summaryrefslogtreecommitdiff
path: root/plugins/AdvaImg/src/LibJPEG
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/AdvaImg/src/LibJPEG')
-rw-r--r--plugins/AdvaImg/src/LibJPEG/ansi2knr.c739
-rw-r--r--plugins/AdvaImg/src/LibJPEG/cderror.h134
-rw-r--r--plugins/AdvaImg/src/LibJPEG/cdjpeg.c181
-rw-r--r--plugins/AdvaImg/src/LibJPEG/cdjpeg.h187
-rw-r--r--plugins/AdvaImg/src/LibJPEG/change.log346
-rw-r--r--plugins/AdvaImg/src/LibJPEG/cjpeg.c643
-rw-r--r--plugins/AdvaImg/src/LibJPEG/ckconfig.c402
-rw-r--r--plugins/AdvaImg/src/LibJPEG/djpeg.c617
-rw-r--r--plugins/AdvaImg/src/LibJPEG/example.c433
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jaricom.c153
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcapimin.c288
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcapistd.c161
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcarith.c937
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jccoefct.c454
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jccolor.c490
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcdctmgr.c482
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jchuff.c1576
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcinit.c65
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcmainct.c293
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcmarker.c682
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcmaster.c858
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcomapi.c106
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jconfig.h47
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jconfig.txt164
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcparam.c632
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcprepct.c358
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jcsample.c545
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jctrans.c382
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdapimin.c396
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdapistd.c275
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdarith.c776
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdatadst.c267
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdatasrc.c275
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdcoefct.c741
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdcolor.c512
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdct.h393
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jddctmgr.c384
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdhuff.c1541
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdinput.c661
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdmainct.c512
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdmarker.c1406
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdmaster.c531
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdmerge.c400
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdpostct.c290
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdsample.c361
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jdtrans.c140
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jerror.c252
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jerror.h304
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jfdctflt.c174
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jfdctfst.c230
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jfdctint.c4348
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jidctflt.c235
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jidctfst.c368
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jidctint.c5137
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jinclude.h91
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemansi.c167
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemdos.c638
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemdosa.asm379
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemmac.c289
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemmgr.c1119
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemname.c276
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemnobs.c109
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmemsys.h198
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jmorecfg.h369
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jpegint.h426
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jpeglib.h1160
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jpegtran.c560
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jquant1.c857
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jquant2.c1311
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jutils.c227
-rw-r--r--plugins/AdvaImg/src/LibJPEG/jversion.h14
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdbmp.c480
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdcolmap.c253
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdgif.c38
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdjpgcom.c515
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdppm.c459
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdrle.c387
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdswitch.c365
-rw-r--r--plugins/AdvaImg/src/LibJPEG/rdtarga.c500
-rw-r--r--plugins/AdvaImg/src/LibJPEG/transupp.c1597
-rw-r--r--plugins/AdvaImg/src/LibJPEG/transupp.h213
-rw-r--r--plugins/AdvaImg/src/LibJPEG/wrbmp.c442
-rw-r--r--plugins/AdvaImg/src/LibJPEG/wrgif.c399
-rw-r--r--plugins/AdvaImg/src/LibJPEG/wrjpgcom.c583
-rw-r--r--plugins/AdvaImg/src/LibJPEG/wrppm.c269
-rw-r--r--plugins/AdvaImg/src/LibJPEG/wrrle.c305
-rw-r--r--plugins/AdvaImg/src/LibJPEG/wrtarga.c253
87 files changed, 48512 insertions, 0 deletions
diff --git a/plugins/AdvaImg/src/LibJPEG/ansi2knr.c b/plugins/AdvaImg/src/LibJPEG/ansi2knr.c
new file mode 100644
index 0000000000..dcfb5d9255
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/ansi2knr.c
@@ -0,0 +1,739 @@
+/* Copyright (C) 1989, 2000 Aladdin Enterprises. All rights reserved. */
+
+/*$Id: ansi2knr.c,v 1.6 2012/01/29 12:23:24 drolon Exp $*/
+/* Convert ANSI C function definitions to K&R ("traditional C") syntax */
+
+/*
+ansi2knr is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY. No author or distributor accepts responsibility to anyone for the
+consequences of using it or for whether it serves any particular purpose or
+works at all, unless he says so in writing. Refer to the GNU General Public
+License (the "GPL") for full details.
+
+Everyone is granted permission to copy, modify and redistribute ansi2knr,
+but only under the conditions described in the GPL. A copy of this license
+is supposed to have been given to you along with ansi2knr so you can know
+your rights and responsibilities. It should be in a file named COPYLEFT,
+or, if there is no file named COPYLEFT, a file named COPYING. Among other
+things, the copyright notice and this notice must be preserved on all
+copies.
+
+We explicitly state here what we believe is already implied by the GPL: if
+the ansi2knr program is distributed as a separate set of sources and a
+separate executable file which are aggregated on a storage medium together
+with another program, this in itself does not bring the other program under
+the GPL, nor does the mere fact that such a program or the procedures for
+constructing it invoke the ansi2knr executable bring any other part of the
+program under the GPL.
+*/
+
+/*
+ * Usage:
+ ansi2knr [--filename FILENAME] [INPUT_FILE [OUTPUT_FILE]]
+ * --filename provides the file name for the #line directive in the output,
+ * overriding input_file (if present).
+ * If no input_file is supplied, input is read from stdin.
+ * If no output_file is supplied, output goes to stdout.
+ * There are no error messages.
+ *
+ * ansi2knr recognizes function definitions by seeing a non-keyword
+ * identifier at the left margin, followed by a left parenthesis, with a
+ * right parenthesis as the last character on the line, and with a left
+ * brace as the first token on the following line (ignoring possible
+ * intervening comments and/or preprocessor directives), except that a line
+ * consisting of only
+ * identifier1(identifier2)
+ * will not be considered a function definition unless identifier2 is
+ * the word "void", and a line consisting of
+ * identifier1(identifier2, <<arbitrary>>)
+ * will not be considered a function definition.
+ * ansi2knr will recognize a multi-line header provided that no intervening
+ * line ends with a left or right brace or a semicolon. These algorithms
+ * ignore whitespace, comments, and preprocessor directives, except that
+ * the function name must be the first thing on the line. The following
+ * constructs will confuse it:
+ * - Any other construct that starts at the left margin and
+ * follows the above syntax (such as a macro or function call).
+ * - Some macros that tinker with the syntax of function headers.
+ */
+
+/*
+ * The original and principal author of ansi2knr is L. Peter Deutsch
+ * <ghost@aladdin.com>. Other authors are noted in the change history
+ * that follows (in reverse chronological order):
+
+ lpd 2000-04-12 backs out Eggert's changes because of bugs:
+ - concatlits didn't declare the type of its bufend argument;
+ - concatlits didn't recognize when it was inside a comment;
+ - scanstring could scan backward past the beginning of the string; when
+ - the check for \ + newline in scanstring was unnecessary.
+
+ 2000-03-05 Paul Eggert <eggert@twinsun.com>
+
+ Add support for concatenated string literals.
+ * ansi2knr.c (concatlits): New decl.
+ (main): Invoke concatlits to concatenate string literals.
+ (scanstring): Handle backslash-newline correctly. Work with
+ character constants. Fix bug when scanning backwards through
+ backslash-quote. Check for unterminated strings.
+ (convert1): Parse character constants, too.
+ (appendline, concatlits): New functions.
+ * ansi2knr.1: Document this.
