summaryrefslogtreecommitdiff
path: root/include/google/protobuf/io/coded_stream.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/google/protobuf/io/coded_stream.h')
-rw-r--r--include/google/protobuf/io/coded_stream.h1799
1 files changed, 0 insertions, 1799 deletions
diff --git a/include/google/protobuf/io/coded_stream.h b/include/google/protobuf/io/coded_stream.h
deleted file mode 100644
index c8fc994f91..0000000000
--- a/include/google/protobuf/io/coded_stream.h
+++ /dev/null
@@ -1,1799 +0,0 @@
-// Protocol Buffers - Google's data interchange format
-// Copyright 2008 Google Inc. All rights reserved.
-// https://developers.google.com/protocol-buffers/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// Author: kenton@google.com (Kenton Varda)
-// Based on original Protocol Buffers design by
-// Sanjay Ghemawat, Jeff Dean, and others.
-//
-// This file contains the CodedInputStream and CodedOutputStream classes,
-// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
-// and allow you to read or write individual pieces of data in various
-// formats. In particular, these implement the varint encoding for
-// integers, a simple variable-length encoding in which smaller numbers
-// take fewer bytes.
-//
-// Typically these classes will only be used internally by the protocol
-// buffer library in order to encode and decode protocol buffers. Clients
-// of the library only need to know about this class if they wish to write
-// custom message parsing or serialization procedures.
-//
-// CodedOutputStream example:
-// // Write some data to "myfile". First we write a 4-byte "magic number"
-// // to identify the file type, then write a length-delimited string. The
-// // string is composed of a varint giving the length followed by the raw
-// // bytes.
-// int fd = open("myfile", O_CREAT | O_WRONLY);
-// ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
-// CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
-//
-// int magic_number = 1234;
-// char text[] = "Hello world!";
-// coded_output->WriteLittleEndian32(magic_number);
-// coded_output->WriteVarint32(strlen(text));
-// coded_output->WriteRaw(text, strlen(text));
-//
-// delete coded_output;
-// delete raw_output;
-// close(fd);
-//
-// CodedInputStream example:
-// // Read a file created by the above code.
-// int fd = open("myfile", O_RDONLY);
-// ZeroCopyInputStream* raw_input = new FileInputStream(fd);
-// CodedInputStream* coded_input = new CodedInputStream(raw_input);
-//
-// coded_input->ReadLittleEndian32(&magic_number);
-// if (magic_number != 1234) {
-// cerr << "File not in expected format." << endl;
-// return;
-// }
-//
-// uint32_t size;
-// coded_input->ReadVarint32(&size);
-//
-// char* text = new char[size + 1];
-// coded_input->ReadRaw(buffer, size);
-// text[size] = '\0';
-//
-// delete coded_input;
-// delete raw_input;
-// close(fd);
-//
-// cout << "Text is: " << text << endl;
-// delete [] text;
-//
-// For those who are interested, varint encoding is defined as follows:
-//
-// The encoding operates on unsigned integers of up to 64 bits in length.
-// Each byte of the encoded value has the format:
-// * bits 0-6: Seven bits of the number being encoded.
-// * bit 7: Zero if this is the last byte in the encoding (in which
-// case all remaining bits of the number are zero) or 1 if
-// more bytes follow.
-// The first byte contains the least-significant 7 bits of the number, the
-// second byte (if present) contains the next-least-significant 7 bits,
-// and so on. So, the binary number 1011000101011 would be encoded in two
-// bytes as "10101011 00101100".
-//
-// In theory, varint could be used to encode integers of any length.
-// However, for practicality we set a limit at 64 bits. The maximum encoded
-// length of a number is thus 10 bytes.
-
-#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
-#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
-
-
-#include <assert.h>
-
-#include <atomic>
-#include <climits>
-#include <cstddef>
-#include <cstring>
-#include <limits>
-#include <string>
-#include <type_traits>
-#include <utility>
-
-#if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
-// If MSVC has "/RTCc" set, it will complain about truncating casts at
-// runtime. This file contains some intentional truncating casts.
-#pragma runtime_checks("c", off)
-#endif
-
-
-#include <google/protobuf/stubs/common.h>
-#include <google/protobuf/stubs/logging.h>
-#include <google/protobuf/stubs/strutil.h>
-#include <google/protobuf/port.h>
-#include <google/protobuf/stubs/port.h>
-
-
-// Must be included last.
-#include <google/protobuf/port_def.inc>
-
-namespace google {
-namespace protobuf {
-
-class DescriptorPool;
-class MessageFactory;
-class ZeroCopyCodedInputStream;
-
-namespace internal {
-void MapTestForceDeterministic();
-class EpsCopyByteStream;
-} // namespace internal
-
-namespace io {
-
-// Defined in this file.
-class CodedInputStream;
-class CodedOutputStream;
-
-// Defined in other files.
-class ZeroCopyInputStream; // zero_copy_stream.h
-class ZeroCopyOutputStream; // zero_copy_stream.h
-
-// Class which reads and decodes binary data which is composed of varint-
-// encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream.
-// Most users will not need to deal with CodedInputStream.
-//
-// Most methods of CodedInputStream that return a bool return false if an
-// underlying I/O error occurs or if the data is malformed. Once such a
-// failure occurs, the CodedInputStream is broken and is no longer useful.
-// After a failure, callers also should assume writes to "out" args may have
-// occurred, though nothing useful can be determined from those writes.
-class PROTOBUF_EXPORT CodedInputStream {
- public:
- // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
- explicit CodedInputStream(ZeroCopyInputStream* input);
-
- // Create a CodedInputStream that reads from the given flat array. This is
- // faster than using an ArrayInputStream. PushLimit(size) is implied by
- // this constructor.
- explicit CodedInputStream(const uint8_t* buffer, int size);
-
- // Destroy the CodedInputStream and position the underlying
- // ZeroCopyInputStream at the first unread byte. If an error occurred while
- // reading (causing a method to return false), then the exact position of
- // the input stream may be anywhere between the last value that was read
- // successfully and the stream's byte limit.
- ~CodedInputStream();
-
- // Return true if this CodedInputStream reads from a flat array instead of
- // a ZeroCopyInputStream.
- inline bool IsFlat() const;
-
- // Skips a number of bytes. Returns false if an underlying read error
- // occurs.
- inline bool Skip(int count);
-
- // Sets *data to point directly at the unread part of the CodedInputStream's
- // underlying buffer, and *size to the size of that buffer, but does not
- // advance the stream's current position. This will always either produce
- // a non-empty buffer or return false. If the caller consumes any of
- // this data, it should then call Skip() to skip over the consumed bytes.
- // This may be useful for implementing external fast parsing routines for
- // types of data not covered by the CodedInputStream interface.
- bool GetDirectBufferPointer(const void** data, int* size);
-
- // Like GetDirectBufferPointer, but this method is inlined, and does not
- // attempt to Refresh() if the buffer is currently empty.
- PROTOBUF_ALWAYS_INLINE
- void GetDirectBufferPointerInline(const void** data, int* size);
-
- // Read raw bytes, copying them into the given buffer.
- bool ReadRaw(void* buffer, int size);
-
- // Like ReadRaw, but reads into a string.
- bool ReadString(std::string* buffer, int size);
-
-
- // Read a 32-bit little-endian integer.
- bool ReadLittleEndian32(uint32_t* value);
- // Read a 64-bit little-endian integer.
- bool ReadLittleEndian64(uint64_t* value);
-
- // These methods read from an externally provided buffer. The caller is
- // responsible for ensuring that the buffer has sufficient space.
- // Read a 32-bit little-endian integer.
- static const uint8_t* ReadLittleEndian32FromArray(const uint8_t* buffer,
- uint32_t* value);
- // Read a 64-bit little-endian integer.
- static const uint8_t* ReadLittleEndian64FromArray(const uint8_t* buffer,
- uint64_t* value);
-
- // Read an unsigned integer with Varint encoding, truncating to 32 bits.
- // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
- // it to uint32_t, but may be more efficient.
- bool ReadVarint32(uint32_t* value);
- // Read an unsigned integer with Varint encoding.
- bool ReadVarint64(uint64_t* value);
-
- // Reads a varint off the wire into an "int". This should be used for reading
- // sizes off the wire (sizes of strings, submessages, bytes fields, etc).
