diff options
Diffstat (limited to 'plugins/AdvaImg/src/FreeImage/WuQuantizer.cpp')
-rw-r--r-- | plugins/AdvaImg/src/FreeImage/WuQuantizer.cpp | 538 |
1 files changed, 538 insertions, 0 deletions
diff --git a/plugins/AdvaImg/src/FreeImage/WuQuantizer.cpp b/plugins/AdvaImg/src/FreeImage/WuQuantizer.cpp new file mode 100644 index 0000000000..532fbfc3e6 --- /dev/null +++ b/plugins/AdvaImg/src/FreeImage/WuQuantizer.cpp @@ -0,0 +1,538 @@ +/////////////////////////////////////////////////////////////////////// +// C Implementation of Wu's Color Quantizer (v. 2) +// (see Graphics Gems vol. II, pp. 126-133) +// +// Author: Xiaolin Wu +// Dept. of Computer Science +// Univ. of Western Ontario +// London, Ontario N6A 5B7 +// wu@csd.uwo.ca +// +// Algorithm: Greedy orthogonal bipartition of RGB space for variance +// minimization aided by inclusion-exclusion tricks. +// For speed no nearest neighbor search is done. Slightly +// better performance can be expected by more sophisticated +// but more expensive versions. +// +// The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of +// additional documentation and a cure to a previous bug. +// +// Free to distribute, comments and suggestions are appreciated. +/////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////// +// History +// ------- +// July 2000: C++ Implementation of Wu's Color Quantizer +// and adaptation for the FreeImage 2 Library +// Author: Hervé Drolon (drolon@infonie.fr) +// March 2004: Adaptation for the FreeImage 3 library (port to big endian processors) +// Author: Hervé Drolon (drolon@infonie.fr) +/////////////////////////////////////////////////////////////////////// + +#include "Quantizers.h" +#include "FreeImage.h" +#include "Utilities.h" + +/////////////////////////////////////////////////////////////////////// + +// Size of a 3D array : 33 x 33 x 33 +#define SIZE_3D 35937 + +// 3D array indexation +#define INDEX(r, g, b) ((r << 10) + (r << 6) + r + (g << 5) + g + b) + +#define MAXCOLOR 256 + +// Constructor / Destructor + +WuQuantizer::WuQuantizer(FIBITMAP *dib) { + width = FreeImage_GetWidth(dib); + height = FreeImage_GetHeight(dib); + pitch = FreeImage_GetPitch(dib); + m_dib = dib; + + gm2 = NULL; + wt = mr = mg = mb = NULL; + Qadd = NULL; + + // Allocate 3D arrays + gm2 = (float*)malloc(SIZE_3D * sizeof(float)); + wt = (LONG*)malloc(SIZE_3D * sizeof(LONG)); + mr = (LONG*)malloc(SIZE_3D * sizeof(LONG)); + mg = (LONG*)malloc(SIZE_3D * sizeof(LONG)); + mb = (LONG*)malloc(SIZE_3D * sizeof(LONG)); + + // Allocate Qadd + Qadd = (WORD *)malloc(sizeof(WORD) * width * height); + + if (!gm2 || !wt || !mr || !mg || !mb || !Qadd) { + if(gm2) free(gm2); + if(wt) free(wt); + if(mr) free(mr); + if(mg) free(mg); + if(mb) free(mb); + if(Qadd) free(Qadd); + throw FI_MSG_ERROR_MEMORY; + } + memset(gm2, 0, SIZE_3D * sizeof(float)); + memset(wt, 0, SIZE_3D * sizeof(LONG)); + memset(mr, 0, SIZE_3D * sizeof(LONG)); + memset(mg, 0, SIZE_3D * sizeof(LONG)); + memset(mb, 0, SIZE_3D * sizeof(LONG)); + memset(Qadd, 0, sizeof(WORD) * width * height); +} + +WuQuantizer::~WuQuantizer() { + if(gm2) free(gm2); + if(wt) free(wt); + if(mr) free(mr); + if(mg) free(mg); + if(mb) free(mb); + if(Qadd) free(Qadd); +} + + +// Histogram is in elements 1..HISTSIZE along each axis, +// element 0 is for base or marginal value +// NB: these must start out 0! + +// Build 3-D color histogram of counts, r/g/b, c^2 +void +WuQuantizer::Hist3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2, int ReserveSize, RGBQUAD *ReservePalette) { + int ind = 0; + int inr, ing, inb, table[256]; + int i; + unsigned y, x; + + for(i = 0; i < 256; i++) + table[i] = i * i; + + for(y = 0; y < height; y++) { + BYTE *bits = FreeImage_GetScanLine(m_dib, y); + + for(x = 0; x < width; x++) { + inr = (bits[FI_RGBA_RED] >> 3) + 1; + ing = (bits[FI_RGBA_GREEN] >> 3) + 1; + inb = (bits[FI_RGBA_BLUE] >> 3) + 1; + ind = INDEX(inr, ing, inb); + Qadd[y*width + x] = (WORD)ind; + // [inr][ing][inb] + vwt[ind]++; + vmr[ind] += bits[FI_RGBA_RED]; + vmg[ind] += bits[FI_RGBA_GREEN]; + vmb[ind] += bits[FI_RGBA_BLUE]; + m2[ind] += (float)(table[bits[FI_RGBA_RED]] + table[bits[FI_RGBA_GREEN]] + table[bits[FI_RGBA_BLUE]]); + bits += 3; + } + } + + if ( ReserveSize > 0 ) { + int max = 0; + for(i = 0; i < SIZE_3D; i++) { + if ( vwt[i] > max ) max = vwt[i]; + } + max++; + for(i = 0; i < ReserveSize; i++) { + inr = (ReservePalette[i].rgbRed >> 3) + 1; + ing = (ReservePalette[i].rgbGreen >> 3) + 1; + inb = (ReservePalette[i].rgbBlue >> 3) + 1; + ind = INDEX(inr, ing, inb); + wt[ind] = max; + mr[ind] = max * ReservePalette[i].rgbRed; + mg[ind] = max * ReservePalette[i].rgbGreen; + mb[ind] = max * ReservePalette[i].rgbBlue; + gm2[ind] = (float)max * (float)(table[ReservePalette[i].rgbRed] + table[ReservePalette[i].rgbGreen] + table[ReservePalette[i].rgbBlue]); + } + } +} + + +// At conclusion of the histogram step, we can interpret +// wt[r][g][b] = sum over voxel of P(c) +// mr[r][g][b] = sum over voxel of r*P(c) , similarly for mg, mb +// m2[r][g][b] = sum over voxel of c^2*P(c) +// Actually each of these should be divided by 'ImageSize' to give the usual +// interpretation of P() as ranging from 0 to 1, but we needn't do that here. + + +// We now convert histogram into moments so that we can rapidly calculate +// the sums of the above quantities over any desired box. + +// Compute cumulative moments +void +WuQuantizer::M3D(LONG *vwt, LONG *vmr, LONG *vmg, LONG *vmb, float *m2) { + unsigned ind1, ind2; + BYTE i, r, g, b; + LONG line, line_r, line_g, line_b; + LONG area[33], area_r[33], area_g[33], area_b[33]; + float line2, area2[33]; + + for(r = 1; r <= 32; r++) { + for(i = 0; i <= 32; i++) { + area2[i] = 0; + area[i] = area_r[i] = area_g[i] = area_b[i] = 0; + } + for(g = 1; g <= 32; g++) { + line2 = 0; + line = line_r = line_g = line_b = 0; + for(b = 1; b <= 32; b++) { + ind1 = INDEX(r, g, b); // [r][g][b] + line += vwt[ind1]; + line_r += vmr[ind1]; + line_g += vmg[ind1]; + line_b += vmb[ind1]; + line2 += m2[ind1]; + area[b] += line; + area_r[b] += line_r; + area_g[b] += line_g; + area_b[b] += line_b; + area2[b] += line2; + ind2 = ind1 - 1089; // [r-1][g][b] + vwt[ind1] = vwt[ind2] + area[b]; + vmr[ind1] = vmr[ind2] + area_r[b]; + vmg[ind1] = vmg[ind2] + area_g[b]; + vmb[ind1] = vmb[ind2] + area_b[b]; + m2[ind1] = m2[ind2] + area2[b]; + } + } + } +} + +// Compute sum over a box of any given statistic +LONG +WuQuantizer::Vol( Box *cube, LONG *mmt ) { + return( mmt[INDEX(cube->r1, cube->g1, cube->b1)] + - mmt[INDEX(cube->r1, cube->g1, cube->b0)] + - mmt[INDEX(cube->r1, cube->g0, cube->b1)] + + mmt[INDEX(cube->r1, cube->g0, cube->b0)] + - mmt[INDEX(cube->r0, cube->g1, cube->b1)] + + mmt[INDEX(cube->r0, cube->g1, cube->b0)] + + mmt[INDEX(cube->r0, cube->g0, cube->b1)] + - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); +} + +// The next two routines allow a slightly more efficient calculation +// of Vol() for a proposed subbox of a given box. The sum of Top() +// and Bottom() is the Vol() of a subbox split in the given direction +// and with the specified new upper bound. + + +// Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1 +// (depending on dir) + +LONG +WuQuantizer::Bottom(Box *cube, BYTE dir, LONG *mmt) { + switch(dir) + { + case FI_RGBA_RED: + return( - mmt[INDEX(cube->r0, cube->g1, cube->b1)] + + mmt[INDEX(cube->r0, cube->g1, cube->b0)] + + mmt[INDEX(cube->r0, cube->g0, cube->b1)] + - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); + break; + case FI_RGBA_GREEN: + return( - mmt[INDEX(cube->r1, cube->g0, cube->b1)] + + mmt[INDEX(cube->r1, cube->g0, cube->b0)] + + mmt[INDEX(cube->r0, cube->g0, cube->b1)] + - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); + break; + case FI_RGBA_BLUE: + return( - mmt[INDEX(cube->r1, cube->g1, cube->b0)] + + mmt[INDEX(cube->r1, cube->g0, cube->b0)] + + mmt[INDEX(cube->r0, cube->g1, cube->b0)] + - mmt[INDEX(cube->r0, cube->g0, cube->b0)] ); + break; + } + + return 0; +} + + +// Compute remainder of Vol(cube, mmt), substituting pos for +// r1, g1, or b1 (depending on dir) + +LONG +WuQuantizer::Top(Box *cube, BYTE dir, int pos, LONG *mmt) { + switch(dir) + { + case FI_RGBA_RED: + return( mmt[INDEX(pos, cube->g1, cube->b1)] + -mmt[INDEX(pos, cube->g1, cube->b0)] + -mmt[INDEX(pos, cube->g0, cube->b1)] + +mmt[INDEX(pos, cube->g0, cube->b0)] ); + break; + case FI_RGBA_GREEN: + return( mmt[INDEX(cube->r1, pos, cube->b1)] + -mmt[INDEX(cube->r1, pos, cube->b0)] + -mmt[INDEX(cube->r0, pos, cube->b1)] + +mmt[INDEX(cube->r0, pos, cube->b0)] ); + break; + case FI_RGBA_BLUE: + return( mmt[INDEX(cube->r1, cube->g1, pos)] + -mmt[INDEX(cube->r1, cube->g0, pos)] + -mmt[INDEX(cube->r0, cube->g1, pos)] + +mmt[INDEX(cube->r0, cube->g0, pos)] ); + break; + } + + return 0; +} + +// Compute the weighted variance of a box +// NB: as with the raw statistics, this is really the variance * ImageSize + +float +WuQuantizer::Var(Box *cube) { + float dr = (float) Vol(cube, mr); + float dg = (float) Vol(cube, mg); + float db = (float) Vol(cube, mb); + float xx = gm2[INDEX(cube->r1, cube->g1, cube->b1)] + -gm2[INDEX(cube->r1, cube->g1, cube->b0)] + -gm2[INDEX(cube->r1, cube->g0, cube->b1)] + +gm2[INDEX(cube->r1, cube->g0, cube->b0)] + -gm2[INDEX(cube->r0, cube->g1, cube->b1)] + +gm2[INDEX(cube->r0, cube->g1, cube->b0)] + +gm2[INDEX(cube->r0, cube->g0, cube->b1)] + -gm2[INDEX(cube->r0, cube->g0, cube->b0)]; + + return (xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,wt)); +} + +// We want to minimize the sum of the variances of two subboxes. +// The sum(c^2) terms can be ignored since their sum over both subboxes +// is the same (the sum for the whole box) no matter where we split. +// The remaining terms have a minus sign in the variance formula, +// so we drop the minus sign and MAXIMIZE the sum of the two terms. + +float +WuQuantizer::Maximize(Box *cube, BYTE dir, int first, int last , int *cut, LONG whole_r, LONG whole_g, LONG whole_b, LONG whole_w) { + LONG half_r, half_g, half_b, half_w; + int i; + float temp; + + LONG base_r = Bottom(cube, dir, mr); + LONG base_g = Bottom(cube, dir, mg); + LONG base_b = Bottom(cube, dir, mb); + LONG base_w = Bottom(cube, dir, wt); + + float max = 0.0; + + *cut = -1; + + for (i = first; i < last; i++) { + half_r = base_r + Top(cube, dir, i, mr); + half_g = base_g + Top(cube, dir, i, mg); + half_b = base_b + Top(cube, dir, i, mb); + half_w = base_w + Top(cube, dir, i, wt); + + // now half_x is sum over lower half of box, if split at i + + if (half_w == 0) { // subbox could be empty of pixels! + continue; // never split into an empty box + } else { + temp = ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w; + } + + half_r = whole_r - half_r; + half_g = whole_g - half_g; + half_b = whole_b - half_b; + half_w = whole_w - half_w; + + if (half_w == 0) { // subbox could be empty of pixels! + continue; // never split into an empty box + } else { + temp += ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w; + } + + if (temp > max) { + max=temp; + *cut=i; + } + } + + return max; +} + +bool +WuQuantizer::Cut(Box *set1, Box *set2) { + BYTE dir; + int cutr, cutg, cutb; + + LONG whole_r = Vol(set1, mr); + LONG whole_g = Vol(set1, mg); + LONG whole_b = Vol(set1, mb); + LONG whole_w = Vol(set1, wt); + + float maxr = Maximize(set1, FI_RGBA_RED, set1->r0+1, set1->r1, &cutr, whole_r, whole_g, whole_b, whole_w); + float maxg = Maximize(set1, FI_RGBA_GREEN, set1->g0+1, set1->g1, &cutg, whole_r, whole_g, whole_b, whole_w); + float maxb = Maximize(set1, FI_RGBA_BLUE, set1->b0+1, set1->b1, &cutb, whole_r, whole_g, whole_b, whole_w); + + if ((maxr >= maxg) && (maxr >= maxb)) { + dir = FI_RGBA_RED; + + if (cutr < 0) { + return false; // can't split the box + } + } else if ((maxg >= maxr) && (maxg>=maxb)) { + dir = FI_RGBA_GREEN; + } else { + dir = FI_RGBA_BLUE; + } + + set2->r1 = set1->r1; + set2->g1 = set1->g1; + set2->b1 = set1->b1; + + switch (dir) { + case FI_RGBA_RED: + set2->r0 = set1->r1 = cutr; + set2->g0 = set1->g0; + set2->b0 = set1->b0; + break; + + case FI_RGBA_GREEN: + set2->g0 = set1->g1 = cutg; + set2->r0 = set1->r0; + set2->b0 = set1->b0; + break; + + case