+
+ lpd 1999-08-17 added code to allow preprocessor directives
+ wherever comments are allowed
+ lpd 1999-04-12 added minor fixes from Pavel Roskin
+ <pavel_roskin@geocities.com> for clean compilation with
+ gcc -W -Wall
+ lpd 1999-03-22 added hack to recognize lines consisting of
+ identifier1(identifier2, xxx) as *not* being procedures
+ lpd 1999-02-03 made indentation of preprocessor commands consistent
+ lpd 1999-01-28 fixed two bugs: a '/' in an argument list caused an
+ endless loop; quoted strings within an argument list
+ confused the parser
+ lpd 1999-01-24 added a check for write errors on the output,
+ suggested by Jim Meyering <meyering@ascend.com>
+ lpd 1998-11-09 added further hack to recognize identifier(void)
+ as being a procedure
+ lpd 1998-10-23 added hack to recognize lines consisting of
+ identifier1(identifier2) as *not* being procedures
+ lpd 1997-12-08 made input_file optional; only closes input and/or
+ output file if not stdin or stdout respectively; prints
+ usage message on stderr rather than stdout; adds
+ --filename switch (changes suggested by
+ <ceder@lysator.liu.se>)
+ lpd 1996-01-21 added code to cope with not HAVE_CONFIG_H and with
+ compilers that don't understand void, as suggested by
+ Tom Lane
+ lpd 1996-01-15 changed to require that the first non-comment token
+ on the line following a function header be a left brace,
+ to reduce sensitivity to macros, as suggested by Tom Lane
+ <tgl@sss.pgh.pa.us>
+ lpd 1995-06-22 removed #ifndefs whose sole purpose was to define
+ undefined preprocessor symbols as 0; changed all #ifdefs
+ for configuration symbols to #ifs
+ lpd 1995-04-05 changed copyright notice to make it clear that
+ including ansi2knr in a program does not bring the entire
+ program under the GPL
+ lpd 1994-12-18 added conditionals for systems where ctype macros
+ don't handle 8-bit characters properly, suggested by
+ Francois Pinard <pinard@iro.umontreal.ca>;
+ removed --varargs switch (this is now the default)
+ lpd 1994-10-10 removed CONFIG_BROKETS conditional
+ lpd 1994-07-16 added some conditionals to help GNU `configure',
+ suggested by Francois Pinard <pinard@iro.umontreal.ca>;
+ properly erase prototype args in function parameters,
+ contributed by Jim Avera <jima@netcom.com>;
+ correct error in writeblanks (it shouldn't erase EOLs)
+ lpd 1989-xx-xx original version
+ */
+
+/* Most of the conditionals here are to make ansi2knr work with */
+/* or without the GNU configure machinery. */
+
+#if HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#include <stdio.h>
+#include <ctype.h>
+
+#if HAVE_CONFIG_H
+
+/*
+ For properly autoconfiguring ansi2knr, use AC_CONFIG_HEADER(config.h).
+ This will define HAVE_CONFIG_H and so, activate the following lines.
+ */
+
+# if STDC_HEADERS || HAVE_STRING_H
+# include <string.h>
+# else
+# include <strings.h>
+# endif
+
+#else /* not HAVE_CONFIG_H */
+
+/* Otherwise do it the hard way */
+
+# ifdef BSD
+# include <strings.h>
+# else
+# ifdef VMS
+ extern int strlen(), strncmp();
+# else
+# include <string.h>
+# endif
+# endif
+
+#endif /* not HAVE_CONFIG_H */
+
+#if STDC_HEADERS
+# include <stdlib.h>
+#else
+/*
+ malloc and free should be declared in stdlib.h,
+ but if you've got a K&R compiler, they probably aren't.
+ */
+# ifdef MSDOS
+# include <malloc.h>
+# else
+# ifdef VMS
+ extern char *malloc();
+ extern void free();
+# else
+ extern char *malloc();
+ extern int free();
+# endif
+# endif
+
+#endif
+
+/* Define NULL (for *very* old compilers). */
+#ifndef NULL
+# define NULL (0)
+#endif
+
+/*
+ * The ctype macros don't always handle 8-bit characters correctly.
+ * Compensate for this here.
+ */
+#ifdef isascii
+# undef HAVE_ISASCII /* just in case */
+# define HAVE_ISASCII 1
+#else
+#endif
+#if STDC_HEADERS || !HAVE_ISASCII
+# define is_ascii(c) 1
+#else
+# define is_ascii(c) isascii(c)
+#endif
+
+#define is_space(c) (is_ascii(c) && isspace(c))
+#define is_alpha(c) (is_ascii(c) && isalpha(c))
+#define is_alnum(c) (is_ascii(c) && isalnum(c))
+
+/* Scanning macros */
+#define isidchar(ch) (is_alnum(ch) || (ch) == '_')
+#define isidfirstchar(ch) (is_alpha(ch) || (ch) == '_')
+
+/* Forward references */
+char *ppdirforward();
+char *ppdirbackward();
+char *skipspace();
+char *scanstring();
+int writeblanks();
+int test1();
+int convert1();
+
+/* The main program */
+int
+main(argc, argv)
+ int argc;
+ char *argv[];
+{ FILE *in = stdin;
+ FILE *out = stdout;
+ char *filename = 0;
+ char *program_name = argv[0];
+ char *output_name = 0;
+#define bufsize 5000 /* arbitrary size */
+ char *buf;
+ char *line;
+ char *more;
+ char *usage =
+ "Usage: ansi2knr [--filename FILENAME] [INPUT_FILE [OUTPUT_FILE]]\n";
+ /*
+ * In previous versions, ansi2knr recognized a --varargs switch.
+ * If this switch was supplied, ansi2knr would attempt to convert
+ * a ... argument to va_alist and va_dcl; if this switch was not
+ * supplied, ansi2knr would simply drop any such arguments.
+ * Now, ansi2knr always does this conversion, and we only
+ * check for this switch for backward compatibility.
+ */
+ int convert_varargs = 1;
+ int output_error;
+
+ while ( argc > 1 && argv[1][0] == '-' ) {
+ if ( !strcmp(argv[1], "--varargs") ) {
+ convert_varargs = 1;
+ argc--;
+ argv++;
+ continue;
+ }
+ if ( !strcmp(argv[1], "--filename") && argc > 2 ) {
+ filename = argv[2];
+ argc -= 2;
+ argv += 2;
+ continue;
+ }
+ fprintf(stderr, "%s: Unrecognized switch: %s\n", program_name,
+ argv[1]);
+ fprintf(stderr, usage);
+ exit(1);
+ }
+ switch ( argc )
+ {
+ default:
+ fprintf(stderr, usage);
+ exit(0);
+ case 3:
+ output_name = argv[2];
+ out = fopen(output_name, "w");
+ if ( out == NULL ) {
+ fprintf(stderr, "%s: Cannot open output file %s\n",
+ program_name, output_name);
+ exit(1);
+ }
+ /* falls through */
+ case 2:
+ in = fopen(argv[1], "r");
+ if ( in == NULL ) {
+ fprintf(stderr, "%s: Cannot open input file %s\n",
+ program_name, argv[1]);
+ exit(1);
+ }
+ if ( filename == 0 )
+ filename = argv[1];
+ /* falls through */
+ case 1:
+ break;
+ }
+ if ( filename )
+ fprintf(out, "#line 1 \"%s\"\n", filename);
+ buf = malloc(bufsize);
+ if ( buf == NULL )
+ {
+ fprintf(stderr, "Unable to allocate read buffer!\n");
+ exit(1);
+ }
+ line = buf;
+ while ( fgets(line, (unsigned)(buf + bufsize - line), in) != NULL )
+ {
+test: line += strlen(line);
+ switch ( test1(buf) )
+ {
+ case 2: /* a function header */
+ convert1(buf, out, 1, convert_varargs);
+ break;
+ case 1: /* a function */
+ /* Check for a { at the start of the next line. */
+ more = ++line;
+f: if ( line >= buf + (bufsize - 1) ) /* overflow check */
+ goto wl;
+ if ( fgets(line, (unsigned)(buf + bufsize - line), in) == NULL )
+ goto wl;
+ switch ( *skipspace(ppdirforward(more), 1) )
+ {
+ case '{':
+ /* Definitely a function header. */
+ convert1(buf, out, 0, convert_varargs);
+ fputs(more, out);
+ break;
+ case 0:
+ /* The next line was blank or a comment: */
+ /* keep scanning for a non-comment. */
+ line += strlen(line);
+ goto f;
+ default:
+ /* buf isn't a function header, but */
+ /* more might be. */
+ fputs(buf, out);
+ strcpy(buf, more);
+ line = buf;
+ goto test;
+ }
+ break;
+ case -1: /* maybe the start of a function */
+ if ( line != buf + (bufsize - 1) ) /* overflow check */
+ continue;
+ /* falls through */
+ default: /* not a function */
+wl: fputs(buf, out);
+ break;
+ }
+ line = buf;
+ }
+ if ( line != buf )
+ fputs(buf, out);
+ free(buf);
+ if ( output_name ) {
+ output_error = ferror(out);
+ output_error |= fclose(out);
+ } else { /* out == stdout */
+ fflush(out);
+ output_error = ferror(out);
+ }
+ if ( output_error ) {
+ fprintf(stderr, "%s: error writing to %s\n", program_name,
+ (output_name ? output_name : "stdout"));
+ exit(1);
+ }
+ if ( in != stdin )
+ fclose(in);
+ return 0;
+}
+
+/*
+ * Skip forward or backward over one or more preprocessor directives.