- //
- // The value from the wire is interpreted as unsigned. If its value exceeds
- // the representable value of an integer on this platform, instead of
- // truncating we return false. Truncating (as performed by ReadVarint32()
- // above) is an acceptable approach for fields representing an integer, but
- // when we are parsing a size from the wire, truncating the value would result
- // in us misparsing the payload.
- bool ReadVarintSizeAsInt(int* value);
-
- // Read a tag. This calls ReadVarint32() and returns the result, or returns
- // zero (which is not a valid tag) if ReadVarint32() fails. Also, ReadTag
- // (but not ReadTagNoLastTag) updates the last tag value, which can be checked
- // with LastTagWas().
- //
- // Always inline because this is only called in one place per parse loop
- // but it is called for every iteration of said loop, so it should be fast.
- // GCC doesn't want to inline this by default.
- PROTOBUF_ALWAYS_INLINE uint32_t ReadTag() {
- return last_tag_ = ReadTagNoLastTag();
- }
-
- PROTOBUF_ALWAYS_INLINE uint32_t ReadTagNoLastTag();
-
- // This usually a faster alternative to ReadTag() when cutoff is a manifest
- // constant. It does particularly well for cutoff >= 127. The first part
- // of the return value is the tag that was read, though it can also be 0 in
- // the cases where ReadTag() would return 0. If the second part is true
- // then the tag is known to be in [0, cutoff]. If not, the tag either is
- // above cutoff or is 0. (There's intentional wiggle room when tag is 0,
- // because that can arise in several ways, and for best performance we want
- // to avoid an extra "is tag == 0?" check here.)
- PROTOBUF_ALWAYS_INLINE
- std::pair<uint32_t, bool> ReadTagWithCutoff(uint32_t cutoff) {
- std::pair<uint32_t, bool> result = ReadTagWithCutoffNoLastTag(cutoff);
- last_tag_ = result.first;
- return result;
- }
-
- PROTOBUF_ALWAYS_INLINE
- std::pair<uint32_t, bool> ReadTagWithCutoffNoLastTag(uint32_t cutoff);
-
- // Usually returns true if calling ReadVarint32() now would produce the given
- // value. Will always return false if ReadVarint32() would not return the
- // given value. If ExpectTag() returns true, it also advances past
- // the varint. For best performance, use a compile-time constant as the
- // parameter.
- // Always inline because this collapses to a small number of instructions
- // when given a constant parameter, but GCC doesn't want to inline by default.
- PROTOBUF_ALWAYS_INLINE bool ExpectTag(uint32_t expected);
-
- // Like above, except this reads from the specified buffer. The caller is
- // responsible for ensuring that the buffer is large enough to read a varint
- // of the expected size. For best performance, use a compile-time constant as
- // the expected tag parameter.
- //
- // Returns a pointer beyond the expected tag if it was found, or NULL if it
- // was not.
- PROTOBUF_ALWAYS_INLINE
- static const uint8_t* ExpectTagFromArray(const uint8_t* buffer,
- uint32_t expected);
-
- // Usually returns true if no more bytes can be read. Always returns false
- // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent
- // call to LastTagWas() will act as if ReadTag() had been called and returned
- // zero, and ConsumedEntireMessage() will return true.
- bool ExpectAtEnd();
-
- // If the last call to ReadTag() or ReadTagWithCutoff() returned the given
- // value, returns true. Otherwise, returns false.
- // ReadTagNoLastTag/ReadTagWithCutoffNoLastTag do not preserve the last
- // returned value.
- //
- // This is needed because parsers for some types of embedded messages
- // (with field type TYPE_GROUP) don't actually know that they've reached the
- // end of a message until they see an ENDGROUP tag, which was actually part
- // of the enclosing message. The enclosing message would like to check that
- // tag to make sure it had the right number, so it calls LastTagWas() on
- // return from the embedded parser to check.
- bool LastTagWas(uint32_t expected);
- void SetLastTag(uint32_t tag) { last_tag_ = tag; }
-
- // When parsing message (but NOT a group), this method must be called
- // immediately after MergeFromCodedStream() returns (if it returns true)
- // to further verify that the message ended in a legitimate way. For
- // example, this verifies that parsing did not end on an end-group tag.
- // It also checks for some cases where, due to optimizations,
- // MergeFromCodedStream() can incorrectly return true.
- bool ConsumedEntireMessage();
- void SetConsumed() { legitimate_message_end_ = true; }
-
- // Limits ----------------------------------------------------------
- // Limits are used when parsing length-delimited embedded messages.
- // After the message's length is read, PushLimit() is used to prevent
- // the CodedInputStream from reading beyond that length. Once the
- // embedded message has been parsed, PopLimit() is called to undo the
- // limit.
-
- // Opaque type used with PushLimit() and PopLimit(). Do not modify
- // values of this type yourself. The only reason that this isn't a
- // struct with private internals is for efficiency.
- typedef int Limit;
-
- // Places a limit on the number of bytes that the stream may read,
- // starting from the current position. Once the stream hits this limit,
- // it will act like the end of the input has been reached until PopLimit()
- // is called.
- //
- // As the names imply, the stream conceptually has a stack of limits. The
- // shortest limit on the stack is always enforced, even if it is not the
- // top limit.
- //
- // The value returned by PushLimit() is opaque to the caller, and must
- // be passed unchanged to the corresponding call to PopLimit().
- Limit PushLimit(int byte_limit);
-
- // Pops the last limit pushed by PushLimit(). The input must be the value
- // returned by that call to PushLimit().
- void PopLimit(Limit limit);
-
- // Returns the number of bytes left until the nearest limit on the
- // stack is hit, or -1 if no limits are in place.
- int BytesUntilLimit() const;
-
- // Returns current position relative to the beginning of the input stream.
- int CurrentPosition() const;
-
- // Total Bytes Limit -----------------------------------------------
- // To prevent malicious users from sending excessively large messages
- // and causing memory exhaustion, CodedInputStream imposes a hard limit on
- // the total number of bytes it will read.
-
- // Sets the maximum number of bytes that this CodedInputStream will read
- // before refusing to continue. To prevent servers from allocating enormous
- // amounts of memory to hold parsed messages, the maximum message length
- // should be limited to the shortest length that will not harm usability.
- // The default limit is INT_MAX (~2GB) and apps should set shorter limits
- // if possible. An error will always be printed to stderr if the limit is
- // reached.
- //
- // Note: setting a limit less than the current read position is interpreted
- // as a limit on the current position.
- //
- // This is unrelated to PushLimit()/PopLimit().
- void SetTotalBytesLimit(int total_bytes_limit);
-
- // The Total Bytes Limit minus the Current Position, or -1 if the total bytes
- // limit is INT_MAX.
- int BytesUntilTotalBytesLimit() const;
-
- // Recursion Limit -------------------------------------------------
- // To prevent corrupt or malicious messages from causing stack overflows,
- // we must keep track of the depth of recursion when parsing embedded
- // messages and groups. CodedInputStream keeps track of this because it
- // is the only object that is passed down the stack during parsing.
-
- // Sets the maximum recursion depth. The default is 100.
- void SetRecursionLimit(int limit);
- int RecursionBudget() { return recursion_budget_; }
-
- static int GetDefaultRecursionLimit() { return default_recursion_limit_; }
-
- // Increments the current recursion depth. Returns true if the depth is
- // under the limit, false if it has gone over.
- bool IncrementRecursionDepth();
-
- // Decrements the recursion depth if possible.
- void DecrementRecursionDepth();
-
- // Decrements the recursion depth blindly. This is faster than
- // DecrementRecursionDepth(). It should be used only if all previous
- // increments to recursion depth were successful.
- void UnsafeDecrementRecursionDepth();
-
- // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
- // Using this can reduce code size and complexity in some cases. The caller
- // is expected to check that the second part of the result is non-negative (to
- // bail out if the depth of recursion is too high) and, if all is well, to
- // later pass the first part of the result to PopLimit() or similar.
- std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
- int byte_limit);
-
- // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
- Limit ReadLengthAndPushLimit();
-
- // Helper that is equivalent to: {
- // bool result = ConsumedEntireMessage();
- // PopLimit(limit);
- // UnsafeDecrementRecursionDepth();
- // return result; }
- // Using this can reduce code size and complexity in some cases.
- // Do not use unless the current recursion depth is greater than zero.
- bool DecrementRecursionDepthAndPopLimit(Limit limit);
-
- // Helper that is equivalent to: {
- // bool result = ConsumedEntireMessage();
- // PopLimit(limit);
- // return result; }
- // Using this can reduce code size and complexity in some cases.
- bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
-
- // Extension Registry ----------------------------------------------
- // ADVANCED USAGE: 99.9% of people can ignore this section.
- //
- // By default, when parsing extensions, the parser looks for extension
- // definitions in the pool which owns the outer message's Descriptor.
- // However, you may call SetExtensionRegistry() to provide an alternative
- // pool instead. This makes it possible, for example, to parse a message
- // using a generated class, but represent some extensions using
- // DynamicMessage.
-
- // Set the pool used to look up extensions. Most users do not need to call
- // this as the correct pool will be chosen automatically.
- //
- // WARNING: It is very easy to misuse this. Carefully read the requirements
- // below. Do not use this unless you are sure you need it. Almost no one
- // does.
- //
- // Let's say you are parsing a message into message object m, and you want
- // to take advantage of SetExtensionRegistry(). You must follow these
- // requirements:
- //
- // The given DescriptorPool must contain m->GetDescriptor(). It is not
- // sufficient for it to simply contain a descriptor that has the same name
- // and content -- it must be the *exact object*. In other words:
- // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
- // m->GetDescriptor());
- // There are two ways to satisfy this requirement:
- // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless
- // because this is the pool that would be used anyway if you didn't call
- // SetExtensionRegistry() at all.
- // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
- // "underlay". Read the documentation for DescriptorPool for more
- // information about underlays.
- //
- // You must also provide a MessageFactory. This factory will be used to
- // construct Message objects representing extensions. The factory's
- // GetPrototype() MUST return non-NULL for any Descriptor which can be found
- // through the provided pool.
- //
- // If the provided factory might return instances of protocol-compiler-
- // generated (i.e. compiled-in) types, or if the outer message object m is
- // a generated type, then the given factory MUST have this property: If
- // GetPrototype() is given a Descriptor which resides in
- // DescriptorPool::generated_pool(), the factory MUST return the same
- // prototype which MessageFactory::generated_factory() would return. That
- // is, given a descriptor for a generated type, the factory must return an
- // instance of the generated class (NOT DynamicMessage). However, when
- // given a descriptor for a type that is NOT in generated_pool, the factory
- // is free to return any implementation.
- //
- // The reason for this requirement is that generated sub-objects may be
- // accessed via the standard (non-reflection) extension accessor methods,
- // and these methods will down-cast the object to the generated class type.
- // If the object is not actually of that type, the results would be undefined.
- // On the other hand, if an extension is not compiled in, then there is no
- // way the code could end up accessing it via the standard accessors -- the
- // only way to access the extension is via reflection. When using reflection,
- // DynamicMessage and generated messages are indistinguishable, so it's fine
- // if these objects are represented using DynamicMessage.
- //
- // Using DynamicMessageFactory on which you have called
- // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
- // above requirement.
- //
- // If either pool or factory is NULL, both must be NULL.
- //
- // Note that this feature is ignored when parsing "lite" messages as they do
- // not have descriptors.
- void SetExtensionRegistry(const DescriptorPool* pool,
- MessageFactory* factory);
-
- // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
- // has been provided.
- const DescriptorPool* GetExtensionPool();
-
- // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
- // factory has been provided.
- MessageFactory* GetExtensionFactory();
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
-
- const uint8_t* buffer_;
- const uint8_t* buffer_end_; // pointer to the end of the buffer.
- ZeroCopyInputStream* input_;
- int total_bytes_read_; // total bytes read from input_, including
- // the current buffer
-
- // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
- // so that we can BackUp() on destruction.
- int overflow_bytes_;
-
- // LastTagWas() stuff.
- uint32_t last_tag_; // result of last ReadTag() or ReadTagWithCutoff().
-
- // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
- // at EOF, or by ExpectAtEnd() when it returns true. This happens when we
- // reach the end of a message and attempt to read another tag.
- bool legitimate_message_end_;
-
- // See EnableAliasing().
- bool aliasing_enabled_;
-
- // Limits
- Limit current_limit_; // if position = -1, no limit is applied
-
- // For simplicity, if the current buffer crosses a limit (either a normal
- // limit created by PushLimit() or the total bytes limit), buffer_size_
- // only tracks the number of bytes before that limit. This field
- // contains the number of bytes after it. Note that this implies that if
- // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
- // hit a limit. However, if both are zero, it doesn't necessarily mean
- // we aren't at a limit -- the buffer may have ended exactly at the limit.
- int buffer_size_after_limit_;
-
- // Maximum number of bytes to read, period. This is unrelated to
- // current_limit_. Set using SetTotalBytesLimit().
- int total_bytes_limit_;
-
- // Current recursion budget, controlled by IncrementRecursionDepth() and
- // similar. Starts at recursion_limit_ and goes down: if this reaches
- // -1 we are over budget.
- int recursion_budget_;
- // Recursion depth limit, set by SetRecursionLimit().
- int recursion_limit_;
-
- // See SetExtensionRegistry().
- const DescriptorPool* extension_pool_;
- MessageFactory* extension_factory_;
-
- // Private member functions.
-
- // Fallback when Skip() goes past the end of the current buffer.
- bool SkipFallback(int count, int original_buffer_size);
-
- // Advance the buffer by a given number of bytes.
- void Advance(int amount);
-
- // Back up input_ to the current buffer position.
- void BackUpInputToCurrentPosition();
-
- // Recomputes the value of buffer_size_after_limit_. Must be called after
- // current_limit_ or total_bytes_limit_ changes.
- void RecomputeBufferLimits();
-
- // Writes an error message saying that we hit total_bytes_limit_.
- void PrintTotalBytesLimitError();
-
- // Called when the buffer runs out to request more data. Implies an
- // Advance(BufferSize()).
- bool Refresh();
-
- // When parsing varints, we optimize for the common case of small values, and
- // then optimize for the case when the varint fits within the current buffer
- // piece. The Fallback method is used when we can't use the one-byte
- // optimization. The Slow method is yet another fallback when the buffer is
- // not large enough. Making the slow path out-of-line speeds up the common
- // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
- // message crosses multiple buffers. Note: ReadVarint32Fallback() and
- // ReadVarint64Fallback() are called frequently and generally not inlined, so
- // they have been optimized to avoid "out" parameters. The former returns -1
- // if it fails and the uint32_t it read otherwise. The latter has a bool
- // indicating success or failure as part of its return type.
- int64_t ReadVarint32Fallback(uint32_t first_byte_or_zero);
- int ReadVarintSizeAsIntFallback();
- std::pair<uint64_t, bool> ReadVarint64Fallback();
- bool ReadVarint32Slow(uint32_t* value);
- bool ReadVarint64Slow(uint64_t* value);
- int ReadVarintSizeAsIntSlow();
- bool ReadLittleEndian32Fallback(uint32_t* value);
- bool ReadLittleEndian64Fallback(uint64_t* value);
-
- // Fallback/slow methods for reading tags. These do not update last_tag_,
- // but will set legitimate_message_end_ if we are at the end of the input
- // stream.
- uint32_t ReadTagFallback(uint32_t first_byte_or_zero);
- uint32_t ReadTagSlow();
- bool ReadStringFallback(std::string* buffer, int size);
-
- // Return the size of the buffer.
- int BufferSize() const;
-
- static const int kDefaultTotalBytesLimit = INT_MAX;
-
- static int default_recursion_limit_; // 100 by default.
-
- friend class google::protobuf::ZeroCopyCodedInputStream;
- friend class google::protobuf::internal::EpsCopyByteStream;
-};
-
-// EpsCopyOutputStream wraps a ZeroCopyOutputStream and exposes a new stream,
-// which has the property you can write kSlopBytes (16 bytes) from the current
-// position without bounds checks. The cursor into the stream is managed by
-// the user of the class and is an explicit parameter in the methods. Careful
-// use of this class, ie. keep ptr a local variable, eliminates the need to
-// for the compiler to sync the ptr value between register and memory.
-class PROTOBUF_EXPORT EpsCopyOutputStream {
- public:
- enum { kSlopBytes = 16 };
-
- // Initialize from a stream.
- EpsCopyOutputStream(ZeroCopyOutputStream* stream, bool deterministic,
- uint8_t** pp)
- : end_(buffer_),
- stream_(stream),
- is_serialization_deterministic_(deterministic) {
- *pp = buffer_;
- }
-
- // Only for array serialization. No overflow protection, end_ will be the
- // pointed to the end of the array. When using this the total size is already
- // known, so no need to maintain the slop region.
