diff options
Diffstat (limited to 'plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp')
| -rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp | 505 | 
1 files changed, 0 insertions, 505 deletions
diff --git a/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp b/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp deleted file mode 100644 index 7c36e1c0cd..0000000000 --- a/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp +++ /dev/null @@ -1,505 +0,0 @@ -// ========================================================== -// Poisson solver based on a full multigrid algorithm -// -// Design and implementation by -// - Hervé Drolon (drolon@infonie.fr) -// Reference: -// PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. -// 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press. -// -// This file is part of FreeImage 3 -// -// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY -// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES -// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE -// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED -// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT -// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY -// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL -// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER -// THIS DISCLAIMER. -// -// Use at your own risk! -// ========================================================== - -#include "FreeImage.h" -#include "Utilities.h" -#include "ToneMapping.h" - -static const int NPRE	= 1;		// Number of relaxation sweeps before ... -static const int NPOST	= 1;		// ... and after the coarse-grid correction is computed -static const int NGMAX	= 15;		// Maximum number of grids - -/** -Copy src into dst -*/ -static inline void fmg_copyArray(FIBITMAP *dst, FIBITMAP *src) { -	memcpy(FreeImage_GetBits(dst), FreeImage_GetBits(src), FreeImage_GetHeight(dst) * FreeImage_GetPitch(dst)); -} - -/** -Fills src with zeros -*/ -static inline void fmg_fillArrayWithZeros(FIBITMAP *src) { -	memset(FreeImage_GetBits(src), 0, FreeImage_GetHeight(src) * FreeImage_GetPitch(src)); -} - -/** -Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input in -uf[0..2*nc-2][0..2*nc-2], the coarse-grid solution is returned in uc[0..nc-1][0..nc-1]. -*/ -static void fmg_restrict(FIBITMAP *UC, FIBITMAP *UF, int nc) { -	int row_uc, row_uf, col_uc, col_uf; - -	const int uc_pitch  = FreeImage_GetPitch(UC) / sizeof(float); -	const int uf_pitch  = FreeImage_GetPitch(UF) / sizeof(float); -	 -	float *uc_bits = (float*)FreeImage_GetBits(UC); -	const float *uf_bits = (float*)FreeImage_GetBits(UF); - -	// interior points -	{ -		float *uc_scan = uc_bits + uc_pitch; -		for (row_uc = 1, row_uf = 2; row_uc < nc-1; row_uc++, row_uf += 2) { -			const float *uf_scan = uf_bits + row_uf * uf_pitch; -			for (col_uc = 1, col_uf = 2; col_uc < nc-1; col_uc++, col_uf += 2) {  -				// calculate  -				// UC(row_uc, col_uc) =  -				// 0.5 * UF(row_uf, col_uf) + 0.125 * [ UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) + UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ] -				float *uc_pixel = uc_scan + col_uc; -				const float *uf_center = uf_scan + col_uf; -				*uc_pixel = 0.5F * *uf_center + 0.125F * ( *(uf_center + uf_pitch) + *(uf_center - uf_pitch) + *(uf_center + 1) + *(uf_center - 1) ); -			} -			uc_scan += uc_pitch; -		} -	} -	// boundary points -	const int ncc = 2*nc-1; -	{ -		/* -		calculate the following:  -		for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) {  -			UC(row_uc, 0) = UF(row_uf, 0);		 -			UC(row_uc, nc-1) = UF(row_uf, ncc-1); -		} -		*/ -		float *uc_scan = uc_bits; -		for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) {  -			const float *uf_scan = uf_bits + row_uf * uf_pitch; -			uc_scan[0] = uf_scan[0]; -			uc_scan[nc-1] = uf_scan[ncc-1]; -			uc_scan += uc_pitch; -		} -	} -	{ -		/* -		calculate the following:  -		for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) { -			UC(0, col_uc) = UF(0, col_uf); -			UC(nc-1, col_uc) = UF(ncc-1, col_uf); -		} -		*/ -		float *uc_scan_top = uc_bits; -		float *uc_scan_bottom = uc_bits + (nc-1)*uc_pitch; -		const float *uf_scan_top = uf_bits + (ncc-1)*uf_pitch; -		const float *uf_scan_bottom = uf_bits; -		for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) { -			uc_scan_top[col_uc] = uf_scan_top[col_uf]; -			uc_scan_bottom[col_uc] = uf_scan_bottom[col_uf]; -		} -	} -} - -/** -Solution of the model problem on the coarsest grid, where h = 1/2 .  -The right-hand side is input -in rhs[0..2][0..2] and the solution is returned in u[0..2][0..2]. -*/ -static void fmg_solve(FIBITMAP *U, FIBITMAP *RHS) { -	// fill U with zeros -	fmg_fillArrayWithZeros(U); -	// calculate U(1, 1) = -h*h*RHS(1, 1)/4.0 where h = 1/2 -	float *u_scan = (float*)FreeImage_GetScanLine(U, 1); -	const float *rhs_scan = (float*)FreeImage_GetScanLine(RHS, 1); -	u_scan[1] = -rhs_scan[1] / 16; -} - -/** -Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The coarsegrid -solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2 + 1. The fine-grid solution is -returned in uf[0..nf-1][0..nf-1]. -*/ -static void fmg_prolongate(FIBITMAP *UF, FIBITMAP *UC, int nf) { -	int row_uc, row_uf, col_uc, col_uf; - -	const int uf_pitch  = FreeImage_GetPitch(UF) / sizeof(float); -	const int uc_pitch  = FreeImage_GetPitch(UC) / sizeof(float); -	 -	float *uf_bits = (float*)FreeImage_GetBits(UF); -	const float *uc_bits = (float*)FreeImage_GetBits(UC); -	 -	// do elements that are copies -	{ -		const int nc = nf/2 + 1; - -		float *uf_scan = uf_bits; -		const float *uc_scan = uc_bits;		 -		for (row_uc = 0; row_uc < nc; row_uc++) { -			for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) { -				// calculate UF(2*row_uc, col_uf) = UC(row_uc, col_uc); -				uf_scan[col_uf] = uc_scan[col_uc]; -			} -			uc_scan += uc_pitch; -			uf_scan += 2 * uf_pitch; -		} -	} -	// do odd-numbered columns, interpolating vertically -	{		 -		for(row_uf = 1; row_uf < nf-1; row_uf += 2) { -			float *uf_scan = uf_bits + row_uf * uf_pitch; -			for (col_uf = 0; col_uf < nf; col_uf += 2) { -				// calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) ) -				uf_scan[col_uf] = 0.5F * ( *(uf_scan + uf_pitch + col_uf) + *(uf_scan - uf_pitch + col_uf) ); -			} -		} -	} -	// do even-numbered columns, interpolating horizontally -	{ -		float *uf_scan = uf_bits; -		for(row_uf = 0; row_uf < nf; row_uf++) { -			for (col_uf = 1; col_uf < nf-1; col_uf += 2) { -				// calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ) -				uf_scan[col_uf] = 0.5F * ( uf_scan[col_uf + 1] + uf_scan[col_uf - 1] ); -			} -			uf_scan += uf_pitch; -		} -	} -} - -/** -Red-black Gauss-Seidel relaxation for model problem. Updates the current value of the solution -u[0..n-1][0..n-1], using the right-hand side