+ */
+char *
+ppdirforward(p)
+ char *p;
+{
+ for (; *p == '#'; ++p) {
+ for (; *p != '\r' && *p != '\n'; ++p)
+ if (*p == 0)
+ return p;
+ if (*p == '\r' && p[1] == '\n')
+ ++p;
+ }
+ return p;
+}
+char *
+ppdirbackward(p, limit)
+ char *p;
+ char *limit;
+{
+ char *np = p;
+
+ for (;; p = --np) {
+ if (*np == '\n' && np[-1] == '\r')
+ --np;
+ for (; np > limit && np[-1] != '\r' && np[-1] != '\n'; --np)
+ if (np[-1] == 0)
+ return np;
+ if (*np != '#')
+ return p;
+ }
+}
+
+/*
+ * Skip over whitespace, comments, and preprocessor directives,
+ * in either direction.
+ */
+char *
+skipspace(p, dir)
+ char *p;
+ int dir; /* 1 for forward, -1 for backward */
+{
+ for ( ; ; ) {
+ while ( is_space(*p) )
+ p += dir;
+ if ( !(*p == '/' && p[dir] == '*') )
+ break;
+ p += dir; p += dir;
+ while ( !(*p == '*' && p[dir] == '/') ) {
+ if ( *p == 0 )
+ return p; /* multi-line comment?? */
+ p += dir;
+ }
+ p += dir; p += dir;
+ }
+ return p;
+}
+
+/* Scan over a quoted string, in either direction. */
+char *
+scanstring(p, dir)
+ char *p;
+ int dir;
+{
+ for (p += dir; ; p += dir)
+ if (*p == '"' && p[-dir] != '\\')
+ return p + dir;
+}
+
+/*
+ * Write blanks over part of a string.
+ * Don't overwrite end-of-line characters.
+ */
+int
+writeblanks(start, end)
+ char *start;
+ char *end;
+{ char *p;
+ for ( p = start; p < end; p++ )
+ if ( *p != '\r' && *p != '\n' )
+ *p = ' ';
+ return 0;
+}
+
+/*
+ * Test whether the string in buf is a function definition.
+ * The string may contain and/or end with a newline.
+ * Return as follows:
+ * 0 - definitely not a function definition;
+ * 1 - definitely a function definition;
+ * 2 - definitely a function prototype (NOT USED);
+ * -1 - may be the beginning of a function definition,
+ * append another line and look again.
+ * The reason we don't attempt to convert function prototypes is that
+ * Ghostscript's declaration-generating macros look too much like
+ * prototypes, and confuse the algorithms.
+ */
+int
+test1(buf)
+ char *buf;
+{ char *p = buf;
+ char *bend;
+ char *endfn;
+ int contin;
+
+ if ( !isidfirstchar(*p) )
+ return 0; /* no name at left margin */
+ bend = skipspace(ppdirbackward(buf + strlen(buf) - 1, buf), -1);
+ switch ( *bend )
+ {
+ case ';': contin = 0 /*2*/; break;
+ case ')': contin = 1; break;
+ case '{': return 0; /* not a function */
+ case '}': return 0; /* not a function */
+ default: contin = -1;
+ }
+ while ( isidchar(*p) )
+ p++;
+ endfn = p;
+ p = skipspace(p, 1);
+ if ( *p++ != '(' )
+ return 0; /* not a function */
+ p = skipspace(p, 1);
+ if ( *p == ')' )
+ return 0; /* no parameters */
+ /* Check that the apparent function name isn't a keyword. */
+ /* We only need to check for keywords that could be followed */
+ /* by a left parenthesis (which, unfortunately, is most of them). */
+ { static char *words[] =
+ { "asm", "auto", "case", "char", "const", "double",
+ "extern", "float", "for", "if", "int", "long",
+ "register", "return", "short", "signed", "sizeof",
+ "static", "switch", "typedef", "unsigned",
+ "void", "volatile", "while", 0
+ };
+ char **key = words;
+ char *kp;
+ unsigned len = endfn - buf;
+
+ while ( (kp = *key) != 0 )
+ { if ( strlen(kp) == len && !strncmp(kp, buf, len) )
+ return 0; /* name is a keyword */
+ key++;
+ }
+ }
+ {
+ char *id = p;
+ int len;
+ /*
+ * Check for identifier1(identifier2) and not
+ * identifier1(void), or identifier1(identifier2, xxxx).
+ */
+
+ while ( isidchar(*p) )
+ p++;
+ len = p - id;
+ p = skipspace(p, 1);
+ if (*p == ',' ||
+ (*p == ')' && (len != 4 || strncmp(id, "void", 4)))
+ )
+ return 0; /* not a function */
+ }
+ /*
+ * If the last significant character was a ), we need to count
+ * parentheses, because it might be part of a formal parameter
+ * that is a procedure.
+ */
+ if (contin > 0) {
+ int level = 0;
+
+ for (p = skipspace(buf, 1); *p; p = skipspace(p + 1, 1))
+ level += (*p == '(' ? 1 : *p == ')' ? -1 : 0);
+ if (level > 0)
+ contin = -1;
+ }
+ return contin;
+}
+
+/* Convert a recognized function definition or header to K&R syntax. */
+int
+convert1(buf, out, header, convert_varargs)
+ char *buf;
+ FILE *out;
+ int header; /* Boolean */
+ int convert_varargs; /* Boolean */
+{ char *endfn;
+ char *p;
+ /*
+ * The breaks table contains pointers to the beginning and end
+ * of each argument.
+ */
+ char **breaks;
+ unsigned num_breaks = 2; /* for testing */
+ char **btop;
+ char **bp;
+ char **ap;
+ char *vararg = 0;
+
+ /* Pre-ANSI implementations don't agree on whether strchr */
+ /* is called strchr or index, so we open-code it here. */
+ for ( endfn = buf; *(endfn++) != '('; )
+ ;
+top: p = endfn;
+ breaks = (char **)malloc(sizeof(char *) * num_breaks * 2);
+ if ( breaks == NULL )
+ { /* Couldn't allocate break table, give up */
+ fprintf(stderr, "Unable to allocate break table!\n");
+ fputs(buf, out);
+ return -1;
+ }
+ btop = breaks + num_breaks * 2 - 2;
+ bp = breaks;
+ /* Parse the argument list */
+ do
+ { int level = 0;
+ char *lp = NULL;
+ char *rp = NULL;
+ char *end = NULL;
+
+ if ( bp >= btop )
+ { /* Filled up break table. */
+ /* Allocate a bigger one and start over. */
+ free((char *)breaks);
+ num_breaks <<= 1;
+ goto top;
+ }
+ *bp++ = p;
+ /* Find the end of the argument */
+ for ( ; end == NULL; p++ )
+ { switch(*p)
+ {
+ case ',':
+ if ( !level ) end = p;
+ break;
+ case '(':
+ if ( !level ) lp = p;
+ level++;
+ break;
+ case ')':
+ if ( --level < 0 ) end = p;
+ else rp = p;
+ break;
+ case '/':
+ if (p[1] == '*')
+ p = skipspace(p, 1) - 1;
+ break;
+ case '"':
+ p = scanstring(p, 1) - 1;
+ break;
+ default:
+ ;
+ }
+ }
+ /* Erase any embedded prototype parameters. */
+ if ( lp && rp )
+ writeblanks(lp + 1, rp);
+ p--; /* back up over terminator */
+ /* Find the name being declared. */
+ /* This is complicated because of procedure and */
+ /* array modifiers. */
+ for ( ; ; )
+ { p = skipspace(p - 1, -1);
+ switch ( *p )
+ {
+ case ']': /* skip array dimension(s) */
+ case ')': /* skip procedure args OR name */
+ { int level = 1;
+ while ( level )
+ switch ( *--p )
+ {
+ case ']': case ')':
+ level++;
+ break;
+ case '[': case '(':
+ level--;
+ break;
+ case '/':
+ if (p > buf && p[-1] == '*')
+ p = skipspace(p, -1) + 1;
+ break;
+ case '"':
+ p = scanstring(p, -1) + 1;
+ break;
+ default: ;
+ }
+ }
+ if ( *p == '(' && *skipspace(p + 1, 1) == '*' )
+ { /* We found the name being declared */
+ while ( !isidfirstchar(*p) )
+ p = skipspace(p, 1) + 1;
+ goto found;
+ }
+ break;
+ default:
+ goto found;
+ }
+ }
+found: if ( *p == '.' && p[-1] == '.' && p[-2] == '.' )
+ { if ( convert_varargs )
+ { *bp++ = "va_alist";
+ vararg = p-2;
+ }
+ else
+ { p++;
+ if ( bp == breaks + 1 ) /* sole argument */
+ writeblanks(breaks[0], p);
+ else
+ writeblanks(bp[-1] - 1, p);
+ bp--;
+ }
+ }
+ else
+ { while ( isidchar(*p) ) p--;
+ *bp++ = p+1;
+ }
+ p = end;
+ }
+ while ( *p++ == ',' );
+ *bp = p;
+ /* Make a special check for 'void' arglist */
+ if ( bp == breaks+2 )
+ { p = skipspace(breaks[0], 1);
+ if ( !strncmp(p, "void", 4) )
+ { p = skipspace(p+4, 1);
+ if ( p == breaks[2] - 1 )
+ { bp = breaks; /* yup, pretend arglist is empty */
+ writeblanks(breaks[0], p + 1);
+ }
+ }
+ }
+ /* Put out the function name and left parenthesis. */
+ p = buf;
+ while ( p != endfn ) putc(*p, out), p++;
+ /* Put out the declaration. */
+ if ( header )
+ { fputs(");", out);
+ for ( p = breaks[0]; *p; p++ )
+ if ( *p == '\r' || *p == '\n' )
+ putc(*p, out);
+ }
+ else
+ { for ( ap = breaks+1; ap < bp; ap += 2 )
+ { p = *ap;
+ while ( isidchar(*p) )
+ putc(*p, out), p++;
+ if ( ap < bp - 1 )
+ fputs(", ", out);
+ }
+ fputs(") ", out);
+ /* Put out the argument declarations */
+ for ( ap = breaks+2; ap <= bp; ap += 2 )
+ (*ap)[-1] = ';';
+ if ( vararg != 0 )
+ { *vararg = 0;
+ fputs(breaks[0], out); /* any prior args */
+ fputs("va_dcl", out); /* the final arg */
+ fputs(bp[0], out);
+ }
+ else
+ fputs(breaks[0], out);
+ }
+ free((char *)breaks);
+ return 0;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/cderror.h b/plugins/AdvaImg/src/LibJPEG/cderror.h
new file mode 100644
index 0000000000..e19c475c5c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/cderror.h
@@ -0,0 +1,134 @@
+/*
+ * cderror.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the error and message codes for the cjpeg/djpeg
+ * applications. These strings are not needed as part of the JPEG library
+ * proper.