- EpsCopyOutputStream(void* data, int size, bool deterministic)
- : end_(static_cast<uint8_t*>(data) + size),
- buffer_end_(nullptr),
- stream_(nullptr),
- is_serialization_deterministic_(deterministic) {}
-
- // Initialize from stream but with the first buffer already given (eager).
- EpsCopyOutputStream(void* data, int size, ZeroCopyOutputStream* stream,
- bool deterministic, uint8_t** pp)
- : stream_(stream), is_serialization_deterministic_(deterministic) {
- *pp = SetInitialBuffer(data, size);
- }
-
- // Flush everything that's written into the underlying ZeroCopyOutputStream
- // and trims the underlying stream to the location of ptr.
- uint8_t* Trim(uint8_t* ptr);
-
- // After this it's guaranteed you can safely write kSlopBytes to ptr. This
- // will never fail! The underlying stream can produce an error. Use HadError
- // to check for errors.
- PROTOBUF_NODISCARD uint8_t* EnsureSpace(uint8_t* ptr) {
- if (PROTOBUF_PREDICT_FALSE(ptr >= end_)) {
- return EnsureSpaceFallback(ptr);
- }
- return ptr;
- }
-
- uint8_t* WriteRaw(const void* data, int size, uint8_t* ptr) {
- if (PROTOBUF_PREDICT_FALSE(end_ - ptr < size)) {
- return WriteRawFallback(data, size, ptr);
- }
- std::memcpy(ptr, data, size);
- return ptr + size;
- }
- // Writes the buffer specified by data, size to the stream. Possibly by
- // aliasing the buffer (ie. not copying the data). The caller is responsible
- // to make sure the buffer is alive for the duration of the
- // ZeroCopyOutputStream.
-#ifndef NDEBUG
- PROTOBUF_NOINLINE
-#endif
- uint8_t* WriteRawMaybeAliased(const void* data, int size, uint8_t* ptr) {
- if (aliasing_enabled_) {
- return WriteAliasedRaw(data, size, ptr);
- } else {
- return WriteRaw(data, size, ptr);
- }
- }
-
-
-#ifndef NDEBUG
- PROTOBUF_NOINLINE
-#endif
- uint8_t* WriteStringMaybeAliased(uint32_t num, const std::string& s,
- uint8_t* ptr) {
- std::ptrdiff_t size = s.size();
- if (PROTOBUF_PREDICT_FALSE(
- size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
- return WriteStringMaybeAliasedOutline(num, s, ptr);
- }
- ptr = UnsafeVarint((num << 3) | 2, ptr);
- *ptr++ = static_cast<uint8_t>(size);
- std::memcpy(ptr, s.data(), size);
- return ptr + size;
- }
- uint8_t* WriteBytesMaybeAliased(uint32_t num, const std::string& s,
- uint8_t* ptr) {
- return WriteStringMaybeAliased(num, s, ptr);
- }
-
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteString(uint32_t num, const T& s,
- uint8_t* ptr) {
- std::ptrdiff_t size = s.size();
- if (PROTOBUF_PREDICT_FALSE(
- size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
- return WriteStringOutline(num, s, ptr);
- }
- ptr = UnsafeVarint((num << 3) | 2, ptr);
- *ptr++ = static_cast<uint8_t>(size);
- std::memcpy(ptr, s.data(), size);
- return ptr + size;
- }
- template <typename T>
-#ifndef NDEBUG
- PROTOBUF_NOINLINE
-#endif
- uint8_t* WriteBytes(uint32_t num, const T& s, uint8_t* ptr) {
- return WriteString(num, s, ptr);
- }
-
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt32Packed(int num, const T& r,
- int size, uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, Encode64);
- }
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt32Packed(int num, const T& r,
- int size, uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, Encode32);
- }
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt32Packed(int num, const T& r,
- int size, uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, ZigZagEncode32);
- }
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt64Packed(int num, const T& r,
- int size, uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, Encode64);
- }
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt64Packed(int num, const T& r,
- int size, uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, Encode64);
- }
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt64Packed(int num, const T& r,
- int size, uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, ZigZagEncode64);
- }
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteEnumPacked(int num, const T& r, int size,
- uint8_t* ptr) {
- return WriteVarintPacked(num, r, size, ptr, Encode64);
- }
-
- template <typename T>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteFixedPacked(int num, const T& r,
- uint8_t* ptr) {
- ptr = EnsureSpace(ptr);
- constexpr auto element_size = sizeof(typename T::value_type);
- auto size = r.size() * element_size;
- ptr = WriteLengthDelim(num, size, ptr);
- return WriteRawLittleEndian<element_size>(r.data(), static_cast<int>(size),
- ptr);
- }
-
- // Returns true if there was an underlying I/O error since this object was
- // created.
- bool HadError() const { return had_error_; }
-
- // Instructs the EpsCopyOutputStream to allow the underlying
- // ZeroCopyOutputStream to hold pointers to the original structure instead of
- // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
- // underlying stream does not support aliasing, then enabling it has no
- // affect. For now, this only affects the behavior of
- // WriteRawMaybeAliased().
- //
- // NOTE: It is caller's responsibility to ensure that the chunk of memory
- // remains live until all of the data has been consumed from the stream.
- void EnableAliasing(bool enabled);
-
- // See documentation on CodedOutputStream::SetSerializationDeterministic.
- void SetSerializationDeterministic(bool value) {
- is_serialization_deterministic_ = value;
- }
-
- // See documentation on CodedOutputStream::IsSerializationDeterministic.
- bool IsSerializationDeterministic() const {
- return is_serialization_deterministic_;
- }
-
- // The number of bytes written to the stream at position ptr, relative to the
- // stream's overall position.
- int64_t ByteCount(uint8_t* ptr) const;
-
-
- private:
- uint8_t* end_;
- uint8_t* buffer_end_ = buffer_;
- uint8_t buffer_[2 * kSlopBytes];
- ZeroCopyOutputStream* stream_;
- bool had_error_ = false;
- bool aliasing_enabled_ = false; // See EnableAliasing().
- bool is_serialization_deterministic_;
- bool skip_check_consistency = false;
-
- uint8_t* EnsureSpaceFallback(uint8_t* ptr);
- inline uint8_t* Next();
- int Flush(uint8_t* ptr);
- std::ptrdiff_t GetSize(uint8_t* ptr) const {
- GOOGLE_DCHECK(ptr <= end_ + kSlopBytes); // NOLINT
- return end_ + kSlopBytes - ptr;
- }
-
- uint8_t* Error() {
- had_error_ = true;
- // We use the patch buffer to always guarantee space to write to.
- end_ = buffer_ + kSlopBytes;
- return buffer_;
- }
-
- static constexpr int TagSize(uint32_t tag) {
- return (tag < (1 << 7)) ? 1
- : (tag < (1 << 14)) ? 2
- : (tag < (1 << 21)) ? 3
- : (tag < (1 << 28)) ? 4
- : 5;
- }
-
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteTag(uint32_t num, uint32_t wt,
- uint8_t* ptr) {
- GOOGLE_DCHECK(ptr < end_); // NOLINT
- return UnsafeVarint((num << 3) | wt, ptr);
- }
-
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteLengthDelim(int num, uint32_t size,
- uint8_t* ptr) {
- ptr = WriteTag(num, 2, ptr);
- return UnsafeWriteSize(size, ptr);
- }
-
- uint8_t* WriteRawFallback(const void* data, int size, uint8_t* ptr);
-
- uint8_t* WriteAliasedRaw(const void* data, int size, uint8_t* ptr);
-
- uint8_t* WriteStringMaybeAliasedOutline(uint32_t num, const std::string& s,
- uint8_t* ptr);
- uint8_t* WriteStringOutline(uint32_t num, const std::string& s, uint8_t* ptr);
-
- template <typename T, typename E>
- PROTOBUF_ALWAYS_INLINE uint8_t* WriteVarintPacked(int num, const T& r,
- int size, uint8_t* ptr,
- const E& encode) {
- ptr = EnsureSpace(ptr);
- ptr = WriteLengthDelim(num, size, ptr);
- auto it = r.data();
- auto end = it + r.size();
- do {
- ptr = EnsureSpace(ptr);
- ptr = UnsafeVarint(encode(*it++), ptr);
- } while (it < end);
- return ptr;
- }
-
- static uint32_t Encode32(uint32_t v) { return v; }
- static uint64_t Encode64(uint64_t v) { return v; }
- static uint32_t ZigZagEncode32(int32_t v) {
- return (static_cast<uint32_t>(v) << 1) ^ static_cast<uint32_t>(v >> 31);
- }
- static uint64_t ZigZagEncode64(int64_t v) {
- return (static_cast<uint64_t>(v) << 1) ^ static_cast<uint64_t>(v >> 63);
- }
-
- template <typename T>
- PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeVarint(T value, uint8_t* ptr) {
- static_assert(std::is_unsigned<T>::value,
- "Varint serialization must be unsigned");
- ptr[0] = static_cast<uint8_t>(value);
- if (value < 0x80) {
- return ptr + 1;
- }
- // Turn on continuation bit in the byte we just wrote.
