diff options
Diffstat (limited to 'libs/zlib/src/trees.c')
-rw-r--r-- | libs/zlib/src/trees.c | 1684 |
1 files changed, 819 insertions, 865 deletions
diff --git a/libs/zlib/src/trees.c b/libs/zlib/src/trees.c index 0b687980bc..50cf4b4571 100644 --- a/libs/zlib/src/trees.c +++ b/libs/zlib/src/trees.c @@ -1,5 +1,5 @@ /* trees.c -- output deflated data using Huffman coding - * Copyright (C) 1995-2012 Jean-loup Gailly + * Copyright (C) 1995-2017 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ @@ -36,7 +36,7 @@ #include "deflate.h" -#ifdef DEBUG +#ifdef ZLIB_DEBUG # include <ctype.h> #endif @@ -60,30 +60,30 @@ /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ -= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0 }; + = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ -= { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; + = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ -= { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7 }; + = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] -= { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; + = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ - /* =========================================================================== - * Local data. These are initialized only once. - */ +/* =========================================================================== + * Local data. These are initialized only once. + */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) - /* non ANSI compilers may not accept trees.h */ +/* non ANSI compilers may not accept trees.h */ -local ct_data static_ltree[L_CODES + 2]; +local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init @@ -101,7 +101,7 @@ uch _dist_code[DIST_CODE_LEN]; * the 15 bit distances. */ -uch _length_code[MAX_MATCH - MIN_MATCH + 1]; +uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; @@ -114,23 +114,22 @@ local int base_dist[D_CODES]; # include "trees.h" #endif /* GEN_TREES_H */ -struct static_tree_desc_s -{ - const ct_data *static_tree; /* static tree or NULL */ - const intf *extra_bits; /* extra bits for each code or NULL */ - int extra_base; /* base index for extra_bits */ - int elems; /* max number of elements in the tree */ - int max_length; /* max bit length for the codes */ +struct static_tree_desc_s { + const ct_data *static_tree; /* static tree or NULL */ + const intf *extra_bits; /* extra bits for each code or NULL */ + int extra_base; /* base index for extra_bits */ + int elems; /* max number of elements in the tree */ + int max_length; /* max bit length for the codes */ }; -local static_tree_desc static_l_desc = -{ static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS }; +local const static_tree_desc static_l_desc = +{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; -local static_tree_desc static_d_desc = -{ static_dtree, extra_dbits, 0, D_CODES, MAX_BITS }; +local const static_tree_desc static_d_desc = +{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; -local static_tree_desc static_bl_desc = -{ (const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS }; +local const static_tree_desc static_bl_desc = +{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. @@ -146,25 +145,23 @@ local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, - int blcodes)); + int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, - const ct_data *dtree)); + const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); -local void copy_block OF((deflate_state *s, charf *buf, unsigned len, - int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif -#ifndef DEBUG +#ifndef ZLIB_DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) -/* Send a code of the given tree. c and tree must not have side effects */ + /* Send a code of the given tree. c and tree must not have side effects */ -#else /* DEBUG */ +#else /* !ZLIB_DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } @@ -179,43 +176,42 @@ local void gen_trees_header OF((void)); put_byte(s, (uch)((ush)(w) >> 8)); \ } - /* =========================================================================== - * Send a value on a given number of bits. - * IN assertion: length <= 16 and value fits in length bits. - */ -#ifdef DEBUG +/* =========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ +#ifdef ZLIB_DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) -deflate_state *s; -int value; /* value to send */ -int length; /* number of bits */ + deflate_state *s; + int value; /* value to send */ + int length; /* number of bits */ { - Tracevv((stderr, " l %2d v %4x ", length, value)); - Assert(length > 0 && length <= 15, "invalid length"); - s->bits_sent += (ulg)length; - - /* If not enough room in bi_buf, use (valid) bits from bi_buf and - * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) - * unused bits in value. - */ - if (s->bi_valid > (int)Buf_size - length) { - s->bi_buf |= (ush)value << s->bi_valid; - put_short(s, s->bi_buf); - s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); - s->bi_valid += length - Buf_size; - } - else { - s->bi_buf |= (ush)value << s->bi_valid; - s->bi_valid += length; - } + Tracevv((stderr," l %2d v %4x ", length, value)); + Assert(length > 0 && length <= 15, "invalid length"); + s->bits_sent += (ulg)length; + + /* If not enough room in bi_buf, use (valid) bits from bi_buf and + * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) + * unused bits in value. + */ + if (s->bi_valid > (int)Buf_size - length) { + s->bi_buf |= (ush)value << s->bi_valid; + put_short(s, s->bi_buf); + s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); + s->bi_valid += length - Buf_size; + } else { + s->bi_buf |= (ush)value << s->bi_valid; + s->bi_valid += length; + } } -#else /* !DEBUG */ +#else /* !ZLIB_DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ - int val = value;\ + int val = (int)value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ @@ -225,101 +221,101 @@ int length; /* number of bits */ s->bi_valid += len;\ }\ } -#endif /* DEBUG */ +#endif /* ZLIB_DEBUG */ - /* the arguments must not have side effects */ +/* the arguments must not have side effects */ - /* =========================================================================== - * Initialize the various 'constant' tables. - */ +/* =========================================================================== + * Initialize the various 'constant' tables. + */ local void tr_static_init() { - #if defined(GEN_TREES_H) || !defined(STDC) - static int static_init_done = 0; - int n; /* iterates over tree elements */ - int bits; /* bit counter */ - int length; /* length value */ - int code; /* code value */ - int dist; /* distance index */ - ush bl_count[MAX_BITS + 1]; - /* number of codes at each bit length for an optimal tree */ - - if (static_init_done) return; - - /* For some embedded targets, global variables are not initialized: */ - #ifdef NO_INIT_GLOBAL_POINTERS - static_l_desc.static_tree = static_ltree; - static_l_desc.extra_bits = extra_lbits; - static_d_desc.static_tree = static_dtree; - static_d_desc.extra_bits = extra_dbits; - static_bl_desc.extra_bits = extra_blbits; - #endif - - /* Initialize the mapping length (0..255) -> length code (0..28) */ - length = 0; - for (code = 0; code < LENGTH_CODES - 1; code++) { - base_length[code] = length; - for (n = 0; n < (1 << extra_lbits[code]); n++) { - _length_code[length++] = (uch)code; - } - } - Assert(length == 256, "tr_static_init: length != 256"); - /* Note that the length 255 (match length 258) can be represented - * in two different ways: code 284 + 5 bits or code 285, so we - * overwrite length_code[255] to use the best encoding: - */ - _length_code[length - 1] = (uch)code; - - /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ - dist = 0; - for (code = 0; code < 16; code++) { - base_dist[code] = dist; - for (n = 0; n < (1 << extra_dbits[code]); n++) { - _dist_code[dist++] = (uch)code; - } - } - Assert(dist == 256, "tr_static_init: dist != 256"); - dist >>= 7; /* from now on, all distances are divided by 128 */ - for (; code < D_CODES; code++) { - base_dist[code] = dist << 7; - for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { - _dist_code[256 + dist++] = (uch)code; - } - } - Assert(dist == 256, "tr_static_init: 256+dist != 512"); - - /* Construct the codes of the static literal tree */ - for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; - n = 0; - while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; - while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; - while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; - while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; - /* Codes 286 and 287 do not exist, but we must include them in the - * tree construction to get a canonical Huffman tree (longest code - * all ones) - */ - gen_codes((ct_data *)static_ltree, L_CODES + 1, bl_count); - - /* The static distance tree is trivial: */ - for (n = 0; n < D_CODES; n++) { - static_dtree[n].Len = 5; - static_dtree[n].Code = bi_reverse((unsigned)n, 5); - } - static_init_done = 1; - - # ifdef GEN_TREES_H - gen_trees_header(); - # endif - #endif /* defined(GEN_TREES_H) || !defined(STDC) */ +#if defined(GEN_TREES_H) || !defined(STDC) + static int static_init_done = 0; + int n; /* iterates over tree elements */ + int bits; /* bit counter */ + int length; /* length value */ + int code; /* code value */ + int dist; /* distance index */ + ush bl_count[MAX_BITS+1]; + /* number of codes at each bit length for an optimal tree */ + + if (static_init_done) return; + + /* For some embedded targets, global variables are not initialized: */ +#ifdef NO_INIT_GLOBAL_POINTERS + static_l_desc.static_tree = static_ltree; + static_l_desc.extra_bits = extra_lbits; + static_d_desc.static_tree = static_dtree; + static_d_desc.extra_bits = extra_dbits; + static_bl_desc.extra_bits = extra_blbits; +#endif + + /* Initialize the mapping length (0..255) -> length code (0..28) */ + length = 0; + for (code = 0; code < LENGTH_CODES-1; code++) { + base_length[code] = length; + for (n = 0; n < (1<<extra_lbits[code]); n++) { + _length_code[length++] = (uch)code; + } + } + Assert (length == 256, "tr_static_init: length != 256"); + /* Note that the length 255 (match length 258) can be represented + * in two different ways: code 284 + 5 bits or code 285, so we + * overwrite length_code[255] to use the best encoding: + */ + _length_code[length-1] = (uch)code; + + /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ + dist = 0; + for (code = 0 ; code < 16; code++) { + base_dist[code] = dist; + for (n = 0; n < (1<<extra_dbits[code]); n++) { + _dist_code[dist++] = (uch)code; + } + } + Assert (dist == 256, "tr_static_init: dist != 256"); + dist >>= 7; /* from now on, all distances are divided by 128 */ + for ( ; code < D_CODES; code++) { + base_dist[code] = dist << 7; + for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { + _dist_code[256 + dist++] = (uch)code; + } + } + Assert (dist == 256, "tr_static_init: 256+dist != 512"); + + /* Construct the codes of the static literal tree */ + for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; + n = 0; + while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; + while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; + while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; + while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; + /* Codes 286 and 287 do not exist, but we must include them in the + * tree construction to get a canonical Huffman tree (longest code + * all ones) + */ + gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); + + /* The static distance tree is trivial: */ + for (n = 0; n < D_CODES; n++) { + static_dtree[n].Len = 5; + static_dtree[n].Code = bi_reverse((unsigned)n, 5); + } + static_init_done = 1; + +# ifdef GEN_TREES_H + gen_trees_header(); +# endif +#endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H -# ifndef DEBUG +# ifndef ZLIB_DEBUG # include <stdio.h> # endif @@ -329,51 +325,51 @@ local void tr_static_init() void gen_trees_header() { - FILE *header = fopen("trees.h", "w"); - int i; - - Assert(header != NULL, "Can't open trees.h"); - fprintf(header, - "/* header created automatically with -DGEN_TREES_H */\n\n"); - - fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); - for (i = 0; i < L_CODES + 2; i++) { - fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, - static_ltree[i].Len, SEPARATOR(i, L_CODES + 1, 5)); - } - - fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); - for (i = 0; i < D_CODES; i++) { - fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, - static_dtree[i].Len, SEPARATOR(i, D_CODES - 1, 5)); - } - - fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); - for (i = 0; i < DIST_CODE_LEN; i++) { - fprintf(header, "%2u%s", _dist_code[i], - SEPARATOR(i, DIST_CODE_LEN - 1, 20)); - } - - fprintf(header, - "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); - for (i = 0; i < MAX_MATCH - MIN_MATCH + 1; i++) { - fprintf(header, "%2u%s", _length_code[i], - SEPARATOR(i, MAX_MATCH - MIN_MATCH, 20)); - } - - fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); - for (i = 0; i < LENGTH_CODES; i++) { - fprintf(header, "%1u%s", base_length[i], - SEPARATOR(i, LENGTH_CODES - 1, 20)); - } - - fprintf(header, "local const int base_dist[D_CODES] = {\n"); - for (i = 0; i < D_CODES; i++) { - fprintf(header, "%5u%s", base_dist[i], - SEPARATOR(i, D_CODES - 1, 10)); - } - - fclose(header); + FILE *header = fopen("trees.h", "w"); + int i; + + Assert (header != NULL, "Can't open trees.h"); + fprintf(header, + "/* header created automatically with -DGEN_TREES_H */\n\n"); + + fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); + for (i = 0; i < L_CODES+2; i++) { + fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, + static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); + } + + fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); + for (i = 0; i < D_CODES; i++) { + fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, + static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); + } + + fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); + for (i = 0; i < DIST_CODE_LEN; i++) { + fprintf(header, "%2u%s", _dist_code[i], + SEPARATOR(i, DIST_CODE_LEN-1, 20)); + } + + fprintf(header, + "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); + for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { + fprintf(header, "%2u%s", _length_code[i], + SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); + } + + fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); + for (i = 0; i < LENGTH_CODES; i++) { + fprintf(header, "%1u%s", base_length[i], + SEPARATOR(i, LENGTH_CODES-1, 20)); + } + + fprintf(header, "local const int base_dist[D_CODES] = {\n"); + for (i = 0; i < D_CODES; i++) { + fprintf(header, "%5u%s", base_dist[i], + SEPARATOR(i, D_CODES-1, 10)); + } + + fclose(header); } #endif /* GEN_TREES_H */ @@ -381,46 +377,46 @@ void gen_trees_header() * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) -deflate_state *s; + deflate_state *s; { - tr_static_init(); + tr_static_init(); - s->l_desc.dyn_tree = s->dyn_ltree; - s->l_desc.stat_desc = &static_l_desc; + s->l_desc.dyn_tree = s->dyn_ltree; + s->l_desc.stat_desc = &static_l_desc; - s->d_desc.dyn_tree = s->dyn_dtree; - s->d_desc.stat_desc = &static_d_desc; + s->d_desc.dyn_tree = s->dyn_dtree; + s->d_desc.stat_desc = &static_d_desc; - s->bl_desc.dyn_tree = s->bl_tree; - s->bl_desc.stat_desc = &static_bl_desc; + s->bl_desc.dyn_tree = s->bl_tree; + s->bl_desc.stat_desc = &static_bl_desc; - s->bi_buf = 0; - s->bi_valid = 0; - #ifdef DEBUG - s->compressed_len = 0L; - s->bits_sent = 0L; - #endif + s->bi_buf = 0; + s->bi_valid = 0; +#ifdef ZLIB_DEBUG + s->compressed_len = 0L; + s->bits_sent = 0L; +#endif - /* Initialize the first block of the first file: */ - init_block(s); + /* Initialize the first block of the first file: */ + init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) -deflate_state *s; + deflate_state *s; { - int n; /* iterates over tree elements */ + int n; /* iterates over tree elements */ - /* Initialize the trees. */ - for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; - for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; - for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; + /* Initialize the trees. */ + for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; + for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; + for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; - s->dyn_ltree[END_BLOCK].Freq = 1; - s->opt_len = s->static_len = 0L; - s->last_lit = s->matches = 0; + s->dyn_ltree[END_BLOCK].Freq = 1; + s->opt_len = s->static_len = 0L; + s->last_lit = s->matches = 0; } #define SMALLEST 1 @@ -438,43 +434,43 @@ deflate_state *s; pqdownheap(s, tree, SMALLEST); \ } - /* =========================================================================== - * Compares to subtrees, using the tree depth as tie breaker when - * the subtrees have equal frequency. This minimizes the worst case length. - */ +/* =========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) - /* =========================================================================== - * Restore the heap property by moving down the tree starting at node k, - * exchanging a node with the smallest of its two sons if necessary, stopping - * when the heap property is re-established (each father smaller than its - * two sons). - */ +/* =========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ local void pqdownheap(s, tree, k) -deflate_state *s; -ct_data *tree; /* the tree to restore */ -int k; /* node to move down */ + deflate_state *s; + ct_data *tree; /* the tree to restore */ + int k; /* node to move down */ { - int v = s->heap[k]; - int j = k << 1; /* left son of k */ - while (j <= s->heap_len) { - /* Set j to the smallest of the two sons: */ - if (j < s->heap_len && - smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { - j++; - } - /* Exit if v is smaller than both sons */ - if (smaller(tree, v, s->heap[j], s->depth)) break; - - /* Exchange v with the smallest son */ - s->heap[k] = s->heap[j]; k = j; - - /* And continue down the tree, setting j to the left son of k */ - j <<= 1; - } - s->heap[k] = v; + int v = s->heap[k]; + int j = k << 1; /* left son of k */ + while (j <= s->heap_len) { + /* Set j to the smallest of the two sons: */ + if (j < s->heap_len && + smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { + j++; + } + /* Exit if v is smaller than both sons */ + if (smaller(tree, v, s->heap[j], s->depth)) break; + + /* Exchange v with the smallest son */ + s->heap[k] = s->heap[j]; k = j; + + /* And continue down the tree, setting j to the left son of k */ + j <<= 1; + } + s->heap[k] = v; } /* =========================================================================== @@ -488,82 +484,81 @@ int k; /* node to move down */ * not null. */ local void gen_bitlen(s, desc) -deflate_state *s; -tree_desc *desc; /* the tree descriptor */ + deflate_state *s; + tree_desc *desc; /* the tree descriptor */ { - ct_data *tree = desc->dyn_tree; - int max_code = desc->max_code; - const ct_data *stree = desc->stat_desc->static_tree; - const intf *extra = desc->stat_desc->extra_bits; - int base = desc->stat_desc->extra_base; - int max_length = desc->stat_desc->max_length; - int h; /* heap index */ - int n, m; /* iterate over the tree elements */ - int bits; /* bit length */ - int xbits; /* extra bits */ - ush f; /* frequency */ - int overflow = 0; /* number of elements with bit length too large */ - - for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; - - /* In a first pass, compute the optimal bit lengths (which may - * overflow in the case of the bit length tree). - */ - tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ - - for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { - n = s->heap[h]; - bits = tree[tree[n].Dad].Len + 1; - if (bits > max_length) bits = max_length, overflow++; - tree[n].Len = (ush)bits; - /* We overwrite tree[n].Dad which is no longer needed */ - - if (n > max_code) continue; /* not a leaf node */ - - s->bl_count[bits]++; - xbits = 0; - if (n >= base) xbits = extra[n - base]; - f = tree[n].Freq; - s->opt_len += (ulg)f * (bits + xbits); - if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); - } - if (overflow == 0) return; - - Trace((stderr, "\nbit length overflow\n")); - /* This happens for example on obj2 and pic of the Calgary corpus */ - - /* Find the first bit length which could increase: */ - do { - bits = max_length - 1; - while (s->bl_count[bits] == 0) bits--; - s->bl_count[bits]--; /* move one leaf down the tree */ - s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ - s->bl_count[max_length]--; - /* The brother of the overflow item also moves one step up, - * but this does not affect bl_count[max_length] - */ - overflow -= 2; - } while (overflow > 0); - - /* Now recompute all bit lengths, scanning in increasing frequency. - * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all - * lengths instead of fixing only the wrong ones. This idea is taken - * from 'ar' written by Haruhiko Okumura.) - */ - for (bits = max_length; bits != 0; bits--) { - n = s->bl_count[bits]; - while (n != 0) { - m = s->heap[--h]; - if (m > max_code) continue; - if ((unsigned)tree[m].Len != (unsigned)bits) { - Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits)); - s->opt_len += ((long)bits - (long)tree[m].Len) - *(long)tree[m].Freq; - tree[m].Len = (ush)bits; - } - n--; - } - } + ct_data *tree = desc->dyn_tree; + int max_code = desc->max_code; + const ct_data *stree = desc->stat_desc->static_tree; + const intf *extra = desc->stat_desc->extra_bits; + int base = desc->stat_desc->extra_base; + int max_length = desc->stat_desc->max_length; + int h; /* heap index */ + int n, m; /* iterate over the tree elements */ + int bits; /* bit length */ + int xbits; /* extra bits */ + ush f; /* frequency */ + int overflow = 0; /* number of elements with bit length too large */ + + for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; + + /* In a first pass, compute the optimal bit lengths (which may + * overflow in the case of the bit length tree). + */ + tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ + + for (h = s->heap_max+1; h < HEAP_SIZE; h++) { + n = s->heap[h]; + bits = tree[tree[n].Dad].Len + 1; + if (bits > max_length) bits = max_length, overflow++; + tree[n].Len = (ush)bits; + /* We overwrite tree[n].Dad which is no longer needed */ + + if (n > max_code) continue; /* not a leaf node */ + + s->bl_count[bits]++; + xbits = 0; + if (n >= base) xbits = extra[n-base]; + f = tree[n].Freq; + s->opt_len += (ulg)f * (unsigned)(bits + xbits); + if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); + } + if (overflow == 0) return; + + Tracev((stderr,"\nbit length overflow\n")); + /* This happens for example on obj2 and pic of the Calgary corpus */ + + /* Find the first bit length which could increase: */ + do { + bits = max_length-1; + while (s->bl_count[bits] == 0) bits--; + s->bl_count[bits]--; /* move one leaf down the tree */ + s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ + s->bl_count[max_length]--; + /* The brother of the overflow item also moves one step up, + * but this does not affect bl_count[max_length] + */ + overflow -= 2; + } while (overflow > 0); + + /* Now recompute all bit lengths, scanning in increasing frequency. + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all + * lengths instead of fixing only the wrong ones. This idea is taken + * from 'ar' written by Haruhiko Okumura.) + */ + for (bits = max_length; bits != 0; bits--) { + n = s->bl_count[bits]; + while (n != 0) { + m = s->heap[--h]; + if (m > max_code) continue; + if ((unsigned) tree[m].Len != (unsigned) bits) { + Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); + s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; + tree[m].Len = (ush)bits; + } + n--; + } + } } /* =========================================================================== @@ -574,38 +569,39 @@ tree_desc *desc; /* the tree descriptor */ * OUT assertion: the field code is set for all tree elements of non * zero code length. */ -local void gen_codes(tree, max_code, bl_count) -ct_data *tree; /* the tree to decorate */ -int max_code; /* largest code with non zero frequency */ -ushf *bl_count; /* number of codes at each bit length */ +local void gen_codes (tree, max_code, bl_count) + ct_data *tree; /* the tree to decorate */ + int max_code; /* largest code with non zero frequency */ + ushf *bl_count; /* number of codes at each bit length */ { - ush next_code[MAX_BITS + 1]; /* next code value for each bit length */ - ush code = 0; /* running code value */ - int bits; /* bit index */ - int n; /* code index */ - - /* The distribution counts are first used to generate the code values - * without bit reversal. - */ - for (bits = 1; bits <= MAX_BITS; bits++) { - next_code[bits] = code = (code + bl_count[bits - 1]) << 1; - } - /* Check that the bit counts in bl_count are consistent. The last code - * must be all ones. - */ - Assert(code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, - "inconsistent bit counts"); - Tracev((stderr, "\ngen_codes: max_code %d ", max_code)); - - for (n = 0; n <= max_code; n++) { - int len = tree[n].Len; - if (len == 0) continue; - /* Now reverse the bits */ - tree[n].Code = bi_reverse(next_code[len]++, len); - - Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ", - n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); - } + ush next_code[MAX_BITS+1]; /* next code value for each bit length */ + unsigned code = 0; /* running code value */ + int bits; /* bit index */ + int n; /* code index */ + + /* The distribution counts are first used to generate the code values + * without bit reversal. + */ + for (bits = 1; bits <= MAX_BITS; bits++) { + code = (code + bl_count[bits-1]) << 1; + next_code[bits] = (ush)code; + } + /* Check that the bit counts in bl_count are consistent. The last code + * must be all ones. + */ + Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, + "inconsistent bit counts"); + Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); + + for (n = 0; n <= max_code; n++) { + int len = tree[n].Len; + if (len == 0) continue; + /* Now reverse the bits */ + tree[n].Code = (ush)bi_reverse(next_code[len]++, len); + + Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", + n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); + } } /* =========================================================================== @@ -617,196 +613,183 @@ ushf *bl_count; /* number of codes at each bit length */ * also updated if stree is not null. The field max_code is set. */ local void build_tree(s, desc) -deflate_state *s; -tree_desc *desc; /* the tree descriptor */ + deflate_state *s; + tree_desc *desc; /* the tree descriptor */ { - ct_data *tree = desc->dyn_tree; - const ct_data *stree = desc->stat_desc->static_tree; - int elems = desc->stat_desc->elems; - int n, m; /* iterate over heap elements */ - int max_code = -1; /* largest code with non zero frequency */ - int node; /* new node being created */ - - /* Construct the initial heap, with least frequent element in - * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. - * heap[0] is not used. - */ - s->heap_len = 0, s->heap_max = HEAP_SIZE; - - for (n = 0; n < elems; n++) { - if (tree[n].Freq != 0) { - s->heap[++(s->heap_len)] = max_code = n; - s->depth[n] = 0; - } - else { - tree[n].Len = 0; - } - } - - /* The pkzip format requires that at least one distance code exists, - * and that at least one bit should be sent even if there is only one - * possible code. So to avoid special checks later on we force at least - * two codes of non zero frequency. - */ - while (s->heap_len < 2) { - node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); - tree[node].Freq = 1; - s->depth[node] = 0; - s->opt_len--; if (stree) s->static_len -= stree[node].Len; - /* node is 0 or 1 so it does not have extra bits */ - } - desc->max_code = max_code; - - /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, - * establish sub-heaps of increasing lengths: - */ - for (n = s->heap_len / 2; n >= 1; n--) pqdownheap(s, tree, n); - - /* Construct the Huffman tree by repeatedly combining the least two - * frequent nodes. - */ - node = elems; /* next internal node of the tree */ - do { - pqremove(s, tree, n); /* n = node of least frequency */ - m = s->heap[SMALLEST]; /* m = node of next least frequency */ - - s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ - s->heap[--(s->heap_max)] = m; - - /* Create a new node father of n and m */ - tree[node].Freq = tree[n].Freq + tree[m].Freq; - s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? - s->depth[n] : s->depth[m]) + 1); - tree[n].Dad = tree[m].Dad = (ush)node; - #ifdef DUMP_BL_TREE - if (tree == s->bl_tree) { - fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)", - node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); - } - #endif - /* and insert the new node in the heap */ - s->heap[SMALLEST] = node++; - pqdownheap(s, tree, SMALLEST); - - } while (s->heap_len >= 2); - - s->heap[--(s->heap_max)] = s->heap[SMALLEST]; - - /* At this point, the fields freq and dad are set. We can now - * generate the bit lengths. - */ - gen_bitlen(s, (tree_desc *)desc); - - /* The field len is now set, we can generate the bit codes */ - gen_codes((ct_data *)tree, max_code, s->bl_count); + ct_data *tree = desc->dyn_tree; + const ct_data *stree = desc->stat_desc->static_tree; + int elems = desc->stat_desc->elems; + int n, m; /* iterate over heap elements */ + int max_code = -1; /* largest code with non zero frequency */ + int node; /* new node being created */ + + /* Construct the initial heap, with least frequent element in + * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. + * heap[0] is not used. + */ + s->heap_len = 0, s->heap_max = HEAP_SIZE; + + for (n = 0; n < elems; n++) { + if (tree[n].Freq != 0) { + s->heap[++(s->heap_len)] = max_code = n; + s->depth[n] = 0; + } else { + tree[n].Len = 0; + } + } + + /* The pkzip format requires that at least one distance code exists, + * and that