+ * Edit this file to add new codes, or to translate the message strings to
+ * some other language.
+ */
+
+/*
+ * To define the enum list of message codes, include this file without
+ * defining macro JMESSAGE. To create a message string table, include it
+ * again with a suitable JMESSAGE definition (see jerror.c for an example).
+ */
+#ifndef JMESSAGE
+#ifndef CDERROR_H
+#define CDERROR_H
+/* First time through, define the enum list */
+#define JMAKE_ENUM_LIST
+#else
+/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+#define JMESSAGE(code,string)
+#endif /* CDERROR_H */
+#endif /* JMESSAGE */
+
+#ifdef JMAKE_ENUM_LIST
+
+typedef enum {
+
+#define JMESSAGE(code,string) code ,
+
+#endif /* JMAKE_ENUM_LIST */
+
+JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */
+
+#ifdef BMP_SUPPORTED
+JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
+JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
+JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
+JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
+JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
+JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
+JMESSAGE(JERR_BMP_EMPTY, "Empty BMP image")
+JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
+JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
+JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
+JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
+JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
+#endif /* BMP_SUPPORTED */
+
+#ifdef GIF_SUPPORTED
+JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
+JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
+JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
+JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
+JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
+JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
+JMESSAGE(JTRC_GIF_BADVERSION,
+ "Warning: unexpected GIF version number '%c%c%c'")
+JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
+JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
+JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
+JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
+JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
+JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
+#endif /* GIF_SUPPORTED */
+
+#ifdef PPM_SUPPORTED
+JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
+JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
+JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
+JMESSAGE(JTRC_PGM, "%ux%u PGM image")
+JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
+JMESSAGE(JTRC_PPM, "%ux%u PPM image")
+JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
+#endif /* PPM_SUPPORTED */
+
+#ifdef RLE_SUPPORTED
+JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
+JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
+JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
+JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
+JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
+JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
+JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
+JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
+JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
+JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
+JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
+JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
+JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
+JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
+#endif /* RLE_SUPPORTED */
+
+#ifdef TARGA_SUPPORTED
+JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
+JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
+JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
+JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
+JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
+JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
+#else
+JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
+#endif /* TARGA_SUPPORTED */
+
+JMESSAGE(JERR_BAD_CMAP_FILE,
+ "Color map file is invalid or of unsupported format")
+JMESSAGE(JERR_TOO_MANY_COLORS,
+ "Output file format cannot handle %d colormap entries")
+JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
+#ifdef TARGA_SUPPORTED
+JMESSAGE(JERR_UNKNOWN_FORMAT,
+ "Unrecognized input file format --- perhaps you need -targa")
+#else
+JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
+#endif
+JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
+
+#ifdef JMAKE_ENUM_LIST
+
+ JMSG_LASTADDONCODE
+} ADDON_MESSAGE_CODE;
+
+#undef JMAKE_ENUM_LIST
+#endif /* JMAKE_ENUM_LIST */
+
+/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+#undef JMESSAGE
diff --git a/plugins/AdvaImg/src/LibJPEG/cdjpeg.c b/plugins/AdvaImg/src/LibJPEG/cdjpeg.c
new file mode 100644
index 0000000000..89fe633728
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/cdjpeg.c
@@ -0,0 +1,181 @@
+/*
+ * cdjpeg.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains common support routines used by the IJG application
+ * programs (cjpeg, djpeg, jpegtran).
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+#include <ctype.h> /* to declare isupper(), tolower() */
+#ifdef NEED_SIGNAL_CATCHER
+#include <signal.h> /* to declare signal() */
+#endif
+#ifdef USE_SETMODE
+#include <fcntl.h> /* to declare setmode()'s parameter macros */
+/* If you have setmode() but not <io.h>, just delete this line: */
+#include <io.h> /* to declare setmode() */
+#endif
+
+
+/*
+ * Signal catcher to ensure that temporary files are removed before aborting.
+ * NB: for Amiga Manx C this is actually a global routine named _abort();
+ * we put "#define signal_catcher _abort" in jconfig.h. Talk about bogus...
+ */
+
+#ifdef NEED_SIGNAL_CATCHER
+
+static j_common_ptr sig_cinfo;
+
+void /* must be global for Manx C */
+signal_catcher (int signum)
+{
+ if (sig_cinfo != NULL) {
+ if (sig_cinfo->err != NULL) /* turn off trace output */
+ sig_cinfo->err->trace_level = 0;
+ jpeg_destroy(sig_cinfo); /* clean up memory allocation & temp files */
+ }
+ exit(EXIT_FAILURE);
+}
+
+
+GLOBAL(void)
+enable_signal_catcher (j_common_ptr cinfo)
+{
+ sig_cinfo = cinfo;
+#ifdef SIGINT /* not all systems have SIGINT */
+ signal(SIGINT, signal_catcher);
+#endif
+#ifdef SIGTERM /* not all systems have SIGTERM */
+ signal(SIGTERM, signal_catcher);
+#endif
+}
+
+#endif
+
+
+/*
+ * Optional progress monitor: display a percent-done figure on stderr.
+ */
+
+#ifdef PROGRESS_REPORT
+
+METHODDEF(void)
+progress_monitor (j_common_ptr cinfo)
+{
+ cd_progress_ptr prog = (cd_progress_ptr) cinfo->progress;
+ int total_passes = prog->pub.total_passes + prog->total_extra_passes;
+ int percent_done = (int) (prog->pub.pass_counter*100L/prog->pub.pass_limit);
+
+ if (percent_done != prog->percent_done) {
+ prog->percent_done = percent_done;
+ if (total_passes > 1) {
+ fprintf(stderr, "\rPass %d/%d: %3d%% ",
+ prog->pub.completed_passes + prog->completed_extra_passes + 1,
+ total_passes, percent_done);
+ } else {
+ fprintf(stderr, "\r %3d%% ", percent_done);
+ }
+ fflush(stderr);
+ }
+}
+
+
+GLOBAL(void)
+start_progress_monitor (j_common_ptr cinfo, cd_progress_ptr progress)
+{
+ /* Enable progress display, unless trace output is on */
+ if (cinfo->err->trace_level == 0) {
+ progress->pub.progress_monitor = progress_monitor;
+ progress->completed_extra_passes = 0;
+ progress->total_extra_passes = 0;
+ progress->percent_done = -1;
+ cinfo->progress = &progress->pub;
+ }
+}
+
+
+GLOBAL(void)
+end_progress_monitor (j_common_ptr cinfo)
+{
+ /* Clear away progress display */
+ if (cinfo->err->trace_level == 0) {
+ fprintf(stderr, "\r \r");
+ fflush(stderr);
+ }
+}
+
+#endif
+
+
+/*
+ * Case-insensitive matching of possibly-abbreviated keyword switches.