- ptr[0] |= static_cast<uint8_t>(0x80);
- value >>= 7;
- ptr[1] = static_cast<uint8_t>(value);
- if (value < 0x80) {
- return ptr + 2;
- }
- ptr += 2;
- do {
- // Turn on continuation bit in the byte we just wrote.
- ptr[-1] |= static_cast<uint8_t>(0x80);
- value >>= 7;
- *ptr = static_cast<uint8_t>(value);
- ++ptr;
- } while (value >= 0x80);
- return ptr;
- }
-
- PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeWriteSize(uint32_t value,
- uint8_t* ptr) {
- while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) {
- *ptr = static_cast<uint8_t>(value | 0x80);
- value >>= 7;
- ++ptr;
- }
- *ptr++ = static_cast<uint8_t>(value);
- return ptr;
- }
-
- template <int S>
- uint8_t* WriteRawLittleEndian(const void* data, int size, uint8_t* ptr);
-#if !defined(PROTOBUF_LITTLE_ENDIAN) || \
- defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- uint8_t* WriteRawLittleEndian32(const void* data, int size, uint8_t* ptr);
- uint8_t* WriteRawLittleEndian64(const void* data, int size, uint8_t* ptr);
-#endif
-
- // These methods are for CodedOutputStream. Ideally they should be private
- // but to match current behavior of CodedOutputStream as close as possible
- // we allow it some functionality.
- public:
- uint8_t* SetInitialBuffer(void* data, int size) {
- auto ptr = static_cast<uint8_t*>(data);
- if (size > kSlopBytes) {
- end_ = ptr + size - kSlopBytes;
- buffer_end_ = nullptr;
- return ptr;
- } else {
- end_ = buffer_ + size;
- buffer_end_ = ptr;
- return buffer_;
- }
- }
-
- private:
- // Needed by CodedOutputStream HadError. HadError needs to flush the patch
- // buffers to ensure there is no error as of yet.
- uint8_t* FlushAndResetBuffer(uint8_t*);
-
- // The following functions mimic the old CodedOutputStream behavior as close
- // as possible. They flush the current state to the stream, behave as
- // the old CodedOutputStream and then return to normal operation.
- bool Skip(int count, uint8_t** pp);
- bool GetDirectBufferPointer(void** data, int* size, uint8_t** pp);
- uint8_t* GetDirectBufferForNBytesAndAdvance(int size, uint8_t** pp);
-
- friend class CodedOutputStream;
-};
-
-template <>
-inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<1>(const void* data,
- int size,
- uint8_t* ptr) {
- return WriteRaw(data, size, ptr);
-}
-template <>
-inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<4>(const void* data,
- int size,
- uint8_t* ptr) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- return WriteRaw(data, size, ptr);
-#else
- return WriteRawLittleEndian32(data, size, ptr);
-#endif
-}
-template <>
-inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<8>(const void* data,
- int size,
- uint8_t* ptr) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- return WriteRaw(data, size, ptr);
-#else
- return WriteRawLittleEndian64(data, size, ptr);
-#endif
-}
-
-// Class which encodes and writes binary data which is composed of varint-
-// encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream.
-// Most users will not need to deal with CodedOutputStream.
-//
-// Most methods of CodedOutputStream which return a bool return false if an
-// underlying I/O error occurs. Once such a failure occurs, the
-// CodedOutputStream is broken and is no longer useful. The Write* methods do
-// not return the stream status, but will invalidate the stream if an error
-// occurs. The client can probe HadError() to determine the status.
-//
-// Note that every method of CodedOutputStream which writes some data has
-// a corresponding static "ToArray" version. These versions write directly
-// to the provided buffer, returning a pointer past the last written byte.
-// They require that the buffer has sufficient capacity for the encoded data.
-// This allows an optimization where we check if an output stream has enough
-// space for an entire message before we start writing and, if there is, we
-// call only the ToArray methods to avoid doing bound checks for each
-// individual value.
-// i.e., in the example above:
-//
-// CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
-// int magic_number = 1234;
-// char text[] = "Hello world!";
-//
-// int coded_size = sizeof(magic_number) +
-// CodedOutputStream::VarintSize32(strlen(text)) +
-// strlen(text);
-//
-// uint8_t* buffer =
-// coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
-// if (buffer != nullptr) {
-// // The output stream has enough space in the buffer: write directly to
-// // the array.
-// buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
-// buffer);
-// buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
-// buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
-// } else {
-// // Make bound-checked writes, which will ask the underlying stream for
-// // more space as needed.
-// coded_output->WriteLittleEndian32(magic_number);
-// coded_output->WriteVarint32(strlen(text));
-// coded_output->WriteRaw(text, strlen(text));
-// }
-//
-// delete coded_output;
-class PROTOBUF_EXPORT CodedOutputStream {
- public:
- // Creates a CodedOutputStream that writes to the given `stream`.
- // The provided stream must publicly derive from `ZeroCopyOutputStream`.
- template <class Stream, class = typename std::enable_if<std::is_base_of<
- ZeroCopyOutputStream, Stream>::value>::type>
- explicit CodedOutputStream(Stream* stream);
-
- // Creates a CodedOutputStream that writes to the given `stream`, and does
- // an 'eager initialization' of the internal state if `eager_init` is true.
- // The provided stream must publicly derive from `ZeroCopyOutputStream`.
- template <class Stream, class = typename std::enable_if<std::is_base_of<
- ZeroCopyOutputStream, Stream>::value>::type>
- CodedOutputStream(Stream* stream, bool eager_init);
-
- // Destroy the CodedOutputStream and position the underlying
- // ZeroCopyOutputStream immediately after the last byte written.
- ~CodedOutputStream();
-
- // Returns true if there was an underlying I/O error since this object was
- // created. On should call Trim before this function in order to catch all
- // errors.
- bool HadError() {
- cur_ = impl_.FlushAndResetBuffer(cur_);
- GOOGLE_DCHECK(cur_);
- return impl_.HadError();
- }
-
- // Trims any unused space in the underlying buffer so that its size matches
- // the number of bytes written by this stream. The underlying buffer will
- // automatically be trimmed when this stream is destroyed; this call is only
- // necessary if the underlying buffer is accessed *before* the stream is
- // destroyed.
- void Trim() { cur_ = impl_.Trim(cur_); }
-
- // Skips a number of bytes, leaving the bytes unmodified in the underlying
- // buffer. Returns false if an underlying write error occurs. This is
- // mainly useful with GetDirectBufferPointer().
- // Note of caution, the skipped bytes may contain uninitialized data. The
- // caller must make sure that the skipped bytes are properly initialized,
- // otherwise you might leak bytes from your heap.
- bool Skip(int count) { return impl_.Skip(count, &cur_); }
-
- // Sets *data to point directly at the unwritten part of the
- // CodedOutputStream's underlying buffer, and *size to the size of that
- // buffer, but does not advance the stream's current position. This will
- // always either produce a non-empty buffer or return false. If the caller
- // writes any data to this buffer, it should then call Skip() to skip over
- // the consumed bytes. This may be useful for implementing external fast
- // serialization routines for types of data not covered by the
- // CodedOutputStream interface.
- bool GetDirectBufferPointer(void** data, int* size) {
- return impl_.GetDirectBufferPointer(data, size, &cur_);
- }
-
- // If there are at least "size" bytes available in the current buffer,
- // returns a pointer directly into the buffer and advances over these bytes.
