diff options
Diffstat (limited to 'libs/libtox/src/toxencryptsave/toxencryptsave.h')
-rw-r--r-- | libs/libtox/src/toxencryptsave/toxencryptsave.h | 388 |
1 files changed, 388 insertions, 0 deletions
diff --git a/libs/libtox/src/toxencryptsave/toxencryptsave.h b/libs/libtox/src/toxencryptsave/toxencryptsave.h new file mode 100644 index 0000000000..ef1ab15289 --- /dev/null +++ b/libs/libtox/src/toxencryptsave/toxencryptsave.h @@ -0,0 +1,388 @@ +/* + * Batch encryption functions. + */ + +/* + * Copyright © 2016-2017 The TokTok team. + * Copyright © 2013-2016 Tox Developers. + * + * This file is part of Tox, the free peer to peer instant messenger. + * + * Tox is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * Tox is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with Tox. If not, see <http://www.gnu.org/licenses/>. + */ +#ifndef TOXENCRYPTSAVE_H +#define TOXENCRYPTSAVE_H + +#ifdef __cplusplus +extern "C" { +#endif + +#include <stdbool.h> +#include <stddef.h> +#include <stdint.h> + + +/******************************************************************************* + * + * This module is organized into two parts. + * + * 1. A simple API operating on plain text/cipher text data and a password to + * encrypt or decrypt it. + * 2. A more advanced API that splits key derivation and encryption into two + * separate function calls. + * + * The first part is implemented in terms of the second part and simply calls + * the separate functions in sequence. Since key derivation is very expensive + * compared to the actual encryption, clients that do a lot of crypto should + * prefer the advanced API and reuse pass-key objects. + * + * To use the second part, first derive an encryption key from a password with + * tox_pass_key_derive, then use the derived key to encrypt the data. + * + * The encrypted data is prepended with a magic number, to aid validity + * checking (no guarantees are made of course). Any data to be decrypted must + * start with the magic number. + * + * Clients should consider alerting their users that, unlike plain data, if + * even one bit becomes corrupted, the data will be entirely unrecoverable. + * Ditto if they forget their password, there is no way to recover the data. + * + ******************************************************************************/ + + + +/** + * The size of the salt part of a pass-key. + */ +#define TOX_PASS_SALT_LENGTH 32 + +uint32_t tox_pass_salt_length(void); + +/** + * The size of the key part of a pass-key. + */ +#define TOX_PASS_KEY_LENGTH 32 + +uint32_t tox_pass_key_length(void); + +/** + * The amount of additional data required to store any encrypted byte array. + * Encrypting an array of N bytes requires N + TOX_PASS_ENCRYPTION_EXTRA_LENGTH + * bytes in the encrypted byte array. + */ +#define TOX_PASS_ENCRYPTION_EXTRA_LENGTH 80 + +uint32_t tox_pass_encryption_extra_length(void); + +typedef enum TOX_ERR_KEY_DERIVATION { + + /** + * The function returned successfully. + */ + TOX_ERR_KEY_DERIVATION_OK, + + /** + * One of the arguments to the function was NULL when it was not expected. + */ + TOX_ERR_KEY_DERIVATION_NULL, + + /** + * The crypto lib was unable to derive a key from the given passphrase, + * which is usually a lack of memory issue. The functions accepting keys + * do not produce this error. + */ + TOX_ERR_KEY_DERIVATION_FAILED, + +} TOX_ERR_KEY_DERIVATION; + + +typedef enum TOX_ERR_ENCRYPTION { + + /** + * The function returned successfully. + */ + TOX_ERR_ENCRYPTION_OK, + + /** + * One of the arguments to the function was NULL when it was not expected. + */ + TOX_ERR_ENCRYPTION_NULL, + + /** + * The crypto lib was unable to derive a key from the given passphrase, + * which is usually a lack of memory issue. The functions accepting keys + * do not produce this error. + */ + TOX_ERR_ENCRYPTION_KEY_DERIVATION_FAILED, + + /** + * The encryption itself failed. + */ + TOX_ERR_ENCRYPTION_FAILED, + +} TOX_ERR_ENCRYPTION; + + +typedef enum TOX_ERR_DECRYPTION { + + /** + * The function returned successfully. + */ + TOX_ERR_DECRYPTION_OK, + + /** + * One of the arguments to the function was NULL when it was not expected. + */ + TOX_ERR_DECRYPTION_NULL, + + /** + * The