diff options
Diffstat (limited to 'plugins/AdvaImg/src/FreeImageToolkit')
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/BSplineRotate.cpp | 20 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Background.cpp | 895 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Channels.cpp | 42 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/ClassicRotate.cpp | 38 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Colors.cpp | 16 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/CopyPaste.cpp | 44 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Display.cpp | 10 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/JPEGTransform.cpp | 14 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp | 30 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Rescale.cpp | 400 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Resize.cpp | 2648 | ||||
-rw-r--r-- | plugins/AdvaImg/src/FreeImageToolkit/Resize.h | 340 |
12 files changed, 3358 insertions, 1139 deletions
diff --git a/plugins/AdvaImg/src/FreeImageToolkit/BSplineRotate.cpp b/plugins/AdvaImg/src/FreeImageToolkit/BSplineRotate.cpp index e4be1d0bd2..690db87d8c 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/BSplineRotate.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/BSplineRotate.cpp @@ -556,7 +556,7 @@ Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x // allocate output image FIBITMAP *dst = FreeImage_Allocate(width, height, bpp); - if (!dst) + if(!dst) return NULL; // buid a grey scale palette RGBQUAD *pal = FreeImage_GetPalette(dst); @@ -566,7 +566,7 @@ Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x // allocate a temporary array ImageRasterArray = (double*)malloc(width * height * sizeof(double)); - if (!ImageRasterArray) { + if(!ImageRasterArray) { FreeImage_Unload(dst); return NULL; } @@ -583,7 +583,7 @@ Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x // convert between a representation based on image samples // and a representation based on image B-spline coefficients bResult = SamplesToCoefficients(ImageRasterArray, width, height, spline); - if (!bResult) { + if(!bResult) { FreeImage_Unload(dst); free(ImageRasterArray); return NULL; @@ -611,7 +611,7 @@ Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x x1 = x0 + a11 * (double)x; y1 = y0 + a21 * (double)x; if(use_mask) { - if ((x1 <= -0.5) || (((double)width - 0.5) <= x1) || (y1 <= -0.5) || (((double)height - 0.5) <= y1)) { + if((x1 <= -0.5) || (((double)width - 0.5) <= x1) || (y1 <= -0.5) || (((double)height - 0.5) <= y1)) { p = 0; } else { @@ -652,7 +652,7 @@ FreeImage_RotateEx(FIBITMAP *dib, double angle, double x_shift, double y_shift, BYTE *src_bits, *dst_bits; FIBITMAP *src8 = NULL, *dst8 = NULL, *dst = NULL; - if (!FreeImage_HasPixels(dib)) return NULL; + if(!FreeImage_HasPixels(dib)) return NULL; try { @@ -666,20 +666,20 @@ FreeImage_RotateEx(FIBITMAP *dib, double angle, double x_shift, double y_shift, } return dst_8; } - if ((bpp == 24) || (bpp == 32)) { + if((bpp == 24) || (bpp == 32)) { // allocate dst image int width = FreeImage_GetWidth(dib); int height = FreeImage_GetHeight(dib); - if ( bpp == 24 ) { + if( bpp == 24 ) { dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); } else { dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); } - if (!dst) throw(1); + if(!dst) throw(1); // allocate a temporary 8-bit dib (no need to build a palette) src8 = FreeImage_Allocate(width, height, 8); - if (!src8) throw(1); + if(!src8) throw(1); // process each channel separately // ------------------------------- @@ -698,7 +698,7 @@ FreeImage_RotateEx(FIBITMAP *dib, double angle, double x_shift, double y_shift, // process channel dst8 = Rotate8Bit(src8, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask); - if (!dst8) throw(1); + if(!dst8) throw(1); // insert channel to destination dib for(y = 0; y < height; y++) { diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Background.cpp b/plugins/AdvaImg/src/FreeImageToolkit/Background.cpp new file mode 100644 index 0000000000..06b31aa332 --- /dev/null +++ b/plugins/AdvaImg/src/FreeImageToolkit/Background.cpp @@ -0,0 +1,895 @@ +// ========================================================== +// Background filling routines +// +// Design and implementation by +// - Carsten Klein (c.klein@datagis.com) +// +// This file is part of FreeImage 3 +// +// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY +// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES +// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE +// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED +// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT +// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY +// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL +// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER +// THIS DISCLAIMER. +// +// Use at your own risk! +// ========================================================== + +#include "FreeImage.h" +#include "Utilities.h" + +/** @brief Determines, whether a palletized image is visually greyscale or not. + + Unlike with FreeImage_GetColorType, which returns either FIC_MINISBLACK or + FIC_MINISWHITE for a greyscale image with a linear ramp palette, the return + value of this function does not depend on the palette's order, but only on the + palette's individual colors. + @param dib The image to be tested. + @return Returns TRUE if the palette of the image specified contains only + greyscales, FALSE otherwise. + */ +static BOOL +IsVisualGreyscaleImage(FIBITMAP *dib) { + + switch (FreeImage_GetBPP(dib)) { + case 1: + case 4: + case 8: { + unsigned ncolors = FreeImage_GetColorsUsed(dib); + RGBQUAD *rgb = FreeImage_GetPalette(dib); + for (unsigned i = 0; i< ncolors; i++) { + if ((rgb->rgbRed != rgb->rgbGreen) || (rgb->rgbRed != rgb->rgbBlue)) { + return FALSE; + } + } + return TRUE; + } + default: { + return (FreeImage_GetColorType(dib) == FIC_MINISBLACK); + } + } +} + +/** @brief Looks up a specified color in a FIBITMAP's palette and returns the color's + palette index or -1 if the color was not found. + + Unlike with FreeImage_GetColorType, which returns either FIC_MINISBLACK or + FIC_MINISWHITE for a greyscale image with a linear ramp palette, the return + value of this function does not depend on the palette's order, but only on the + palette's individual colors. + @param dib The image, whose palette should be searched through. + @param color The color to be searched in the palette. + @param options Options that affect the color search process. + @param color_type A pointer, that optionally specifies the image's color type as + returned by FreeImage_GetColorType. If invalid or NULL, this function determines the + color type with FreeImage_GetColorType. + @return Returns the specified color's palette index, the color's rgbReserved member + if option FI_COLOR_ALPHA_IS_INDEX was specified or -1, if the color was not found + in the image's palette or if the specified image is non-palletized. + */ +static int +GetPaletteIndex(FIBITMAP *dib, const RGBQUAD *color, int options, FREE_IMAGE_COLOR_TYPE *color_type) { + + int result = -1; + + if ((!dib) || (!color)) { + return result; + } + + int bpp = FreeImage_GetBPP(dib); + + // First check trivial case: return color->rgbReserved if only + // FI_COLOR_ALPHA_IS_INDEX is set. + if ((options & FI_COLOR_ALPHA_IS_INDEX) == FI_COLOR_ALPHA_IS_INDEX) { + if (bpp == 1) { + return color->rgbReserved & 0x01; + } else if (bpp == 4) { + return color->rgbReserved & 0x0F; + } + return color->rgbReserved; + } + + if (bpp == 8) { + FREE_IMAGE_COLOR_TYPE ct = + (color_type == NULL || *color_type < 0) ? + FreeImage_GetColorType(dib) : *color_type; + if (ct == FIC_MINISBLACK) { + return GREY(color->rgbRed, color->rgbGreen, color->rgbBlue); + } + if (ct == FIC_MINISWHITE) { + return 255 - GREY(color->rgbRed, color->rgbGreen, color->rgbBlue); + } + } else if (bpp > 8) { + // for palettized images only + return result; + } + + if (options & FI_COLOR_FIND_EQUAL_COLOR) { + + // Option FI_COLOR_ALPHA_IS_INDEX is implicit here so, set + // index to color->rgbReserved + result = color->rgbReserved; + if (bpp == 1) { + result &= 0x01; + } else if (bpp == 4) { + result &= 0x0F; + } + + unsigned ucolor; + if (!IsVisualGreyscaleImage(dib)) { + ucolor = (*((unsigned *)color)) & 0xFFFFFF; + } else { + ucolor = GREY(color->rgbRed, color->rgbGreen, color->rgbBlue) * 0x010101; + //ucolor = (ucolor | (ucolor << 8) | (ucolor << 16)); + } + unsigned ncolors = FreeImage_GetColorsUsed(dib); + unsigned *palette = (unsigned *)FreeImage_GetPalette(dib); + for (unsigned i = 0; i < ncolors; i++) { + if ((palette[i] & 0xFFFFFF) == ucolor) { + result = i; + break; + } + } + } else { + unsigned minimum = UINT_MAX; + unsigned ncolors = FreeImage_GetColorsUsed(dib); + BYTE *palette = (BYTE *)FreeImage_GetPalette(dib); + BYTE red, green, blue; + if (!IsVisualGreyscaleImage(dib)) { + red = color->rgbRed; + green = color->rgbGreen; + blue = color->rgbBlue; + } else { + red = GREY(color->rgbRed, color->rgbGreen, color->rgbBlue); + green = blue = red; + } + for (unsigned i = 0; i < ncolors; i++) { + unsigned m = abs(palette[FI_RGBA_BLUE] - blue) + + abs(palette[FI_RGBA_GREEN] - green) + + abs(palette[FI_RGBA_RED] - red); + if (m < minimum) { + minimum = m; + result = i; + if (m == 0) { + break; + } + } + palette += sizeof(RGBQUAD); + } + } + return result; +} + +/** @brief Blends an alpha-transparent foreground color over an opaque background + color. + + This function blends the alpha-transparent foreground color fgcolor over the + background color bgcolor. The background color is considered fully opaque, + whatever it's alpha value contains, whereas the foreground color is considered + to be a real RGBA color with an alpha value, which is used for the blend + operation. The resulting color is returned through the blended parameter. + @param bgcolor The background color for the blend operation. + @param fgcolor The foreground color for the blend operation. This color's alpha + value, stored in the rgbReserved member, is the alpha value used for the blend + operation. + @param blended This out parameter takes the blended color and so, returns it to + the caller. This color's alpha value will be 0xFF (255) so, the blended color + itself has no transparency. The this argument is not changed, if the function + fails. + @return Returns TRUE on success, FALSE otherwise. This function fails if any of + the color arguments is a null pointer. + */ +static BOOL +GetAlphaBlendedColor(const RGBQUAD *bgcolor, const RGBQUAD *fgcolor, RGBQUAD *blended) { + + if ((!bgcolor) || (!fgcolor) || (!blended)) { + return FALSE; + } + + BYTE alpha = fgcolor->rgbReserved; + BYTE not_alpha = ~alpha; + + blended->rgbRed = (BYTE)( ((WORD)fgcolor->rgbRed * alpha + not_alpha * (WORD)bgcolor->rgbRed) >> 8 ); + blended->rgbGreen = (BYTE)( ((WORD)fgcolor->rgbGreen * alpha + not_alpha * (WORD)bgcolor->rgbGreen) >> 8) ; + blended->rgbBlue = (BYTE)( ((WORD)fgcolor->rgbRed * alpha + not_alpha * (WORD)bgcolor->rgbBlue) >> 8 ); + blended->rgbReserved = 0xFF; + + return TRUE; +} + +/** @brief Fills a FIT_BITMAP image with the specified color. + + This function does the dirty work for FreeImage_FillBackground for FIT_BITMAP + images. + @param dib The image to be filled. + @param color The color, the specified image should be filled with. + @param options Options that affect the color search process for palletized images. + @return Returns TRUE on success, FALSE otherwise. This function fails if any of + the dib and color is NULL or the provided image is not a FIT_BITMAP image. + */ +static BOOL +FillBackgroundBitmap(FIBITMAP *dib, const RGBQUAD *color, int options) { + + if ((!dib) || (FreeImage_GetImageType(dib) != FIT_BITMAP)) { + return FALSE;; + } + + if (!color) { + return FALSE; + } + + const RGBQUAD *color_intl = color; + unsigned bpp = FreeImage_GetBPP(dib); + unsigned width = FreeImage_GetWidth(dib); + unsigned height = FreeImage_GetHeight(dib); + + FREE_IMAGE_COLOR_TYPE color_type = FreeImage_GetColorType(dib); + + // get a pointer to the first scanline (bottom line) + BYTE *src_bits = FreeImage_GetScanLine(dib, 0); + BYTE *dst_bits = src_bits; + + BOOL supports_alpha = ((bpp >= 24) || ((bpp == 8) && (color_type != FIC_PALETTE))); + + // Check for RGBA case if bitmap supports alpha + // blending (8-bit greyscale, 24- or 32-bit images) + if (supports_alpha && (options & FI_COLOR_IS_RGBA_COLOR)) { + + if (color->rgbReserved == 0) { + // the fill color is fully transparent; we are done + return TRUE; + } + + // Only if the fill color is NOT fully opaque, draw it with + // the (much) slower FreeImage_DrawLine function and return. + // Since we do not have the FreeImage_DrawLine function in this + // release, just assume to have an unicolor background and fill + // all with an 'alpha-blended' color. + if (color->rgbReserved < 255) { + + // If we will draw on an unicolor background, it's + // faster to draw opaque with an alpha blended color. + // So, first get the color from the first pixel in the + // image (bottom-left pixel). + RGBQUAD bgcolor; + if (bpp == 8) { + bgcolor = FreeImage_GetPalette(dib)[*src_bits]; + } else { + bgcolor.rgbBlue = src_bits[FI_RGBA_BLUE]; + bgcolor.rgbGreen = src_bits[FI_RGBA_GREEN]; + bgcolor.rgbRed = src_bits[FI_RGBA_RED]; + bgcolor.rgbReserved = 0xFF; + } + RGBQUAD blend; + GetAlphaBlendedColor(&bgcolor, color_intl, &blend); + color_intl = &blend; + } + } + + int index = (bpp <= 8) ? GetPaletteIndex(dib, color_intl, options, &color_type) : 0; + if (index == -1) { + // No palette index found for a palletized + // image. This should never happen... + return FALSE; + } + + // first, build the first scanline (line 0) + switch (bpp) { + case 1: { + unsigned bytes = (width / 8); + memset(dst_bits, ((index == 1) ? 0xFF : 0x00), bytes); + //int n = width % 8; + int n = width & 7; + if (n) { + if (index == 1) { + // set n leftmost bits + dst_bits[bytes] |= (0xFF << (8 - n)); + } else { + // clear n leftmost bits + dst_bits[bytes] &= (0xFF >> n); + } + } + break; + } + case 4: { + unsigned bytes = (width / 2); + memset(dst_bits, (index | (index << 4)), bytes); + //if (bytes % 2) { + if (bytes & 1) { + dst_bits[bytes] &= 0x0F; + dst_bits[bytes] |= (index << 4); + } + break; + } + case 8: { + memset(dst_bits, index, FreeImage_GetLine(dib)); + break; + } + case 16: { + WORD wcolor = RGBQUAD_TO_WORD(dib, color_intl); + for (unsigned x = 0; x < width; x++) { + ((WORD *)dst_bits)[x] = wcolor; + } + break; + } + case 24: { + RGBTRIPLE rgbt = *((RGBTRIPLE *)color_intl); + for (unsigned x = 0; x < width; x++) { + ((RGBTRIPLE *)dst_bits)[x] = rgbt; + } + break; + } + case 32: { + RGBQUAD rgbq; + rgbq.rgbBlue = ((RGBTRIPLE *)color_intl)->rgbtBlue; + rgbq.rgbGreen = ((RGBTRIPLE *)color_intl)->rgbtGreen; + rgbq.rgbRed = ((RGBTRIPLE *)color_intl)->rgbtRed; + rgbq.rgbReserved = 0xFF; + for (unsigned x = 0; x < width; x++) { + ((RGBQUAD *)dst_bits)[x] = rgbq; + } + break; + } + default: + return FALSE; + } + + // Then, copy the first scanline into all following scanlines. + // 'src_bits' is a pointer to the first scanline and is already + // set up correctly. + if (src_bits) { + unsigned pitch = FreeImage_GetPitch(dib); + unsigned bytes = FreeImage_GetLine(dib); + dst_bits = src_bits + pitch; + for (unsigned y = 1; y < height; y++) { + memcpy(dst_bits, src_bits, bytes); + dst_bits += pitch; + } + } + return TRUE; +} + +/** @brief Fills an image with the specified color. + + This function sets all pixels of an image to the color provided through the color + parameter. Since this should work for all image types supported by FreeImage, the + pointer color must point to a memory location, which is at least as large as the + image's color value, if this size is greater than 4 bytes. As the color is specified + by an RGBQUAD structure for all images of type FIT_BITMAP (including all palletized + images), the smallest possible size of this memory is the size of the RGBQUAD structure, + which uses 4 bytes. + + So, color must point to a double, if the image to be filled is of type FIT_DOUBLE and + point to a RGBF structure if the image is of type FIT_RGBF and so on. + + However, the fill color is always specified through a RGBQUAD structure for all images + of type FIT_BITMAP. So, for 32- and 24-bit images, the red, green and blue members of + the RGBQUAD structure are directly used for the image's red, green and blue channel + respectively. Although alpha transparent RGBQUAD colors are supported, the alpha channel + of a 32-bit image never gets modified by this function. A fill color with an alpha value + smaller than 255 gets blended with the image's actual background color, which is determined + from the image's bottom-left pixel. So, currently using alpha enabled colors, assumes the + image to be unicolor before the fill operation. However, the RGBQUAD's rgbReserved member is + only taken into account, if option FI_COLOR_IS_RGBA_COLOR has been specified. + + For 16-bit images, the red-, green- and blue components of the specified color are + transparently translated into either the 16-bit 555 or 565 representation. This depends + on the image's actual red- green- and blue masks. + + Special attention must be payed for palletized images. Generally, the RGB color specified + is looked up in the image's palette. The found palette index is then used to fill the image. + There are some option flags, that affect this lookup process: + + no option specified (0x00) Uses the color, that is nearest to the specified color. + This is the default behavior and should always find a + color in the palette. However, the visual result may + far from what was expected and mainly depends on the + image's palette. + + FI_COLOR_FIND_EQUAL_COLOR (0x02) Searches the image's palette for the specified color + but only uses the returned palette index, if the specified + color exactly matches the palette entry. Of course, + depending on the image's actual palette entries, this + operation may fail. In this case, the function falls back + to option FI_COLOR_ALPHA_IS_INDEX and uses the RGBQUAD's + rgbReserved member (or its low nibble for 4-bit images + or its least significant bit (LSB) for 1-bit images) as + the palette index used for the fill operation. + + FI_COLOR_ALPHA_IS_INDEX (0x04) Does not perform any color lookup from the palette, but + uses the RGBQUAD's alpha channel member rgbReserved as + the palette index to be used for the fill operation. + However, for 4-bit images, only the low nibble of the + rgbReserved member are used and for 1-bit images, only + the least significant bit (LSB) is used. + + This function fails if any of dib and color is NULL. + + @param dib The image to be filled. + @param color A pointer to the color value to be used for filling the image. The + memory pointed to by this pointer is always assumed to be at least as large as the + image's color value, but never smaller than the size of an RGBQUAD structure. + @param options Options that affect the color search process for palletized images. + @return Returns TRUE on success, FALSE otherwise. This function fails if any of + dib and color is NULL. + */ +BOOL DLL_CALLCONV +FreeImage_FillBackground(FIBITMAP *dib, const void *color, int options) { + + if (!FreeImage_HasPixels(dib)) { + return FALSE; + } + + if (!color) { + return FALSE; + } + + // handle FIT_BITMAP images with FreeImage_FillBackground() + if (FreeImage_GetImageType(dib) == FIT_BITMAP) { + return FillBackgroundBitmap(dib, (RGBQUAD *)color, options); + } + + // first, construct the first scanline (bottom line) + unsigned bytespp = (FreeImage_GetBPP(dib) / 8); + BYTE *src_bits = FreeImage_GetScanLine(dib, 0); + BYTE *dst_bits = src_bits; + for (unsigned x = 0; x < FreeImage_GetWidth(dib); x++) { + memcpy(dst_bits, color, bytespp); + dst_bits += bytespp; + } + + // then, copy the first scanline into all following scanlines + unsigned height = FreeImage_GetHeight(dib); + unsigned pitch = FreeImage_GetPitch(dib); + unsigned bytes = FreeImage_GetLine(dib); + dst_bits = src_bits + pitch; + for (unsigned y = 1; y < height; y++) { + memcpy(dst_bits, src_bits, bytes); + dst_bits += pitch; + } + return TRUE; +} + +/** @brief Allocates a new image of the specified type, width, height and bit depth and + optionally fills it with the specified color. + + This function is an extension to FreeImage_AllocateT, which additionally supports specifying + a palette to be set for the newly create image, as well as specifying a background color, + the newly created image should initially be filled with. + + Basically, this function internally relies on function FreeImage_AllocateT, followed by a + call to FreeImage_FillBackground. This is why both parameters color and options behave the + same as it is documented for function FreeImage_FillBackground. So, please refer to the + documentation of FreeImage_FillBackground to learn more about parameters color and options. + + The palette specified through parameter palette is only copied to the newly created + image, if its image type is FIT_BITMAP and the desired bit depth is smaller than or equal + to 8 bits per pixel. In other words, the palette parameter is only taken into account for + palletized images. However, if the preceding conditions match and if palette is not NULL, + the memory pointed to by the palette pointer is assumed to be at least as large as size + of a fully populated palette for the desired bit depth. So, for an 8-bit image, this size + is 256 x sizeof(RGBQUAD), for an 4-bit image it is 16 x sizeof(RGBQUAD) and it is + 2 x sizeof(RGBQUAD) for a 1-bit image. In other words, this function does not support + partial palettes. + + However, specifying a palette is not necessarily needed, even for palletized images. This + function is capable of implicitly creating a palette, if parameter palette is NULL. If the + specified background color is a greyscale value (red = green = blue) or if option + FI_COLOR_ALPHA_IS_INDEX is specified, a greyscale palette is created. For a 1-bit image, only + if the specified background color is either black or white, a monochrome palette, consisting + of black and white only is created. In any case, the darker colors are stored at the smaller + palette indices. + + If the specified background color is not a greyscale value, or is neither black nor white + for a 1-bit image, solely this single color is injected into the otherwise black-initialized + palette. For this operation, option FI_COLOR_ALPHA_IS_INDEX is implicit, so the specified + color is applied to the palette entry, specified by the background color's rgbReserved + member. The image is then filled with this palette index. + + This function returns a newly created image as function FreeImage_AllocateT does, if both + parameters color and palette are NULL. If only color is NULL, the palette pointed to by + parameter palette is initially set for the new image, if a palletized image of type + FIT_BITMAP is created. However, in the latter case, this function returns an image, whose + pixels are all initialized with zeros so, the image will be filled with the color of the + first palette entry. + + @param type Specifies the image type of the new image. + @param width The desired width in pixels of the new image. + @param height The desired height in pixels of the new image. + @param bpp The desired bit depth of the new image. + @param color A pointer to the color value to be used for filling the image. The + memory pointed to by this pointer is always assumed to be at least as large as the + image's color value but never smaller than the size of an RGBQUAD structure. + @param options Options that affect the color search process for palletized images. + @param red_mask Specifies the bits used to store the red components of a pixel. + @param green_mask Specifies the bits used to store the green components of a pixel. + @param blue_mask Specifies the bits used to store the blue components of a pixel. + @return Returns a pointer to a newly allocated image on success, NULL otherwise. + */ +FIBITMAP * DLL_CALLCONV +FreeImage_AllocateExT(FREE_IMAGE_TYPE type, int width, int height, int bpp, const void *color, int options, const RGBQUAD *palette, unsigned red_mask, unsigned green_mask, unsigned blue_mask) { + + FIBITMAP *bitmap = FreeImage_AllocateT(type, width, height, bpp, red_mask, green_mask, blue_mask); + + if (!color) { + if ((palette) && (type == FIT_BITMAP) && (bpp <= 8)) { + memcpy(FreeImage_GetPalette(bitmap), palette, FreeImage_GetColorsUsed(bitmap) * sizeof(RGBQUAD)); + } + return bitmap; + } + + if (bitmap != NULL) { + + // Only fill the new bitmap if the specified color + // differs from "black", that is not all bytes of the + // color are equal to zero. + switch (bpp) { + case 1: { + // although 1-bit implies FIT_BITMAP, better get an unsigned + // color and palette + unsigned *urgb = (unsigned *)color; + unsigned *upal = (unsigned *)FreeImage_GetPalette(bitmap); + RGBQUAD rgbq = RGBQUAD(); + + if (palette != NULL) { + // clone the specified palette + memcpy(FreeImage_GetPalette(bitmap), palette, 2 * sizeof(RGBQUAD)); + } else if (options & FI_COLOR_ALPHA_IS_INDEX) { + CREATE_GREYSCALE_PALETTE(upal, 2); + } else { + // check, whether the specified color is either black or white + if ((*urgb & 0xFFFFFF) == 0x000000) { + // in any case build a FIC_MINISBLACK palette + CREATE_GREYSCALE_PALETTE(upal, 2); + color = &rgbq; + } else if ((*urgb & 0xFFFFFF) == 0xFFFFFF) { + // in any case build a FIC_MINISBLACK palette + CREATE_GREYSCALE_PALETTE(upal, 2); + rgbq.rgbReserved = 1; + color = &rgbq; + } else { + // Otherwise inject the specified color into the so far + // black-only palette. We use color->rgbReserved as the + // desired palette index. + BYTE index = ((RGBQUAD *)color)->rgbReserved & 0x01; + upal[index] = *urgb & 0x00FFFFFF; + } + options |= FI_COLOR_ALPHA_IS_INDEX; + } + // and defer to FreeImage_FillBackground + FreeImage_FillBackground(bitmap, color, options); + break; + } + case 4: { + // 4-bit implies FIT_BITMAP so, get a RGBQUAD color + RGBQUAD *rgb = (RGBQUAD *)color; + RGBQUAD *pal = FreeImage_GetPalette(bitmap); + RGBQUAD rgbq = RGBQUAD(); + + if (palette != NULL) { + // clone the specified palette + memcpy(pal, palette, 16 * sizeof(RGBQUAD)); + } else if (options & FI_COLOR_ALPHA_IS_INDEX) { + CREATE_GREYSCALE_PALETTE(pal, 16); + } else { + // check, whether the specified color is a grey one + if ((rgb->rgbRed == rgb->rgbGreen) && (rgb->rgbRed == rgb->rgbBlue)) { + // if so, build a greyscale palette + CREATE_GREYSCALE_PALETTE(pal, 16); + rgbq.rgbReserved = rgb->rgbRed >> 4; + color = &rgbq; + } else { + // Otherwise inject the specified color into the so far + // black-only palette. We use color->rgbReserved as the + // desired palette index. + BYTE index = (rgb->rgbReserved & 0x0F); + ((unsigned *)pal)[index] = *((unsigned *)rgb) & 0x00FFFFFF; + } + options |= FI_COLOR_ALPHA_IS_INDEX; + } + // and defer to FreeImage_FillBackground + FreeImage_FillBackground(bitmap, color, options); + break; + } + case 8: { + // 8-bit implies FIT_BITMAP so, get a RGBQUAD color + RGBQUAD *rgb = (RGBQUAD *)color; + RGBQUAD *pal = FreeImage_GetPalette(bitmap); + RGBQUAD rgbq; + + if (palette != NULL) { + // clone the specified palette + memcpy(pal, palette, 256 * sizeof(RGBQUAD)); + } else if (options & FI_COLOR_ALPHA_IS_INDEX) { + CREATE_GREYSCALE_PALETTE(pal, 256); + } else { + // check, whether the specified color is a grey one + if ((rgb->rgbRed == rgb->rgbGreen) && (rgb->rgbRed == rgb->rgbBlue)) { + // if so, build a greyscale palette + CREATE_GREYSCALE_PALETTE(pal, 256); + rgbq.rgbReserved = rgb->rgbRed; + color = &rgbq; + } else { + // Otherwise inject the specified color into the so far + // black-only palette. We use color->rgbReserved as the + // desired palette index. + BYTE index = rgb->rgbReserved; + ((unsigned *)pal)[index] = *((unsigned *)rgb) & 0x00FFFFFF; + } + options |= FI_COLOR_ALPHA_IS_INDEX; + } + // and defer to FreeImage_FillBackground + FreeImage_FillBackground(bitmap, color, options); + break; + } + case 16: { + WORD wcolor = (type == FIT_BITMAP) ? + RGBQUAD_TO_WORD(bitmap, ((RGBQUAD *)color)) : *((WORD *)color); + if (wcolor != 0) { + FreeImage_FillBackground(bitmap, color, options); + } + break; + } + default: { + int bytespp = bpp / 8; + for (int i = 0; i < bytespp; i++) { + if (((BYTE *)color)[i] != 0) { + FreeImage_FillBackground(bitmap, color, options); + break; + } + } + break; + } + } + } + return bitmap; +} + +/** @brief Allocates a new image of the specified width, height and bit depth and optionally + fills it with the specified color. + + This function is an extension to FreeImage_Allocate, which additionally supports specifying + a palette to be set for the newly create image, as well as specifying a background color, + the newly created image should initially be filled with. + + Basically, this function internally relies on function FreeImage_Allocate, followed by a + call to FreeImage_FillBackground. This is why both parameters color and options behave the + same as it is documented for function FreeImage_FillBackground. So, please refer to the + documentation of FreeImage_FillBackground to learn more about parameters color and options. + + The palette specified through parameter palette is only copied to the newly created + image, if the desired bit depth is smaller than or equal to 8 bits per pixel. In other words, + the palette parameter is only taken into account for palletized images. However, if the + image to be created is a palletized image and if palette is not NULL, the memory pointed to + by the palette pointer is assumed to be at least as large as size of a fully populated + palette for the desired bit depth. So, for an 8-bit image, this size is 256 x sizeof(RGBQUAD), + for an 4-bit image it is 16 x sizeof(RGBQUAD) and it is 2 x sizeof(RGBQUAD) for a 1-bit + image. In other words, this function does not support partial palettes. + + However, specifying a palette is not necessarily needed, even for palletized images. This + function is capable of implicitly creating a palette, if parameter palette is NULL. If the + specified background color is a greyscale value (red = green = blue) or if option + FI_COLOR_ALPHA_IS_INDEX is specified, a greyscale palette is created. For a 1-bit image, only + if the specified background color is either black or white, a monochrome palette, consisting + of black and white only is created. In any case, the darker colors are stored at the smaller + palette indices. + + If the specified background color is not a greyscale value, or is neither black nor white + for a 1-bit image, solely this single color is injected into the otherwise black-initialized + palette. For this operation, option FI_COLOR_ALPHA_IS_INDEX is implicit, so the specified + color is applied to the palette entry, specified by the background color's rgbReserved + member. The image is then filled with this palette index. + + This function returns a newly created image as function FreeImage_Allocate does, if both + parameters color and palette are NULL. If only color is NULL, the palette pointed to by + parameter palette is initially set for the new image, if a palletized image of type + FIT_BITMAP is created. However, in the latter case, this function returns an image, whose + pixels are all initialized with zeros so, the image will be filled with the color of the + first palette entry. + + @param width The desired width in pixels of the new image. + @param height The desired height in pixels of the new image. + @param bpp The desired bit depth of the new image. + @param color A pointer to an RGBQUAD structure, that provides the color to be used for + filling the image. + @param options Options that affect the color search process for palletized images. + @param red_mask Specifies the bits used to store the red components of a pixel. + @param green_mask Specifies the bits used to store the green components of a pixel. + @param blue_mask Specifies the bits used to store the blue components of a pixel. + @return Returns a pointer to a newly allocated image on success, NULL otherwise. + */ +FIBITMAP * DLL_CALLCONV +FreeImage_AllocateEx(int width, int height, int bpp, const RGBQUAD *color, int options, const RGBQUAD *palette, unsigned red_mask, unsigned green_mask, unsigned blue_mask) { + return FreeImage_AllocateExT(FIT_BITMAP, width, height, bpp, ((void *)color), options, palette, red_mask, green_mask, blue_mask); +} + +/** @brief Enlarges or shrinks an image selectively per side and fills newly added areas + with the specified background color. + + This function enlarges or shrinks an image selectively per side. The main purpose of this + function is to add borders to an image. To add a border to any of the image's sides, a + positive integer value must be passed in any of the parameters left, top, right or bottom. + This value represents the border's width in pixels. Newly created parts of the image (the + border areas) are filled with the specified color. Specifying a negative integer value for + a certain side, will shrink or crop the image on this side. Consequently, specifying zero + for a certain side will not change the image's extension on that side. + + So, calling this function with all parameters left, top, right and bottom set to zero, is + effectively the same as calling function FreeImage_Clone; setting all parameters left, top, + right and bottom to value equal to or smaller than zero, my easily be substituted by a call + to function FreeImage_Copy. Both these cases produce a new image, which is guaranteed not to + be larger than the input image. Thus, since the specified color is not needed in these cases, + the pointer color may be NULL. + + Both parameters color and options work according to function FreeImage_FillBackground. So, + please refer to the documentation of FreeImage_FillBackground to learn more about parameters + color and options. For palletized images, the palette of the input image src is + transparently copied to the newly created enlarged or shrunken image, so any color + look-ups are performed on this palette. + + Here are some examples, that illustrate, how to use the parameters left, top, right and + bottom: + + // create a white color + RGBQUAD c; + c.rgbRed = 0xFF; + c.rgbGreen = 0xFF; + c.rgbBlue = 0xFF; + c.rgbReserved = 0x00; + + // add a white, symmetric 10 pixel wide border to the image + dib2 = FreeImage_EnlargeCanvas(dib, 10, 10, 10, 10, &c, FI_COLOR_IS_RGB_COLOR); + + // add white, 20 pixel wide stripes to the top and bottom side of the image + dib3 = FreeImage_EnlargeCanvas(dib, 0, 20, 0, 20, &c, FI_COLOR_IS_RGB_COLOR); + + // add white, 30 pixel wide stripes to the right side of the image and + // cut off the 40 leftmost pixel columns + dib3 = FreeImage_EnlargeCanvas(dib, -40, 0, 30, 0, &c, FI_COLOR_IS_RGB_COLOR); + + This function fails if either the input image is NULL or the pointer to the color is + NULL, while at least on of left, top, right and bottom is greater than zero. This + function also returns NULL, if the new image's size will be negative in either x- or + y-direction. + + @param dib The image to be enlarged or shrunken. + @param left The number of pixels, the image should be enlarged on its left side. Negative + values shrink the image on its left side. + @param top The number of pixels, the image should be enlarged on its top side. Negative + values shrink the image on its top side. + @param right The number of pixels, the image should be enlarged on its right side. Negative + values shrink the image on its right side. + @param bottom The number of pixels, the image should be enlarged on its bottom side. Negative + values shrink the image on its bottom side. + @param color The color, the enlarged sides of the image should be filled with. + @param options Options that affect the color search process for palletized images. + @return Returns a pointer to a newly allocated enlarged or shrunken image on success, + NULL otherwise. This function fails if either the input image is NULL or the pointer to the + color is NULL, while at least on of left, top, right and bottom is greater than zero. This + function also returns NULL, if the new image's size will be negative in either x- or + y-direction. + */ +FIBITMAP * DLL_CALLCONV +FreeImage_EnlargeCanvas(FIBITMAP *src, int left, int top, int right, int bottom, const void *color, int options) { + + if(!FreeImage_HasPixels(src)) return NULL; + + // Just return a clone of the image, if left, top, right and bottom are + // all zero. + if ((left == 0) && (right == 0) && (top == 0) && (bottom == 0)) { + return FreeImage_Clone(src); + } + + int width = FreeImage_GetWidth(src); + int height = FreeImage_GetHeight(src); + + // Relay on FreeImage_Copy, if all parameters left, top, right and + // bottom are smaller than or equal zero. The color pointer may be + // NULL in this case. + if ((left <= 0) && (right <= 0) && (top <= 0) && (bottom <= 0)) { + return FreeImage_Copy(src, -left, -top, width + right, height + bottom); + } + + // From here, we need a valid color, since the image will be enlarged on + // at least one side. So, fail if we don't have a valid color pointer. + if (!color) { + return NULL; + } + + if (((left < 0) && (-left >= width)) || ((right < 0) && (-right >= width)) || + ((top < 0) && (-top >= height)) || ((bottom < 0) && (-bottom >= height))) { + return NULL; + } + + unsigned newWidth = width + left + right; + unsigned newHeight = height + top + bottom; + + FREE_IMAGE_TYPE type = FreeImage_GetImageType(src); + unsigned bpp = FreeImage_GetBPP(src); + + FIBITMAP *dst = FreeImage_AllocateExT( + type, newWidth, newHeight, bpp, color, options, + FreeImage_GetPalette(src), + FreeImage_GetRedMask(src), + FreeImage_GetGreenMask(src), + FreeImage_GetBlueMask(src)); + + if (!dst) { + return NULL; + } + + if ((type == FIT_BITMAP) && (bpp <= 4)) { + FIBITMAP *copy = FreeImage_Copy(src, + ((left >= 0) ? 0 : -left), + ((top >= 0) ? 0 : -top), + ((width+right)>width)?width:(width+right), + ((height+bottom)>height)?height:(height+bottom)); + + if (!copy) { + FreeImage_Unload(dst); + return NULL; + } + + if (!FreeImage_Paste(dst, copy, + ((left <= 0) ? 0 : left), + ((top <= 0) ? 0 : top), 256)) { + FreeImage_Unload(copy); + FreeImage_Unload(dst); + return NULL; + } + + FreeImage_Unload(copy); + + } else { + + int bytespp = bpp / 8; + BYTE *srcPtr = FreeImage_GetScanLine(src, height - 1 - ((top >= 0) ? 