- // The caller may then write directly into this buffer (e.g. using the
- // *ToArray static methods) rather than go through CodedOutputStream. If
- // there are not enough bytes available, returns NULL. The return pointer is
- // invalidated as soon as any other non-const method of CodedOutputStream
- // is called.
- inline uint8_t* GetDirectBufferForNBytesAndAdvance(int size) {
- return impl_.GetDirectBufferForNBytesAndAdvance(size, &cur_);
- }
-
- // Write raw bytes, copying them from the given buffer.
- void WriteRaw(const void* buffer, int size) {
- cur_ = impl_.WriteRaw(buffer, size, cur_);
- }
- // Like WriteRaw() but will try to write aliased data if aliasing is
- // turned on.
- void WriteRawMaybeAliased(const void* data, int size);
- // Like WriteRaw() but writing directly to the target array.
- // This is _not_ inlined, as the compiler often optimizes memcpy into inline
- // copy loops. Since this gets called by every field with string or bytes
- // type, inlining may lead to a significant amount of code bloat, with only a
- // minor performance gain.
- static uint8_t* WriteRawToArray(const void* buffer, int size,
- uint8_t* target);
-
- // Equivalent to WriteRaw(str.data(), str.size()).
- void WriteString(const std::string& str);
- // Like WriteString() but writing directly to the target array.
- static uint8_t* WriteStringToArray(const std::string& str, uint8_t* target);
- // Write the varint-encoded size of str followed by str.
- static uint8_t* WriteStringWithSizeToArray(const std::string& str,
- uint8_t* target);
-
-
- // Write a 32-bit little-endian integer.
- void WriteLittleEndian32(uint32_t value) {
- cur_ = impl_.EnsureSpace(cur_);
- SetCur(WriteLittleEndian32ToArray(value, Cur()));
- }
- // Like WriteLittleEndian32() but writing directly to the target array.
- static uint8_t* WriteLittleEndian32ToArray(uint32_t value, uint8_t* target);
- // Write a 64-bit little-endian integer.
- void WriteLittleEndian64(uint64_t value) {
- cur_ = impl_.EnsureSpace(cur_);
- SetCur(WriteLittleEndian64ToArray(value, Cur()));
- }
- // Like WriteLittleEndian64() but writing directly to the target array.
- static uint8_t* WriteLittleEndian64ToArray(uint64_t value, uint8_t* target);
-
- // Write an unsigned integer with Varint encoding. Writing a 32-bit value
- // is equivalent to casting it to uint64_t and writing it as a 64-bit value,
- // but may be more efficient.
- void WriteVarint32(uint32_t value);
- // Like WriteVarint32() but writing directly to the target array.
- static uint8_t* WriteVarint32ToArray(uint32_t value, uint8_t* target);
- // Like WriteVarint32() but writing directly to the target array, and with
- // the less common-case paths being out of line rather than inlined.
- static uint8_t* WriteVarint32ToArrayOutOfLine(uint32_t value,
- uint8_t* target);
- // Write an unsigned integer with Varint encoding.
- void WriteVarint64(uint64_t value);
- // Like WriteVarint64() but writing directly to the target array.
- static uint8_t* WriteVarint64ToArray(uint64_t value, uint8_t* target);
-
- // Equivalent to WriteVarint32() except when the value is negative,
- // in which case it must be sign-extended to a full 10 bytes.
- void WriteVarint32SignExtended(int32_t value);
- // Like WriteVarint32SignExtended() but writing directly to the target array.
- static uint8_t* WriteVarint32SignExtendedToArray(int32_t value,
- uint8_t* target);
-
- // This is identical to WriteVarint32(), but optimized for writing tags.
- // In particular, if the input is a compile-time constant, this method
- // compiles down to a couple instructions.
- // Always inline because otherwise the aforementioned optimization can't work,
- // but GCC by default doesn't want to inline this.
- void WriteTag(uint32_t value);
- // Like WriteTag() but writing directly to the target array.
- PROTOBUF_ALWAYS_INLINE
- static uint8_t* WriteTagToArray(uint32_t value, uint8_t* target);
-
- // Returns the number of bytes needed to encode the given value as a varint.
- static size_t VarintSize32(uint32_t value);
- // Returns the number of bytes needed to encode the given value as a varint.
- static size_t VarintSize64(uint64_t value);
-
- // If negative, 10 bytes. Otherwise, same as VarintSize32().
- static size_t VarintSize32SignExtended(int32_t value);
-
- // Same as above, plus one. The additional one comes at no compute cost.
- static size_t VarintSize32PlusOne(uint32_t value);
- static size_t VarintSize64PlusOne(uint64_t value);
- static size_t VarintSize32SignExtendedPlusOne(int32_t value);
-
- // Compile-time equivalent of VarintSize32().
- template <uint32_t Value>
- struct StaticVarintSize32 {
- static const size_t value = (Value < (1 << 7)) ? 1
- : (Value < (1 << 14)) ? 2
- : (Value < (1 << 21)) ? 3
- : (Value < (1 << 28)) ? 4
- : 5;
- };
-
- // Returns the total number of bytes written since this object was created.
- int ByteCount() const {
- return static_cast<int>(impl_.ByteCount(cur_) - start_count_);
- }
-
- // Instructs the CodedOutputStream to allow the underlying
- // ZeroCopyOutputStream to hold pointers to the original structure instead of
- // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
- // underlying stream does not support aliasing, then enabling it has no
- // affect. For now, this only affects the behavior of
- // WriteRawMaybeAliased().
- //
- // NOTE: It is caller's responsibility to ensure that the chunk of memory
- // remains live until all of the data has been consumed from the stream.
- void EnableAliasing(bool enabled) { impl_.EnableAliasing(enabled); }
-
- // Indicate to the serializer whether the user wants deterministic
- // serialization. The default when this is not called comes from the global
- // default, controlled by SetDefaultSerializationDeterministic.
- //
- // What deterministic serialization means is entirely up to the driver of the
- // serialization process (i.e. the caller of methods like WriteVarint32). In
- // the case of serializing a proto buffer message using one of the methods of
- // MessageLite, this means that for a given binary equal messages will always
- // be serialized to the same bytes. This implies:
- //
- // * Repeated serialization of a message will return the same bytes.
- //
- // * Different processes running the same binary (including on different
- // machines) will serialize equal messages to the same bytes.
- //
- // Note that this is *not* canonical across languages. It is also unstable
- // across different builds with intervening message definition changes, due to
- // unknown fields. Users who need canonical serialization (e.g. persistent
- // storage in a canonical form, fingerprinting) should define their own
- // canonicalization specification and implement the serializer using
- // reflection APIs rather than relying on this API.
- void SetSerializationDeterministic(bool value) {
- impl_.SetSerializationDeterministic(value);
- }
-
- // Return whether the user wants deterministic serialization. See above.
- bool IsSerializationDeterministic() const {
- return impl_.IsSerializationDeterministic();
- }
-
- static bool IsDefaultSerializationDeterministic() {
- return default_serialization_deterministic_.load(
- std::memory_order_relaxed) != 0;
- }
-
- template <typename Func>
- void Serialize(const Func& func);
-
- uint8_t* Cur() const { return cur_; }
- void SetCur(uint8_t* ptr) { cur_ = ptr; }
- EpsCopyOutputStream* EpsCopy() { return &impl_; }
-
- private:
- template <class Stream>
- void InitEagerly(Stream* stream);
-
- EpsCopyOutputStream impl_;
- uint8_t* cur_;
- int64_t start_count_;
- static std::atomic<bool> default_serialization_deterministic_;
-
- // See above. Other projects may use "friend" to allow them to call this.
- // After SetDefaultSerializationDeterministic() completes, all protocol
- // buffer serializations will be deterministic by default. Thread safe.
- // However, the meaning of "after" is subtle here: to be safe, each thread
- // that wants deterministic serialization by default needs to call
- // SetDefaultSerializationDeterministic() or ensure on its own that another
- // thread has done so.
- friend void internal::MapTestForceDeterministic();
- static void SetDefaultSerializationDeterministic() {
- default_serialization_deterministic_.store(true, std::memory_order_relaxed);
- }
- // REQUIRES: value >= 0x80, and that (value & 7f) has been written to *target.
- static uint8_t* WriteVarint32ToArrayOutOfLineHelper(uint32_t value,
- uint8_t* target);
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
-};
-
-// inline methods ====================================================
-// The vast majority of varints are only one byte. These inline
-// methods optimize for that case.