input data was shorter than TOX_PASS_ENCRYPTION_EXTRA_LENGTH bytes + */ + TOX_ERR_DECRYPTION_INVALID_LENGTH, + + /** + * The input data is missing the magic number (i.e. wasn't created by this + * module, or is corrupted). + */ + TOX_ERR_DECRYPTION_BAD_FORMAT, + + /** + * The crypto lib was unable to derive a key from the given passphrase, + * which is usually a lack of memory issue. The functions accepting keys + * do not produce this error. + */ + TOX_ERR_DECRYPTION_KEY_DERIVATION_FAILED, + + /** + * The encrypted byte array could not be decrypted. Either the data was + * corrupted or the password/key was incorrect. + */ + TOX_ERR_DECRYPTION_FAILED, + +} TOX_ERR_DECRYPTION; + + + +/******************************************************************************* + * + * BEGIN PART 1 + * + * The simple API is presented first. If your code spends too much time using + * these functions, consider using the advanced functions instead and caching + * the generated pass-key. + * + ******************************************************************************/ + + + +/** + * Encrypts the given data with the given passphrase. + * + * The output array must be at least `plaintext_len + TOX_PASS_ENCRYPTION_EXTRA_LENGTH` + * bytes long. This delegates to tox_pass_key_derive and + * tox_pass_key_encrypt. + * + * @param plaintext A byte array of length `plaintext_len`. + * @param plaintext_len The length of the plain text array. Bigger than 0. + * @param passphrase The user-provided password. Can be empty. + * @param passphrase_len The length of the password. + * @param ciphertext The cipher text array to write the encrypted data to. + * + * @return true on success. + */ +bool tox_pass_encrypt(const uint8_t *plaintext, size_t plaintext_len, const uint8_t *passphrase, size_t passphrase_len, + uint8_t *ciphertext, TOX_ERR_ENCRYPTION *error); + +/** + * Decrypts the given data with the given passphrase. + * + * The output array must be at least `ciphertext_len - TOX_PASS_ENCRYPTION_EXTRA_LENGTH` + * bytes long. This delegates to tox_pass_key_decrypt. + * + * @param ciphertext A byte array of length `ciphertext_len`. + * @param ciphertext_len The length of the cipher text array. At least TOX_PASS_ENCRYPTION_EXTRA_LENGTH. + * @param passphrase The user-provided password. Can be empty. + * @param passphrase_len The length of the password. + * @param plaintext The plain text array to write the decrypted data to. + * + * @return true on success. + */ +bool tox_pass_decrypt(const uint8_t *ciphertext, size_t ciphertext_len, const uint8_t *passphrase, + size_t passphrase_len, uint8_t *plaintext, TOX_ERR_DECRYPTION *error); + + +/******************************************************************************* + * + * BEGIN PART 2 + * + * And now part 2, which does the actual encryption, and can be used to write + * less CPU intensive client code than part one. + * + ******************************************************************************/ + + + +/** + * This type represents a pass-key. + * + * A pass-key and a password are two different concepts: a password is given + * by the user in plain text. A pass-key is the generated symmetric key used + * for encryption and decryption. It is derived from a salt and the user- + * provided password. + * + * The Tox_Pass_Key structure is hidden in the implementation. It can be allocated + * using tox_pass_key_new and must be deallocated using tox_pass_key_free. + */ +#ifndef TOX_PASS_KEY_DEFINED +#define TOX_PASS_KEY_DEFINED +typedef struct Tox_Pass_Key Tox_Pass_Key; +#endif /* TOX_PASS_KEY_DEFINED */ + +/** + * Create a new Tox_Pass_Key. The initial value of it is indeterminate. To + * initialise it, use one of the derive_* functions below. + * + * In case of failure, this function returns NULL. The only failure mode at + * this time is memory allocation failure, so this function has no error code. + */ +struct Tox_Pass_Key *tox_pass_key_new(void); + +/** + * Deallocate a Tox_Pass_Key. This function behaves like free(), so NULL is an + * acceptable argument value. + */ +void tox_pass_key_free(struct Tox_Pass_Key *_key); + +/** + * Generates a secret symmetric key