0 : -top)); + BYTE *dstPtr = FreeImage_GetScanLine(dst, newHeight - 1 - ((top <= 0) ? 0 : top)); + + unsigned srcPitch = FreeImage_GetPitch(src); + unsigned dstPitch = FreeImage_GetPitch(dst); + + int lineWidth = bytespp * (width + MIN(0, left) + MIN(0, right)); + int lines = height + MIN(0, top) + MIN(0, bottom); + + if (left <= 0) { + srcPtr += (-left * bytespp); + } else { + dstPtr += (left * bytespp); + } + + for (int i = 0; i < lines; i++) { + memcpy(dstPtr, srcPtr, lineWidth); + srcPtr -= srcPitch; + dstPtr -= dstPitch; + } + } + + // copy metadata from src to dst + FreeImage_CloneMetadata(dst, src); + + // copy transparency table + FreeImage_SetTransparencyTable(dst, FreeImage_GetTransparencyTable(src), FreeImage_GetTransparencyCount(src)); + + // copy background color + RGBQUAD bkcolor; + if( FreeImage_GetBackgroundColor(src, &bkcolor) ) { + FreeImage_SetBackgroundColor(dst, &bkcolor); + } + + // clone resolution + FreeImage_SetDotsPerMeterX(dst, FreeImage_GetDotsPerMeterX(src)); + FreeImage_SetDotsPerMeterY(dst, FreeImage_GetDotsPerMeterY(src)); + + // clone ICC profile + FIICCPROFILE *src_profile = FreeImage_GetICCProfile(src); + FIICCPROFILE *dst_profile = FreeImage_CreateICCProfile(dst, src_profile->data, src_profile->size); + dst_profile->flags = src_profile->flags; + + return dst; +} + diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Channels.cpp b/plugins/AdvaImg/src/FreeImageToolkit/Channels.cpp index f6e6c5509c..5f01ad815f 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/Channels.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/Channels.cpp @@ -31,7 +31,7 @@ FIBITMAP * DLL_CALLCONV FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { - if (!FreeImage_HasPixels(src)) return NULL; + if(!FreeImage_HasPixels(src)) return NULL; FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src); unsigned bpp = FreeImage_GetBPP(src); @@ -63,7 +63,7 @@ FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_Allocate(width, height, 8) ; - if (!dst) return NULL; + if(!dst) return NULL; // build a greyscale palette RGBQUAD *pal = FreeImage_GetPalette(dst); for(int i = 0; i < 256; i++) { @@ -90,7 +90,7 @@ FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { } // 48-bit RGB or 64-bit RGBA images - if ((image_type == FIT_RGB16) || (image_type == FIT_RGBA16)) { + if((image_type == FIT_RGB16) || (image_type == FIT_RGBA16)) { int c; // select the channel to extract (always RGB[A]) @@ -116,7 +116,7 @@ FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_AllocateT(FIT_UINT16, width, height) ; - if (!dst) return NULL; + if(!dst) return NULL; // perform extraction @@ -138,7 +138,7 @@ FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { } // 96-bit RGBF or 128-bit RGBAF images - if ((image_type == FIT_RGBF) || (image_type == FIT_RGBAF)) { + if((image_type == FIT_RGBF) || (image_type == FIT_RGBAF)) { int c; // select the channel to extract (always RGB[A]) @@ -164,7 +164,7 @@ FreeImage_GetChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); FIBITMAP *dst = FreeImage_AllocateT(FIT_FLOAT, width, height) ; - if (!dst) return NULL; + if(!dst) return NULL; // perform extraction @@ -199,32 +199,32 @@ BOOL DLL_CALLCONV FreeImage_SetChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { int c; - if (!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; + if(!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; // src and dst images should have the same width and height unsigned src_width = FreeImage_GetWidth(src); unsigned src_height = FreeImage_GetHeight(src); unsigned dst_width = FreeImage_GetWidth(dst); unsigned dst_height = FreeImage_GetHeight(dst); - if ((src_width != dst_width) || (src_height != dst_height)) + if((src_width != dst_width) || (src_height != dst_height)) return FALSE; // src image should be grayscale, dst image should be RGB or RGBA FREE_IMAGE_COLOR_TYPE src_type = FreeImage_GetColorType(src); FREE_IMAGE_COLOR_TYPE dst_type = FreeImage_GetColorType(dst); - if ((dst_type != FIC_RGB) && (dst_type != FIC_RGBALPHA) || (src_type != FIC_MINISBLACK)) { + if((dst_type != FIC_RGB) && (dst_type != FIC_RGBALPHA) || (src_type != FIC_MINISBLACK)) { return FALSE; } FREE_IMAGE_TYPE src_image_type = FreeImage_GetImageType(src); FREE_IMAGE_TYPE dst_image_type = FreeImage_GetImageType(dst); - if ((dst_image_type == FIT_BITMAP) && (src_image_type == FIT_BITMAP)) { + if((dst_image_type == FIT_BITMAP) && (src_image_type == FIT_BITMAP)) { // src image should be grayscale, dst image should be 24- or 32-bit unsigned src_bpp = FreeImage_GetBPP(src); unsigned dst_bpp = FreeImage_GetBPP(dst); - if ((src_bpp != 8) || (dst_bpp != 24) && (dst_bpp != 32)) + if((src_bpp != 8) || (dst_bpp != 24) && (dst_bpp != 32)) return FALSE; @@ -263,12 +263,12 @@ FreeImage_SetChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL chan return TRUE; } - if (((dst_image_type == FIT_RGB16) || (dst_image_type == FIT_RGBA16)) && (src_image_type == FIT_UINT16)) { + if(((dst_image_type == FIT_RGB16) || (dst_image_type == FIT_RGBA16)) && (src_image_type == FIT_UINT16)) { // src image should be grayscale, dst image should be 48- or 64-bit unsigned src_bpp = FreeImage_GetBPP(src); unsigned dst_bpp = FreeImage_GetBPP(dst); - if ((src_bpp != 16) || (dst_bpp != 48) && (dst_bpp != 64)) + if((src_bpp != 16) || (dst_bpp != 48) && (dst_bpp != 64)) return FALSE; @@ -307,12 +307,12 @@ FreeImage_SetChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL chan return TRUE; } - if (((dst_image_type == FIT_RGBF) || (dst_image_type == FIT_RGBAF)) && (src_image_type == FIT_FLOAT)) { + if(((dst_image_type == FIT_RGBF) || (dst_image_type == FIT_RGBAF)) && (src_image_type == FIT_FLOAT)) { // src image should be grayscale, dst image should be 96- or 128-bit unsigned src_bpp = FreeImage_GetBPP(src); unsigned dst_bpp = FreeImage_GetBPP(dst); - if ((src_bpp != 32) || (dst_bpp != 96) && (dst_bpp != 128)) + if((src_bpp != 32) || (dst_bpp != 96) && (dst_bpp != 128)) return FALSE; @@ -367,14 +367,14 @@ FreeImage_GetComplexChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { double *dst_bits = NULL; FIBITMAP *dst = NULL; - if (!FreeImage_HasPixels(src)) return NULL; + if(!FreeImage_HasPixels(src)) return NULL; if(FreeImage_GetImageType(src) == FIT_COMPLEX) { // allocate a dib of type FIT_DOUBLE unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); dst = FreeImage_AllocateT(FIT_DOUBLE, width, height) ; - if (!dst) return NULL; + if(!dst) return NULL; // perform extraction @@ -415,7 +415,7 @@ FreeImage_GetComplexChannel(FIBITMAP *src, FREE_IMAGE_COLOR_CHANNEL channel) { src_bits = (FICOMPLEX *)FreeImage_GetScanLine(src, y); dst_bits = (double *)FreeImage_GetScanLine(dst, y); for(x = 0; x < width; x++) { - if ((src_bits[x].r == 0) && (src_bits[x].i == 0)) { + if((src_bits[x].r == 0) && (src_bits[x].i == 0)) { phase = 0; } else { phase = atan2(src_bits[x].i, src_bits[x].r); @@ -446,12 +446,12 @@ FreeImage_SetComplexChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANN double *src_bits = NULL; FICOMPLEX *dst_bits = NULL; - if (!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; + if(!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; // src image should be of type FIT_DOUBLE, dst image should be of type FIT_COMPLEX const FREE_IMAGE_TYPE src_type = FreeImage_GetImageType(src); const FREE_IMAGE_TYPE dst_type = FreeImage_GetImageType(dst); - if ((src_type != FIT_DOUBLE) || (dst_type != FIT_COMPLEX)) + if((src_type != FIT_DOUBLE) || (dst_type != FIT_COMPLEX)) return FALSE; // src and dst images should have the same width and height @@ -459,7 +459,7 @@ FreeImage_SetComplexChannel(FIBITMAP *dst, FIBITMAP *src, FREE_IMAGE_COLOR_CHANN unsigned src_height = FreeImage_GetHeight(src); unsigned dst_width = FreeImage_GetWidth(dst); unsigned dst_height = FreeImage_GetHeight(dst); - if ((src_width != dst_width) || (src_height != dst_height)) + if((src_width != dst_width) || (src_height != dst_height)) return FALSE; // select the channel to modify diff --git a/plugins/AdvaImg/src/FreeImageToolkit/ClassicRotate.cpp b/plugins/AdvaImg/src/FreeImageToolkit/ClassicRotate.cpp index d38d8c1bcd..83c2f92123 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/ClassicRotate.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/ClassicRotate.cpp @@ -63,7 +63,7 @@ HorizontalSkewT(FIBITMAP *src, FIBITMAP *dst, int row, int iOffset, double weigh // background const T pxlBlack[4] = {0, 0, 0, 0 }; const T *pxlBkg = static_cast<const T*>(bkcolor); // assume at least bytespp and 4*sizeof(T) max - if (!pxlBkg) { + if(!pxlBkg) { // default background color is black pxlBkg = pxlBlack; } @@ -98,7 +98,7 @@ HorizontalSkewT(FIBITMAP *src, FIBITMAP *dst, int row, int iOffset, double weigh } // check boundaries iXPos = i + iOffset; - if ((iXPos >= 0) && (iXPos < (int)dst_width)) { + if((iXPos >= 0) && (iXPos < (int)dst_width)) { // update left over on source for(unsigned j = 0; j < samples; j++) { pxlSrc[j] = pxlSrc[j] - (pxlLeft[j] - pxlOldLeft[j]); @@ -115,7 +115,7 @@ HorizontalSkewT(FIBITMAP *src, FIBITMAP *dst, int row, int iOffset, double weigh // go to rightmost point of skew iXPos = src_width + iOffset; - if ((iXPos >= 0) && (iXPos < (int)dst_width)) { + if((iXPos >= 0) && (iXPos < (int)dst_width)) { dst_bits = FreeImage_GetScanLine(dst, row) + iXPos * bytespp; // If still in image bounds, put leftovers there @@ -194,7 +194,7 @@ VerticalSkewT(FIBITMAP *src, FIBITMAP *dst, int col, int iOffset, double weight, // background const T pxlBlack[4] = {0, 0, 0, 0 }; const T *pxlBkg = static_cast<const T*>(bkcolor); // assume at least bytespp and 4*sizeof(T) max - if (!pxlBkg) { + if(!pxlBkg) { // default background color is black pxlBkg = pxlBlack; } @@ -235,7 +235,7 @@ VerticalSkewT(FIBITMAP *src, FIBITMAP *dst, int col, int iOffset, double weight, } // check boundaries iYPos = i + iOffset; - if ((iYPos >= 0) && (iYPos < (int)dst_height)) { + if((iYPos >= 0) && (iYPos < (int)dst_height)) { // update left over on source for(unsigned j = 0; j < samples; j++) { pxlSrc[j] = pxlSrc[j] - (pxlLeft[j] - pxlOldLeft[j]); @@ -252,7 +252,7 @@ VerticalSkewT(FIBITMAP *src, FIBITMAP *dst, int col, int iOffset, double weight, // go to bottom point of skew iYPos = src_height + iOffset; - if ((iYPos >= 0) && (iYPos < (int)dst_height)) { + if((iYPos >= 0) && (iYPos < (int)dst_height)) { dst_bits = FreeImage_GetScanLine(dst, iYPos) + index; // if still in image bounds, put leftovers there @@ -367,7 +367,7 @@ Rotate90(FIBITMAP *src) { } } } - else if ((bpp == 8) || (bpp == 24) || (bpp == 32)) { + else if((bpp == 8) || (bpp == 24) || (bpp == 32)) { // anything other than BW : // This optimized version of rotation rotates image by smaller blocks. It is quite // a bit faster than obvious algorithm, because it produces much less CPU cache misses. @@ -472,7 +472,7 @@ Rotate180(FIBITMAP *src) { } break; } - // else if ((bpp == 8) || (bpp == 24) || (bpp == 32)) FALL TROUGH + // else if((bpp == 8) || (bpp == 24) || (bpp == 32)) FALL TROUGH case FIT_UINT16: case FIT_RGB16: case FIT_RGBA16: @@ -559,7 +559,7 @@ Rotate270(FIBITMAP *src) { } } } - else if ((bpp == 8) || (bpp == 24) || (bpp == 32)) { + else if((bpp == 8) || (bpp == 24) || (bpp == 32)) { // anything other than BW : // This optimized version of rotation rotates image by smaller blocks. It is quite // a bit faster than obvious algorithm, because it produces much less CPU cache misses. @@ -730,7 +730,7 @@ Rotate45(FIBITMAP *src, double dAngle, const void *bkcolor) { } else { // Negative angle - dOffset = dTan * ( (src_width - 1.0) * -dSinE + (1.0 - height_3)); + dOffset = dTan * ( (src_width - 1.0) * -dSinE + (1.0 - height_3) ); } for(u = 0; u < height_3; u++, dOffset += dTan) { int iShear = int(floor(dOffset)); @@ -767,7 +767,7 @@ RotateAny(FIBITMAP *src, double dAngle, const void *bkcolor) { // Bring angle to range of [0 .. 360) dAngle += 360; } - if ((dAngle > 45) && (dAngle <= 135)) { + if((dAngle > 45) && (dAngle <= 135)) { // Angle in (45 .. 135] // Rotate image by 90 degrees into temporary image, // so it requires only an extra rotation angle @@ -775,7 +775,7 @@ RotateAny(FIBITMAP *src, double dAngle, const void *bkcolor) { image = Rotate90(src); dAngle -= 90; } - else if ((dAngle > 135) && (dAngle <= 225)) { + else if((dAngle > 135) && (dAngle <= 225)) { // Angle in (135 .. 225] // Rotate image by 180 degrees into temporary image, // so it requires only an extra rotation angle @@ -783,7 +783,7 @@ RotateAny(FIBITMAP *src, double dAngle, const void *bkcolor) { image = Rotate180(src); dAngle -= 180; } - else if ((dAngle > 225) && (dAngle <= 315)) { + else if((dAngle > 225) && (dAngle <= 315)) { // Angle in (225 .. 315] // Rotate image by 270 degrees into temporary image, // so it requires only an extra rotation angle @@ -825,7 +825,7 @@ RotateAny(FIBITMAP *src, double dAngle, const void *bkcolor) { FIBITMAP *DLL_CALLCONV FreeImage_Rotate(FIBITMAP *dib, double angle, const void *bkcolor) { - if (!FreeImage_HasPixels(dib)) return NULL; + if(!FreeImage_HasPixels(dib)) return NULL; if(0 == angle) { return FreeImage_Clone(dib); @@ -846,7 +846,7 @@ FreeImage_Rotate(FIBITMAP *dib, double angle, const void *bkcolor) { // perform the rotation FIBITMAP *dst = RotateAny(dib, angle, bkcolor); - if (!dst) throw(1); + if(!dst) throw(1); // build a greyscale palette RGBQUAD *dst_pal = FreeImage_GetPalette(dst); @@ -863,9 +863,9 @@ FreeImage_Rotate(FIBITMAP *dib, double angle, const void *bkcolor) { return dst; } - else if ((bpp == 8) || (bpp == 24) || (bpp == 32)) { + else if((bpp == 8) || (bpp == 24) || (bpp == 32)) { FIBITMAP *dst = RotateAny(dib, angle, bkcolor); - if (!dst) throw(1); + if(!dst) throw(1); if(bpp == 8) { // copy original palette to rotated bitmap @@ -878,7 +878,7 @@ FreeImage_Rotate(FIBITMAP *dib, double angle, const void *bkcolor) { // copy background color RGBQUAD bkcolor; - if ( FreeImage_GetBackgroundColor(dib, &bkcolor)) { + if( FreeImage_GetBackgroundColor(dib, &bkcolor) ) { FreeImage_SetBackgroundColor(dst, &bkcolor); } @@ -898,7 +898,7 @@ FreeImage_Rotate(FIBITMAP *dib, double angle, const void *bkcolor) { case FIT_RGBAF: { FIBITMAP *dst = RotateAny(dib, angle, bkcolor); - if (!dst) throw(1); + if(!dst) throw(1); // copy metadata from src to dst FreeImage_CloneMetadata(dst, dib); diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Colors.cpp b/plugins/AdvaImg/src/FreeImageToolkit/Colors.cpp index 8b9bbd6482..67191768bb 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/Colors.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/Colors.cpp @@ -108,7 +108,7 @@ FreeImage_Invert(FIBITMAP *src) { return FALSE; } } - else if ((image_type == FIT_UINT16) || (image_type == FIT_RGB16) || (image_type == FIT_RGBA16)) { + else if((image_type == FIT_UINT16) || (image_type == FIT_RGB16) || (image_type == FIT_RGBA16)) { // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit) const unsigned wordspp = (FreeImage_GetLine(src) / width) / sizeof(WORD); @@ -149,11 +149,11 @@ FreeImage_AdjustCurve(FIBITMAP *src, BYTE *LUT, FREE_IMAGE_COLOR_CHANNEL channel unsigned x, y; BYTE *bits = NULL; - if (!FreeImage_HasPixels(src) || !LUT || (FreeImage_GetImageType(src) != FIT_BITMAP)) + if(!FreeImage_HasPixels(src) || !LUT || (FreeImage_GetImageType(src) != FIT_BITMAP)) return FALSE; int bpp = FreeImage_GetBPP(src); - if ((bpp != 8) && (bpp != 24) && (bpp != 32)) + if((bpp != 8) && (bpp != 24) && (bpp != 32)) return FALSE; // apply the LUT @@ -271,7 +271,7 @@ BOOL DLL_CALLCONV FreeImage_AdjustGamma(FIBITMAP *src, double gamma) { BYTE LUT[256]; // Lookup table - if (!FreeImage_HasPixels(src) || (gamma <= 0)) + if(!FreeImage_HasPixels(src) || (gamma <= 0)) return FALSE; // Build the lookup table @@ -302,7 +302,7 @@ FreeImage_AdjustBrightness(FIBITMAP *src, double percentage) { BYTE LUT[256]; // Lookup table double value; - if (!FreeImage_HasPixels(src)) + if(!FreeImage_HasPixels(src)) return FALSE; // Build the lookup table @@ -328,7 +328,7 @@ FreeImage_AdjustContrast(FIBITMAP *src, double percentage) { BYTE LUT[256]; // Lookup table double value; - if (!FreeImage_HasPixels(src)) + if(!FreeImage_HasPixels(src)) return FALSE; // Build the lookup table @@ -357,7 +357,7 @@ FreeImage_GetHistogram(FIBITMAP *src, DWORD *histo, FREE_IMAGE_COLOR_CHANNEL cha BYTE *bits = NULL; unsigned x, y; - if (!FreeImage_HasPixels(src) || !histo) return FALSE; + if(!FreeImage_HasPixels(src) || !histo) return FALSE; unsigned width = FreeImage_GetWidth(src); unsigned height = FreeImage_GetHeight(src); @@ -377,7 +377,7 @@ FreeImage_GetHistogram(FIBITMAP *src, DWORD *histo, FREE_IMAGE_COLOR_CHANNEL cha } return TRUE; } - else if ((bpp == 24) || (bpp == 32)) { + else if((bpp == 24) || (bpp == 32)) { int bytespp = bpp / 8; // bytes / pixel // clear histogram array diff --git a/plugins/AdvaImg/src/FreeImageToolkit/CopyPaste.cpp b/plugins/AdvaImg/src/FreeImageToolkit/CopyPaste.cpp index 753fdc736e..e4b8155739 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/CopyPaste.