-
-inline bool CodedInputStream::ReadVarint32(uint32_t* value) {
- uint32_t v = 0;
- if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
- v = *buffer_;
- if (v < 0x80) {
- *value = v;
- Advance(1);
- return true;
- }
- }
- int64_t result = ReadVarint32Fallback(v);
- *value = static_cast<uint32_t>(result);
- return result >= 0;
-}
-
-inline bool CodedInputStream::ReadVarint64(uint64_t* value) {
- if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
- *value = *buffer_;
- Advance(1);
- return true;
- }
- std::pair<uint64_t, bool> p = ReadVarint64Fallback();
- *value = p.first;
- return p.second;
-}
-
-inline bool CodedInputStream::ReadVarintSizeAsInt(int* value) {
- if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
- int v = *buffer_;
- if (v < 0x80) {
- *value = v;
- Advance(1);
- return true;
- }
- }
- *value = ReadVarintSizeAsIntFallback();
- return *value >= 0;
-}
-
-// static
-inline const uint8_t* CodedInputStream::ReadLittleEndian32FromArray(
- const uint8_t* buffer, uint32_t* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- memcpy(value, buffer, sizeof(*value));
- return buffer + sizeof(*value);
-#else
- *value = (static_cast<uint32_t>(buffer[0])) |
- (static_cast<uint32_t>(buffer[1]) << 8) |
- (static_cast<uint32_t>(buffer[2]) << 16) |
- (static_cast<uint32_t>(buffer[3]) << 24);
- return buffer + sizeof(*value);
-#endif
-}
-// static
-inline const uint8_t* CodedInputStream::ReadLittleEndian64FromArray(
- const uint8_t* buffer, uint64_t* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- memcpy(value, buffer, sizeof(*value));
- return buffer + sizeof(*value);
-#else
- uint32_t part0 = (static_cast<uint32_t>(buffer[0])) |
- (static_cast<uint32_t>(buffer[1]) << 8) |
- (static_cast<uint32_t>(buffer[2]) << 16) |
- (static_cast<uint32_t>(buffer[3]) << 24);
- uint32_t part1 = (static_cast<uint32_t>(buffer[4])) |
- (static_cast<uint32_t>(buffer[5]) << 8) |
- (static_cast<uint32_t>(buffer[6]) << 16) |
- (static_cast<uint32_t>(buffer[7]) << 24);
- *value = static_cast<uint64_t>(part0) | (static_cast<uint64_t>(part1) << 32);
- return buffer + sizeof(*value);
-#endif
-}
-
-inline bool CodedInputStream::ReadLittleEndian32(uint32_t* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
- buffer_ = ReadLittleEndian32FromArray(buffer_, value);
- return true;
- } else {
- return ReadLittleEndian32Fallback(value);
- }
-#else
- return ReadLittleEndian32Fallback(value);
-#endif
-}
-
-inline bool CodedInputStream::ReadLittleEndian64(uint64_t* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
- buffer_ = ReadLittleEndian64FromArray(buffer_, value);
- return true;
- } else {
- return ReadLittleEndian64Fallback(value);
- }
-#else
- return ReadLittleEndian64Fallback(value);
-#endif
-}
-
-inline uint32_t CodedInputStream::ReadTagNoLastTag() {
- uint32_t v = 0;
- if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
- v = *buffer_;
- if (v < 0x80) {
- Advance(1);
- return v;
- }
- }
- v = ReadTagFallback(v);
- return v;
-}
-
-inline std::pair<uint32_t, bool> CodedInputStream::ReadTagWithCutoffNoLastTag(
- uint32_t cutoff) {
- // In performance-sensitive code we can expect cutoff to be a compile-time
- // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
- // compile time.
- uint32_t first_byte_or_zero = 0;
- if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
- // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
- // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
- // is large enough then is it better to check for the two-byte case first?
- first_byte_or_zero = buffer_[0];
- if (static_cast<int8_t>(buffer_[0]) > 0) {
- const uint32_t kMax1ByteVarint = 0x7f;
- uint32_t tag = buffer_[0];
- Advance(1);
- return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
- }
- // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
- // and tag is two bytes. The latter is tested by bitwise-and-not of the
- // first byte and the second byte.
- if (cutoff >= 0x80 && PROTOBUF_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
- PROTOBUF_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
- const uint32_t kMax2ByteVarint = (0x7f << 7) + 0x7f;
- uint32_t tag = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
- Advance(2);
- // It might make sense to test for tag == 0 now, but it is so rare that
- // that we don't bother. A varint-encoded 0 should be one byte unless
- // the encoder lost its mind. The second part of the return value of
- // this function is allowed to be either true or false if the tag is 0,
- // so we don't have to check for tag == 0. We may need to check whether
- // it exceeds cutoff.
- bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
- return std::make_pair(tag, at_or_below_cutoff);
- }
- }
- // Slow path
- const uint32_t tag = ReadTagFallback(first_byte_or_zero);
- return std::make_pair(tag, static_cast<uint32_t>(tag - 1) < cutoff);
-}
-
-inline bool CodedInputStream::LastTagWas(uint32_t expected) {
- return last_tag_ == expected;
-}
-
-inline bool CodedInputStream::ConsumedEntireMessage() {
- return legitimate_message_end_;
-}
-
-inline bool CodedInputStream::ExpectTag(uint32_t expected) {
- if (expected < (1 << 7)) {
- if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) &&
- buffer_[0] == expected) {
- Advance(1);
- return true;
- } else {
- return false;
- }
- } else if (expected < (1 << 14)) {
- if (PROTOBUF_PREDICT_TRUE(BufferSize() >= 2) &&
- buffer_[0] == static_cast<uint8_t>(expected | 0x80) &&
- buffer_[1] == static_cast<uint8_t>(expected >> 7)) {
- Advance(2);
- return true;
- } else {
- return false;
- }
- } else {
- // Don't bother optimizing for larger values.
- return false;
- }
-}
-
-inline const uint8_t* CodedInputStream::ExpectTagFromArray(
- const uint8_t* buffer, uint32_t expected) {
- if (expected < (1 << 7)) {
- if (buffer[0] == expected) {
- return buffer + 1;
- }
- } else if (expected < (1 << 14)) {
- if (buffer[0] == static_cast<uint8_t>(expected | 0x80) &&
- buffer[1] == static_cast<uint8_t>(expected >> 7)) {
- return buffer + 2;
- }
- }
- return nullptr;
-}
-
-inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
- int* size) {
- *data = buffer_;
- *size = static_cast<int>(buffer_end_ - buffer_);
-}
-
-inline bool CodedInputStream::ExpectAtEnd() {
- // If we are at a limit we know no more bytes can be read. Otherwise, it's
- // hard to say without calling Refresh(), and we'd rather not do that.
-
- if (buffer_ == buffer_end_ && ((buffer_size_after_limit_ != 0) ||
- (total_bytes_read_ == current_limit_))) {
- last_tag_ = 0; // Pretend we called ReadTag()...
- legitimate_message_end_ = true; // ... and it hit EOF.
- return true;
- } else {
- return false;
- }
-}
-
-inline int CodedInputStream::CurrentPosition() const {
- return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
-}
-
-inline void CodedInputStream::Advance(int amount) { buffer_ += amount; }
-
-inline void CodedInputStream::SetRecursionLimit(int limit) {
- recursion_budget_ += limit - recursion_limit_;
- recursion_limit_ = limit;
-}
-
-inline bool CodedInputStream::IncrementRecursionDepth() {
- --recursion_budget_;
- return recursion_budget_ >= 0;
-}
-
-inline void CodedInputStream::DecrementRecursionDepth() {
- if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
-}
-
-inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
- assert(recursion_budget_ < recursion_limit_);
- ++recursion_budget_;
-}
-
-inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
- MessageFactory* factory) {
- extension_pool_ = pool;
- extension_factory_ = factory;
-}
-
-inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
- return extension_pool_;
-}
-
-inline MessageFactory* CodedInputStream::GetExtensionFactory() {
- return extension_factory_;
-}
-
-inline int CodedInputStream::BufferSize() const {
- return static_cast<int>(buffer_end_ - buffer_);
-}
-
-inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
- : buffer_(nullptr),
- buffer_end_(nullptr),
- input_(input),
- total_bytes_read_(0),
- overflow_bytes_(0),
- last_tag_(0),
- legitimate_message_end_(false),
- aliasing_enabled_(false),
- current_limit_(std::numeric_limits<int32_t>::max()),
- buffer_size_after_limit_(0),
- total_bytes_limit_(kDefaultTotalBytesLimit),
- recursion_budget_(default_recursion_limit_),
- recursion_limit_(default_recursion_limit_),
- extension_pool_(nullptr),
- extension_factory_(nullptr) {
- // Eagerly Refresh() so buffer space is immediately available.