from the given passphrase. + * + * Be sure to not compromise the key! Only keep it in memory, do not write + * it to disk. + * + * Note that this function is not deterministic; to derive the same key from + * a password, you also must know the random salt that was used. A + * deterministic version of this function is tox_pass_key_derive_with_salt. + * + * @param passphrase The user-provided password. Can be empty. + * @param passphrase_len The length of the password. + * + * @return true on success. + */ +bool tox_pass_key_derive(struct Tox_Pass_Key *_key, const uint8_t *passphrase, size_t passphrase_len, + TOX_ERR_KEY_DERIVATION *error); + +/** + * Same as above, except use the given salt for deterministic key derivation. + * + * @param passphrase The user-provided password. Can be empty. + * @param passphrase_len The length of the password. + * @param salt An array of at least TOX_PASS_SALT_LENGTH bytes. + * + * @return true on success. + */ +bool tox_pass_key_derive_with_salt(struct Tox_Pass_Key *_key, const uint8_t *passphrase, size_t passphrase_len, + const uint8_t *salt, TOX_ERR_KEY_DERIVATION *error); + +/** + * Encrypt a plain text with a key produced by tox_pass_key_derive or tox_pass_key_derive_with_salt. + * + * The output array must be at least `plaintext_len + TOX_PASS_ENCRYPTION_EXTRA_LENGTH` + * bytes long. + * + * @param plaintext A byte array of length `plaintext_len`. + * @param plaintext_len The length of the plain text array. Bigger than 0. + * @param ciphertext The cipher text array to write the encrypted data to. + * + * @return true on success. + */ +bool tox_pass_key_encrypt(const struct Tox_Pass_Key *_key, const uint8_t *plaintext, size_t plaintext_len, + uint8_t *ciphertext, TOX_ERR_ENCRYPTION *error); + +/** + * This is the inverse of tox_pass_key_encrypt, also using only keys produced by + * tox_pass_key_derive or tox_pass_key_derive_with_salt. + * + * @param ciphertext A byte array of length `ciphertext_len`. + * @param ciphertext_len The length of the cipher text array. At least TOX_PASS_ENCRYPTION_EXTRA_LENGTH. + * @param plaintext The plain text array to write the decrypted data to. + * + * @return true on success. + */ +bool tox_pass_key_decrypt(const struct Tox_Pass_Key *_key, const uint8_t *ciphertext, size_t ciphertext_len, + uint8_t *plaintext, TOX_ERR_DECRYPTION *error); + +typedef enum TOX_ERR_GET_SALT { + + /** + * The function returned successfully. + */ + TOX_ERR_GET_SALT_OK, + + /** + * One of the arguments to the function was NULL when it was not expected. + */ + TOX_ERR_GET_SALT_NULL, + + /** + * The input data is missing the magic number (i.e. wasn't created by this + * module, or is corrupted). + */ + TOX_ERR_GET_SALT_BAD_FORMAT, + +} TOX_ERR_GET_SALT; + + +/** + * Retrieves the salt used to encrypt the given data. + * + * The retrieved salt can then be passed to tox_pass_key_derive_with_salt to + * produce the same key as was previously used. Any data encrypted with this + * module can be used as input. + * + * The cipher text must be at least TOX_PASS_ENCRYPTION_EXTRA_LENGTH bytes in length. + * The salt must be TOX_PASS_SALT_LENGTH bytes in length. + * If the passed byte arrays are smaller than required, the behaviour is + * undefined. + * + * If the cipher text pointer or the salt is NULL, this function returns false. + * + * Success does not say anything about the validity of the data, only that + * data of the appropriate size was copied. + * + * @return true on success. + */ +bool tox_get_salt(const uint8_t *ciphertext, uint8_t *salt, TOX_ERR_GET_SALT *error); + +/** + * Determines whether or not the given data is encrypted by this module. + * + * It does this check by verifying that the magic number is the one put in + * place by the encryption functions. + * + * The data must be at least TOX_PASS_ENCRYPTION_EXTRA_LENGTH bytes in length. + * If the passed byte array is smaller than required, the behaviour is + * undefined. + * + * If the data pointer is NULL, the behaviour is undefined + * + * @return true if the data is encrypted by this module. + */ +bool tox_is_data_encrypted(const uint8_t *data); + + +#ifdef __cplusplus +} +#endif + +#endif |