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/CopyPaste.cpp @@ -58,12 +58,12 @@ Combine1(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned BOOL value; // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 1) || (FreeImage_GetBPP(src_dib) != 1)) { + if((FreeImage_GetBPP(dst_dib) != 1) || (FreeImage_GetBPP(src_dib) != 1)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -97,12 +97,12 @@ Combine4(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned BOOL bOddStart, bOddEnd; // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 4) || (FreeImage_GetBPP(src_dib) != 4)) { + if((FreeImage_GetBPP(dst_dib) != 4) || (FreeImage_GetBPP(src_dib) != 4)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -196,12 +196,12 @@ Combine4(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned static BOOL Combine8(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned alpha) { // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 8) || (FreeImage_GetBPP(src_dib) != 8)) { + if((FreeImage_GetBPP(dst_dib) != 8) || (FreeImage_GetBPP(src_dib) != 8)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -238,12 +238,12 @@ Combine8(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned static BOOL Combine16_555(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned alpha) { // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 16) || (FreeImage_GetBPP(src_dib) != 16)) { + if((FreeImage_GetBPP(dst_dib) != 16) || (FreeImage_GetBPP(src_dib) != 16)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -298,12 +298,12 @@ Combine16_555(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsi static BOOL Combine16_565(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned alpha) { // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 16) || (FreeImage_GetBPP(src_dib) != 16)) { + if((FreeImage_GetBPP(dst_dib) != 16) || (FreeImage_GetBPP(src_dib) != 16)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -362,12 +362,12 @@ Combine16_565(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsi static BOOL Combine24(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned alpha) { // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 24) || (FreeImage_GetBPP(src_dib) != 24)) { + if((FreeImage_GetBPP(dst_dib) != 24) || (FreeImage_GetBPP(src_dib) != 24)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -404,12 +404,12 @@ Combine24(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned static BOOL Combine32(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y, unsigned alpha) { // check the bit depth of src and dst images - if ((FreeImage_GetBPP(dst_dib) != 32) || (FreeImage_GetBPP(src_dib) != 32)) { + if((FreeImage_GetBPP(dst_dib) != 32) || (FreeImage_GetBPP(src_dib) != 32)) { return FALSE; } // check the size of src image - if ((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { + if((x + FreeImage_GetWidth(src_dib) > FreeImage_GetWidth(dst_dib)) || (y + FreeImage_GetHeight(src_dib) > FreeImage_GetHeight(dst_dib))) { return FALSE; } @@ -459,7 +459,7 @@ CombineSameType(FIBITMAP *dst_dib, FIBITMAP *src_dib, unsigned x, unsigned y) { unsigned dst_pitch = FreeImage_GetPitch(dst_dib); // check the size of src image - if ((x + src_width > dst_width) || (y + src_height > dst_height)) { + if((x + src_width > dst_width) || (y + src_height > dst_height)) { return FALSE; } @@ -493,7 +493,7 @@ Works with any bitmap type. FIBITMAP * DLL_CALLCONV FreeImage_Copy(FIBITMAP *src, int left, int top, int right, int bottom) { - if (!FreeImage_HasPixels(src)) + if(!FreeImage_HasPixels(src)) return NULL; // normalize the rectangle @@ -506,7 +506,7 @@ FreeImage_Copy(FIBITMAP *src, int left, int top, int right, int bottom) { // check the size of the sub image int src_width = FreeImage_GetWidth(src); int src_height = FreeImage_GetHeight(src); - if ((left < 0) || (right > src_width) || (top < 0) || (bottom > src_height)) { + if((left < 0) || (right > src_width) || (top < 0) || (bottom > src_height)) { return NULL; } @@ -608,7 +608,7 @@ FreeImage_Copy(FIBITMAP *src, int left, int top, int right, int bottom) { // copy background color RGBQUAD bkcolor; - if ( FreeImage_GetBackgroundColor(src, &bkcolor)) { + if( FreeImage_GetBackgroundColor(src, &bkcolor) ) { FreeImage_SetBackgroundColor(dst, &bkcolor); } @@ -639,13 +639,13 @@ BOOL DLL_CALLCONV FreeImage_Paste(FIBITMAP *dst, FIBITMAP *src, int left, int top, int alpha) { BOOL bResult = FALSE; - if (!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; + if(!FreeImage_HasPixels(src) || !FreeImage_HasPixels(dst)) return FALSE; // check the size of src image - if ((left < 0) || (top < 0)) { + if((left < 0) || (top < 0)) { return FALSE; } - if ((left + FreeImage_GetWidth(src) > FreeImage_GetWidth(dst)) || (top + FreeImage_GetHeight(src) > FreeImage_GetHeight(dst))) { + if((left + FreeImage_GetWidth(src) > FreeImage_GetWidth(dst)) || (top + FreeImage_GetHeight(src) > FreeImage_GetHeight(dst))) { return FALSE; } @@ -704,7 +704,7 @@ FreeImage_Paste(FIBITMAP *dst, FIBITMAP *src, int left, int top, int alpha) { return FALSE; } - if (!clone) return FALSE; + if(!clone) return FALSE; // paste src to dst switch(FreeImage_GetBPP(dst)) { diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Display.cpp b/plugins/AdvaImg/src/FreeImageToolkit/Display.cpp index 3e4807042d..245c5c3a18 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/Display.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/Display.cpp @@ -40,20 +40,20 @@ For colour images, the computation is done separately for R, G, and B samples. */ FIBITMAP * DLL_CALLCONV FreeImage_Composite(FIBITMAP *fg, BOOL useFileBkg, RGBQUAD *appBkColor, FIBITMAP *bg) { - if (!FreeImage_HasPixels(fg)) return NULL; + if(!FreeImage_HasPixels(fg)) return NULL; int width = FreeImage_GetWidth(fg); int height = FreeImage_GetHeight(fg); int bpp = FreeImage_GetBPP(fg); - if ((bpp != 8) && (bpp != 32)) + if((bpp != 8) && (bpp != 32)) return NULL; if(bg) { int bg_width = FreeImage_GetWidth(bg); int bg_height = FreeImage_GetHeight(bg); int bg_bpp = FreeImage_GetBPP(bg); - if ((bg_width != width) || (bg_height != height) || (bg_bpp != 24)) + if((bg_width != width) || (bg_height != height) || (bg_bpp != 24)) return NULL; } @@ -71,7 +71,7 @@ FreeImage_Composite(FIBITMAP *fg, BOOL useFileBkg, RGBQUAD *appBkColor, FIBITMAP // allocate the composite image FIBITMAP *composite = FreeImage_Allocate(width, height, 24, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); - if (!composite) return NULL; + if(!composite) return NULL; // get the palette RGBQUAD *pal = FreeImage_GetPalette(fg); @@ -133,7 +133,7 @@ FreeImage_Composite(FIBITMAP *fg, BOOL useFileBkg, RGBQUAD *appBkColor, FIBITMAP // background color - if (!bHasBkColor) { + if(!bHasBkColor) { if(bg) { // get the background color from the background image bkc.rgbBlue = bg_bits[FI_RGBA_BLUE]; diff --git a/plugins/AdvaImg/src/FreeImageToolkit/JPEGTransform.cpp b/plugins/AdvaImg/src/FreeImageToolkit/JPEGTransform.cpp index 2d7399dcb2..5822f748a6 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/JPEGTransform.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/JPEGTransform.cpp @@ -61,7 +61,7 @@ ls_jpeg_error_exit (j_common_ptr cinfo) { (*cinfo->err->output_message)(cinfo); // allow JPEG with a premature end of file - if ((cinfo)->err->msg_parm.i[0] != 13) { + if((cinfo)->err->msg_parm.i[0] != 13) { // let the memory manager delete any temp files before we die jpeg_destroy(cinfo); @@ -171,7 +171,7 @@ LosslessTransform(const FilenameIO *filenameIO, FREE_IMAGE_JPEG_OPERATION operat // crop option if(crop != NULL) { - if (!jtransform_parse_crop_spec(&transfoptions, crop)) { + if(!jtransform_parse_crop_spec(&transfoptions, crop)) { FreeImage_OutputMessageProc(FIF_JPEG, "Bogus crop argument %s", crop); throw(1); } @@ -180,14 +180,14 @@ LosslessTransform(const FilenameIO *filenameIO, FREE_IMAGE_JPEG_OPERATION operat // Open the input file if(bUseUnicode) { #ifdef _WIN32 - if ((fp = _wfopen(filenameIO->wsrc_file, L"rb")) == NULL) { + if((fp = _wfopen(filenameIO->wsrc_file, L"rb")) == NULL) { FreeImage_OutputMessageProc(FIF_JPEG, "Cannot open input file for reading"); } #else fp = NULL; #endif // _WIN32 } else { - if ((fp = fopen(filenameIO->src_file, "rb")) == NULL) { + if((fp = fopen(filenameIO->src_file, "rb")) == NULL) { FreeImage_OutputMessageProc(FIF_JPEG, "Cannot open %s for reading", filenameIO->src_file); } } @@ -211,7 +211,7 @@ LosslessTransform(const FilenameIO *filenameIO, FREE_IMAGE_JPEG_OPERATION operat // Prepare transformation workspace // Fails right away if perfect flag is TRUE and transformation is not perfect - if ( !jtransform_request_workspace(&srcinfo, &transfoptions)) { + if( !jtransform_request_workspace(&srcinfo, &transfoptions) ) { FreeImage_OutputMessageProc(FIF_JPEG, "Transformation is not perfect"); throw(1); } @@ -237,14 +237,14 @@ LosslessTransform(const FilenameIO *filenameIO, FREE_IMAGE_JPEG_OPERATION operat // Open the output file if(bUseUnicode) { #ifdef _WIN32 - if ((fp = _wfopen(filenameIO->wdst_file, L"wb")) == NULL) { + if((fp = _wfopen(filenameIO->wdst_file, L"wb")) == NULL) { FreeImage_OutputMessageProc(FIF_JPEG, "Cannot open output file for writing"); } #else fp = NULL; #endif // _WIN32 } else { - if ((fp = fopen(filenameIO->dst_file, "wb")) == NULL) { + if((fp = fopen(filenameIO->dst_file, "wb")) == NULL) { FreeImage_OutputMessageProc(FIF_JPEG, "Cannot open %s for writing", filenameIO->dst_file); } } diff --git a/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp b/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp index a31961447a..3b577cbd0a 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/MultigridPoissonSolver.cpp @@ -68,7 +68,7 @@ static void fmg_restrict(FIBITMAP *UC, FIBITMAP *UF, int nc) { // 0.5 * UF(row_uf, col_uf) + 0.125 * [ UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) + UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ] float *uc_pixel = uc_scan + col_uc; const float *uf_center = uf_scan + col_uf; - *uc_pixel = 0.5F * *uf_center + 0.125F * ( *(uf_center + uf_pitch) + *(uf_center - uf_pitch) + *(uf_center + 1) + *(uf_center - 1)); + *uc_pixel = 0.5F * *uf_center + 0.125F * ( *(uf_center + uf_pitch) + *(uf_center - uf_pitch) + *(uf_center + 1) + *(uf_center - 1) ); } uc_scan += uc_pitch; } @@ -158,8 +158,8 @@ static void fmg_prolongate(FIBITMAP *UF, FIBITMAP *UC, int nf) { for(row_uf = 1; row_uf < nf-1; row_uf += 2) { float *uf_scan = uf_bits + row_uf * uf_pitch; for (col_uf = 0; col_uf < nf; col_uf += 2) { - // calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf)) - uf_scan[col_uf] = 0.5F * ( *(uf_scan + uf_pitch + col_uf) + *(uf_scan - uf_pitch + col_uf)); + // calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) ) + uf_scan[col_uf] = 0.5F * ( *(uf_scan + uf_pitch + col_uf) + *(uf_scan - uf_pitch + col_uf) ); } } } @@ -168,7 +168,7 @@ static void fmg_prolongate(FIBITMAP *UF, FIBITMAP *UC, int nf) { float *uf_scan = uf_bits; for(row_uf = 0; row_uf < nf; row_uf++) { for (col_uf = 1; col_uf < nf-1; col_uf += 2) { - // calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1)) + // calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ) uf_scan[col_uf] = 0.5F * ( uf_scan[col_uf + 1] + uf_scan[col_uf - 1] ); } uf_scan += uf_pitch; @@ -311,7 +311,7 @@ static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) { #define _CREATE_ARRAY_GRID_(array, array_size) \ array = (FIBITMAP**)malloc(array_size * sizeof(FIBITMAP*));\ - if (!array) throw(1);\ + if(!array) throw(1);\ memset(array, 0, array_size * sizeof(FIBITMAP*)) #define _FREE_ARRAY_GRID_(array, array_size) \ @@ -351,7 +351,7 @@ static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) { // allocate storage for r.h.s. on grid (ng - 2) ... IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IRHO[ngrid]) throw(1); + if(!IRHO[ngrid]) throw(1); // ... and fill it by restricting from the fine grid fmg_restrict(IRHO[ngrid], U, nn); @@ -361,16 +361,16 @@ static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) { nn = nn/2 + 1; ngrid--; IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IRHO[ngrid]) throw(1); + if(!IRHO[ngrid]) throw(1); fmg_restrict(IRHO[ngrid], IRHO[ngrid+1], nn); } nn = 3; IU[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IU[0]) throw(1); + if(!IU[0]) throw(1); IRHS[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IRHS[0]) throw(1); + if(!IRHS[0]) throw(1); // initial solution on coarsest grid fmg_solve(IU[0], IRHO[0]); @@ -384,11 +384,11 @@ static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) { nn = 2*nn - 1; IU[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IU[j]) throw(1); + if(!IU[j]) throw(1); IRHS[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IRHS[j]) throw(1); + if(!IRHS[j]) throw(1); IRES[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn); - if (!IRES[j]) throw(1); + if(!IRES[j]) throw(1); fmg_prolongate(IU[j], IU[j-1], nn); @@ -464,7 +464,7 @@ where j is such that 2^j is the nearest larger dimension corresponding to MAX(im */ FIBITMAP* DLL_CALLCONV FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) { - if (!FreeImage_HasPixels(Laplacian)) return NULL; + if(!FreeImage_HasPixels(Laplacian)) return NULL; int width = FreeImage_GetWidth(Laplacian); int height = FreeImage_GetHeight(Laplacian); @@ -473,7 +473,7 @@ FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) { int n = MAX(width, height); int size = 0; while((n >>= 1) > 0) size++; - if ((1 << size) < MAX(width, height)) { + if((1 << size) < MAX(width, height)) { size++; } // size must be of the form 2^j + 1 for some integer j @@ -481,7 +481,7 @@ FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) { // allocate a temporary square image I FIBITMAP *I = FreeImage_AllocateT(FIT_FLOAT, size, size); - if (!I) return NULL; + if(!I) return NULL; // copy Laplacian into I and shift pixels to create a boundary FreeImage_Paste(I, Laplacian, 1, 1, 255); diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Rescale.cpp b/plugins/AdvaImg/src/FreeImageToolkit/Rescale.cpp index e79e5f456c..ffe667e7d4 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/Rescale.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/Rescale.cpp @@ -1,231 +1,169 @@ -// ========================================================== -// Upsampling / downsampling routine -// -// Design and implementation by -// - Hervé Drolon (drolon@infonie.fr) -// -// This file is part of FreeImage 3 -// -// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY -// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES -// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE -// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED -// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT -// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY -// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL -// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER -// THIS DISCLAIMER. -// -// Use at your own risk! -// ========================================================== - -#include "Resize.h" - -FIBITMAP * DLL_CALLCONV -FreeImage_Rescale(FIBITMAP *src, int dst_width, int dst_height, FREE_IMAGE_FILTER filter) { - FIBITMAP *dst = NULL; - - if (!FreeImage_HasPixels(src) || (dst_width <= 0) || (dst_height <= 0) || (FreeImage_GetWidth(src) <= 0) || (FreeImage_GetHeight(src) <= 0)) { - return NULL; - } - - // select the filter - CGenericFilter *pFilter = NULL; - switch(filter) { - case FILTER_BOX: - pFilter = new(std::nothrow) CBoxFilter(); - break; - case FILTER_BICUBIC: - pFilter = new(std::nothrow) CBicubicFilter(); - break; - case FILTER_BILINEAR: - pFilter = new(std::nothrow) CBilinearFilter(); - break; - case FILTER_BSPLINE: - pFilter = new(std::nothrow) CBSplineFilter(); - break; - case FILTER_CATMULLROM: - pFilter = new(std::nothrow) CCatmullRomFilter(); - break; - case FILTER_LANCZOS3: - pFilter = new(std::nothrow) CLanczos3Filter(); - break; - } - - if (!pFilter) { - return NULL; - } - - CResizeEngine Engine(pFilter); - - // perform upsampling or downsampling - - if ((FreeImage_GetBPP(src) == 4) || (FreeImage_GetColorType(src) == FIC_PALETTE)) { - // special case for 4-bit images or color map indexed images ... - if(FreeImage_IsTransparent(src) == FALSE) { - FIBITMAP *src24 = NULL; - FIBITMAP *dst24 = NULL; - try { - // transparent conversion to 24-bit (any transparency table will be destroyed) - src24 = FreeImage_ConvertTo24Bits(src); - if (!src24) throw(1); - // perform upsampling or downsampling - dst24 = Engine.scale(src24, dst_width, dst_height); - if (!dst24) throw(1); - FreeImage_Unload(src24); src24 = NULL; - // color quantize to 8-bit - dst = FreeImage_ColorQuantize(dst24, FIQ_NNQUANT); - // free and return - FreeImage_Unload(dst24); - } catch(int) { - if(src24) FreeImage_Unload(src24); - if(dst24) FreeImage_Unload(dst24); - } - } else { - FIBITMAP *src32 = NULL; - try { - // transparent conversion to 32-bit (keep transparency) - src32 = FreeImage_ConvertTo32Bits(src); - if (!src32) throw(1); - // perform upsampling or downsampling - dst = Engine.scale(src32, dst_width, dst_height); - if (!dst) throw(1); - // free and return - FreeImage_Unload(src32); - } catch(int) { - if(src32) FreeImage_Unload(src32); - if(dst) FreeImage_Unload(dst); - } - } - } - else if ((FreeImage_GetBPP(src) == 16) && (FreeImage_GetImageType(src) == FIT_BITMAP)) { - // convert 16-bit RGB to 24-bit - FIBITMAP *src24 = NULL; - try { - // transparent conversion to 24-bit (any transparency table will be destroyed) - src24 = FreeImage_ConvertTo24Bits(src); - if (!src24) throw(1); - // perform upsampling or downsampling - dst = Engine.scale(src24, dst_width, dst_height); - if (!dst) throw(1); - // free and return - FreeImage_Unload(src24); - } catch(int) { - if(src24) FreeImage_Unload(src24); - if(dst) FreeImage_Unload(dst); - } - } - else { - // normal case : - // 1- or 8-bit greyscale, 24- or 32-bit RGB(A) images - // 16-bit greyscale, 48- or 64-bit RGB(A) images - // 32-bit float, 96- or 128-bit RGB(A) float images - dst = Engine.scale(src, dst_width, dst_height); - } - - - delete pFilter; - - // copy metadata from src to dst - FreeImage_CloneMetadata(dst, src); - - return dst; -} - -FIBITMAP * DLL_CALLCONV -FreeImage_MakeThumbnail(FIBITMAP *dib, int max_pixel_size, BOOL convert) { - FIBITMAP *thumbnail = NULL; - int new_width, new_height; - - if (!FreeImage_HasPixels(dib) || (max_pixel_size <= 0)) return NULL; - - int width = FreeImage_GetWidth(dib); - int height = FreeImage_GetHeight(dib); - - if(max_pixel_size == 0) max_pixel_size = 1; - - if ((width < max_pixel_size) && (height < max_pixel_size)) { - // image is smaller than the requested thumbnail - return FreeImage_Clone(dib); - } - - if(width > height) { - new_width = max_pixel_size; - // change image height with the same ratio - double ratio = ((double)new_width / (double)width); - new_height = (int)(height * ratio + 0.5); - if(new_height == 0) new_height = 1; - } else { - new_height = max_pixel_size; - // change image width with the same ratio - double ratio = ((double)new_height / (double)height); - new_width = (int)(width * ratio + 0.5); - if(new_width == 0) new_width = 1; - } - - const FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(dib); - - // perform downsampling using a bilinear interpolation - - switch(image_type) { - case FIT_BITMAP: - case FIT_UINT16: - case FIT_RGB16: - case FIT_RGBA16: - case FIT_FLOAT: - case FIT_RGBF: - case FIT_RGBAF: - { - FREE_IMAGE_FILTER filter = FILTER_BILINEAR; - thumbnail = FreeImage_Rescale(dib, new_width, new_height, filter); - } - break; - - case FIT_INT16: - case FIT_UINT32: - case FIT_INT32: - case FIT_DOUBLE: - case FIT_COMPLEX: - default: - // cannot rescale this kind of image - thumbnail = NULL; - break; - } - - if ((thumbnail != NULL) && (image_type != FIT_BITMAP) && convert) { - // convert to a standard bitmap - FIBITMAP *bitmap = NULL; - switch(image_type) { - case FIT_UINT16: - bitmap = FreeImage_ConvertTo8Bits(thumbnail); - break; - case FIT_RGB16: - bitmap = FreeImage_ConvertTo24Bits(thumbnail); - break; - case FIT_RGBA16: - bitmap = FreeImage_ConvertTo32Bits(thumbnail); - break; - case FIT_FLOAT: - bitmap = FreeImage_ConvertToStandardType(thumbnail, TRUE); - break; - case FIT_RGBF: - bitmap = FreeImage_ToneMapping(thumbnail, FITMO_DRAGO03); - break; - case FIT_RGBAF: - // no way to keep the transparency yet ... - FIBITMAP *rgbf = FreeImage_ConvertToRGBF(thumbnail); - bitmap = FreeImage_ToneMapping(rgbf, FITMO_DRAGO03); - FreeImage_Unload(rgbf); - break; - } - if(bitmap != NULL) { - FreeImage_Unload(thumbnail); - thumbnail = bitmap; - } - } - - // copy metadata from src to dst - FreeImage_CloneMetadata(thumbnail, dib); - - return thumbnail; -} +// ==========================================================
+// Upsampling / downsampling routine
+//
+// Design and implementation by
+// - Hervé Drolon (drolon@infonie.fr)
+// - Carsten Klein (cklein05@users.sourceforge.net)
+//
+// This file is part of FreeImage 3
+//
+// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
+// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
+// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
+// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
+// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
+// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
+// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
+// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
+// THIS DISCLAIMER.