at least one bit should be sent even if there is only one + * possible code. So to avoid special checks later on we force at least + * two codes of non zero frequency. + */ + while (s->heap_len < 2) { + node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); + tree[node].Freq = 1; + s->depth[node] = 0; + s->opt_len--; if (stree) s->static_len -= stree[node].Len; + /* node is 0 or 1 so it does not have extra bits */ + } + desc->max_code = max_code; + + /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, + * establish sub-heaps of increasing lengths: + */ + for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); + + /* Construct the Huffman tree by repeatedly combining the least two + * frequent nodes. + */ + node = elems; /* next internal node of the tree */ + do { + pqremove(s, tree, n); /* n = node of least frequency */ + m = s->heap[SMALLEST]; /* m = node of next least frequency */ + + s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ + s->heap[--(s->heap_max)] = m; + + /* Create a new node father of n and m */ + tree[node].Freq = tree[n].Freq + tree[m].Freq; + s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? + s->depth[n] : s->depth[m]) + 1); + tree[n].Dad = tree[m].Dad = (ush)node; +#ifdef DUMP_BL_TREE + if (tree == s->bl_tree) { + fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", + node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); + } +#endif + /* and insert the new node in the heap */ + s->heap[SMALLEST] = node++; + pqdownheap(s, tree, SMALLEST); + + } while (s->heap_len >= 2); + + s->heap[--(s->heap_max)] = s->heap[SMALLEST]; + + /* At this point, the fields freq and dad are set. We can now + * generate the bit lengths. + */ + gen_bitlen(s, (tree_desc *)desc); + + /* The field len is now set, we can generate the bit codes */ + gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ -local void scan_tree(s, tree, max_code) -deflate_state *s; -ct_data *tree; /* the tree to be scanned */ -int max_code; /* and its largest code of non zero frequency */ +local void scan_tree (s, tree, max_code) + deflate_state *s; + ct_data *tree; /* the tree to be scanned */ + int max_code; /* and its largest code of non zero frequency */ { - int n; /* iterates over all tree elements */ - int prevlen = -1; /* last emitted length */ - int curlen; /* length of current code */ - int nextlen = tree[0].Len; /* length of next code */ - int count = 0; /* repeat count of the current code */ - int max_count = 7; /* max repeat count */ - int min_count = 4; /* min repeat count */ - - if (nextlen == 0) max_count = 138, min_count = 3; - tree[max_code + 1].Len = (ush)0xffff; /* guard */ - - for (n = 0; n <= max_code; n++) { - curlen = nextlen; nextlen = tree[n + 1].Len; - if (++count < max_count && curlen == nextlen) { - continue; - } - else if (count < min_count) { - s->bl_tree[curlen].Freq += count; - } - else if (curlen != 0) { - if (curlen != prevlen) s->bl_tree[curlen].Freq++; - s->bl_tree[REP_3_6].Freq++; - } - else if (count <= 10) { - s->bl_tree[REPZ_3_10].Freq++; - } - else { - s->bl_tree[REPZ_11_138].Freq++; - } - count = 0; prevlen = curlen; - if (nextlen == 0) { - max_count = 138, min_count = 3; - } - else if (curlen == nextlen) { - max_count = 6, min_count = 3; - } - else { - max_count = 7, min_count = 4; - } - } + int n; /* iterates over all tree elements */ + int prevlen = -1; /* last emitted length */ + int curlen; /* length of current code */ + int nextlen = tree[0].Len; /* length of next code */ + int count = 0; /* repeat count of the current code */ + int max_count = 7; /* max repeat count */ + int min_count = 4; /* min repeat count */ + + if (nextlen == 0) max_count = 138, min_count = 3; + tree[max_code+1].Len = (ush)0xffff; /* guard */ + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; nextlen = tree[n+1].Len; + if (++count < max_count && curlen == nextlen) { + continue; + } else if (count < min_count) { + s->bl_tree[curlen].Freq += count; + } else if (curlen != 0) { + if (curlen != prevlen) s->bl_tree[curlen].Freq++; + s->bl_tree[REP_3_6].Freq++; + } else if (count <= 10) { + s->bl_tree[REPZ_3_10].Freq++; + } else { + s->bl_tree[REPZ_11_138].Freq++; + } + count = 0; prevlen = curlen; + if (nextlen == 0) { + max_count = 138, min_count = 3; + } else if (curlen == nextlen) { + max_count = 6, min_count = 3; + } else { + max_count = 7, min_count = 4; + } + } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ -local void send_tree(s, tree, max_code) -deflate_state *s; -ct_data *tree; /* the tree to be scanned */ -int max_code; /* and its largest code of non zero frequency */ +local void send_tree (s, tree, max_code) + deflate_state *s; + ct_data *tree; /* the tree to be scanned */ + int max_code; /* and its largest code of non zero frequency */ { - int n; /* iterates over all tree elements */ - int prevlen = -1; /* last emitted length */ - int curlen; /* length of current code */ - int nextlen = tree[0].Len; /* length of next code */ - int count = 0; /* repeat count of the current code */ - int max_count = 7; /* max repeat count */ - int min_count = 4; /* min repeat count */ - - /* tree[max_code+1].Len = -1; */ /* guard already set */ - if (nextlen == 0) max_count = 138, min_count = 3; - - for (n = 0; n <= max_code; n++) { - curlen = nextlen; nextlen = tree[n + 1].Len; - if (++count < max_count && curlen == nextlen) { - continue; - } - else if (count < min_count) { - do { send_code(s, curlen, s->bl_tree); } while (--count != 0); - - } - else if (curlen != 0) { - if (curlen != prevlen) { - send_code(s, curlen, s->bl_tree); count--; - } - Assert(count >= 3 && count <= 6, " 3_6?"); - send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); - - } - else if (count <= 10) { - send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); - - } - else { - send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); - } - count = 0; prevlen = curlen; - if (nextlen == 0) { - max_count = 138, min_count = 3; - } - else if (curlen == nextlen) { - max_count = 6, min_count = 3; - } - else { - max_count = 7, min_count = 4; - } - } + int n; /* iterates over all tree elements */ + int prevlen = -1; /* last emitted length */ + int curlen; /* length of current code */ + int nextlen = tree[0].Len; /* length of next code */ + int count = 0; /* repeat count of the current code */ + int max_count = 7; /* max repeat count */ + int min_count = 4; /* min repeat count */ + + /* tree[max_code+1].Len = -1; */ /* guard already set */ + if (nextlen == 0) max_count = 138, min_count = 3; + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; nextlen = tree[n+1].Len; + if (++count < max_count && curlen == nextlen) { + continue; + } else if (count < min_count) { + do { send_code(s, curlen, s->bl_tree); } while (--count != 0); + + } else if (curlen != 0) { + if (curlen != prevlen) { + send_code(s, curlen, s->bl_tree); count--; + } + Assert(count >= 3 && count <= 6, " 3_6?"); + send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); + + } else if (count <= 10) { + send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); + + } else { + send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); + } + count = 0; prevlen = curlen; + if (nextlen == 0) { + max_count = 138, min_count = 3; + } else if (curlen == nextlen) { + max_count = 6, min_count = 3; + } else { + max_count = 7, min_count = 4; + } + } } /* =========================================================================== @@ -814,33 +797,33 @@ int max_code; /* and its largest code of non zero frequency */ * bl_order of the last