- Refresh();
-}
-
-inline CodedInputStream::CodedInputStream(const uint8_t* buffer, int size)
- : buffer_(buffer),
- buffer_end_(buffer + size),
- input_(nullptr),
- total_bytes_read_(size),
- overflow_bytes_(0),
- last_tag_(0),
- legitimate_message_end_(false),
- aliasing_enabled_(false),
- current_limit_(size),
- buffer_size_after_limit_(0),
- total_bytes_limit_(kDefaultTotalBytesLimit),
- recursion_budget_(default_recursion_limit_),
- recursion_limit_(default_recursion_limit_),
- extension_pool_(nullptr),
- extension_factory_(nullptr) {
- // Note that setting current_limit_ == size is important to prevent some
- // code paths from trying to access input_ and segfaulting.
-}
-
-inline bool CodedInputStream::IsFlat() const { return input_ == nullptr; }
-
-inline bool CodedInputStream::Skip(int count) {
- if (count < 0) return false; // security: count is often user-supplied
-
- const int original_buffer_size = BufferSize();
-
- if (count <= original_buffer_size) {
- // Just skipping within the current buffer. Easy.
- Advance(count);
- return true;
- }
-
- return SkipFallback(count, original_buffer_size);
-}
-
-template <class Stream, class>
-inline CodedOutputStream::CodedOutputStream(Stream* stream)
- : impl_(stream, IsDefaultSerializationDeterministic(), &cur_),
- start_count_(stream->ByteCount()) {
- InitEagerly(stream);
-}
-
-template <class Stream, class>
-inline CodedOutputStream::CodedOutputStream(Stream* stream, bool eager_init)
- : impl_(stream, IsDefaultSerializationDeterministic(), &cur_),
- start_count_(stream->ByteCount()) {
- if (eager_init) {
- InitEagerly(stream);
- }
-}
-
-template <class Stream>
-inline void CodedOutputStream::InitEagerly(Stream* stream) {
- void* data;
- int size;
- if (PROTOBUF_PREDICT_TRUE(stream->Next(&data, &size) && size > 0)) {
- cur_ = impl_.SetInitialBuffer(data, size);
- }
-}
-
-inline uint8_t* CodedOutputStream::WriteVarint32ToArray(uint32_t value,
- uint8_t* target) {
- return EpsCopyOutputStream::UnsafeVarint(value, target);
-}
-
-inline uint8_t* CodedOutputStream::WriteVarint32ToArrayOutOfLine(
- uint32_t value, uint8_t* target) {
- target[0] = static_cast<uint8_t>(value);
- if (value < 0x80) {
- return target + 1;
- } else {
- return WriteVarint32ToArrayOutOfLineHelper(value, target);
- }
-}
-
-inline uint8_t* CodedOutputStream::WriteVarint64ToArray(uint64_t value,
- uint8_t* target) {
- return EpsCopyOutputStream::UnsafeVarint(value, target);
-}
-
-inline void CodedOutputStream::WriteVarint32SignExtended(int32_t value) {
- WriteVarint64(static_cast<uint64_t>(value));
-}
-
-inline uint8_t* CodedOutputStream::WriteVarint32SignExtendedToArray(
- int32_t value, uint8_t* target) {
- return WriteVarint64ToArray(static_cast<uint64_t>(value), target);
-}
-
-inline uint8_t* CodedOutputStream::WriteLittleEndian32ToArray(uint32_t value,
- uint8_t* target) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- memcpy(target, &value, sizeof(value));
-#else
- target[0] = static_cast<uint8_t>(value);
- target[1] = static_cast<uint8_t>(value >> 8);
- target[2] = static_cast<uint8_t>(value >> 16);
- target[3] = static_cast<uint8_t>(value >> 24);
-#endif
- return target + sizeof(value);
-}
-
-inline uint8_t* CodedOutputStream::WriteLittleEndian64ToArray(uint64_t value,
- uint8_t* target) {
-#if defined(PROTOBUF_LITTLE_ENDIAN) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- memcpy(target, &value, sizeof(value));
-#else
- uint32_t part0 = static_cast<uint32_t>(value);
- uint32_t part1 = static_cast<uint32_t>(value >> 32);
-
- target[0] = static_cast<uint8_t>(part0);
- target[1] = static_cast<uint8_t>(part0 >> 8);
- target[2] = static_cast<uint8_t>(part0 >> 16);
- target[3] = static_cast<uint8_t>(part0 >> 24);
- target[4] = static_cast<uint8_t>(part1);
- target[5] = static_cast<uint8_t>(part1 >> 8);
- target[6] = static_cast<uint8_t>(part1 >> 16);
- target[7] = static_cast<uint8_t>(part1 >> 24);
-#endif
- return target + sizeof(value);
-}
-
-inline void CodedOutputStream::WriteVarint32(uint32_t value) {
- cur_ = impl_.EnsureSpace(cur_);
- SetCur(WriteVarint32ToArray(value, Cur()));
-}
-
-inline void CodedOutputStream::WriteVarint64(uint64_t value) {
- cur_ = impl_.EnsureSpace(cur_);
- SetCur(WriteVarint64ToArray(value, Cur()));
-}
-
-inline void CodedOutputStream::WriteTag(uint32_t value) {
- WriteVarint32(value);
-}
-
-inline uint8_t* CodedOutputStream::WriteTagToArray(uint32_t value,
- uint8_t* target) {
- return WriteVarint32ToArray(value, target);
-}
-
-inline size_t CodedOutputStream::VarintSize32(uint32_t value) {
- // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
- // Use an explicit multiplication to implement the divide of
- // a number in the 1..31 range.
- // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
- // undefined.
- uint32_t log2value = Bits::Log2FloorNonZero(value | 0x1);
- return static_cast<size_t>((log2value * 9 + 73) / 64);
-}
-
-inline size_t CodedOutputStream::VarintSize32PlusOne(uint32_t value) {
- // Same as above, but one more.
- uint32_t log2value = Bits::Log2FloorNonZero(value | 0x1);
- return static_cast<size_t>((log2value * 9 + 73 + 64) / 64);
-}
-
-inline size_t CodedOutputStream::VarintSize64(uint64_t value) {
- // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
- // Use an explicit multiplication to implement the divide of
- // a number in the 1..63 range.
- // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
- // undefined.
- uint32_t log2value = Bits::Log2FloorNonZero64(value | 0x1);
- return static_cast<size_t>((log2value * 9 + 73) / 64);
-}
-
-inline size_t CodedOutputStream::VarintSize64PlusOne(uint64_t value) {
- // Same as above, but one more.
- uint32_t log2value = Bits::Log2FloorNonZero64(value | 0x1);
- return static_cast<size_t>((log2value * 9 + 73 + 64) / 64);
-}
-
-inline size_t CodedOutputStream::VarintSize32SignExtended(int32_t value) {
- return VarintSize64(static_cast<uint64_t>(int64_t{value}));
-}
-
-inline size_t CodedOutputStream::VarintSize32SignExtendedPlusOne(
- int32_t value) {
- return VarintSize64PlusOne(static_cast<uint64_t>(int64_t{value}));
-}
-
-inline void CodedOutputStream::WriteString(const std::string& str) {
- WriteRaw(str.data(), static_cast<int>(str.size()));
-}
-
-inline void CodedOutputStream::WriteRawMaybeAliased(const void* data,
- int size) {
- cur_ = impl_.WriteRawMaybeAliased(data, size, cur_);
-}
-
-inline uint8_t* CodedOutputStream::WriteRawToArray(const void* data, int size,
- uint8_t* target) {
- memcpy(target, data, size);
- return target + size;
-}
-
-inline uint8_t* CodedOutputStream::WriteStringToArray(const std::string& str,
- uint8_t* target) {
- return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
-}
-
-} // namespace io
-} // namespace protobuf
-} // namespace google
-
-#if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
-#pragma runtime_checks("c", restore)
-#endif // _MSC_VER && !defined(__INTEL_COMPILER)
-
-#include <google/protobuf/port_undef.inc>
-
-#endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__