+//
+// Use at your own risk!
+// ==========================================================
+
+#include "Resize.h"
+
+FIBITMAP * DLL_CALLCONV
+FreeImage_Rescale(FIBITMAP *src, int dst_width, int dst_height, FREE_IMAGE_FILTER filter) {
+ FIBITMAP *dst = NULL;
+
+ if (!FreeImage_HasPixels(src) || (dst_width <= 0) || (dst_height <= 0) || (FreeImage_GetWidth(src) <= 0) || (FreeImage_GetHeight(src) <= 0)) {
+ return NULL;
+ }
+
+ // select the filter
+ CGenericFilter *pFilter = NULL;
+ switch (filter) {
+ case FILTER_BOX:
+ pFilter = new(std::nothrow) CBoxFilter();
+ break;
+ case FILTER_BICUBIC:
+ pFilter = new(std::nothrow) CBicubicFilter();
+ break;
+ case FILTER_BILINEAR:
+ pFilter = new(std::nothrow) CBilinearFilter();
+ break;
+ case FILTER_BSPLINE:
+ pFilter = new(std::nothrow) CBSplineFilter();
+ break;
+ case FILTER_CATMULLROM:
+ pFilter = new(std::nothrow) CCatmullRomFilter();
+ break;
+ case FILTER_LANCZOS3:
+ pFilter = new(std::nothrow) CLanczos3Filter();
+ break;
+ }
+
+ if (!pFilter) {
+ return NULL;
+ }
+
+ CResizeEngine Engine(pFilter);
+
+ dst = Engine.scale(src, dst_width, dst_height, 0, 0,
+ FreeImage_GetWidth(src), FreeImage_GetHeight(src));
+
+ delete pFilter;
+
+ // copy metadata from src to dst
+ FreeImage_CloneMetadata(dst, src);
+
+ return dst;
+}
+
+FIBITMAP * DLL_CALLCONV
+FreeImage_MakeThumbnail(FIBITMAP *dib, int max_pixel_size, BOOL convert) {
+ FIBITMAP *thumbnail = NULL;
+ int new_width, new_height;
+
+ if(!FreeImage_HasPixels(dib) || (max_pixel_size <= 0)) return NULL;
+
+ int width = FreeImage_GetWidth(dib);
+ int height = FreeImage_GetHeight(dib);
+
+ if(max_pixel_size == 0) max_pixel_size = 1;
+
+ if((width < max_pixel_size) && (height < max_pixel_size)) {
+ // image is smaller than the requested thumbnail
+ return FreeImage_Clone(dib);
+ }
+
+ if(width > height) {
+ new_width = max_pixel_size;
+ // change image height with the same ratio
+ double ratio = ((double)new_width / (double)width);
+ new_height = (int)(height * ratio + 0.5);
+ if(new_height == 0) new_height = 1;
+ } else {
+ new_height = max_pixel_size;
+ // change image width with the same ratio
+ double ratio = ((double)new_height / (double)height);
+ new_width = (int)(width * ratio + 0.5);
+ if(new_width == 0) new_width = 1;
+ }
+
+ const FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(dib);
+
+ // perform downsampling using a bilinear interpolation
+
+ switch(image_type) {
+ case FIT_BITMAP:
+ case FIT_UINT16:
+ case FIT_RGB16:
+ case FIT_RGBA16:
+ case FIT_FLOAT:
+ case FIT_RGBF:
+ case FIT_RGBAF:
+ {
+ FREE_IMAGE_FILTER filter = FILTER_BILINEAR;
+ thumbnail = FreeImage_Rescale(dib, new_width, new_height, filter);
+ }
+ break;
+
+ case FIT_INT16:
+ case FIT_UINT32:
+ case FIT_INT32:
+ case FIT_DOUBLE:
+ case FIT_COMPLEX:
+ default:
+ // cannot rescale this kind of image
+ thumbnail = NULL;
+ break;
+ }
+
+ if((thumbnail != NULL) && (image_type != FIT_BITMAP) && convert) {
+ // convert to a standard bitmap
+ FIBITMAP *bitmap = NULL;
+ switch(image_type) {
+ case FIT_UINT16:
+ bitmap = FreeImage_ConvertTo8Bits(thumbnail);
+ break;
+ case FIT_RGB16:
+ bitmap = FreeImage_ConvertTo24Bits(thumbnail);
+ break;
+ case FIT_RGBA16:
+ bitmap = FreeImage_ConvertTo32Bits(thumbnail);
+ break;
+ case FIT_FLOAT:
+ bitmap = FreeImage_ConvertToStandardType(thumbnail, TRUE);
+ break;
+ case FIT_RGBF:
+ bitmap = FreeImage_ToneMapping(thumbnail, FITMO_DRAGO03);
+ break;
+ case FIT_RGBAF:
+ // no way to keep the transparency yet ...
+ FIBITMAP *rgbf = FreeImage_ConvertToRGBF(thumbnail);
+ bitmap = FreeImage_ToneMapping(rgbf, FITMO_DRAGO03);
+ FreeImage_Unload(rgbf);
+ break;
+ }
+ if(bitmap != NULL) {
+ FreeImage_Unload(thumbnail);
+ thumbnail = bitmap;
+ }
+ }
+
+ // copy metadata from src to dst
+ FreeImage_CloneMetadata(thumbnail, dib);
+
+ return thumbnail;
+}
diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Resize.cpp b/plugins/AdvaImg/src/FreeImageToolkit/Resize.cpp index 5421bd47ab..f342bb794e 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/Resize.cpp +++ b/plugins/AdvaImg/src/FreeImageToolkit/Resize.cpp @@ -1,656 +1,1992 @@ -// ========================================================== -// Upsampling / downsampling classes -// -// Design and implementation by -// - Hervé Drolon (drolon@infonie.fr) -// - Detlev Vendt (detlev.vendt@brillit.de) -// -// This file is part of FreeImage 3 -// -// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY -// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES -// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE -// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED -// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT -// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY -// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL -// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER -// THIS DISCLAIMER. -// -// Use at your own risk! -// ========================================================== - -#include "Resize.h" - -/** - Filter weights table. - This class stores contribution information for an entire line (row or column). -*/ -CWeightsTable::CWeightsTable(CGenericFilter *pFilter, unsigned uDstSize, unsigned uSrcSize) { - unsigned u; - double dWidth; - double dFScale = 1.0; - const double dFilterWidth = pFilter->GetWidth(); - - // scale factor - const double dScale = double(uDstSize) / double(uSrcSize); - - if(dScale < 1.0) { - // minification - dWidth = dFilterWidth / dScale; - dFScale = dScale; - } else { - // magnification - dWidth= dFilterWidth; - } - - // allocate a new line contributions structure - // - // window size is the number of sampled pixels - m_WindowSize = 2 * (int)ceil(dWidth) + 1; - m_LineLength = uDstSize; - // allocate list of contributions - m_WeightTable = (Contribution*)malloc(m_LineLength * sizeof(Contribution)); - for(u = 0 ; u < m_LineLength ; u++) { - // allocate contributions for every pixel - m_WeightTable[u].Weights = (double*)malloc(m_WindowSize * sizeof(double)); - } - - // offset for discrete to continuous coordinate conversion - const double dOffset = (0.5 / dScale) - 0.5; - - - for(u = 0; u < m_LineLength; u++) { - // scan through line of contributions - const double dCenter = (double)u / dScale + dOffset; // reverse mapping - // find the significant edge points that affect the pixel - int iLeft = MAX (0, (int)floor (dCenter - dWidth)); - int iRight = MIN ((int)ceil (dCenter + dWidth), int(uSrcSize) - 1); - - // cut edge points to fit in filter window in case of spill-off - if ((iRight - iLeft + 1) > int(m_WindowSize)) { - if(iLeft < (int(uSrcSize) - 1 / 2)) { - iLeft++; - } else { - iRight--; - } - } - - m_WeightTable[u].Left = iLeft; - m_WeightTable[u].Right = iRight; - - int iSrc = 0; - double dTotalWeight = 0; // zero sum of weights - for(iSrc = iLeft; iSrc <= iRight; iSrc++) { - // calculate weights - const double weight = dFScale * pFilter->Filter(dFScale * (dCenter - (double)iSrc)); - m_WeightTable[u].Weights[iSrc-iLeft] = weight; - dTotalWeight += weight; - } - if ((dTotalWeight > 0) && (dTotalWeight != 1)) { - // normalize weight of neighbouring points - for(iSrc = iLeft; iSrc <= iRight; iSrc++) { - // normalize point - m_WeightTable[u].Weights[iSrc-iLeft] /= dTotalWeight; - } - // simplify the filter, discarding null weights at the right - iSrc = iRight - iLeft; - while(m_WeightTable[u].Weights[iSrc] == 0){ - m_WeightTable[u].Right--; - iSrc--; - if(m_WeightTable[u].Right == m_WeightTable[u].Left) - break; - } - - } - } -} - -CWeightsTable::~CWeightsTable() { - for(unsigned u = 0; u < m_LineLength; u++) { - // free contributions for every pixel - free(m_WeightTable[u].Weights); - } - // free list of pixels contributions - free(m_WeightTable); -} - -// --------------------------------------------- - -/** - CResizeEngine<br> - This class performs filtered zoom. It scales an image to the desired dimensions with - any of the CGenericFilter derived filter class.<br> - It works with 8-, 24- and 32-bit buffers.<br><br> - - <b>References</b> : <br> - [1] Paul Heckbert, C code to zoom raster images up or down, with nice filtering. - UC Berkeley, August 1989. [online] http://www-2.cs.cmu.edu/afs/cs.cmu.edu/Web/People/ph/heckbert.html - [2] Eran Yariv, Two Pass Scaling using Filters. The Code Project, December 1999. - [online] http://www.codeproject.com/bitmap/2_pass_scaling.asp - -*/ - -FIBITMAP* CResizeEngine::scale(FIBITMAP *src, unsigned dst_width, unsigned dst_height) { - unsigned src_width = FreeImage_GetWidth(src); - unsigned src_height = FreeImage_GetHeight(src); - - unsigned redMask = FreeImage_GetRedMask(src); - unsigned greenMask = FreeImage_GetGreenMask(src); - unsigned blueMask = FreeImage_GetBlueMask(src); - - unsigned bpp = FreeImage_GetBPP(src); - if(bpp == 1) { - // convert output to 8-bit - bpp = 8; - } - - FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src); - - // allocate the dst image - FIBITMAP *dst = FreeImage_AllocateT(image_type, dst_width, dst_height, bpp, redMask, greenMask, blueMask); - if (!dst) return NULL; - - if(bpp == 8) { - if(FreeImage_GetColorType(src) == FIC_MINISWHITE) { - // build an inverted greyscale palette - RGBQUAD *dst_pal = FreeImage_GetPalette(dst); - for(unsigned i = 0; i < 256; i++) { - dst_pal[i].rgbRed = dst_pal[i].rgbGreen = dst_pal[i].rgbBlue = (BYTE)(255 - i); - } - } else { - // build a greyscale palette - RGBQUAD *dst_pal = FreeImage_GetPalette(dst); - for(unsigned i = 0; i < 256; i++) { - dst_pal[i].rgbRed = dst_pal[i].rgbGreen = dst_pal[i].rgbBlue = (BYTE)i; - } - } - } - - /** - Decide which filtering order (xy or yx) is faster for this mapping. - --- The theory --- - Try to minimize calculations by counting the number of convolution multiplies - if(dst_width*src_height <= src_width*dst_height) { - // xy filtering - } else { - // yx filtering - } - --- The practice --- - Try to minimize calculations by counting the number of vertical convolutions (the most time consuming task) - if(dst_width*dst_height <= src_width*dst_height) { - // xy filtering - } else { - // yx filtering - } - */ - - if(dst_width <= src_width) { - // xy filtering - // ------------- - - // allocate a temporary image - FIBITMAP *tmp = FreeImage_AllocateT(image_type, dst_width, src_height, bpp, redMask, greenMask, blueMask); - if (!tmp) { - FreeImage_Unload(dst); - return NULL; - } - - // scale source image horizontally into temporary image - horizontalFilter(src, src_width, src_height, tmp, dst_width, src_height); - - // scale temporary image vertically into result image - verticalFilter(tmp, dst_width, src_height, dst, dst_width, dst_height); - - // free temporary image - FreeImage_Unload(tmp); - - } else { - // yx filtering - // ------------- - - // allocate a temporary image - FIBITMAP *tmp = FreeImage_AllocateT(image_type, src_width, dst_height, bpp, redMask, greenMask, blueMask); - if (!tmp) { - FreeImage_Unload(dst); - return NULL; - } - - // scale source image vertically into temporary image - verticalFilter(src, src_width, src_height, tmp, src_width, dst_height); - - // scale temporary image horizontally into result image - horizontalFilter(tmp, src_width, dst_height, dst, dst_width, dst_height); - - // free temporary image - FreeImage_Unload(tmp); - } - - return dst; -} - - -/// Performs horizontal image filtering -void CResizeEngine::horizontalFilter(FIBITMAP *src, unsigned src_width, unsigned src_height, FIBITMAP *dst, unsigned dst_width, unsigned dst_height) { - if(dst_width == src_width) { - // no scaling required, just copy - switch(FreeImage_GetBPP(src)) { - case 1: - { - if(FreeImage_GetBPP(dst) != 8) break; - for(unsigned y = 0; y < dst_height; y++) { - // convert each row - BYTE *src_bits = FreeImage_GetScanLine(src, y); - BYTE *dst_bits = FreeImage_GetScanLine(dst, y); - FreeImage_ConvertLine1To8(dst_bits, src_bits, dst_width); - } - } - break; - - default: - { - const BYTE *src_bits = FreeImage_GetBits(src); - BYTE *dst_bits = FreeImage_GetBits(dst); - memcpy(dst_bits, src_bits, dst_height * FreeImage_GetPitch(dst)); - } - break; - } - } - else { - - // allocate and calculate the contributions - CWeightsTable weightsTable(m_pFilter, dst_width, src_width); - - // step through rows - switch(FreeImage_GetImageType(src)) { - case FIT_BITMAP: - { - switch(FreeImage_GetBPP(src)) { - case 1: - { - // scale and convert to 8-bit - if(FreeImage_GetBPP(dst) != 8) break; - - for(unsigned y = 0; y < dst_height; y++) { - // scale each row - const BYTE *src_bits = FreeImage_GetScanLine(src, y); - BYTE *dst_bits = FreeImage_GetScanLine(dst, y); - - for(unsigned x = 0; x < dst_width; x++) { - // loop through row - double value = 0; - const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(x, i-iLeft); - - const BYTE pixel = (src_bits[i >> 3] & (0x80 >> (i & 0x07))) != 0; - value += (weight * (double)pixel); - } - value *= 255; - - // clamp and place result in destination pixel - dst_bits[x] = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 255); - } - } - } - break; - - case 8: - case 24: - case 32: - { - // Calculate the number of bytes per pixel (1 for 8-bit, 3 for 24-bit or 4 for 32-bit) - const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src); - - for(unsigned y = 0; y < dst_height; y++) { - // scale each row - const BYTE *src_bits = FreeImage_GetScanLine(src, y); - BYTE *dst_bits = FreeImage_GetScanLine(dst, y); - - for(unsigned x = 0; x < dst_width; x++) { - // loop through row - double value[4] = {0, 0, 0, 0}; // 4 = 32 bpp max - const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(x, i-iLeft); - - unsigned index = i * bytespp; // pixel index - for (unsigned j = 0; j < bytespp; j++) { - value[j] += (weight * (double)src_bits[index++]); - } - } - - // clamp and place result in destination pixel - for (unsigned j = 0; j < bytespp; j++) { - dst_bits[j] = (BYTE)CLAMP<int>((int)(value[j] + 0.5), 0, 0xFF); - } - - dst_bits += bytespp; - } - } - } - break; - } - } - break; - - case FIT_UINT16: - case FIT_RGB16: - case FIT_RGBA16: - { - // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit) - const unsigned wordspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(WORD); - - for(unsigned y = 0; y < dst_height; y++) { - // scale each row - const WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, y); - WORD *dst_bits = (WORD*)FreeImage_GetScanLine(dst, y); - - for(unsigned x = 0; x < dst_width; x++) { - // loop through row - double value[4] = {0, 0, 0, 0}; // 4 = 64 bpp max - const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(x, i-iLeft); - - unsigned index = i * wordspp; // pixel index - for (unsigned j = 0; j < wordspp; j++) { - value[j] += (weight * (double)src_bits[index++]); - } - } - - // clamp and place result in destination pixel - for (unsigned j = 0; j < wordspp; j++) { - dst_bits[j] = (WORD)CLAMP<int>((int)(value[j] + 0.5), 0, 0xFFFF); - } - - dst_bits += wordspp; - } - } - } - break; - - case FIT_FLOAT: - case FIT_RGBF: - case FIT_RGBAF: - { - // Calculate the number of floats per pixel (1 for 32-bit, 3 for 96-bit or 4 for 128-bit) - const unsigned floatspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(float); - - for(unsigned y = 0; y < dst_height; y++) { - // scale each row - const float *src_bits = (float*)FreeImage_GetScanLine(src, y); - float *dst_bits = (float*)FreeImage_GetScanLine(dst, y); - - for(unsigned x = 0; x < dst_width; x++) { - // loop through row - double value[4] = {0, 0, 0, 0}; // 4 = 128 bpp max - const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(x, i-iLeft); - - unsigned index = i * floatspp; // pixel index - for (unsigned j = 0; j < floatspp; j++) { - value[j] += (weight * (double)src_bits[index++]); - } - } - - // place result in destination pixel - for (unsigned j = 0; j < floatspp; j++) { - dst_bits[j] = (float)value[j]; - } - - dst_bits += floatspp; - } - } - } - break; - - } - } -} - -/// Performs vertical image filtering -void CResizeEngine::verticalFilter(FIBITMAP *src, unsigned src_width, unsigned src_height, FIBITMAP *dst, unsigned dst_width, unsigned dst_height) { - if(src_height == dst_height) { - // no scaling required, just copy - switch(FreeImage_GetBPP(src)) { - case 1: - { - if(FreeImage_GetBPP(dst) != 8) break; - for(unsigned y = 0; y < dst_height; y++) { - // convert each row - BYTE *src_bits = FreeImage_GetScanLine(src, y); - BYTE *dst_bits = FreeImage_GetScanLine(dst, y); - FreeImage_ConvertLine1To8(dst_bits, src_bits, dst_width); - } - } - break; - - default: - { - const BYTE *src_bits = FreeImage_GetBits(src); - BYTE *dst_bits = FreeImage_GetBits(dst); - memcpy(dst_bits, src_bits, dst_height * FreeImage_GetPitch(dst)); - } - break; - } - - } - else { - - // allocate and calculate the contributions - CWeightsTable weightsTable(m_pFilter, dst_height, src_height); - - // step through columns - switch(FreeImage_GetImageType(src)) { - case FIT_BITMAP: - { - switch(FreeImage_GetBPP(src)) { - case 1: - { - // scale and convert to 8-bit - if(FreeImage_GetBPP(dst) != 8) break; - - const unsigned src_pitch = FreeImage_GetPitch(src); - const unsigned dst_pitch = FreeImage_GetPitch(dst); - - for(unsigned x = 0; x < dst_width; x++) { - - // work on column x in dst - BYTE *dst_bits = FreeImage_GetBits(dst) + x; - - // scale each column - for(unsigned y = 0; y < dst_height; y++) { - // loop through column - double value = 0; - const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(y); // retrieve right boundary - - BYTE *src_bits = FreeImage_GetScanLine(src, iLeft); - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(y, i-iLeft); - - const BYTE pixel = (src_bits[x >> 3] & (0x80 >> (x & 0x07))) != 0; - value += (weight * (double)pixel); - - src_bits += src_pitch; - } - value *= 255; - - // clamp and place result in destination pixel - *dst_bits = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF); - - dst_bits += dst_pitch; - } - } - } - break; - - case 8: - case 24: - case 32: - { - // Calculate the number of bytes per pixel (1 for 8-bit, 3 for 24-bit or 4 for 32-bit) - const unsigned bytespp = FreeImage_GetLine(src) / FreeImage_GetWidth(src); - - const unsigned src_pitch = FreeImage_GetPitch(src); - const unsigned dst_pitch = FreeImage_GetPitch(dst); - - for(unsigned x = 0; x < dst_width; x++) { - const unsigned index = x * bytespp; // pixel index - - // work on column x in dst - BYTE *dst_bits = FreeImage_GetBits(dst) + index; - - // scale each column - for(unsigned y = 0; y < dst_height; y++) { - // loop through column - double value[4] = {0, 0, 0, 0}; // 4 = 32 bpp max - const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(y); // retrieve right boundary - - const BYTE *src_bits = FreeImage_GetScanLine(src, iLeft) + index; - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(y, i-iLeft); - for (unsigned j = 0; j < bytespp; j++) { - value[j] += (weight * (double)src_bits[j]); - } - - src_bits += src_pitch; - } - - // clamp and place result in destination pixel - for (unsigned j = 0; j < bytespp; j++) { - dst_bits[j] = (BYTE)CLAMP<int>((int)(value[j] + 0.5), 0, 0xFF); - } - - dst_bits += dst_pitch; - } - } - } - break; - } - } - break; - - case FIT_UINT16: - case FIT_RGB16: - case FIT_RGBA16: - { - // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit) - const unsigned wordspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(WORD); - - const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(WORD); - const unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(WORD); - - for(unsigned x = 0; x < dst_width; x++) { - const unsigned index = x * wordspp; // pixel index - - // work on column x in dst - WORD *dst_bits = (WORD*)FreeImage_GetBits(dst) + index; - - // scale each column - for(unsigned y = 0; y < dst_height; y++) { - // loop through column - double value[4] = {0, 0, 0, 0}; // 4 = 64 bpp max - const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(y); // retrieve right boundary - - const WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, iLeft) + index; - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(y, i-iLeft); - for (unsigned j = 0; j < wordspp; j++) { - value[j] += (weight * (double)src_bits[j]); - } - - src_bits += src_pitch; - } - - // clamp and place result in destination pixel - for (unsigned j = 0; j < wordspp; j++) { - dst_bits[j] = (WORD)CLAMP<int>((int)(value[j] + 0.5), 0, 0xFFFF); - } - - dst_bits += dst_pitch; - } - } - } - break; - - case FIT_FLOAT: - case FIT_RGBF: - case FIT_RGBAF: - { - // Calculate the number of floats per pixel (1 for 32-bit, 3 for 96-bit or 4 for 128-bit) - const unsigned floatspp = (FreeImage_GetLine(src) / FreeImage_GetWidth(src)) / sizeof(float); - - const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(float); - const unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(float); - - for(unsigned x = 0; x < dst_width; x++) { - const unsigned index = x * floatspp; // pixel index - - // work on column x in dst - float *dst_bits = (float*)FreeImage_GetBits(dst) + index; - - // scale each column - for(unsigned y = 0; y < dst_height; y++) { - // loop through column - double value[4] = {0, 0, 0, 0}; // 4 = 128 bpp max - const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary - const unsigned iRight = weightsTable.getRightBoundary(y); // retrieve right boundary - - const float *src_bits = (float*)FreeImage_GetScanLine(src, iLeft) + index; - - for(unsigned i = iLeft; i <= iRight; i++) { - // scan between boundaries - // accumulate weighted effect of each neighboring pixel - const double weight = weightsTable.getWeight(y, i-iLeft); - for (unsigned j = 0; j < floatspp; j++) { - value[j] += (weight * (double)src_bits[j]); - } - - src_bits += src_pitch; - } - - // clamp and place result in destination pixel - for (unsigned j = 0; j < floatspp; j++) { - dst_bits[j] = (float)value[j]; - } - - dst_bits += dst_pitch; - } - } - } - break; - - } - } -} - +// ==========================================================
+// Upsampling / downsampling classes
+//
+// Design and implementation by
+// - Hervé Drolon (drolon@infonie.fr)
+// - Detlev Vendt (detlev.vendt@brillit.de)
+// - Carsten Klein (cklein05@users.sourceforge.net)
+//
+// This file is part of FreeImage 3
+//
+// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
+// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
+// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
+// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
+// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
+// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
+// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
+// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
+// THIS DISCLAIMER.
