chunk_size);
+ /* allocate chunk */
+ chunk = allocator->slab_stack[ix]->chunks;
+ allocator->slab_stack[ix]->chunks = chunk->next;
+ allocator->slab_stack[ix]->n_allocated++;
+ /* rotate empty slabs */
+ if (!allocator->slab_stack[ix]->chunks)
+ allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
+ return chunk;
+}
+
+static void
+slab_allocator_free_chunk (gsize chunk_size,
+ gpointer mem)
+{
+ ChunkLink *chunk;
+ gboolean was_empty;
+ guint ix = SLAB_INDEX (allocator, chunk_size);
+ gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
+ gsize addr = ((gsize) mem / page_size) * page_size;
+ /* mask page adress */
+ guint8 *page = (guint8*) addr;
+ SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
+ /* assert valid chunk count */
+ mem_assert (sinfo->n_allocated > 0);
+ /* add chunk to free list */
+ was_empty = sinfo->chunks == NULL;
+ chunk = (ChunkLink*) mem;
+ chunk->next = sinfo->chunks;
+ sinfo->chunks = chunk;
+ sinfo->n_allocated--;
+ /* keep slab ring partially sorted, empty slabs at end */
+ if (was_empty)
+ {
+ /* unlink slab */
+ SlabInfo *next = sinfo->next, *prev = sinfo->prev;
+ next->prev = prev;
+ prev->next = next;
+ if (allocator->slab_stack[ix] == sinfo)
+ allocator->slab_stack[ix] = next == sinfo ? NULL : next;
+ /* insert slab at head */
+ allocator_slab_stack_push (allocator, ix, sinfo);
+ }
+ /* eagerly free complete unused slabs */
+ if (!sinfo->n_allocated)
+ {
+ /* unlink slab */
+ SlabInfo *next = sinfo->next, *prev = sinfo->prev;
+ next->prev = prev;
+ prev->next = next;
+ if (allocator->slab_stack[ix] == sinfo)
+ allocator->slab_stack[ix] = next == sinfo ? NULL : next;
+ /* free slab */
+ allocator_memfree (page_size, page);
+ }
+}
+
+/* --- memalign implementation --- */
+#ifdef HAVE_MALLOC_H
+#include <malloc.h> /* memalign() */
+#endif
+
+/* from config.h:
+ * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h>
+ * define HAVE_COMPLIANT_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works for sizes != 2^n, <stdlib.h>
+ * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h>
+ * define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
+ * if none is provided, we implement malloc(3)-based alloc-only page alignment
+ */
+
+#if !(HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
+static GTrashStack *compat_valloc_trash = NULL;
+#endif
+
+static gpointer
+allocator_memalign (gsize alignment,
+ gsize memsize)
+{
+ gpointer aligned_memory = NULL;
+ gint err = ENOMEM;
+#if HAVE_COMPLIANT_POSIX_MEMALIGN
+ err = posix_memalign (&aligned_memory, alignment, memsize);
+#elif HAVE_MEMALIGN
+ errno = 0;
+ aligned_memory = memalign (alignment, memsize);
+ err = errno;
+#elif HAVE_VALLOC
+ errno = 0;
+ aligned_memory = valloc (memsize);
+ err = errno;
+#else
+ /* simplistic non-freeing page allocator */
+ mem_assert (alignment == sys_page_size);
+ mem_assert (memsize <= sys_page_size);
+ if (!compat_valloc_trash)
+ {
+ const guint n_pages = 16;
+ guint8 *mem = malloc (n_pages * sys_page_size);
+ err = errno;
+ if (mem)
+ {
+ gint i = n_pages;
+ guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
+ if (amem != mem)
+ i--; /* mem wasn't page aligned */
+ while (--i >= 0)
+ g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
+ }
+ }
+ aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
+#endif
+ if (!aligned_memory)
+ errno = err;
+ return aligned_memory;
+}
+
+static void
+allocator_memfree (gsize memsize,
+ gpointer mem)
+{
+#if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
+ free (mem);
+#else
+ mem_assert (memsize <= sys_page_size);
+ g_trash_stack_push (&compat_valloc_trash, mem);
+#endif
+}
+
+static void
+mem_error (const char *format,
+ ...)