function rhs[0..n-1][0..n-1]. -*/ -static void fmg_relaxation(FIBITMAP *U, FIBITMAP *RHS, int n) { -	int row, col, ipass, isw, jsw; -	const float h = 1.0F / (n - 1); -	const float h2 = h*h; - -	const int u_pitch  = FreeImage_GetPitch(U) / sizeof(float); -	const int rhs_pitch  = FreeImage_GetPitch(RHS) / sizeof(float); -	 -	float *u_bits = (float*)FreeImage_GetBits(U); -	const float *rhs_bits = (float*)FreeImage_GetBits(RHS); - -	for (ipass = 0, jsw = 1; ipass < 2; ipass++, jsw = 3-jsw) { // Red and black sweeps -		float *u_scan = u_bits + u_pitch; -		const float *rhs_scan = rhs_bits + rhs_pitch; -		for (row = 1, isw = jsw; row < n-1; row++, isw = 3-isw) { -			for (col = isw; col < n-1; col += 2) {  -				// Gauss-Seidel formula -				// calculate U(row, col) =  -				// 0.25 * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - h2 * RHS(row, col) ]		  -				float *u_center = u_scan + col; -				const float *rhs_center = rhs_scan + col; -				*u_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1); -				*u_center -= h2 * *rhs_center; -				*u_center *= 0.25F; -			} -			u_scan += u_pitch; -			rhs_scan += rhs_pitch; -		} -	} -} - -/** -Returns minus the residual for the model problem. Input quantities are u[0..n-1][0..n-1] and -rhs[0..n-1][0..n-1], while res[0..n-1][0..n-1] is returned. -*/ -static void fmg_residual(FIBITMAP *RES, FIBITMAP *U, FIBITMAP *RHS, int n) { -	int row, col; - -	const float h = 1.0F / (n-1);	 -	const float h2i = 1.0F / (h*h); - -	const int res_pitch  = FreeImage_GetPitch(RES) / sizeof(float); -	const int u_pitch  = FreeImage_GetPitch(U) / sizeof(float); -	const int rhs_pitch  = FreeImage_GetPitch(RHS) / sizeof(float); -	 -	float *res_bits = (float*)FreeImage_GetBits(RES); -	const float *u_bits = (float*)FreeImage_GetBits(U); -	const float *rhs_bits = (float*)FreeImage_GetBits(RHS); - -	// interior points -	{ -		float *res_scan = res_bits + res_pitch; -		const float *u_scan = u_bits + u_pitch; -		const float *rhs_scan = rhs_bits + rhs_pitch; -		for (row = 1; row < n-1; row++) { -			for (col = 1; col < n-1; col++) { -				// calculate RES(row, col) =  -				// -h2i * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - 4 * U(row, col) ] + RHS(row, col); -				float *res_center = res_scan + col; -				const float *u_center = u_scan + col; -				const float *rhs_center = rhs_scan + col; -				*res_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1) - 4 * *u_center; -				*res_center *= -h2i; -				*res_center += *rhs_center; -			} -			res_scan += res_pitch; -			u_scan += u_pitch; -			rhs_scan += rhs_pitch; -		} -	} - -	// boundary points -	{ -		memset(FreeImage_GetScanLine(RES, 0), 0, FreeImage_GetPitch(RES)); -		memset(FreeImage_GetScanLine(RES, n-1), 0, FreeImage_GetPitch(RES)); -		float *left = res_bits; -		float *right = res_bits + (n-1); -		for(int k = 0; k < n; k++) { -			*left = 0; -			*right = 0; -			left += res_pitch; -			right += res_pitch; -		} -	} -} - -/** -Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The -coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2+1. The fine-grid solution -is returned in uf[0..nf-1][0..nf-1]. res[0..nf-1][0..nf-1] is used for temporary storage. -*/ -static void fmg_addint(FIBITMAP *UF, FIBITMAP *UC, FIBITMAP *RES, int nf) { -	fmg_prolongate(RES, UC, nf); - -	const int uf_pitch  = FreeImage_GetPitch(UF) / sizeof(float); -	const int res_pitch  = FreeImage_GetPitch(RES) / sizeof(float);	 - -	float *uf_bits = (float*)FreeImage_GetBits(UF); -	const float *res_bits = (float*)FreeImage_GetBits(RES); - -	for(int row = 0; row < nf; row++) { -		for(int col = 0; col < nf; col++) { -			// calculate UF(row, col) = UF(row, col) + RES(row, col); -			uf_bits[col] += res_bits[col]; -		} -		uf_bits += uf_pitch; -		res_bits += res_pitch; -	} -} - -/** -Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem (19.0.6). -On input u[0..n-1][0..n-1] contains the right-hand side c, while on output it returns the solution. -The dimension n must be of the form 2^j + 1 for some integer j. (j is actually the number of -grid levels used in the solution, called ng below.) ncycle is the number of V-cycles to be -used at each level. -*/ -static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) { -	int j, jcycle, jj, jpost, jpre, nf, ngrid; - -	FIBITMAP **IRHO = NULL; -	FIBITMAP **IU   = NULL; -	FIBITMAP **IRHS = NULL; -	FIBITMAP **IRES = NULL; -	 -	int ng = 0;		// number of allocated grids - -// -------------------------------------------------------------------------- - -#define _CREATE_ARRAY_GRID_(array, array_size) \ -	array = (FIBITMAP**)malloc(array_size * sizeof(FIBITMAP*));\ -	if(!array) throw(1);\ -	memset(array, 0, array_size * sizeof(FIBITMAP*)) - -#define _FREE_ARRAY_GRID_(array, array_size) \ -	if(NULL != array) {\ -		for(int k = 0; k < array_size; k++) {\ -			if(NULL != array[k]) {\ -				FreeImage_Unload(array[k]); array[k] = NULL;\ -			}\ -		}\ -		free(array);\ -	} - -// -------------------------------------------------------------------------- - -	try { -		int nn = n; -		// check grid size and grid levels -		while (nn >>= 1) ng++; -		if (n != 1 + (1L << ng)) { -			FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: n = %d, while n-1 must be a power of 2.", n); -			throw(1); -		} -		if (ng > NGMAX) { -			FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: ng = %d while NGMAX = %d, increase NGMAX.", ng, NGMAX); -			throw(1); -		} -		// allocate grid arrays -		{ -			_CREATE_ARRAY_GRID_(IRHO, ng); -			_CREATE_ARRAY_GRID_(IU, ng); -			_CREATE_ARRAY_GRID_(IRHS, ng); -			_CREATE_ARRAY_GRID_(IRES, ng); -		} - -		nn = n/2 + 1; -		ngrid = ng - 2; - -		// allocate storage for r.h.s. on grid (ng - 2) ... -		IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -		if(!IRHO[ngrid]) throw(1); - -		// ... and fill it by restricting from the fine grid -		fmg_restrict(IRHO[ngrid], U, nn);	 - -		// similarly allocate storage and fill r.h.s. on all coarse grids. -		while (nn > 3) { -			nn = nn/2 + 1;  -			ngrid--; -			IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -			if(!IRHO[ngrid]) throw(1); -			fmg_restrict(IRHO[ngrid], IRHO[ngrid+1], nn); -		} - -		nn = 3; - -		IU[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -		if(!IU[0]) throw(1); -		IRHS[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -		if(!IRHS[0]) throw(1); - -		// initial solution on coarsest grid -		fmg_solve(IU[0], IRHO[0]); -		// irho[0] no longer needed ... -		FreeImage_Unload(IRHO[0]); IRHO[0] = NULL; - -		ngrid = ng; - -		// nested iteration loop -		for (j = 1; j < ngrid; j++) { -			nn = 2*nn - 1; - -			IU[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -			if(!IU[j]) throw(1); -			IRHS[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -			if(!IRHS[j]) throw(1); -			IRES[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); -			