bit length code to send. */ local int build_bl_tree(s) -deflate_state *s; + deflate_state *s; { - int max_blindex; /* index of last bit length code of non zero freq */ - - /* Determine the bit length frequencies for literal and distance trees */ - scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); - scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); - - /* Build the bit length tree: */ - build_tree(s, (tree_desc *)(&(s->bl_desc))); - /* opt_len now includes the length of the tree representations, except - * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. - */ - - /* Determine the number of bit length codes to send. The pkzip format - * requires that at least 4 bit length codes be sent. (appnote.txt says - * 3 but the actual value used is 4.) - */ - for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { - if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; - } - /* Update opt_len to include the bit length tree and counts */ - s->opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; - Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", - s->opt_len, s->static_len)); - - return max_blindex; + int max_blindex; /* index of last bit length code of non zero freq */ + + /* Determine the bit length frequencies for literal and distance trees */ + scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); + scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); + + /* Build the bit length tree: */ + build_tree(s, (tree_desc *)(&(s->bl_desc))); + /* opt_len now includes the length of the tree representations, except + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. + */ + + /* Determine the number of bit length codes to send. The pkzip format + * requires that at least 4 bit length codes be sent. (appnote.txt says + * 3 but the actual value used is 4.) + */ + for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { + if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; + } + /* Update opt_len to include the bit length tree and counts */ + s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4; + Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", + s->opt_len, s->static_len)); + + return max_blindex; } /* =========================================================================== @@ -849,55 +832,61 @@ deflate_state *s; * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) -deflate_state *s; -int lcodes, dcodes, blcodes; /* number of codes for each tree */ + deflate_state *s; + int lcodes, dcodes, blcodes; /* number of codes for each tree */ { - int rank; /* index in bl_order */ - - Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); - Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, - "too many codes"); - Tracev((stderr, "\nbl counts: ")); - send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ - send_bits(s, dcodes - 1, 5); - send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ - for (rank = 0; rank < blcodes; rank++) { - Tracev((stderr, "\nbl code %2d ", bl_order[rank])); - send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); - } - Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); - - send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */ - Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); - - send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */ - Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); + int rank; /* index in bl_order */ + + Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); + Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, + "too many codes"); + Tracev((stderr, "\nbl counts: ")); + send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ + send_bits(s, dcodes-1, 5); + send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ + for (rank = 0; rank < blcodes; rank++) { + Tracev((stderr, "\nbl code %2d ", bl_order[rank])); + send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); + } + Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); + + send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ + Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); + + send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ + Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) -deflate_state *s; -charf *buf; /* input block */ -ulg stored_len; /* length of input block */ -int last; /* one if this is the last block for a file */ + deflate_state *s; + charf *buf; /* input block */ + ulg stored_len; /* length of input block */ + int last; /* one if this is the last block for a file */ { - send_bits(s, (STORED_BLOCK << 1) + last, 3); /* send block type */ - #ifdef DEBUG - s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; - s->compressed_len += (stored_len + 4) << 3; - #endif - copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ + send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ + bi_windup(s); /* align on byte boundary */ + put_short(s, (ush)stored_len); + put_short(s, (ush)~stored_len); + zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); + s->pending += stored_len; +#ifdef ZLIB_DEBUG + s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; + s->compressed_len += (stored_len + 4) << 3; + s->bits_sent += 2*16; + s->bits_sent += stored_len<<3; +#endif } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) -deflate_state *s; + deflate_state *s; { - bi_flush(s); + bi_flush(s); } /* =========================================================================== @@ -905,224 +894,218 @@ deflate_state *s; * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) -deflate_state *s; + deflate_state *s; { - send_bits(s, STATIC_TREES << 1, 3); - send_code(s, END_BLOCK, static_ltree); - #ifdef DEBUG - s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ - #endif - bi_flush(s); + send_bits(s, STATIC_TREES<<1, 3); + send_code(s, END_BLOCK, static_ltree); +#ifdef ZLIB_DEBUG + s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ +#endif + bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static - * trees or store, and output the encoded block to the zip file. + * trees or store, and write out the encoded block. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) -deflate_state *s; -charf *buf; /* input block, or NULL if too old */ -ulg stored_len; /* length of input block */ -int last; /* one if this is the last block for a file */ + deflate_state *s; + charf *buf; /* input block, or NULL if too old */ + ulg stored_len; /* length of input block */ + int last; /* one if this is the last block for a file */ { - ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ - int max_blindex = 0; /* index of last bit length code of non zero freq */ - - /* Build the Huffman trees unless a stored block is forced */ - if (s->level > 0) { - - /* Check if the file is binary or text */ - if (s->strm->data_type == Z_UNKNOWN) - s->strm->data_type = detect_data_type(s); - - /* Construct the literal and distance trees */ - build_tree(s, (tree_desc *)(&(s->l_desc))); - Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, - s->static_len)); - - build_tree(s, (tree_desc *)(&(s->d_desc))); - Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, - s->static_len)); - /* At this point, opt_len and static_len are the total bit lengths of - * the compressed block data, excluding the tree representations. - */ - - /* Build the bit length tree for the above two trees, and get the index - * in bl_order of the last bit length code to send. - */ - max_blindex = build_bl_tree(s); - - /* Determine the best encoding. Compute the block lengths in bytes. */ - opt_lenb = (s->opt_len + 3 + 7) >> 3; - static_lenb = (s->static_len + 3 + 7) >> 3; - - Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", - opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, - s->last_lit)); - - if (static_lenb <= opt_lenb) opt_lenb = static_lenb; - - } - else { - Assert(buf != (char*)0, "lost buf"); - opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ - } - - #ifdef FORCE_STORED - if (buf != (char*)0) { /* force stored block */ - #else - if (stored_len + 4 <= opt_lenb && buf != (char*)0) { - /* 4: two words for the lengths */ - #endif - /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. - * Otherwise we can't have processed more than WSIZE input bytes since - * the last block flush, because compression would have been - * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to - * transform a block into a stored block. - */ - _tr_stored_block(s, buf, stored_len, last); - - #ifdef FORCE_STATIC - } - else if (static_lenb >= 0) { /* force static trees */ - #else - } - else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { - #endif - send_bits(s, (STATIC_TREES << 1) + last, 3); - compress_block(s, (const ct_data *)static_ltree, - (const ct_data *)static_dtree); - #ifdef DEBUG - s->compressed_len += 3 + s->static_len; - #endif - } - else { - send_bits(s, (DYN_TREES << 1) + last, 3); - send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, - max_blindex + 1); - compress_block(s, (const ct_data *)s->dyn_ltree, - (const ct_data *)s->dyn_dtree); - #ifdef DEBUG - s->compressed_len += 3 + s->opt_len; - #endif - } - Assert(s->compressed_len == s->bits_sent, "bad compressed size"); - /* The above check is made mod 2^32, for files larger than 512 MB - * and uLong implemented on 32 bits. - */ - init_block(s); - - if (last) { - bi_windup(s); - #ifdef DEBUG - s->compressed_len += 7; /* align on byte boundary */ - #endif - } - Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len >> 3, - s->compressed_len - 7 * last)); + ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ + int max_blindex = 0; /* index of last bit length code of non zero freq */ + + /* Build the Huffman trees unless a stored block is forced */ + if (s->level > 0) { + + /* Check if the file is binary or text */ + if (s->strm->data_type == Z_UNKNOWN) + s->strm->data_type = detect_data_type(s); + + /* Construct the literal and distance trees */ + build_tree(s, (tree_desc *)(&(s->l_desc))); + Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, + s->static_len)); + + build_tree(s, (tree_desc *)(&(s->d_desc))); + Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, + s->static_len)); + /* At this point, opt_len and static_len are the total bit lengths of + * the compressed block data, excluding the tree representations. + */ + + /* Build the bit length tree for the above two trees, and get the index + * in bl_order of the last bit length code to send. + */ + max_blindex = build_bl_tree(s); + + /* Determine the best encoding. Compute the block lengths in bytes. */ + opt_lenb = (s->opt_len+3+7)>>3; + static_lenb = (s->static_len+3+7)>>3; + + Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", + opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, + s->last_lit)); + + if (static_lenb <= opt_lenb) opt_lenb = static_lenb; + + } else { + Assert(buf != (char*)0, "lost buf"); + opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ + } + +#ifdef FORCE_STORED + if (buf != (char*)0) { /* force stored block */ +#else + if (stored_len+4 <= opt_lenb && buf != (char*)0) { + /* 4: two words for the lengths */ +#endif + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. + * Otherwise we can't have processed more than WSIZE input bytes since + * the last block flush, because compression would have been + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to + * transform a block into a stored block. + */ + _tr_stored_block(s, buf, stored_len, last); + +#ifdef FORCE_STATIC + } else if (static_lenb >= 0) { /* force static trees */ +#else + } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { +#endif + send_bits(s, (STATIC_TREES<<1)+last, 3); + compress_block(s, (const ct_data *)static_ltree, + (const ct_data *)static_dtree); +#ifdef ZLIB_DEBUG + s->compressed_len += 3 + s->static_len; +#endif + } else { + send_bits(s, (DYN_TREES<<1)+last, 3); + send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, + max_blindex+1); + compress_block(s, (const ct_data *)s->dyn_ltree, + (const ct_data *)s->dyn_dtree); +#ifdef ZLIB_DEBUG + s->compressed_len += 3 + s->opt_len; +#endif + } + Assert (s->compressed_len == s->bits_sent, "bad compressed size"); + /* The above check is made mod 2^32, for files larger than 512 MB + * and uLong implemented on 32 bits. + */ + init_block(s); + + if (last) { + bi_windup(s); +#ifdef ZLIB_DEBUG + s->compressed_len += 7; /* align on byte boundary */ +#endif + } + Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, + s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ -int ZLIB_INTERNAL _tr_tally(s, dist, lc) -deflate_state *s; -unsigned dist; /* distance of matched string */ -unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ +int ZLIB_INTERNAL _tr_tally (s, dist, lc) + deflate_state *s; + unsigned dist; /* distance of matched string */ + unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { - s->d_buf[s->last_lit] = (ush)dist; - s->l_buf[s->last_lit++] = (uch)lc; - if (dist == 0) { - /* lc is the unmatched char */ - s->dyn_ltree[lc].Freq++; - } - else { - s->matches++; - /* Here, lc is the match length - MIN_MATCH */ - dist--; /* dist = match distance - 1 */ - Assert((ush)dist < (ush)MAX_DIST(s) && - (ush)lc <= (ush)(MAX_MATCH - MIN_MATCH) && - (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); - - s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++; - s->dyn_dtree[d_code(dist)].Freq++; - } - - #ifdef TRUNCATE_BLOCK - /* Try to guess if it is profitable to stop the current block here */ - if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { - /* Compute an upper bound for the compressed length */ - ulg out_length = (ulg)s->last_lit * 8L; - ulg in_length = (ulg)((long)s->strstart - s->block_start); - int dcode; - for (dcode = 0; dcode < D_CODES; dcode++) { - out_length += (ulg)s->dyn_dtree[dcode].Freq * - (5L + extra_dbits[dcode]); - } - out_length >>= 3; - Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", - s->last_lit, in_length, out_length, - 100L - out_length * 100L / in_length)); - if (s->matches < s->last_lit / 2 && out_length < in_length / 2) return 1; - } - #endif - return (s->last_lit == s->lit_bufsize - 1); - /* We avoid equality with lit_bufsize because of wraparound at 64K - * on 16 bit machines and because stored blocks are restricted to - * 64K-1 bytes. - */ + s->d_buf[s->last_lit] = (ush)dist; + s->l_buf[s->last_lit++] = (uch)lc; + if (dist == 0) { + /* lc is the unmatched char */ + s->dyn_ltree[lc].Freq++; + } else { + s->matches++; + /* Here, lc is the match length - MIN_MATCH */ + dist--; /* dist = match distance - 1 */ + Assert((ush)dist < (ush)MAX_DIST(s) && + (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && + (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); + + s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; + s->dyn_dtree[d_code(dist)].Freq++; + } + +#ifdef TRUNCATE_BLOCK + /* Try to guess if it is profitable to stop the current block here */ + if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { + /* Compute an upper bound for the compressed length */ + ulg out_length = (ulg)s->last_lit*8L; + ulg in_length = (ulg)((long)s->strstart - s->block_start); + int dcode; + for (dcode = 0; dcode < D_CODES; dcode++) { + out_length += (ulg)s->dyn_dtree[dcode].Freq * + (5L+extra_dbits[dcode]); + } + out_length >>= 3; + Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", + s->last_lit, in_length, out_length, + 100L - out_length*100L/in_length)); + if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; + } +#endif + return (s->last_lit == s->lit_bufsize-1); + /* We avoid equality with lit_bufsize because of wraparound at 64K + * on 16 bit machines and because stored blocks are restricted to + * 64K-1 bytes. + */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) -deflate_state *s; -const ct_data *ltree; /* literal tree */ -const ct_data *dtree; /* distance tree */ + deflate_state *s; + const ct_data *ltree; /* literal tree */ + const ct_data *dtree; /* distance tree */ { - unsigned dist; /* distance of matched string */ - int lc; /* match length or unmatched char (if dist == 0) */ - unsigned lx = 0; /* running index in l_buf */ - unsigned code; /* the code to send */ - int extra; /* number of extra bits to send */ - - if (s->last_lit != 0) do { - dist = s->d_buf[lx]; - lc = s->l_buf[lx++]; - if (dist == 0) { - send_code(s, lc, ltree); /* send a literal byte */ - Tracecv(isgraph(lc), (stderr, " '%c' ", lc)); - } - else { - /* Here, lc is the match length - MIN_MATCH */ - code = _length_code[lc]; - send_code(s, code + LITERALS + 1, ltree); /* send the length code */ - extra = extra_lbits[code]; - if (extra != 0) { - lc -= base_length[code]; - send_bits(s, lc, extra); /* send the extra length bits */ - } - dist--; /* dist is now the match distance - 1 */ - code = d_code(dist); - Assert(code < D_CODES, "bad d_code"); - - send_code(s, code, dtree); /* send the distance code */ - extra = extra_dbits[code]; - if (extra != 0) { - dist -= base_dist[code]; - send_bits(s, dist, extra); /* send the extra distance bits */ - } - } /* literal or match pair ? */ - - /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ - Assert((uInt)(s->pending) < s->lit_bufsize + 2 * lx, - "pendingBuf overflow"); - - } while (lx < s->last_lit); - - send_code(s, END_BLOCK, ltree); + unsigned dist; /* distance of matched string */ + int lc; /* match length or unmatched char (if dist == 0) */ + unsigned lx = 0; /* running index in l_buf */ + unsigned code; /* the code to send */ + int extra; /* number of extra bits to send */ + + if (s->last_lit != 0) do { + dist = s->d_buf[lx]; + lc = s->l_buf[lx++]; + if (dist == 0) { + send_code(s, lc, ltree); /* send a literal byte */ + Tracecv(isgraph(lc), (stderr," '%c' ", lc)); + } else { + /* Here, lc is the match length - MIN_MATCH */ + code = _length_code[lc]; + send_code(s, code+LITERALS+1, ltree); /* send the length code */ + extra = extra_lbits[code]; + if (extra != 0) { + lc -= base_length[code]; + send_bits(s, lc, extra); /* send the extra length bits */ + } + dist--; /* dist is now the match distance - 1 */ + code = d_code(dist); + Assert (code < D_CODES, "bad d_code"); + + send_code(s, code, dtree); /* send the distance code */ + extra = extra_dbits[code]; + if (extra != 0) { + dist -= (unsigned)base_dist[code]; + send_bits(s, dist, extra); /* send the extra distance bits */ + } + } /* literal or match pair ? */ + + /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ + Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, + "pendingBuf overflow"); + + } while (lx < s->last_lit); + + send_code(s, END_BLOCK, ltree); } /* =========================================================================== @@ -1139,32 +1122,32 @@ const ct_data *dtree; /* distance tree */ * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) -deflate_state *s; + deflate_state *s; { - /* black_mask is the bit mask of black-listed bytes - * set bits 0..6, 14..25, and 28..31 - * 0xf3ffc07f = binary 11110011111111111100000001111111 - */ - unsigned long black_mask = 0xf3ffc07fUL; - int n; - - /* Check for non-textual ("black-listed") bytes. */ - for (n = 0; n <= 31; n++, black_mask >>= 1) - if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) - return Z_BINARY; - - /* Check for textual ("white-listed") bytes. */ - if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 - || s->dyn_ltree[13].Freq != 0) - return Z_TEXT; - for (n = 32; n < LITERALS; n++) - if (s->dyn_ltree[n].Freq != 0) - return Z_TEXT; - - /* There are no "black-listed" or "white-listed" bytes: - * this stream either is empty or has tolerated ("gray-listed") bytes only. - */ - return Z_BINARY; + /* black_mask is the bit mask of black-listed bytes + * set bits 0..6, 14..25, and 28..31 + * 0xf3ffc07f = binary 11110011111111111100000001111111 + */ + unsigned long black_mask = 0xf3ffc07fUL; + int n; + + /* Check for non-textual ("black-listed") bytes. */ + for (n = 0; n <= 31; n++, black_mask >>= 1) + if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) + return Z_BINARY; + + /* Check for textual ("white-listed") bytes. */ + if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 + || s->dyn_ltree[13].Freq != 0) + return Z_TEXT; + for (n = 32; n < LITERALS; n++) + if (s->dyn_ltree[n].Freq != 0) + return Z_TEXT; + + /* There are no "black-listed" or "white-listed" bytes: + * this stream either is empty or has tolerated ("gray-listed") bytes only. + */ + return Z_BINARY; } /* =========================================================================== @@ -1173,77 +1156,48 @@ deflate_state *s; * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) -unsigned code; /* the value to invert */ -int len; /* its bit length */ + unsigned code; /* the value to invert */ + int len; /* its bit length */ { - register unsigned res = 0; - do { - res |= code & 1; - code >>= 1, res <<= 1; - } while (--len > 0); - return res >> 1; + register unsigned res = 0; + do { + res |= code & 1; + code >>= 1, res <<= 1; + } while (--len > 0); + return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) -deflate_state *s; + deflate_state *s; { - if (s->bi_valid == 16) { - put_short(s, s->bi_buf); - s->bi_buf = 0; - s->bi_valid = 0; - } - else if (s->bi_valid >= 8) { - put_byte(s, (Byte)s->bi_buf); - s->bi_buf >>= 8; - s->bi_valid -= 8; - } + if (s->bi_valid == 16) { + put_short(s, s->bi_buf); + s->bi_buf = 0; + s->bi_valid = 0; + } else if (s->bi_valid >= 8) { + put_byte(s, (Byte)s->bi_buf); + s->bi_buf >>= 8; + s->bi_valid -= 8; + } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) -deflate_state *s; + deflate_state *s; { - if (s->bi_valid > 8) { - put_short(s, s->bi_buf); - } - else if (s->bi_valid > 0) { - put_byte(s, (Byte)s->bi_buf); - } - s->bi_buf = 0; - s->bi_valid = 0; - #ifdef DEBUG - s->bits_sent = (s->bits_sent + 7) & ~7; - #endif -} - -/* =========================================================================== - * Copy a stored block, storing first the length and its - * one's complement if requested. - */ -local void copy_block(s, buf, len, header) -deflate_state *s; -charf *buf; /* the input data */ -unsigned len; /* its length */ -int header; /* true if block header must be written */ -{ - bi_windup(s); /* align on byte boundary */ - - if (header) { - put_short(s, (ush)len); - put_short(s, (ush)~len); - #ifdef DEBUG - s->bits_sent += 2 * 16; - #endif - } - #ifdef DEBUG - s->bits_sent += (ulg)len << 3; - #endif - while (len--) { - put_byte(s, *buf++); - } + if (s->bi_valid > 8) { + put_short(s, s->bi_buf); + } else if (s->bi_valid > 0) { + put_byte(s, (Byte)s->bi_buf); + } + s->bi_buf = 0; + s->bi_valid = 0; +#ifdef ZLIB_DEBUG + s->bits_sent = (s->bits_sent+7) & ~7; +#endif } |