+ * keyword is the constant keyword (must be lower case already),
+ * minchars is length of minimum legal abbreviation.
+ */
+
+GLOBAL(boolean)
+keymatch (char * arg, const char * keyword, int minchars)
+{
+ register int ca, ck;
+ register int nmatched = 0;
+
+ while ((ca = *arg++) != '\0') {
+ if ((ck = *keyword++) == '\0')
+ return FALSE; /* arg longer than keyword, no good */
+ if (isupper(ca)) /* force arg to lcase (assume ck is already) */
+ ca = tolower(ca);
+ if (ca != ck)
+ return FALSE; /* no good */
+ nmatched++; /* count matched characters */
+ }
+ /* reached end of argument; fail if it's too short for unique abbrev */
+ if (nmatched < minchars)
+ return FALSE;
+ return TRUE; /* A-OK */
+}
+
+
+/*
+ * Routines to establish binary I/O mode for stdin and stdout.
+ * Non-Unix systems often require some hacking to get out of text mode.
+ */
+
+GLOBAL(FILE *)
+read_stdin (void)
+{
+ FILE * input_file = stdin;
+
+#ifdef USE_SETMODE /* need to hack file mode? */
+ setmode(fileno(stdin), O_BINARY);
+#endif
+#ifdef USE_FDOPEN /* need to re-open in binary mode? */
+ if ((input_file = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
+ fprintf(stderr, "Cannot reopen stdin\n");
+ exit(EXIT_FAILURE);
+ }
+#endif
+ return input_file;
+}
+
+
+GLOBAL(FILE *)
+write_stdout (void)
+{
+ FILE * output_file = stdout;
+
+#ifdef USE_SETMODE /* need to hack file mode? */
+ setmode(fileno(stdout), O_BINARY);
+#endif
+#ifdef USE_FDOPEN /* need to re-open in binary mode? */
+ if ((output_file = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) {
+ fprintf(stderr, "Cannot reopen stdout\n");
+ exit(EXIT_FAILURE);
+ }
+#endif
+ return output_file;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/cdjpeg.h b/plugins/AdvaImg/src/LibJPEG/cdjpeg.h
new file mode 100644
index 0000000000..ed024ac3ae
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/cdjpeg.h
@@ -0,0 +1,187 @@
+/*
+ * cdjpeg.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains common declarations for the sample applications
+ * cjpeg and djpeg. It is NOT used by the core JPEG library.
+ */
+
+#define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */
+#define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h" /* get library error codes too */
+#include "cderror.h" /* get application-specific error codes */
+
+
+/*
+ * Object interface for cjpeg's source file decoding modules
+ */
+
+typedef struct cjpeg_source_struct * cjpeg_source_ptr;
+
+struct cjpeg_source_struct {
+ JMETHOD(void, start_input, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+ JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+ JMETHOD(void, finish_input, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+
+ FILE *input_file;
+
+ JSAMPARRAY buffer;
+ JDIMENSION buffer_height;
+};
+
+
+/*
+ * Object interface for djpeg's output file encoding modules
+ */
+
+typedef struct djpeg_dest_struct * djpeg_dest_ptr;
+
+struct djpeg_dest_struct {
+ /* start_output is called after jpeg_start_decompress finishes.
+ * The color map will be ready at this time, if one is needed.
+ */
+ JMETHOD(void, start_output, (j_decompress_ptr cinfo,
+ djpeg_dest_ptr dinfo));
+ /* Emit the specified number of pixel rows from the buffer. */
+ JMETHOD(void, put_pixel_rows, (j_decompress_ptr cinfo,
+ djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied));
+ /* Finish up at the end of the image. */
+ JMETHOD(void, finish_output, (j_decompress_ptr cinfo,
+ djpeg_dest_ptr dinfo));
+
+ /* Target file spec; filled in by djpeg.c after object is created. */
+ FILE * output_file;
+
+ /* Output pixel-row buffer. Created by module init or start_output.
+ * Width is cinfo->output_width * cinfo->output_components;
+ * height is buffer_height.
+ */
+ JSAMPARRAY buffer;
+ JDIMENSION buffer_height;
+};
+
+
+/*
+ * cjpeg/djpeg may need to perform extra passes to convert to or from
+ * the source/destination file format. The JPEG library does not know
+ * about these passes, but we'd like them to be counted by the progress
+ * monitor. We use an expanded progress monitor object to hold the
+ * additional pass count.
+ */
+
+struct cdjpeg_progress_mgr {
+ struct jpeg_progress_mgr pub; /* fields known to JPEG library */
+ int completed_extra_passes; /* extra passes completed */
+ int total_extra_passes; /* total extra */
+ /* last printed percentage stored here to avoid multiple printouts */
+ int percent_done;
+};
+
+typedef struct cdjpeg_progress_mgr * cd_progress_ptr;
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_read_bmp jIRdBMP
+#define jinit_write_bmp jIWrBMP
+#define jinit_read_gif jIRdGIF
+#define jinit_write_gif jIWrGIF
+#define jinit_read_ppm jIRdPPM
+#define jinit_write_ppm jIWrPPM
+#define jinit_read_rle jIRdRLE
+#define jinit_write_rle jIWrRLE
+#define jinit_read_targa jIRdTarga
+#define jinit_write_targa jIWrTarga
+#define read_quant_tables RdQTables
+#define read_scan_script RdScnScript
+#define set_quality_ratings SetQRates
+#define set_quant_slots SetQSlots
+#define set_sample_factors SetSFacts
+#define read_color_map RdCMap
+#define enable_signal_catcher EnSigCatcher
+#define start_progress_monitor StProgMon
+#define end_progress_monitor EnProgMon
+#define read_stdin RdStdin
+#define write_stdout WrStdout
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Module selection routines for I/O modules. */
+
+EXTERN(cjpeg_source_ptr) jinit_read_bmp JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_bmp JPP((j_decompress_ptr cinfo,
+ boolean is_os2));
+EXTERN(cjpeg_source_ptr) jinit_read_gif JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_gif JPP((j_decompress_ptr cinfo));
+EXTERN(cjpeg_source_ptr) jinit_read_ppm JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_ppm JPP((j_decompress_ptr cinfo));
+EXTERN(cjpeg_source_ptr) jinit_read_rle JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_rle JPP((j_decompress_ptr cinfo));
+EXTERN(cjpeg_source_ptr) jinit_read_targa JPP((j_compress_ptr cinfo));
+EXTERN(djpeg_dest_ptr) jinit_write_targa JPP((j_decompress_ptr cinfo));
+
+/* cjpeg support routines (in rdswitch.c) */
+
+EXTERN(boolean) read_quant_tables JPP((j_compress_ptr cinfo, char * filename,
+ boolean force_baseline));
+EXTERN(boolean) read_scan_script JPP((j_compress_ptr cinfo, char * filename));
+EXTERN(boolean) set_quality_ratings JPP((j_compress_ptr cinfo, char *arg,
+ boolean force_baseline));
+EXTERN(boolean) set_quant_slots JPP((j_compress_ptr cinfo, char *arg));
+EXTERN(boolean) set_sample_factors JPP((j_compress_ptr cinfo, char *arg));
+
+/* djpeg support routines (in rdcolmap.c) */
+
+EXTERN(void) read_color_map JPP((j_decompress_ptr cinfo, FILE * infile));
+
+/* common support routines (in cdjpeg.c) */
+
+EXTERN(void) enable_signal_catcher JPP((j_common_ptr cinfo));
+EXTERN(void) start_progress_monitor JPP((j_common_ptr cinfo,
+ cd_progress_ptr progress));
+EXTERN(void) end_progress_monitor JPP((j_common_ptr cinfo));
+EXTERN(boolean) keymatch JPP((char * arg, const char * keyword, int minchars));
+EXTERN(FILE *) read_stdin JPP((void));
+EXTERN(FILE *) write_stdout JPP((void));
+
+/* miscellaneous useful macros */
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#define WRITE_BINARY "w"
+#else
+#ifdef VMS /* VMS is very nonstandard */
+#define READ_BINARY "rb", "ctx=stm"
+#define WRITE_BINARY "wb", "ctx=stm"
+#else /* standard ANSI-compliant case */
+#define READ_BINARY "rb"
+#define WRITE_BINARY "wb"
+#endif
+#endif
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+#ifndef EXIT_SUCCESS
+#ifdef VMS
+#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
+#else
+#define EXIT_SUCCESS 0
+#endif
+#endif
+#ifndef EXIT_WARNING
+#ifdef VMS
+#define EXIT_WARNING 1 /* VMS is very nonstandard */
+#else
+#define EXIT_WARNING 2
+#endif
+#endif
diff --git a/plugins/AdvaImg/src/LibJPEG/change.log b/plugins/AdvaImg/src/LibJPEG/change.log
new file mode 100644
index 0000000000..ce71abd2eb
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/change.log
@@ -0,0 +1,346 @@
+CHANGE LOG for Independent JPEG Group's JPEG software
+
+
+Version 8d 15-Jan-2012
+-----------------------
+
+Add cjpeg -rgb option to create RGB JPEG files.