if(!IRES[j]) throw(1); - -			fmg_prolongate(IU[j], IU[j-1], nn); -			 -			// interpolate from coarse grid to next finer grid - -			// set up r.h.s. -			fmg_copyArray(IRHS[j], j != (ngrid - 1) ? IRHO[j] : U); -			 -			// V-cycle loop -			for (jcycle = 0; jcycle < ncycle; jcycle++) { -				nf = nn; -				// downward stoke of the V -				for (jj = j; jj >= 1; jj--) { -					// pre-smoothing -					for (jpre = 0; jpre < NPRE; jpre++) { -						fmg_relaxation(IU[jj], IRHS[jj], nf); -					} -					fmg_residual(IRES[jj], IU[jj], IRHS[jj], nf); -					nf = nf/2 + 1; -					// restriction of the residual is the next r.h.s. -					fmg_restrict(IRHS[jj-1], IRES[jj], nf);				 -					// zero for initial guess in next relaxation -					fmg_fillArrayWithZeros(IU[jj-1]); -				} -				// bottom of V: solve on coarsest grid -				fmg_solve(IU[0], IRHS[0]);  -				nf = 3;  -				// upward stroke of V. -				for (jj = 1; jj <= j; jj++) {  -					nf = 2*nf - 1; -					// use res for temporary storage inside addint -					fmg_addint(IU[jj], IU[jj-1], IRES[jj], nf);				 -					// post-smoothing -					for (jpost = 0; jpost < NPOST; jpost++) { -						fmg_relaxation(IU[jj], IRHS[jj], nf); -					} -				} -			} -		} - -		// return solution in U -		fmg_copyArray(U, IU[ngrid-1]); - -		// delete allocated arrays -		_FREE_ARRAY_GRID_(IRES, ng); -		_FREE_ARRAY_GRID_(IRHS, ng); -		_FREE_ARRAY_GRID_(IU, ng); -		_FREE_ARRAY_GRID_(IRHO, ng); - -		return TRUE; - -	} catch(int) { -		// delete allocated arrays -		_FREE_ARRAY_GRID_(IRES, ng); -		_FREE_ARRAY_GRID_(IRHS, ng); -		_FREE_ARRAY_GRID_(IU, ng); -		_FREE_ARRAY_GRID_(IRHO, ng); - -		return FALSE; -	} -} - -// -------------------------------------------------------------------------- - -/** -Poisson solver based on a multigrid algorithm.  -This routine solves a Poisson equation, remap result pixels to [0..1] and returns the solution.  -NB: The input image is first stored inside a square image whose size is (2^j + 1)x(2^j + 1) for some integer j,  -where j is such that 2^j is the nearest larger dimension corresponding to MAX(image width, image height).  -@param Laplacian Laplacian image -@param ncycle Number of cycles in the multigrid algorithm (usually 2 or 3) -@return Returns the solved PDE equations if successful, returns NULL otherwise -*/ -FIBITMAP* DLL_CALLCONV  -FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) { -	if(!FreeImage_HasPixels(Laplacian)) return NULL; - -	int width = FreeImage_GetWidth(Laplacian); -	int height = FreeImage_GetHeight(Laplacian); - -	// get nearest larger dimension length that is acceptable by the algorithm -	int n = MAX(width, height); -	int size = 0; -	while((n >>= 1) > 0) size++; -	if((1 << size) < MAX(width, height)) { -		size++; -	} -	// size must be of the form 2^j + 1 for some integer j -	size = 1 + (1 << size); - -	// allocate a temporary square image I -	FIBITMAP *I = FreeImage_AllocateT(FIT_FLOAT, size, size); -	if(!I) return NULL; - -	// copy Laplacian into I and shift pixels to create a boundary -	FreeImage_Paste(I, Laplacian, 1, 1, 255); - -	// solve the PDE equation -	fmg_mglin(I, size, ncycle); - -	// shift pixels back -	FIBITMAP *U = FreeImage_Copy(I, 1, 1, width + 1, height + 1); -	FreeImage_Unload(I); - -	// remap pixels to [0..1] -	NormalizeY(U, 0, 1); - -	// copy metadata from src to dst -	FreeImage_CloneMetadata(U, Laplacian); - -	// return the integrated image -	return U; -} -  | 