+//
+// Use at your own risk!
+// ==========================================================
+
+#include "Resize.h"
+
+/**
+Returns the color type of a bitmap. In contrast to FreeImage_GetColorType,
+this function optionally supports a boolean OUT parameter, that receives TRUE,
+if the specified bitmap is greyscale, that is, it consists of grey colors only.
+Although it returns the same value as returned by FreeImage_GetColorType for all
+image types, this extended function primarily is intended for palletized images,
+since the boolean pointed to by 'bIsGreyscale' remains unchanged for RGB(A/F)
+images. However, the outgoing boolean is properly maintained for palletized images,
+as well as for any non-RGB image type, like FIT_UINTxx and FIT_DOUBLE, for example.
+@param dib A pointer to a FreeImage bitmap to calculate the extended color type for
+@param bIsGreyscale A pointer to a boolean, that receives TRUE, if the specified bitmap
+is greyscale, that is, it consists of grey colors only. This parameter can be NULL.
+@return the color type of the specified bitmap
+*/
+static FREE_IMAGE_COLOR_TYPE
+GetExtendedColorType(FIBITMAP *dib, BOOL *bIsGreyscale) {
+ const unsigned bpp = FreeImage_GetBPP(dib);
+ const unsigned size = CalculateUsedPaletteEntries(bpp);
+ const RGBQUAD * const pal = FreeImage_GetPalette(dib);
+ FREE_IMAGE_COLOR_TYPE color_type = FIC_MINISBLACK;
+ BOOL bIsGrey = TRUE;
+
+ switch (bpp) {
+ case 1:
+ {
+ for (unsigned i = 0; i < size; i++) {
+ if ((pal[i].rgbRed != pal[i].rgbGreen) || (pal[i].rgbRed != pal[i].rgbBlue)) {
+ color_type = FIC_PALETTE;
+ bIsGrey = FALSE;
+ break;
+ }
+ }
+ if (bIsGrey) {
+ if (pal[0].rgbBlue == 255 && pal[1].rgbBlue == 0) {
+ color_type = FIC_MINISWHITE;
+ } else if (pal[0].rgbBlue != 0 || pal[1].rgbBlue != 255) {
+ color_type = FIC_PALETTE;
+ }
+ }
+ break;
+ }
+
+ case 4:
+ case 8:
+ {
+ for (unsigned i = 0; i < size; i++) {
+ if ((pal[i].rgbRed != pal[i].rgbGreen) || (pal[i].rgbRed != pal[i].rgbBlue)) {
+ color_type = FIC_PALETTE;
+ bIsGrey = FALSE;
+ break;
+ }
+ if (color_type != FIC_PALETTE && pal[i].rgbBlue != i) {
+ if ((size - i - 1) != pal[i].rgbBlue) {
+ color_type = FIC_PALETTE;
+ if (!bIsGreyscale) {
+ // exit loop if we're not setting
+ // bIsGreyscale parameter
+ break;
+ }
+ } else {
+ color_type = FIC_MINISWHITE;
+ }
+ }
+ }
+ break;
+ }
+
+ default:
+ {
+ color_type = FreeImage_GetColorType(dib);
+ bIsGrey = (color_type == FIC_MINISBLACK) ? TRUE : FALSE;
+ break;
+ }
+
+ }
+ if (bIsGreyscale) {
+ *bIsGreyscale = bIsGrey;
+ }
+
+ return color_type;
+}
+
+/**
+Returns a pointer to an RGBA palette, created from the specified bitmap.
+The RGBA palette is a copy of the specified bitmap's palette, that, additionally
+contains the bitmap's transparency information in the rgbReserved member
+of the palette's RGBQUAD elements.
+@param dib A pointer to a FreeImage bitmap to create the RGBA palette from.
+@param buffer A pointer to the buffer to store the RGBA palette.
+@return A pointer to the newly created RGBA palette or NULL, if the specified
+bitmap is no palletized standard bitmap. If non-NULL, the returned value is
+actually the pointer passed in parameter 'buffer'.
+*/
+static inline RGBQUAD *
+GetRGBAPalette(FIBITMAP *dib, RGBQUAD * const buffer) {
+ // clone the palette
+ const unsigned ncolors = FreeImage_GetColorsUsed(dib);
+ if (ncolors == 0) {
+ return NULL;
+ }
+ memcpy(buffer, FreeImage_GetPalette(dib), ncolors * sizeof(RGBQUAD));
+ // merge the transparency table
+ const unsigned ntransp = MIN(ncolors, FreeImage_GetTransparencyCount(dib));
+ const BYTE * const tt = FreeImage_GetTransparencyTable(dib);
+ for (unsigned i = 0; i < ntransp; i++) {
+ buffer[i].rgbReserved = tt[i];
+ }
+ for (unsigned i = ntransp; i < ncolors; i++) {
+ buffer[i].rgbReserved = 255;
+ }
+ return buffer;
+}
+
+// --------------------------------------------------------------------------
+
+CWeightsTable::CWeightsTable(CGenericFilter *pFilter, unsigned uDstSize, unsigned uSrcSize) {
+ unsigned u;
+ double dWidth;
+ double dFScale = 1.0;
+ const double dFilterWidth = pFilter->GetWidth();
+
+ // scale factor
+ const double dScale = double(uDstSize) / double(uSrcSize);
+
+ if(dScale < 1.0) {
+ // minification
+ dWidth = dFilterWidth / dScale;
+ dFScale = dScale;
+ } else {
+ // magnification
+ dWidth= dFilterWidth;
+ }
+
+ // allocate a new line contributions structure
+ //
+ // window size is the number of sampled pixels
+ m_WindowSize = 2 * (int)ceil(dWidth) + 1;
+ m_LineLength = uDstSize;
+ // allocate list of contributions
+ m_WeightTable = (Contribution*)malloc(m_LineLength * sizeof(Contribution));
+ for(u = 0 ; u < m_LineLength ; u++) {
+ // allocate contributions for every pixel
+ m_WeightTable[u].Weights = (double*)malloc(m_WindowSize * sizeof(double));
+ }
+
+ // offset for discrete to continuous coordinate conversion
+ const double dOffset = (0.5 / dScale) - 0.5;
+
+ for(u = 0; u < m_LineLength; u++) {
+ // scan through line of contributions
+ const double dCenter = (double)u / dScale + dOffset; // reverse mapping
+ // find the significant edge points that affect the pixel
+ int iLeft = MAX (0, (int)floor (dCenter - dWidth));
+ int iRight = MIN ((int)ceil (dCenter + dWidth), int(uSrcSize) - 1);
+
+ // cut edge points to fit in filter window in case of spill-off
+ if((iRight - iLeft + 1) > int(m_WindowSize)) {
+ if(iLeft < (int(uSrcSize) - 1 / 2)) {
+ iLeft++;
+ } else {
+ iRight--;
+ }
+ }
+
+ m_WeightTable[u].Left = iLeft;
+ m_WeightTable[u].Right = iRight;
+
+ int iSrc = 0;
+ double dTotalWeight = 0; // zero sum of weights
+ for(iSrc = iLeft; iSrc <= iRight; iSrc++) {
+ // calculate weights
+ const double weight = dFScale * pFilter->Filter(dFScale * (dCenter - (double)iSrc));
+ m_WeightTable[u].Weights[iSrc-iLeft] = weight;
+ dTotalWeight += weight;
+ }
+ if((dTotalWeight > 0) && (dTotalWeight != 1)) {
+ // normalize weight of neighbouring points
+ for(iSrc = iLeft; iSrc <= iRight; iSrc++) {
+ // normalize point
+ m_WeightTable[u].Weights[iSrc-iLeft] /= dTotalWeight;
+ }
+ // simplify the filter, discarding null weights at the right
+ iSrc = iRight - iLeft;
+ while(m_WeightTable[u].Weights[iSrc] == 0) {
+ m_WeightTable[u].Right--;
+ iSrc--;
+ if(m_WeightTable[u].Right == m_WeightTable[u].Left) {
+ break;
+ }
+ }
+
+ }
+ }
+}
+
+CWeightsTable::~CWeightsTable() {
+ for(unsigned u = 0; u < m_LineLength; u++) {
+ // free contributions for every pixel
+ free(m_WeightTable[u].Weights);
+ }
+ // free list of pixels contributions
+ free(m_WeightTable);
+}
+
+// --------------------------------------------------------------------------
+
+FIBITMAP* CResizeEngine::scale(FIBITMAP *src, unsigned dst_width, unsigned dst_height, unsigned src_left, unsigned src_top, unsigned src_width, unsigned src_height) {
+
+ const FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(src);
+ const unsigned src_bpp = FreeImage_GetBPP(src);
+
+ // determine the image's color type
+ BOOL bIsGreyscale = FALSE;
+ FREE_IMAGE_COLOR_TYPE color_type;
+ if (src_bpp <= 8) {
+ color_type = GetExtendedColorType(src, &bIsGreyscale);
+ } else {
+ color_type = FIC_RGB;
+ }
+
+ // determine the required bit depth of the destination image
+ unsigned dst_bpp;
+ if (color_type == FIC_PALETTE && !bIsGreyscale) {
+ // non greyscale FIC_PALETTE images require a high-color destination
+ // image (24- or 32-bits depending on the image's transparent state)
+ dst_bpp = FreeImage_IsTransparent(src) ? 32 : 24;
+ } else if (src_bpp <= 8) {
+ // greyscale images require an 8-bit destination image
+ // (or a 32-bit image if the image is transparent)
+ dst_bpp = FreeImage_IsTransparent(src) ? 32 : 8;
+ } else if (src_bpp == 16 && image_type == FIT_BITMAP) {
+ // 16-bit 555 and 565 RGB images require a high-color destination image
+ // (fixed to 24 bits, since 16-bit RGBs don't support transparency in FreeImage)
+ dst_bpp = 24;
+ } else {
+ // bit depth remains unchanged for all other images
+ dst_bpp = src_bpp;
+ }
+
+ // early exit if destination size is equal to source size
+ if ((src_width == dst_width) && (src_height == dst_height)) {
+ FIBITMAP *out = src;
+ FIBITMAP *tmp = src;
+ if ((src_width != FreeImage_GetWidth(src)) || (src_height != FreeImage_GetHeight(src))) {
+ out = FreeImage_Copy(tmp, src_left, src_top, src_left + src_width, src_top + src_height);
+ tmp = out;
+ }
+ if (src_bpp != dst_bpp) {
+ switch (dst_bpp) {
+ case 8:
+ out = FreeImage_ConvertToGreyscale(tmp);
+ if (tmp != src) {
+ FreeImage_Unload(tmp);
+ }
+ break;
+
+ case 24:
+ out = FreeImage_ConvertTo24Bits(tmp);
+ if (tmp != src) {
+ FreeImage_Unload(tmp);
+ }
+ break;
+
+ case 32:
+ out = FreeImage_ConvertTo32Bits(tmp);
+ if (tmp != src) {
+ FreeImage_Unload(tmp);
+ }
+ break;
+ }
+ }
+
+ return (out != src) ? out : FreeImage_Clone(src);
+ }
+
+ RGBQUAD pal_buffer[256];
+ RGBQUAD *src_pal = NULL;
+
+ // provide the source image's palette to the rescaler for
+ // FIC_PALETTE type images (this includes palletized greyscale
+ // images with an unordered palette)
+ if (color_type == FIC_PALETTE) {
+ if (dst_bpp == 32) {
+ // a 32 bit destination image signals transparency, so
+ // create an RGBA palette from the source palette
+ src_pal = GetRGBAPalette(src, pal_buffer);
+ } else {
+ src_pal = FreeImage_GetPalette(src);
+ }
+ }
+
+ // allocate the dst image
+ FIBITMAP *dst = FreeImage_AllocateT(image_type, dst_width, dst_height, dst_bpp, 0, 0, 0);
+ if (!dst) {
+ return NULL;
+ }
+
+ if (dst_bpp == 8) {
+ RGBQUAD * const dst_pal = FreeImage_GetPalette(dst);
+ if (color_type == FIC_MINISWHITE) {
+ // build an inverted greyscale palette
+ CREATE_GREYSCALE_PALETTE_REVERSE(dst_pal, 256);
+ }
+ /*
+ else {
+ // build a default greyscale palette
+ // Currently, FreeImage_AllocateT already creates a default
+ // greyscale palette for 8 bpp images, so we can skip this here.
+ CREATE_GREYSCALE_PALETTE(dst_pal, 256);
+ }
+ */
+ }
+
+ // calculate x and y offsets; since FreeImage uses bottom-up bitmaps, the
+ // value of src_offset_y is measured from the bottom of the image
+ unsigned src_offset_x = src_left;
+ unsigned src_offset_y;
+ if (src_top > 0) {
+ src_offset_y = FreeImage_GetHeight(src) - src_height - src_top;
+ } else {
+ src_offset_y = 0;
+ }
+
+ /*
+ Decide which filtering order (xy or yx) is faster for this mapping.