+Using this switch suppresses the conversion from RGB
+colorspace input to the default YCbCr JPEG colorspace.
+This feature allows true lossless JPEG coding of RGB color images.
+The recommended command for this purpose is currently
+cjpeg -rgb -block 1 -arithmetic.
+SmartScale capable decoder (introduced with IJG JPEG 8) required.
+Thank to Michael Koch for the initial suggestion.
+
+Add option to disable the region adjustment in the transupp crop code.
+Thank to Jeffrey Friedl for the suggestion.
+
+Thank to Richard Jones and Edd Dawson for various minor corrections.
+
+Thank to Akim Demaille for configure.ac cleanup.
+
+
+Version 8c 16-Jan-2011
+-----------------------
+
+Add option to compression library and cjpeg (-block N) to use
+different DCT block size.
+All N from 1 to 16 are possible. Default is 8 (baseline format).
+Larger values produce higher compression,
+smaller values produce higher quality.
+SmartScale capable decoder (introduced with IJG JPEG 8) required.
+
+
+Version 8b 16-May-2010
+-----------------------
+
+Repair problem in new memory source manager with corrupt JPEG data.
+Thank to Ted Campbell and Samuel Chun for the report.
+
+Repair problem in Makefile.am test target.
+Thank to anonymous user for the report.
+
+Support MinGW installation with automatic configure.
+Thank to Volker Grabsch for the suggestion.
+
+
+Version 8a 28-Feb-2010
+-----------------------
+
+Writing tables-only datastreams via jpeg_write_tables works again.
+
+Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg.
+Thank to Brett Blackham for the suggestion.
+
+Improve accuracy in floating point IDCT calculation.
+Thank to Robert Hooke for the hint.
+
+
+Version 8 10-Jan-2010
+----------------------
+
+jpegtran now supports the same -scale option as djpeg for "lossless" resize.
+An implementation of the JPEG SmartScale extension is required for this
+feature. A (draft) specification of the JPEG SmartScale extension is
+available as a contributed document at ITU and ISO. Revision 2 or later
+of the document is required (latest document version is Revision 3).
+The SmartScale extension will enable more features beside lossless resize
+in future implementations, as described in the document (new compression
+options).
+
+Add sanity check in BMP reader module to avoid cjpeg crash for empty input
+image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error).
+
+Add data source and destination managers for read from and write to
+memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest.
+Thank to Roberto Boni from Italy for the suggestion.
+
+
+Version 7 27-Jun-2009
+----------------------
+
+New scaled DCTs implemented.
+djpeg now supports scalings N/8 with all N from 1 to 16.
+cjpeg now supports scalings 8/N with all N from 1 to 16.
+Scaled DCTs with size larger than 8 are now also used for resolving the
+common 2x2 chroma subsampling case without additional spatial resampling.
+Separate spatial resampling for those kind of files is now only necessary
+for N>8 scaling cases.
+Furthermore, separate scaled DCT functions are provided for direct resolving
+of the common asymmetric subsampling cases (2x1 and 1x2) without additional
+spatial resampling.
+
+cjpeg -quality option has been extended for support of separate quality
+settings for luminance and chrominance (or in general, for every provided
+quantization table slot).
+New API function jpeg_default_qtables() and q_scale_factor array in library.
+
+Added -nosmooth option to cjpeg, complementary to djpeg.
+New variable "do_fancy_downsampling" in library, complement to fancy
+upsampling. Fancy upsampling now uses direct DCT scaling with sizes
+larger than 8. The old method is not reversible and has been removed.
+
+Support arithmetic entropy encoding and decoding.
+Added files jaricom.c, jcarith.c, jdarith.c.
+
+Straighten the file structure:
+Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h.
+
+jpegtran has a new "lossless" cropping feature.
+
+Implement -perfect option in jpegtran, new API function
+jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch)
+
+Better error messages for jpegtran fopen failure.
+(DP 203_jpegtran_errmsg.dpatch)
+
+Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c:
+according to Netpbm, the de facto standard implementation of the PNM formats,
+the most significant byte is first. (DP 203_rdppm.dpatch)
+
+Add -raw option to rdjpgcom not to mangle the output.
+(DP 205_rdjpgcom_raw.dpatch)
+
+Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch)
+
+Add extern "C" to jpeglib.h.
+This avoids the need to put extern "C" { ... } around #include "jpeglib.h"
+in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the
+configuration prevents this. (DP 202_jpeglib.h_c++.dpatch)
+
+
+Version 6b 27-Mar-1998
+-----------------------
+
+jpegtran has new features for lossless image transformations (rotation
+and flipping) as well as "lossless" reduction to grayscale.
+
+jpegtran now copies comments by default; it has a -copy switch to enable
+copying all APPn blocks as well, or to suppress comments. (Formerly it
+always suppressed comments and APPn blocks.) jpegtran now also preserves
+JFIF version and resolution information.
+
+New decompressor library feature: COM and APPn markers found in the input
+file can be saved in memory for later use by the application. (Before,
+you had to code this up yourself with a custom marker processor.)
+
+There is an unused field "void * client_data" now in compress and decompress
+parameter structs; this may be useful in some applications.
+
+JFIF version number information is now saved by the decoder and accepted by
+the encoder. jpegtran uses this to copy the source file's version number,
+to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
+extensions but claim to be version 1.01. Applications that generate their
+own JFXX extension markers also (finally) have a supported way to cause the
+encoder to emit JFIF version number 1.02.
+
+djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
+than as unknown APP0 markers.
+
+In -verbose mode, djpeg and rdjpgcom will try to print the contents of
+APP12 markers as text. Some digital cameras store useful text information
+in APP12 markers.
+
+Handling of truncated data streams is more robust: blocks beyond the one in
+which the error occurs will be output as uniform gray, or left unchanged
+if decoding a progressive JPEG. The appearance no longer depends on the
+Huffman tables being used.
+
+Huffman tables are checked for validity much more carefully than before.
+
+To avoid the Unisys LZW patent, djpeg's GIF output capability has been
+changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
+has been removed altogether. We're not happy about it either, but there
+seems to be no good alternative.
+
+The configure script now supports building libjpeg as a shared library
+on many flavors of Unix (all the ones that GNU libtool knows how to
+build shared libraries for). Use "./configure --enable-shared" to
+try this out.
+
+New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
+Also, a jconfig file and a build script for Metrowerks CodeWarrior
+on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there
+are miscellaneous other minor improvements in the makefiles.
+
+jmemmac.c now knows how to create temporary files following Mac System 7
+conventions.
+
+djpeg's -map switch is now able to read raw-format PPM files reliably.
+
+cjpeg -progressive -restart no longer generates any unnecessary DRI markers.
+
+Multiple calls to jpeg_simple_progression for a single JPEG object
+no longer leak memory.
+
+
+Version 6a 7-Feb-96
+--------------------
+
+Library initialization sequence modified to detect version mismatches
+and struct field packing mismatches between library and calling application.
+This change requires applications to be recompiled, but does not require
+any application source code change.
+
+All routine declarations changed to the style "GLOBAL(type) name ...",
+that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
+routine's return type as an argument. This makes it possible to add
+Microsoft-style linkage keywords to all the routines by changing just
+these macros. Note that any application code that was using these macros
+will have to be changed.
+
+DCT coefficient quantization tables are now stored in normal array order
+rather than zigzag order. Application code that calls jpeg_add_quant_table,
+or otherwise manipulates quantization tables directly, will need to be
+changed. If you need to make such code work with either older or newer
+versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
+recommended.
+
+djpeg's trace capability now dumps DQT tables in natural order, not zigzag
+order. This allows the trace output to be made into a "-qtables" file
+more easily.
+
+New system-dependent memory manager module for use on Apple Macintosh.
+
+Fix bug in cjpeg's -smooth option: last one or two scanlines would be
+duplicates of the prior line unless the image height mod 16 was 1 or 2.
+
+Repair minor problems in VMS, BCC, MC6 makefiles.
+
+New configure script based on latest GNU Autoconf.