+{
+ const char *pname;
+ va_list args;
+ /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
+ fputs ("\n***MEMORY-ERROR***: ", stderr);
+ pname = g_get_prgname();
+ fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
+ va_start (args, format);
+ vfprintf (stderr, format, args);
+ va_end (args);
+ fputs ("\n", stderr);
+ abort();
+ _exit (1);
+}
+
+/* --- g-slice memory checker tree --- */
+typedef size_t SmcKType; /* key type */
+typedef size_t SmcVType; /* value type */
+typedef struct {
+ SmcKType key;
+ SmcVType value;
+} SmcEntry;
+static void smc_tree_insert (SmcKType key,
+ SmcVType value);
+static gboolean smc_tree_lookup (SmcKType key,
+ SmcVType *value_p);
+static gboolean smc_tree_remove (SmcKType key);
+
+
+/* --- g-slice memory checker implementation --- */
+static void
+smc_notify_alloc (void *pointer,
+ size_t size)
+{
+ size_t adress = (size_t) pointer;
+ if (pointer)
+ smc_tree_insert (adress, size);
+}
+
+#if 0
+static void
+smc_notify_ignore (void *pointer)
+{
+ size_t adress = (size_t) pointer;
+ if (pointer)
+ smc_tree_remove (adress);
+}
+#endif
+
+static int
+smc_notify_free (void *pointer,
+ size_t size)
+{
+ size_t adress = (size_t) pointer;
+ SmcVType real_size;
+ gboolean found_one;
+
+ if (!pointer)
+ return 1; /* ignore */
+ found_one = smc_tree_lookup (adress, &real_size);
+ if (!found_one)
+ {
+ fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
+ return 0;
+ }
+ if (real_size != size && (real_size || size))
+ {
+ fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
+ return 0;
+ }
+ if (!smc_tree_remove (adress))
+ {
+ fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
+ return 0;
+ }
+ return 1; /* all fine */
+}
+
+/* --- g-slice memory checker tree implementation --- */
+#define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */
+#define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */
+#define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key adress space per trunk, should distribute uniformly across BRANCH_COUNT */
+#define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */
+#define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT)
+
+typedef struct {
+ SmcEntry *entries;
+ unsigned int n_entries;
+} SmcBranch;
+
+static SmcBranch **smc_tree_root = NULL;
+
+static void
+smc_tree_abort (int errval)
+{
+ const char *syserr = "unknown error";
+#if HAVE_STRERROR
+ syserr = strerror (errval);
+#endif
+ mem_error ("MemChecker: failure in debugging tree: %s", syserr);
+}
+
+static inline SmcEntry*
+smc_tree_branch_grow_L (SmcBranch *branch,
+ unsigned int index)
+{
+ unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
+ unsigned int new_size = old_size + sizeof (branch->entries[0]);
+ SmcEntry *entry;
+ mem_assert (index <= branch->n_entries);
+ branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
+ if (!branch->entries)
+ smc_tree_abort (errno);
+ entry = branch->entries + index;
+ g_memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
+ branch->n_entries += 1;
+ return entry;
+}
+
+static inline SmcEntry*
+smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
+ SmcKType key)
+{
+ unsigned int n_nodes = branch->n_entries, offs = 0;
+ SmcEntry *check = branch->entries;
+ int cmp = 0;
+ while (offs < n_nodes)
+ {
+ unsigned int i = (offs + n_nodes) >> 1;
+ check = branch->entries + i;
+ cmp = key < check->key ? -1 : key != check->key;
+ if (cmp == 0)
+ return check; /* return exact match */
+ else if (cmp < 0)
+ n_nodes = i;
+ else /* (cmp > 0) */
+ offs = i + 1;
+ }
+ /* check points at last mismatch, cmp > 0 indicates greater key */
+ return cmp > 0 ? check + 1 : check; /* return insertion position for inexact match */
+}
+
+static void
+smc_tree_insert (SmcKType key,
+ SmcVType value)
+{
+ unsigned int ix0, ix1;
+ SmcEntry *entry;
+
+ g_mutex_lock (smc_tree_mutex);
+ ix0 = SMC_TRUNK_HASH (key);