+ --- The theory ---
+ Try to minimize calculations by counting the number of convolution multiplies
+ if(dst_width*src_height <= src_width*dst_height) {
+ // xy filtering
+ } else {
+ // yx filtering
+ }
+ --- The practice ---
+ Try to minimize calculations by counting the number of vertical convolutions (the most time consuming task)
+ if(dst_width*dst_height <= src_width*dst_height) {
+ // xy filtering
+ } else {
+ // yx filtering
+ }
+ */
+
+ if (dst_width <= src_width) {
+ // xy filtering
+ // -------------
+
+ FIBITMAP *tmp = NULL;
+
+ if (src_width != dst_width) {
+ // source and destination widths are different so, we must
+ // filter horizontally
+ if (src_height != dst_height) {
+ // source and destination heights are also different so, we need
+ // a temporary image
+ tmp = FreeImage_AllocateT(image_type, dst_width, src_height, dst_bpp, 0, 0, 0);
+ if (!tmp) {
+ FreeImage_Unload(dst);
+ return NULL;
+ }
+ } else {
+ // source and destination heights are equal so, we can directly
+ // scale into destination image (second filter method will not
+ // be invoked)
+ tmp = dst;
+ }
+
+ // scale source image horizontally into temporary (or destination) image
+ horizontalFilter(src, src_height, src_width, src_offset_x, src_offset_y, src_pal, tmp, dst_width);
+
+ // set x and y offsets to zero for the second filter method
+ // invocation (the temporary image only contains the portion of
+ // the image to be rescaled with no offsets)
+ src_offset_x = 0;
+ src_offset_y = 0;
+
+ // also ensure, that the second filter method gets no source
+ // palette (the temporary image is palletized only, if it is
+ // greyscale; in that case, it is an 8-bit image with a linear
+ // palette so, the source palette is not needed or will even be
+ // mismatching, if the source palette is unordered)
+ src_pal = NULL;
+ } else {
+ // source and destination widths are equal so, just copy the
+ // image pointer
+ tmp = src;
+ }
+
+ if (src_height != dst_height) {
+ // source and destination heights are different so, scale
+ // temporary (or source) image vertically into destination image
+ verticalFilter(tmp, dst_width, src_height, src_offset_x, src_offset_y, src_pal, dst, dst_height);
+ }
+
+ // free temporary image, if not pointing to either src or dst
+ if (tmp != src && tmp != dst) {
+ FreeImage_Unload(tmp);
+ }
+
+ } else {
+ // yx filtering
+ // -------------
+
+ // Remark:
+ // The yx filtering branch could be more optimized by taking into,
+ // account that (src_width != dst_width) is always true, which
+ // follows from the above condition, which selects filtering order.
+ // Since (dst_width <= src_width) == TRUE selects xy filtering,
+ // both widths must be different when performing yx filtering.
+ // However, to make the code more robust, not depending on that
+ // condition and more symmetric to the xy filtering case, these
+ // (src_width != dst_width) conditions are still in place.
+
+ FIBITMAP *tmp = NULL;
+
+ if (src_height != dst_height) {
+ // source and destination heights are different so, we must
+ // filter vertically
+ if (src_width != dst_width) {
+ // source and destination widths are also different so, we need
+ // a temporary image
+ tmp = FreeImage_AllocateT(image_type, src_width, dst_height, dst_bpp, 0, 0, 0);
+ if (!tmp) {
+ FreeImage_Unload(dst);
+ return NULL;
+ }
+ } else {
+ // source and destination widths are equal so, we can directly
+ // scale into destination image (second filter method will not
+ // be invoked)
+ tmp = dst;
+ }
+
+ // scale source image vertically into temporary (or destination) image
+ verticalFilter(src, src_width, src_height, src_offset_x, src_offset_y, src_pal, tmp, dst_height);
+
+ // set x and y offsets to zero for the second filter method
+ // invocation (the temporary image only contains the portion of
+ // the image to be rescaled with no offsets)
+ src_offset_x = 0;
+ src_offset_y = 0;
+
+ // also ensure, that the second filter method gets no source
+ // palette (the temporary image is palletized only, if it is
+ // greyscale; in that case, it is an 8-bit image with a linear
+ // palette so, the source palette is not needed or will even be
+ // mismatching, if the source palette is unordered)
+ src_pal = NULL;
+
+ } else {
+ // source and destination heights are equal so, just copy the
+ // image pointer
+ tmp = src;
+ }
+
+ if (src_width != dst_width) {
+ // source and destination heights are different so, scale
+ // temporary (or source) image horizontally into destination image
+ horizontalFilter(tmp, dst_height, src_width, src_offset_x, src_offset_y, src_pal, dst, dst_width);
+ }
+
+ // free temporary image, if not pointing to either src or dst
+ if (tmp != src && tmp != dst) {
+ FreeImage_Unload(tmp);
+ }
+ }
+
+ return dst;
+}
+
+void CResizeEngine::horizontalFilter(FIBITMAP *const src, unsigned height, unsigned src_width, unsigned src_offset_x, unsigned src_offset_y, const RGBQUAD *const src_pal, FIBITMAP *const dst, unsigned dst_width) {
+
+ // allocate and calculate the contributions
+ CWeightsTable weightsTable(m_pFilter, dst_width, src_width);
+
+ // step through rows
+ switch(FreeImage_GetImageType(src)) {
+ case FIT_BITMAP:
+ {
+ switch(FreeImage_GetBPP(src)) {
+ case 1:
+ {
+ switch(FreeImage_GetBPP(dst)) {
+ case 8:
+ {
+ // transparently convert the 1-bit non-transparent greyscale
+ // image to 8 bpp
+ src_offset_x >>= 3;
+ if (src_pal) {
+ // we have got a palette
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE * const dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double value = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const unsigned pixel = (src_bits[i >> 3] & (0x80 >> (i & 0x07))) != 0;
+ value += (weightsTable.getWeight(x, i - iLeft) * (double)*(BYTE *)&src_pal[pixel]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[x] = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ }
+ }
+ } else {
+ // we do not have a palette
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE * const dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double value = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const unsigned pixel = (src_bits[i >> 3] & (0x80 >> (i & 0x07))) != 0;
+ value += (weightsTable.getWeight(x, i - iLeft) * (double)pixel);
+ }
+ value *= 0xFF;
+
+ // clamp and place result in destination pixel
+ dst_bits[x] = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ }
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // transparently convert the non-transparent 1-bit image
+ // to 24 bpp; we always have got a palette here
+ src_offset_x >>= 3;
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i - iLeft);
+ const unsigned pixel = (src_bits[i >> 3] & (0x80 >> (i & 0x07))) != 0;
+ const BYTE * const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += 3;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // transparently convert the transparent 1-bit image
+ // to 32 bpp; we always have got a palette here
+ src_offset_x >>= 3;
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i - iLeft);
+ const unsigned pixel = (src_bits[i >> 3] & (0x80 >> (i & 0x07))) != 0;
+ const BYTE * const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ a += (weight * (double)entry[FI_RGBA_ALPHA]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += 4;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case 4:
+ {
+ switch(FreeImage_GetBPP(dst)) {
+ case 8:
+ {
+ // transparently convert the non-transparent 4-bit greyscale image
+ // to 8 bpp; we always have got a palette for 4-bit images
+ src_offset_x >>= 1;
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE * const dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double value = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const unsigned pixel = i & 0x01 ? src_bits[i >> 1] & 0x0F : src_bits[i >> 1] >> 4;
+ value += (weightsTable.getWeight(x, i - iLeft)
+ * (double)*(BYTE *)&src_pal[pixel]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[x] = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // transparently convert the non-transparent 4-bit image
+ // to 24 bpp; we always have got a palette for 4-bit images
+ src_offset_x >>= 1;
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i - iLeft);
+ const unsigned pixel = i & 0x01 ? src_bits[i >> 1] & 0x0F : src_bits[i >> 1] >> 4;
+ const BYTE * const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += 3;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // transparently convert the transparent 4-bit image
+ // to 32 bpp; we always have got a palette for 4-bit images
+ src_offset_x >>= 1;
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i - iLeft);
+ const unsigned pixel = i & 0x01 ? src_bits[i >> 1] & 0x0F : src_bits[i >> 1] >> 4;
+ const BYTE * const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ a += (weight * (double)entry[FI_RGBA_ALPHA]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += 4;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case 8:
+ {
+ switch(FreeImage_GetBPP(dst)) {
+ case 8:
+ {
+ // scale the 8-bit non-transparent greyscale image
+ // into an 8 bpp destination image
+ if (src_pal) {
+ // we have got a palette
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE * const dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const BYTE * const pixel = src_bits + iLeft;
+ double value = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ value += (weightsTable.getWeight(x, i)
+ * (double)*(BYTE *)&src_pal[pixel[i]]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[x] = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ }
+ }
+ } else {
+ // we do not have a palette
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE * const dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const BYTE * const pixel = src_bits + iLeft;
+ double value = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ value += (weightsTable.getWeight(x, i) * (double)pixel[i]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[x] = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ }
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // transparently convert the non-transparent 8-bit image
+ // to 24 bpp; we always have got a palette here
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const BYTE * const pixel = src_bits + iLeft;
+ double r = 0, g = 0, b = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ const BYTE *const entry = (BYTE *)&src_pal[pixel[i]];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += 3;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // transparently convert the transparent 8-bit image
+ // to 32 bpp; we always have got a palette here
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const BYTE * const pixel = src_bits + iLeft;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ const BYTE * const entry = (BYTE *)&src_pal[pixel[i]];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ a += (weight * (double)entry[FI_RGBA_ALPHA]);
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += 4;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case 16:
+ {
+ // transparently convert the 16-bit non-transparent image
+ // to 24 bpp
+ if (IS_FORMAT_RGB565(src)) {
+ // image has 565 format
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const WORD * const src_bits = (WORD *)FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x / sizeof(WORD);
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const WORD *pixel = src_bits + iLeft;
+ double r = 0, g = 0, b = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ r += (weight * (double)((*pixel & FI16_565_RED_MASK) >> FI16_565_RED_SHIFT));
+ g += (weight * (double)((*pixel & FI16_565_GREEN_MASK) >> FI16_565_GREEN_SHIFT));
+ b += (weight * (double)((*pixel & FI16_565_BLUE_MASK) >> FI16_565_BLUE_SHIFT));
+ pixel++;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(((r * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(((g * 0xFF) / 0x3F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(((b * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits += 3;
+ }
+ }
+ } else {
+ // image has 555 format
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const WORD * const src_bits = (WORD *)FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const WORD *pixel = src_bits + iLeft;
+ double r = 0, g = 0, b = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ r += (weight * (double)((*pixel & FI16_555_RED_MASK) >> FI16_555_RED_SHIFT));
+ g += (weight * (double)((*pixel & FI16_555_GREEN_MASK) >> FI16_555_GREEN_SHIFT));
+ b += (weight * (double)((*pixel & FI16_555_BLUE_MASK) >> FI16_555_BLUE_SHIFT));
+ pixel++;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(((r * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(((g * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(((b * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits += 3;
+ }
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // scale the 24-bit non-transparent image
+ // into a 24 bpp destination image
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x * 3;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const BYTE * pixel = src_bits + iLeft * 3;
+ double r = 0, g = 0, b = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ r += (weight * (double)pixel[FI_RGBA_RED]);
+ g += (weight * (double)pixel[FI_RGBA_GREEN]);
+ b += (weight * (double)pixel[FI_RGBA_BLUE]);
+ pixel += 3;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += 3;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // scale the 32-bit transparent image
+ // into a 32 bpp destination image
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const BYTE * const src_bits = FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x * 4;
+ BYTE *dst_bits = FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const BYTE *pixel = src_bits + iLeft * 4;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ r += (weight * (double)pixel[FI_RGBA_RED]);
+ g += (weight * (double)pixel[FI_RGBA_GREEN]);
+ b += (weight * (double)pixel[FI_RGBA_BLUE]);
+ a += (weight * (double)pixel[FI_RGBA_ALPHA]);
+ pixel += 4;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += 4;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case FIT_UINT16:
+ {
+ // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
+ const unsigned wordspp = (FreeImage_GetLine(src) / src_width) / sizeof(WORD);
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x / sizeof(WORD);
+ WORD *dst_bits = (WORD*)FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const WORD *pixel = src_bits + iLeft * wordspp;
+ double value = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ value += (weight * (double)pixel[0]);
+ pixel++;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[0] = (WORD)CLAMP<int>((int)(value + 0.5), 0, 0xFFFF);
+ dst_bits += wordspp;
+ }
+ }
+ }
+ break;
+
+ case FIT_RGB16:
+ {
+ // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
+ const unsigned wordspp = (FreeImage_GetLine(src) / src_width) / sizeof(WORD);
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x / sizeof(WORD);
+ WORD *dst_bits = (WORD*)FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const WORD *pixel = src_bits + iLeft * wordspp;
+ double r = 0, g = 0, b = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ r += (weight * (double)pixel[0]);
+ g += (weight * (double)pixel[1]);
+ b += (weight * (double)pixel[2]);
+ pixel += wordspp;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[0] = (WORD)CLAMP<int>((int)(r + 0.5), 0, 0xFFFF);
+ dst_bits[1] = (WORD)CLAMP<int>((int)(g + 0.5), 0, 0xFFFF);
+ dst_bits[2] = (WORD)CLAMP<int>((int)(b + 0.5), 0, 0xFFFF);
+ dst_bits += wordspp;
+ }
+ }
+ }
+ break;
+
+ case FIT_RGBA16:
+ {
+ // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
+ const unsigned wordspp = (FreeImage_GetLine(src) / src_width) / sizeof(WORD);
+
+ for (unsigned y = 0; y < height; y++) {
+ // scale each row
+ const WORD *src_bits = (WORD*)FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x / sizeof(WORD);
+ WORD *dst_bits = (WORD*)FreeImage_GetScanLine(dst, y);
+
+ for (unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(x) - iLeft; // retrieve right boundary
+ const WORD *pixel = src_bits + iLeft * wordspp;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ // for(i = iLeft to iRight)
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i);
+ r += (weight * (double)pixel[0]);
+ g += (weight * (double)pixel[1]);
+ b += (weight * (double)pixel[2]);
+ a += (weight * (double)pixel[3]);
+ pixel += wordspp;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[0] = (WORD)CLAMP<int>((int)(r + 0.5), 0, 0xFFFF);
+ dst_bits[1] = (WORD)CLAMP<int>((int)(g + 0.5), 0, 0xFFFF);
+ dst_bits[2] = (WORD)CLAMP<int>((int)(b + 0.5), 0, 0xFFFF);
+ dst_bits[3] = (WORD)CLAMP<int>((int)(a + 0.5), 0, 0xFFFF);
+ dst_bits += wordspp;
+ }
+ }
+ }
+ break;
+
+ case FIT_FLOAT:
+ case FIT_RGBF:
+ case FIT_RGBAF:
+ {
+ // Calculate the number of floats per pixel (1 for 32-bit, 3 for 96-bit or 4 for 128-bit)
+ const unsigned floatspp = (FreeImage_GetLine(src) / src_width) / sizeof(float);
+
+ for(unsigned y = 0; y < height; y++) {
+ // scale each row
+ const float *src_bits = (float*)FreeImage_GetScanLine(src, y + src_offset_y) + src_offset_x / sizeof(float);
+ float *dst_bits = (float*)FreeImage_GetScanLine(dst, y);
+
+ for(unsigned x = 0; x < dst_width; x++) {
+ // loop through row
+ const unsigned iLeft = weightsTable.getLeftBoundary(x); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(x); // retrieve right boundary
+ double value[4] = {0, 0, 0, 0}; // 4 = 128 bpp max
+
+ for(unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(x, i-iLeft);
+
+ unsigned index = i * floatspp; // pixel index
+ for (unsigned j = 0; j < floatspp; j++) {
+ value[j] += (weight * (double)src_bits[index++]);
+ }
+ }
+
+ // place result in destination pixel
+ for (unsigned j = 0; j < floatspp; j++) {
+ dst_bits[j] = (float)value[j];
+ }
+
+ dst_bits += floatspp;
+ }
+ }
+ }
+ break;
+ }
+}
+
+/// Performs vertical image filtering
+void CResizeEngine::verticalFilter(FIBITMAP *const src, unsigned width, unsigned src_height, unsigned src_offset_x, unsigned src_offset_y, const RGBQUAD *const src_pal, FIBITMAP *const dst, unsigned dst_height) {
+
+ // allocate and calculate the contributions
+ CWeightsTable weightsTable(m_pFilter, dst_height, src_height);
+
+ // step through columns
+ switch(FreeImage_GetImageType(src)) {
+ case FIT_BITMAP:
+ {
+ const unsigned dst_pitch = FreeImage_GetPitch(dst);
+ BYTE * const dst_base = FreeImage_GetBits(dst);
+
+ switch(FreeImage_GetBPP(src)) {
+ case 1:
+ {
+ const unsigned src_pitch = FreeImage_GetPitch(src);
+ const BYTE * const src_base = FreeImage_GetBits(src)
+ + src_offset_y * src_pitch + (src_offset_x >> 3);
+
+ switch(FreeImage_GetBPP(dst)) {
+ case 8:
+ {
+ // transparently convert the 1-bit non-transparent greyscale
+ // image to 8 bpp
+ if (src_pal) {
+ // we have got a palette
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x;
+ const unsigned index = x >> 3;
+ const unsigned mask = 0x80 >> (x & 0x07);
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double value = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const unsigned pixel = (*src_bits & mask) != 0;
+ value += (weightsTable.getWeight(y, i)
+ * (double)*(BYTE *)&src_pal[pixel]);
+ src_bits += src_pitch;
+ }
+ value *= 0xFF;
+
+ // clamp and place result in destination pixel
+ *dst_bits = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ } else {
+ // we do not have a palette
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x;
+ const unsigned index = x >> 3;
+ const unsigned mask = 0x80 >> (x & 0x07);
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double value = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ value += (weightsTable.getWeight(y, i)
+ * (double)((*src_bits & mask) != 0));
+ src_bits += src_pitch;
+ }
+ value *= 0xFF;
+
+ // clamp and place result in destination pixel
+ *dst_bits = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // transparently convert the non-transparent 1-bit image
+ // to 24 bpp; we always have got a palette here
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 3;
+ const unsigned index = x >> 3;
+ const unsigned mask = 0x80 >> (x & 0x07);
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ const unsigned pixel = (*src_bits & mask) != 0;
+ const BYTE * const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // transparently convert the transparent 1-bit image
+ // to 32 bpp; we always have got a palette here
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 4;
+ const unsigned index = x >> 3;
+ const unsigned mask = 0x80 >> (x & 0x07);
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ const unsigned pixel = (*src_bits & mask) != 0;
+ const BYTE * const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ a += (weight * (double)entry[FI_RGBA_ALPHA]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case 4:
+ {
+ const unsigned src_pitch = FreeImage_GetPitch(src);
+ const BYTE *const src_base = FreeImage_GetBits(src) + src_offset_y * src_pitch + (src_offset_x >> 1);
+
+ switch(FreeImage_GetBPP(dst)) {
+ case 8:
+ {
+ // transparently convert the non-transparent 4-bit greyscale image
+ // to 8 bpp; we always have got a palette for 4-bit images
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x;
+ const unsigned index = x >> 1;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double value = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const unsigned pixel = x & 0x01 ? *src_bits & 0x0F : *src_bits >> 4;
+ value += (weightsTable.getWeight(y, i)
+ * (double)*(BYTE *)&src_pal[pixel]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ *dst_bits = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // transparently convert the non-transparent 4-bit image
+ // to 24 bpp; we always have got a palette for 4-bit images
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 3;
+ const unsigned index = x >> 1;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ const unsigned pixel = x & 0x01 ? *src_bits & 0x0F : *src_bits >> 4;
+ const BYTE *const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // transparently convert the transparent 4-bit image
+ // to 32 bpp; we always have got a palette for 4-bit images
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 4;
+ const unsigned index = x >> 1;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ const unsigned pixel = x & 0x01 ? *src_bits & 0x0F : *src_bits >> 4;