+
+Correct the list of include files needed by MetroWerks C for ccommand().
+
+Numerous small documentation updates.
+
+
+Version 6 2-Aug-95
+-------------------
+
+Progressive JPEG support: library can read and write full progressive JPEG
+files. A "buffered image" mode supports incremental decoding for on-the-fly
+display of progressive images. Simply recompiling an existing IJG-v5-based
+decoder with v6 should allow it to read progressive files, though of course
+without any special progressive display.
+
+New "jpegtran" application performs lossless transcoding between different
+JPEG formats; primarily, it can be used to convert baseline to progressive
+JPEG and vice versa. In support of jpegtran, the library now allows lossless
+reading and writing of JPEG files as DCT coefficient arrays. This ability
+may be of use in other applications.
+
+Notes for programmers:
+* We changed jpeg_start_decompress() to be able to suspend; this makes all
+decoding modes available to suspending-input applications. However,
+existing applications that use suspending input will need to be changed
+to check the return value from jpeg_start_decompress(). You don't need to
+do anything if you don't use a suspending data source.
+* We changed the interface to the virtual array routines: access_virt_array
+routines now take a count of the number of rows to access this time. The
+last parameter to request_virt_array routines is now interpreted as the
+maximum number of rows that may be accessed at once, but not necessarily
+the height of every access.
+
+
+Version 5b 15-Mar-95
+---------------------
+
+Correct bugs with grayscale images having v_samp_factor > 1.
+
+jpeg_write_raw_data() now supports output suspension.
+
+Correct bugs in "configure" script for case of compiling in
+a directory other than the one containing the source files.
+
+Repair bug in jquant1.c: sometimes didn't use as many colors as it could.
+
+Borland C makefile and jconfig file work under either MS-DOS or OS/2.
+
+Miscellaneous improvements to documentation.
+
+
+Version 5a 7-Dec-94
+--------------------
+
+Changed color conversion roundoff behavior so that grayscale values are
+represented exactly. (This causes test image files to change.)
+
+Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
+improvement.
+
+New configure script based on latest GNU Autoconf.
+Fix configure script to handle CFLAGS correctly.
+Rename *.auto files to *.cfg, so that configure script still works if
+file names have been truncated for DOS.
+
+Fix bug in rdbmp.c: didn't allow for extra data between header and image.
+
+Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.
+
+Fix several bugs in rdrle.c.
+
+NEED_SHORT_EXTERNAL_NAMES option was broken.
+
+Revise jerror.h/jerror.c for more flexibility in message table.
+
+Repair oversight in jmemname.c NO_MKTEMP case: file could be there
+but unreadable.
+
+
+Version 5 24-Sep-94
+--------------------
+
+Version 5 represents a nearly complete redesign and rewrite of the IJG
+software. Major user-visible changes include:
+ * Automatic configuration simplifies installation for most Unix systems.
+ * A range of speed vs. image quality tradeoffs are supported.
+ This includes resizing of an image during decompression: scaling down
+ by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
+ * New programs rdjpgcom and wrjpgcom allow insertion and extraction
+ of text comments in a JPEG file.
+
+The application programmer's interface to the library has changed completely.
+Notable improvements include:
+ * We have eliminated the use of callback routines for handling the
+ uncompressed image data. The application now sees the library as a
+ set of routines that it calls to read or write image data on a
+ scanline-by-scanline basis.
+ * The application image data is represented in a conventional interleaved-
+ pixel format, rather than as a separate array for each color channel.
+ This can save a copying step in many programs.
+ * The handling of compressed data has been cleaned up: the application can
+ supply routines to source or sink the compressed data. It is possible to
+ suspend processing on source/sink buffer overrun, although this is not
+ supported in all operating modes.
+ * All static state has been eliminated from the library, so that multiple
+ instances of compression or decompression can be active concurrently.
+ * JPEG abbreviated datastream formats are supported, ie, quantization and
+ Huffman tables can be stored separately from the image data.
+ * And not only that, but the documentation of the library has improved
+ considerably!
+
+
+The last widely used release before the version 5 rewrite was version 4A of
+18-Feb-93. Change logs before that point have been discarded, since they
+are not of much interest after the rewrite.
diff --git a/plugins/AdvaImg/src/LibJPEG/cjpeg.c b/plugins/AdvaImg/src/LibJPEG/cjpeg.c
new file mode 100644
index 0000000000..a999eeef1c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/cjpeg.c
@@ -0,0 +1,643 @@
+/*
+ * cjpeg.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2003-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a command-line user interface for the JPEG compressor.
+ * It should work on any system with Unix- or MS-DOS-style command lines.
+ *
+ * Two different command line styles are permitted, depending on the
+ * compile-time switch TWO_FILE_COMMANDLINE:
+ * cjpeg [options] inputfile outputfile
+ * cjpeg [options] [inputfile]
+ * In the second style, output is always to standard output, which you'd
+ * normally redirect to a file or pipe to some other program. Input is
+ * either from a named file or from standard input (typically redirected).
+ * The second style is convenient on Unix but is unhelpful on systems that
+ * don't support pipes. Also, you MUST use the first style if your system
+ * doesn't do binary I/O to stdin/stdout.
+ * To simplify script writing, the "-outfile" switch is provided. The syntax
+ * cjpeg [options] -outfile outputfile inputfile
+ * works regardless of which command line style is used.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+#include "jversion.h" /* for version message */
+
+#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
+#ifdef __MWERKS__
+#include <SIOUX.h> /* Metrowerks needs this */
+#include <console.h> /* ... and this */
+#endif
+#ifdef THINK_C
+#include <console.h> /* Think declares it here */
+#endif
+#endif
+
+
+/* Create the add-on message string table. */
+
+#define JMESSAGE(code,string) string ,
+
+static const char * const cdjpeg_message_table[] = {
+#include "cderror.h"
+ NULL
+};
+
+
+/*
+ * This routine determines what format the input file is,
+ * and selects the appropriate input-reading module.
+ *
+ * To determine which family of input formats the file belongs to,
+ * we may look only at the first byte of the file, since C does not
+ * guarantee that more than one character can be pushed back with ungetc.
+ * Looking at additional bytes would require one of these approaches:
+ * 1) assume we can fseek() the input file (fails for piped input);
+ * 2) assume we can push back more than one character (works in
+ * some C implementations, but unportable);
+ * 3) provide our own buffering (breaks input readers that want to use
+ * stdio directly, such as the RLE library);
+ * or 4) don't put back the data, and modify the input_init methods to assume
+ * they start reading after the start of file (also breaks RLE library).
+ * #1 is attractive for MS-DOS but is untenable on Unix.
+ *
+ * The most portable solution for file types that can't be identified by their
+ * first byte is to make the user tell us what they are. This is also the
+ * only approach for "raw" file types that contain only arbitrary values.
+ * We presently apply this method for Targa files. Most of the time Targa
+ * files start with 0x00, so we recognize that case. Potentially, however,
+ * a Targa file could start with any byte value (byte 0 is the length of the
+ * seldom-used ID field), so we provide a switch to force Targa input mode.
+ */
+
+static boolean is_targa; /* records user -targa switch */
+
+
+LOCAL(cjpeg_source_ptr)
+select_file_type (j_compress_ptr cinfo, FILE * infile)
+{
+ int c;
+
+ if (is_targa) {
+#ifdef TARGA_SUPPORTED
+ return jinit_read_targa(cinfo);
+#else
+ ERREXIT(cinfo, JERR_TGA_NOTCOMP);
+#endif
+ }
+
+ if ((c = getc(infile)) == EOF)
+ ERREXIT(cinfo, JERR_INPUT_EMPTY);
+ if (ungetc(c, infile) == EOF)
+ ERREXIT(cinfo, JERR_UNGETC_FAILED);
+
+ switch (c) {
+#ifdef BMP_SUPPORTED
+ case 'B':
+ return jinit_read_bmp(cinfo);
+#endif
+#ifdef GIF_SUPPORTED
+ case 'G':
+ return jinit_read_gif(cinfo);
+#endif
+#ifdef PPM_SUPPORTED
+ case 'P':
+ return jinit_read_ppm(cinfo);
+#endif
+#ifdef RLE_SUPPORTED
+ case 'R':
+ return jinit_read_rle(cinfo);
+#endif
+#ifdef TARGA_SUPPORTED
+ case 0x00:
+ return jinit_read_targa(cinfo);
+#endif
+ default:
+ ERREXIT(cinfo, JERR_UNKNOWN_FORMAT);
+ break;
+ }
+
+ return NULL; /* suppress compiler warnings */
+}
+
+
+/*
+ * Argument-parsing code.