FI_RGBA_BLUE: + set2->b0 = set1->b1 = cutb; + set2->r0 = set1->r0; + set2->g0 = set1->g0; + break; + } + + set1->vol = (set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0); + set2->vol = (set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0); + + return true; +} + + +void +WuQuantizer::Mark(Box *cube, int label, BYTE *tag) { + for (int r = cube->r0 + 1; r <= cube->r1; r++) { + for (int g = cube->g0 + 1; g <= cube->g1; g++) { + for (int b = cube->b0 + 1; b <= cube->b1; b++) { + tag[INDEX(r, g, b)] = (BYTE)label; + } + } + } +} + +// Wu Quantization algorithm +FIBITMAP * +WuQuantizer::Quantize(int PaletteSize, int ReserveSize, RGBQUAD *ReservePalette) { + BYTE *tag = NULL; + + try { + Box cube[MAXCOLOR]; + int next; + LONG i, weight; + int k; + float vv[MAXCOLOR], temp; + + // Compute 3D histogram + + Hist3D(wt, mr, mg, mb, gm2, ReserveSize, ReservePalette); + + // Compute moments + + M3D(wt, mr, mg, mb, gm2); + + cube[0].r0 = cube[0].g0 = cube[0].b0 = 0; + cube[0].r1 = cube[0].g1 = cube[0].b1 = 32; + next = 0; + + for (i = 1; i < PaletteSize; i++) { + if(Cut(&cube[next], &cube[i])) { + // volume test ensures we won't try to cut one-cell box + vv[next] = (cube[next].vol > 1) ? Var(&cube[next]) : 0; + vv[i] = (cube[i].vol > 1) ? Var(&cube[i]) : 0; + } else { + vv[next] = 0.0; // don't try to split this box again + i--; // didn't create box i + } + + next = 0; temp = vv[0]; + + for (k = 1; k <= i; k++) { + if (vv[k] > temp) { + temp = vv[k]; next = k; + } + } + + if (temp <= 0.0) { + PaletteSize = i + 1; + + // Error: "Only got 'PaletteSize' boxes" + + break; + } + } + + // Partition done + + // the space for array gm2 can be freed now + + free(gm2); + + gm2 = NULL; + + // Allocate a new dib + + FIBITMAP *new_dib = FreeImage_Allocate(width, height, 8); + + if (new_dib == NULL) { + throw FI_MSG_ERROR_MEMORY; + } + + // create an optimized palette + + RGBQUAD *new_pal = FreeImage_GetPalette(new_dib); + + tag = (BYTE*) malloc(SIZE_3D * sizeof(BYTE)); + if (tag == NULL) { + throw FI_MSG_ERROR_MEMORY; + } + memset(tag, 0, SIZE_3D * sizeof(BYTE)); + + for (k = 0; k < PaletteSize ; k++) { + Mark(&cube[k], k, tag); + weight = Vol(&cube[k], wt); + + if (weight) { + new_pal[k].rgbRed = (BYTE)(((float)Vol(&cube[k], mr) / (float)weight) + 0.5f); + new_pal[k].rgbGreen = (BYTE)(((float)Vol(&cube[k], mg) / (float)weight) + 0.5f); + new_pal[k].rgbBlue = (BYTE)(((float)Vol(&cube[k], mb) / (float)weight) + 0.5f); + } else { + // Error: bogus box 'k' + + new_pal[k].rgbRed = new_pal[k].rgbGreen = new_pal[k].rgbBlue = 0; + } + } + + int npitch = FreeImage_GetPitch(new_dib); + + for (unsigned y = 0; y < height; y++) { + BYTE *new_bits = FreeImage_GetBits(new_dib) + (y * npitch); + + for (unsigned x = 0; x < width; x++) { + new_bits[x] = tag[Qadd[y*width + x]]; + } + } + + // output 'new_pal' as color look-up table contents, + // 'new_bits' as the quantized image (array of table addresses). + + free(tag); + + return (FIBITMAP*) new_dib; + } catch(...) { + free(tag); + } + + return NULL; +} |