+ const BYTE *const entry = (BYTE *)&src_pal[pixel];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ a += (weight * (double)entry[FI_RGBA_ALPHA]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case 8:
+ {
+ const unsigned src_pitch = FreeImage_GetPitch(src);
+ const BYTE *const src_base = FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x;
+
+ switch(FreeImage_GetBPP(dst)) {
+ case 8:
+ {
+ // scale the 8-bit non-transparent greyscale image
+ // into an 8 bpp destination image
+ if (src_pal) {
+ // we have got a palette
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + x;
+ double value = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ value += (weightsTable.getWeight(y, i)
+ * (double)*(BYTE *)&src_pal[*src_bits]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ *dst_bits = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ } else {
+ // we do not have a palette
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + x;
+ double value = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ value += (weightsTable.getWeight(y, i)
+ * (double)*src_bits);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ *dst_bits = (BYTE)CLAMP<int>((int)(value + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // transparently convert the non-transparent 8-bit image
+ // to 24 bpp; we always have got a palette here
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 3;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + x;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ const BYTE * const entry = (BYTE *)&src_pal[*src_bits];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // transparently convert the transparent 8-bit image
+ // to 32 bpp; we always have got a palette here
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 4;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + x;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ const BYTE * const entry = (BYTE *)&src_pal[*src_bits];
+ r += (weight * (double)entry[FI_RGBA_RED]);
+ g += (weight * (double)entry[FI_RGBA_GREEN]);
+ b += (weight * (double)entry[FI_RGBA_BLUE]);
+ a += (weight * (double)entry[FI_RGBA_ALPHA]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int)(a + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case 16:
+ {
+ // transparently convert the 16-bit non-transparent image
+ // to 24 bpp
+ const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(WORD);
+ const WORD *const src_base = (WORD *)FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x;
+
+ if (IS_FORMAT_RGB565(src)) {
+ // image has 565 format
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 3;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const WORD *src_bits = src_base + iLeft * src_pitch + x;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ r += (weight * (double)((*src_bits & FI16_565_RED_MASK) >> FI16_565_RED_SHIFT));
+ g += (weight * (double)((*src_bits & FI16_565_GREEN_MASK) >> FI16_565_GREEN_SHIFT));
+ b += (weight * (double)((*src_bits & FI16_565_BLUE_MASK) >> FI16_565_BLUE_SHIFT));
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(((r * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(((g * 0xFF) / 0x3F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(((b * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ } else {
+ // image has 555 format
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ BYTE *dst_bits = dst_base + x * 3;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const WORD *src_bits = src_base + iLeft * src_pitch + x;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ r += (weight * (double)((*src_bits & FI16_555_RED_MASK) >> FI16_555_RED_SHIFT));
+ g += (weight * (double)((*src_bits & FI16_555_GREEN_MASK) >> FI16_555_GREEN_SHIFT));
+ b += (weight * (double)((*src_bits & FI16_555_BLUE_MASK) >> FI16_555_BLUE_SHIFT));
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int)(((r * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int)(((g * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int)(((b * 0xFF) / 0x1F) + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ }
+ break;
+
+ case 24:
+ {
+ // scale the 24-bit transparent image
+ // into a 24 bpp destination image
+ const unsigned src_pitch = FreeImage_GetPitch(src);
+ const BYTE *const src_base = FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x * 3;
+
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ const unsigned index = x * 3;
+ BYTE *dst_bits = dst_base + index;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ r += (weight * (double)src_bits[FI_RGBA_RED]);
+ g += (weight * (double)src_bits[FI_RGBA_GREEN]);
+ b += (weight * (double)src_bits[FI_RGBA_BLUE]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int) (r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int) (g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int) (b + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case 32:
+ {
+ // scale the 32-bit transparent image
+ // into a 32 bpp destination image
+ const unsigned src_pitch = FreeImage_GetPitch(src);
+ const BYTE *const src_base = FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x * 4;
+
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ const unsigned index = x * 4;
+ BYTE *dst_bits = dst_base + index;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const BYTE *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ r += (weight * (double)src_bits[FI_RGBA_RED]);
+ g += (weight * (double)src_bits[FI_RGBA_GREEN]);
+ b += (weight * (double)src_bits[FI_RGBA_BLUE]);
+ a += (weight * (double)src_bits[FI_RGBA_ALPHA]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[FI_RGBA_RED] = (BYTE)CLAMP<int>((int) (r + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_GREEN] = (BYTE)CLAMP<int>((int) (g + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_BLUE] = (BYTE)CLAMP<int>((int) (b + 0.5), 0, 0xFF);
+ dst_bits[FI_RGBA_ALPHA] = (BYTE)CLAMP<int>((int) (a + 0.5), 0, 0xFF);
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+
+ case FIT_UINT16:
+ {
+ // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
+ const unsigned wordspp = (FreeImage_GetLine(src) / width) / sizeof(WORD);
+
+ const unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(WORD);
+ WORD *const dst_base = (WORD *)FreeImage_GetBits(dst);
+
+ const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(WORD);
+ const WORD *const src_base = (WORD *)FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x * wordspp;
+
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ const unsigned index = x * wordspp; // pixel index
+ WORD *dst_bits = dst_base + index;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const WORD *src_bits = src_base + iLeft * src_pitch + index;
+ double value = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ value += (weight * (double)src_bits[0]);
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[0] = (WORD)CLAMP<int>((int)(value + 0.5), 0, 0xFFFF);
+
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case FIT_RGB16:
+ {
+ // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
+ const unsigned wordspp = (FreeImage_GetLine(src) / width) / sizeof(WORD);
+
+ const unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(WORD);
+ WORD *const dst_base = (WORD *)FreeImage_GetBits(dst);
+
+ const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(WORD);
+ const WORD *const src_base = (WORD *)FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x * wordspp;
+
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ const unsigned index = x * wordspp; // pixel index
+ WORD *dst_bits = dst_base + index;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const WORD *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ r += (weight * (double)src_bits[0]);
+ g += (weight * (double)src_bits[1]);
+ b += (weight * (double)src_bits[2]);
+
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[0] = (WORD)CLAMP<int>((int)(r + 0.5), 0, 0xFFFF);
+ dst_bits[1] = (WORD)CLAMP<int>((int)(g + 0.5), 0, 0xFFFF);
+ dst_bits[2] = (WORD)CLAMP<int>((int)(b + 0.5), 0, 0xFFFF);
+
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case FIT_RGBA16:
+ {
+ // Calculate the number of words per pixel (1 for 16-bit, 3 for 48-bit or 4 for 64-bit)
+ const unsigned wordspp = (FreeImage_GetLine(src) / width) / sizeof(WORD);
+
+ const unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(WORD);
+ WORD *const dst_base = (WORD *)FreeImage_GetBits(dst);
+
+ const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(WORD);
+ const WORD *const src_base = (WORD *)FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x * wordspp;
+
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ const unsigned index = x * wordspp; // pixel index
+ WORD *dst_bits = dst_base + index;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iLimit = weightsTable.getRightBoundary(y) - iLeft; // retrieve right boundary
+ const WORD *src_bits = src_base + iLeft * src_pitch + index;
+ double r = 0, g = 0, b = 0, a = 0;
+
+ for (unsigned i = 0; i <= iLimit; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i);
+ r += (weight * (double)src_bits[0]);
+ g += (weight * (double)src_bits[1]);
+ b += (weight * (double)src_bits[2]);
+ a += (weight * (double)src_bits[3]);
+
+ src_bits += src_pitch;
+ }
+
+ // clamp and place result in destination pixel
+ dst_bits[0] = (WORD)CLAMP<int>((int)(r + 0.5), 0, 0xFFFF);
+ dst_bits[1] = (WORD)CLAMP<int>((int)(g + 0.5), 0, 0xFFFF);
+ dst_bits[2] = (WORD)CLAMP<int>((int)(b + 0.5), 0, 0xFFFF);
+ dst_bits[3] = (WORD)CLAMP<int>((int)(a + 0.5), 0, 0xFFFF);
+
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+
+ case FIT_FLOAT:
+ case FIT_RGBF:
+ case FIT_RGBAF:
+ {
+ // Calculate the number of floats per pixel (1 for 32-bit, 3 for 96-bit or 4 for 128-bit)
+ const unsigned floatspp = (FreeImage_GetLine(src) / width) / sizeof(float);
+
+ const unsigned dst_pitch = FreeImage_GetPitch(dst) / sizeof(float);
+ float *const dst_base = (float *)FreeImage_GetBits(dst);
+
+ const unsigned src_pitch = FreeImage_GetPitch(src) / sizeof(float);
+ const float *const src_base = (float *)FreeImage_GetBits(src) + src_offset_y * src_pitch + src_offset_x * floatspp;
+
+ for (unsigned x = 0; x < width; x++) {
+ // work on column x in dst
+ const unsigned index = x * floatspp; // pixel index
+ float *dst_bits = (float *)dst_base + index;
+
+ // scale each column
+ for (unsigned y = 0; y < dst_height; y++) {
+ // loop through column
+ const unsigned iLeft = weightsTable.getLeftBoundary(y); // retrieve left boundary
+ const unsigned iRight = weightsTable.getRightBoundary(y); // retrieve right boundary
+ const float *src_bits = src_base + iLeft * src_pitch + index;
+ double value[4] = {0, 0, 0, 0}; // 4 = 128 bpp max
+
+ for (unsigned i = iLeft; i <= iRight; i++) {
+ // scan between boundaries
+ // accumulate weighted effect of each neighboring pixel
+ const double weight = weightsTable.getWeight(y, i - iLeft);
+ for (unsigned j = 0; j < floatspp; j++) {
+ value[j] += (weight * (double)src_bits[j]);
+ }
+ src_bits += src_pitch;
+ }
+
+ // place result in destination pixel
+ for (unsigned j = 0; j < floatspp; j++) {
+ dst_bits[j] = (float)value[j];
+ }
+ dst_bits += dst_pitch;
+ }
+ }
+ }
+ break;
+ }
+}
diff --git a/plugins/AdvaImg/src/FreeImageToolkit/Resize.h b/plugins/AdvaImg/src/FreeImageToolkit/Resize.h index 0d5d0b451a..7fe1cdb112 100644 --- a/plugins/AdvaImg/src/FreeImageToolkit/Resize.h +++ b/plugins/AdvaImg/src/FreeImageToolkit/Resize.h @@ -1,145 +1,195 @@ -// ========================================================== -// Upsampling / downsampling classes -// -// Design and implementation by -// - Hervé Drolon (drolon@infonie.fr) -// - Detlev Vendt (detlev.vendt@brillit.de) -// -// This file is part of FreeImage 3 -// -// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY -// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES -// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE -// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED -// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT -// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY -// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL -// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER -// THIS DISCLAIMER. -// -// Use at your own risk! -// ========================================================== - -#ifndef _RESIZE_H_ -#define _RESIZE_H_ - -#include "FreeImage.h" -#include "Utilities.h" -#include "Filters.h" - -/** - Filter weights table.<br> - This class stores contribution information for an entire line (row or column). -*/ -class CWeightsTable -{ -/** - Sampled filter weight table.<br> - Contribution information for a single pixel -*/ -typedef struct { - /// Normalized weights of neighboring pixels - double *Weights; - /// Bounds of source pixels window - unsigned Left, Right; -} Contribution; - -private: - /// Row (or column) of contribution weights - Contribution *m_WeightTable; - /// Filter window size (of affecting source pixels) - unsigned m_WindowSize; - /// Length of line (no. of rows / cols) - unsigned m_LineLength; - -public: - /** - Constructor<br> - Allocate and compute the weights table - @param pFilter Filter used for upsampling or downsampling - @param uDstSize Length (in pixels) of the destination line buffer - @param uSrcSize Length (in pixels) of the source line buffer - */ - CWeightsTable(CGenericFilter *pFilter, unsigned uDstSize, unsigned uSrcSize); - - /** - Destructor<br> - Destroy the weights table - */ - ~CWeightsTable(); - - /** Retrieve a filter weight, given source and destination positions - @param dst_pos Pixel position in destination line buffer - @param src_pos Pixel position in source line buffer - @return Returns the filter weight - */ - double getWeight(unsigned dst_pos, unsigned src_pos) { - return m_WeightTable[dst_pos].Weights[src_pos]; - } - - /** Retrieve left boundary of source line buffer - @param dst_pos Pixel position in destination line buffer - @return Returns the left boundary of source line buffer - */ - unsigned getLeftBoundary(unsigned dst_pos) { - return m_WeightTable[dst_pos].Left; - } - - /** Retrieve right boundary of source line buffer - @param dst_pos Pixel position in destination line buffer - @return Returns the right boundary of source line buffer - */ - unsigned getRightBoundary(unsigned dst_pos) { - return m_WeightTable[dst_pos].Right; - } -}; - -// --------------------------------------------- - -/** - CResizeEngine<br> - This class performs filtered zoom. It scales an image to the desired dimensions with - any of the CGenericFilter derived filter class.<br> - It works with 8-, 24- and 32-bit buffers.<br><br> - - <b>References</b> : <br> - [1] Paul Heckbert, C code to zoom raster images up or down, with nice filtering. - UC Berkeley, August 1989. [online] http://www-2.cs.cmu.edu/afs/cs.cmu.edu/Web/People/ph/heckbert.html - [2] Eran Yariv, Two Pass Scaling using Filters. The Code Project, December 1999. - [online] http://www.codeproject.com/bitmap/2_pass_scaling.asp - -*/ -class CResizeEngine -{ -private: - /// Pointer to the FIR / IIR filter - CGenericFilter* m_pFilter; - -public: - - /// Constructor - CResizeEngine(CGenericFilter* filter):m_pFilter(filter) {} - - /// Destructor - virtual ~CResizeEngine() {} - - /** Scale an image to the desired dimensions - @param src Pointer to the source image - @param dst_width Destination image width - @param dst_height Destination image height - @return Returns the scaled image if successful, returns NULL otherwise - */ - FIBITMAP* scale(FIBITMAP *src, unsigned dst_width, unsigned dst_height); - -private: - - /// Performs horizontal image filtering - void horizontalFilter(FIBITMAP *src, unsigned src_width, unsigned src_height, FIBITMAP *dst, unsigned dst_width, unsigned dst_height); - - /// Performs vertical image filtering - void verticalFilter(FIBITMAP *src, unsigned src_width, unsigned src_height, FIBITMAP *dst, unsigned dst_width, unsigned dst_height); -}; - - - -#endif // _RESIZE_H_ +// ==========================================================
+// Upsampling / downsampling classes
+//
+// Design and implementation by
+// - Hervé Drolon (drolon@infonie.fr)
+// - Detlev Vendt (detlev.vendt@brillit.de)
+// - Carsten Klein (cklein05@users.sourceforge.net)
+//
+// This file is part of FreeImage 3
+//
+// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
+// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
+// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
+// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
+// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
+// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
+// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
+// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
+// THIS DISCLAIMER.
+//
+// Use at your own risk!
+// ==========================================================
+
+#ifndef _RESIZE_H_
+#define _RESIZE_H_
+
+#include "FreeImage.h"
+#include "Utilities.h"
+#include "Filters.h"
+
+/**
+ Filter weights table.<br>
+ This class stores contribution information for an entire line (row or column).
+*/
+class CWeightsTable
+{
+/**
+ Sampled filter weight table.<br>
+ Contribution information for a single pixel
+*/
+typedef struct {
+ /// Normalized weights of neighboring pixels
+ double *Weights;
+ /// Bounds of source pixels window
+ unsigned Left, Right;
+} Contribution;
+
+private:
+ /// Row (or column) of contribution weights
+ Contribution *m_WeightTable;
+ /// Filter window size (of affecting source pixels)
+ unsigned m_WindowSize;
+ /// Length of line (no. of rows / cols)
+ unsigned m_LineLength;
+
+public:
+ /**
+ Constructor<br>
+ Allocate and compute the weights table
+ @param pFilter Filter used for upsampling or downsampling
+ @param uDstSize Length (in pixels) of the destination line buffer
+ @param uSrcSize Length (in pixels) of the source line buffer
+ */
+ CWeightsTable(CGenericFilter *pFilter, unsigned uDstSize, unsigned uSrcSize);
+
+ /**
+ Destructor<br>
+ Destroy the weights table
+ */
+ ~CWeightsTable();
+
+ /** Retrieve a filter weight, given source and destination positions
+ @param dst_pos Pixel position in destination line buffer
+ @param src_pos Pixel position in source line buffer
+ @return Returns the filter weight
+ */
+ double getWeight(unsigned dst_pos, unsigned src_pos) {
+ return m_WeightTable[dst_pos].Weights[src_pos];
+ }
+
+ /** Retrieve left boundary of source line buffer
+ @param dst_pos Pixel position in destination line buffer
+ @return Returns the left boundary of source line buffer
+ */
+ unsigned getLeftBoundary(unsigned dst_pos) {
+ return m_WeightTable[dst_pos].Left;
+ }
+
+ /** Retrieve right boundary of source line buffer
+ @param dst_pos Pixel position in destination line buffer
+ @return Returns the right boundary of source line buffer
+ */
+ unsigned getRightBoundary(unsigned dst_pos) {
+ return m_WeightTable[dst_pos].Right;
+ }
+};
+
+// ---------------------------------------------
+
+/**
+ CResizeEngine<br>
+ This class performs filtered zoom. It scales an image to the desired dimensions with
+ any of the CGenericFilter derived filter class.<br>
+ It works with FIT_BITMAP buffers, WORD buffers (FIT_UINT16, FIT_RGB16, FIT_RGBA16)
+ and float buffers (FIT_FLOAT, FIT_RGBF, FIT_RGBAF).<br><br>
+
+ <b>References</b> : <br>
+ [1] Paul Heckbert, C code to zoom raster images up or down, with nice filtering.
+ UC Berkeley, August 1989. [online] http://www-2.cs.cmu.edu/afs/cs.cmu.edu/Web/People/ph/heckbert.html
+ [2] Eran Yariv, Two Pass Scaling using Filters. The Code Project, December 1999.
+ [online] http://www.codeproject.com/bitmap/2_pass_scaling.asp
+
+*/
+class CResizeEngine
+{
+private:
+ /// Pointer to the FIR / IIR filter
+ CGenericFilter* m_pFilter;
+
+public:
+
+ /**
+ Constructor
+ @param filter FIR /IIR filter to be used
+ */
+ CResizeEngine(CGenericFilter* filter):m_pFilter(filter) {}
+
+ /// Destructor
+ virtual ~CResizeEngine() {}
+
+ /** Scale an image to the desired dimensions.
+
+ Method CResizeEngine::scale, as well as the two filtering methods
+ CResizeEngine::horizontalFilter and CResizeEngine::verticalFilter take
+ four additional parameters, that define a rectangle in the source
+ image to be rescaled.
+
+ These are src_left, src_top, src_width and src_height and should work
+ like these of function FreeImage_Copy. However, src_left and src_top are
+ actually named src_offset_x and src_offset_y in the filtering methods.
+
+ Additionally, since src_height and dst_height are always the same for
+ method horizontalFilter as src_width and dst_width are always the same
+ for verticalFilter, these have been stripped down to a single parameter
+ height and width for horizontalFilter and verticalFilter respectively.
+
+ Currently, method scale is called with the actual size of the source
+ image. However, in a future version, we could provide a new function
+ called FreeImage_RescaleRect that rescales only part of an image.
+
+ @param src Pointer to the source image
+ @param dst_width Destination image width
+ @param dst_height Destination image height
+ @param src_left Left boundary of the source rectangle to be scaled
+ @param src_top Top boundary of the source rectangle to be scaled
+ @param src_width Width of the source rectangle to be scaled
+ @param src_height Height of the source rectangle to be scaled
+ @return Returns the scaled image if successful, returns NULL otherwise
+ */
+ FIBITMAP* scale(FIBITMAP *src, unsigned dst_width, unsigned dst_height, unsigned src_left, unsigned src_top, unsigned src_width, unsigned src_height);
+
+private:
+
+ /**
+ Performs horizontal image filtering
+ @param src
+ @param height
+ @param src_width
+ @param src_offset_x
+ @param src_offset_y
+ @param src_pal
+ @param dst
+ @param dst_width
+ */
+ void horizontalFilter(FIBITMAP * const src, const unsigned height, const unsigned src_width,
+ const unsigned src_offset_x, const unsigned src_offset_y, const RGBQUAD * const src_pal,
+ FIBITMAP * const dst, const unsigned dst_width);
+
+ /**
+ Performs vertical image filtering
+ @param src
+ @param width
+ @param src_height
+ @param src_offset_x
+ @param src_offset_y
+ @param src_pal
+ @param dst
+ @param dst_height
+ */
+ void verticalFilter(FIBITMAP * const src, const unsigned width, const unsigned src_height,
+ const unsigned src_offset_x, const unsigned src_offset_y, const RGBQUAD * const src_pal,
+ FIBITMAP * const dst, const unsigned dst_height);
+};
+
+#endif // _RESIZE_H_
|