+ ix1 = SMC_BRANCH_HASH (key);
+ if (!smc_tree_root)
+ {
+ smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
+ if (!smc_tree_root)
+ smc_tree_abort (errno);
+ }
+ if (!smc_tree_root[ix0])
+ {
+ smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
+ if (!smc_tree_root[ix0])
+ smc_tree_abort (errno);
+ }
+ entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
+ if (!entry || /* need create */
+ entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries || /* need append */
+ entry->key != key) /* need insert */
+ entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
+ entry->key = key;
+ entry->value = value;
+ g_mutex_unlock (smc_tree_mutex);
+}
+
+static gboolean
+smc_tree_lookup (SmcKType key,
+ SmcVType *value_p)
+{
+ SmcEntry *entry = NULL;
+ unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
+ gboolean found_one = FALSE;
+ *value_p = 0;
+ g_mutex_lock (smc_tree_mutex);
+ if (smc_tree_root && smc_tree_root[ix0])
+ {
+ entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
+ if (entry &&
+ entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
+ entry->key == key)
+ {
+ found_one = TRUE;
+ *value_p = entry->value;
+ }
+ }
+ g_mutex_unlock (smc_tree_mutex);
+ return found_one;
+}
+
+static gboolean
+smc_tree_remove (SmcKType key)
+{
+ unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
+ gboolean found_one = FALSE;
+ g_mutex_lock (smc_tree_mutex);
+ if (smc_tree_root && smc_tree_root[ix0])
+ {
+ SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
+ if (entry &&
+ entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
+ entry->key == key)
+ {
+ unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
+ smc_tree_root[ix0][ix1].n_entries -= 1;
+ g_memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
+ if (!smc_tree_root[ix0][ix1].n_entries)
+ {
+ /* avoid useless pressure on the memory system */
+ free (smc_tree_root[ix0][ix1].entries);
+ smc_tree_root[ix0][ix1].entries = NULL;
+ }
+ found_one = TRUE;
+ }
+ }
+ g_mutex_unlock (smc_tree_mutex);
+ return found_one;
+}
+
+#ifdef G_ENABLE_DEBUG
+void
+g_slice_debug_tree_statistics (void)
+{
+ g_mutex_lock (smc_tree_mutex);
+ if (smc_tree_root)
+ {
+ unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
+ double tf, bf;
+ for (i = 0; i < SMC_TRUNK_COUNT; i++)
+ if (smc_tree_root[i])
+ {
+ t++;
+ for (j = 0; j < SMC_BRANCH_COUNT; j++)
+ if (smc_tree_root[i][j].n_entries)
+ {
+ b++;
+ su += smc_tree_root[i][j].n_entries;
+ en = MIN (en, smc_tree_root[i][j].n_entries);
+ ex = MAX (ex, smc_tree_root[i][j].n_entries);
+ }
+ else if (smc_tree_root[i][j].entries)
+ o++; /* formerly used, now empty */
+ }
+ en = b ? en : 0;
+ tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
+ bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
+ fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
+ fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
+ b / tf,
+ 100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
+ fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
+ su / bf, en, ex);
+ }
+ else
+ fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
+ g_mutex_unlock (smc_tree_mutex);
+
+ /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
+ * PID %CPU %MEM VSZ RSS COMMAND
+ * 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse
+ * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
+ * 114017 103714 2354 344 0 108676 0
+ * $ cat /proc/8887/status
+ * Name: beast-0.7.1
+ * VmSize: 456068 kB
+ * VmLck: 0 kB
+ * VmRSS: 414856 kB
+ * VmData: 434620 kB
+ * VmStk: 84 kB
+ * VmExe: 1376 kB
+ * VmLib: 13036 kB
+ * VmPTE: 456 kB
+ * Threads: 3
+ * (gdb) print g_slice_debug_tree_statistics ()
+ * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
+ * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
+ * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
+ */
+}
+#endif /* G_ENABLE_DEBUG */