+ * The switch parser is designed to be useful with DOS-style command line
+ * syntax, ie, intermixed switches and file names, where only the switches
+ * to the left of a given file name affect processing of that file.
+ * The main program in this file doesn't actually use this capability...
+ */
+
+
+static const char * progname; /* program name for error messages */
+static char * outfilename; /* for -outfile switch */
+
+
+LOCAL(void)
+usage (void)
+/* complain about bad command line */
+{
+ fprintf(stderr, "usage: %s [switches] ", progname);
+#ifdef TWO_FILE_COMMANDLINE
+ fprintf(stderr, "inputfile outputfile\n");
+#else
+ fprintf(stderr, "[inputfile]\n");
+#endif
+
+ fprintf(stderr, "Switches (names may be abbreviated):\n");
+ fprintf(stderr, " -quality N[,...] Compression quality (0..100; 5-95 is useful range)\n");
+ fprintf(stderr, " -grayscale Create monochrome JPEG file\n");
+ fprintf(stderr, " -rgb Create RGB JPEG file\n");
+#ifdef ENTROPY_OPT_SUPPORTED
+ fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n");
+#endif
+#ifdef C_PROGRESSIVE_SUPPORTED
+ fprintf(stderr, " -progressive Create progressive JPEG file\n");
+#endif
+#ifdef DCT_SCALING_SUPPORTED
+ fprintf(stderr, " -scale M/N Scale image by fraction M/N, eg, 1/2\n");
+#endif
+#ifdef TARGA_SUPPORTED
+ fprintf(stderr, " -targa Input file is Targa format (usually not needed)\n");
+#endif
+ fprintf(stderr, "Switches for advanced users:\n");
+#ifdef C_ARITH_CODING_SUPPORTED
+ fprintf(stderr, " -arithmetic Use arithmetic coding\n");
+#endif
+#ifdef DCT_SCALING_SUPPORTED
+ fprintf(stderr, " -block N DCT block size (1..16; default is 8)\n");
+#endif
+#ifdef DCT_ISLOW_SUPPORTED
+ fprintf(stderr, " -dct int Use integer DCT method%s\n",
+ (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : ""));
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ fprintf(stderr, " -dct fast Use fast integer DCT (less accurate)%s\n",
+ (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : ""));
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ fprintf(stderr, " -dct float Use floating-point DCT method%s\n",
+ (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : ""));
+#endif
+ fprintf(stderr, " -nosmooth Don't use high-quality downsampling\n");
+ fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n");
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ fprintf(stderr, " -smooth N Smooth dithered input (N=1..100 is strength)\n");
+#endif
+ fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n");
+ fprintf(stderr, " -outfile name Specify name for output file\n");
+ fprintf(stderr, " -verbose or -debug Emit debug output\n");
+ fprintf(stderr, "Switches for wizards:\n");
+ fprintf(stderr, " -baseline Force baseline quantization tables\n");
+ fprintf(stderr, " -qtables file Use quantization tables given in file\n");
+ fprintf(stderr, " -qslots N[,...] Set component quantization tables\n");
+ fprintf(stderr, " -sample HxV[,...] Set component sampling factors\n");
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ fprintf(stderr, " -scans file Create multi-scan JPEG per script file\n");
+#endif
+ exit(EXIT_FAILURE);
+}
+
+
+LOCAL(int)
+parse_switches (j_compress_ptr cinfo, int argc, char **argv,
+ int last_file_arg_seen, boolean for_real)
+/* Parse optional switches.
+ * Returns argv[] index of first file-name argument (== argc if none).
+ * Any file names with indexes <= last_file_arg_seen are ignored;
+ * they have presumably been processed in a previous iteration.
+ * (Pass 0 for last_file_arg_seen on the first or only iteration.)
+ * for_real is FALSE on the first (dummy) pass; we may skip any expensive
+ * processing.
+ */
+{
+ int argn;
+ char * arg;
+ boolean force_baseline;
+ boolean simple_progressive;
+ char * qualityarg = NULL; /* saves -quality parm if any */
+ char * qtablefile = NULL; /* saves -qtables filename if any */
+ char * qslotsarg = NULL; /* saves -qslots parm if any */
+ char * samplearg = NULL; /* saves -sample parm if any */
+ char * scansarg = NULL; /* saves -scans parm if any */
+
+ /* Set up default JPEG parameters. */
+
+ force_baseline = FALSE; /* by default, allow 16-bit quantizers */
+ simple_progressive = FALSE;
+ is_targa = FALSE;
+ outfilename = NULL;
+ cinfo->err->trace_level = 0;
+
+ /* Scan command line options, adjust parameters */
+
+ for (argn = 1; argn < argc; argn++) {
+ arg = argv[argn];
+ if (*arg != '-') {
+ /* Not a switch, must be a file name argument */
+ if (argn <= last_file_arg_seen) {
+ outfilename = NULL; /* -outfile applies to just one input file */
+ continue; /* ignore this name if previously processed */
+ }
+ break; /* else done parsing switches */
+ }
+ arg++; /* advance past switch marker character */
+
+ if (keymatch(arg, "arithmetic", 1)) {
+ /* Use arithmetic coding. */
+#ifdef C_ARITH_CODING_SUPPORTED
+ cinfo->arith_code = TRUE;
+#else
+ fprintf(stderr, "%s: sorry, arithmetic coding not supported\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "baseline", 2)) {
+ /* Force baseline-compatible output (8-bit quantizer values). */
+ force_baseline = TRUE;
+
+ } else if (keymatch(arg, "block", 2)) {
+ /* Set DCT block size. */
+#if defined DCT_SCALING_SUPPORTED && JPEG_LIB_VERSION_MAJOR >= 8 && \
+ (JPEG_LIB_VERSION_MAJOR > 8 || JPEG_LIB_VERSION_MINOR >= 3)
+ int val;
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%d", &val) != 1)
+ usage();
+ if (val < 1 || val > 16)
+ usage();
+ cinfo->block_size = val;
+#else
+ fprintf(stderr, "%s: sorry, block size setting not supported\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "dct", 2)) {
+ /* Select DCT algorithm. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (keymatch(argv[argn], "int", 1)) {
+ cinfo->dct_method = JDCT_ISLOW;
+ } else if (keymatch(argv[argn], "fast", 2)) {
+ cinfo->dct_method = JDCT_IFAST;
+ } else if (keymatch(argv[argn], "float", 2)) {
+ cinfo->dct_method = JDCT_FLOAT;
+ } else
+ usage();
+
+ } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
+ /* Enable debug printouts. */
+ /* On first -d, print version identification */
+ static boolean printed_version = FALSE;
+
+ if (! printed_version) {
+ fprintf(stderr, "Independent JPEG Group's CJPEG, version %s\n%s\n",
+ JVERSION, JCOPYRIGHT);
+ printed_version = TRUE;
+ }
+ cinfo->err->trace_level++;
+
+ } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) {
+ /* Force a monochrome JPEG file to be generated. */
+ jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
+
+ } else if (keymatch(arg, "rgb", 3)) {
+ /* Force an RGB JPEG file to be generated. */
+ jpeg_set_colorspace(cinfo, JCS_RGB);
+
+ } else if (keymatch(arg, "maxmemory", 3)) {
+ /* Maximum memory in Kb (or Mb with 'm'). */
+ long lval;
+ char ch = 'x';
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
+ usage();
+ if (ch == 'm' || ch == 'M')
+ lval *= 1000L;
+ cinfo->mem->max_memory_to_use = lval * 1000L;
+
+ } else if (keymatch(arg, "nosmooth", 3)) {
+ /* Suppress fancy downsampling */
+ cinfo->do_fancy_downsampling = FALSE;
+
+ } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) {
+ /* Enable entropy parm optimization. */
+#ifdef ENTROPY_OPT_SUPPORTED
+ cinfo->optimize_coding = TRUE;
+#else
+ fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "outfile", 4)) {
+ /* Set output file name. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ outfilename = argv[argn]; /* save it away for later use */
+
+ } else if (keymatch(arg, "progressive", 1)) {
+ /* Select simple progressive mode. */
+#ifdef C_PROGRESSIVE_SUPPORTED
+ simple_progressive = TRUE;
+ /* We must postpone execution until num_components is known. */
+#else
+ fprintf(stderr, "%s: sorry, progressive output was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "quality", 1)) {
+ /* Quality ratings (quantization table scaling factors). */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ qualityarg = argv[argn];
+
+ } else if (keymatch(arg, "qslots", 2)) {
+ /* Quantization table slot numbers. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ qslotsarg = argv[argn];
+ /* Must delay setting qslots until after we have processed any
+ * colorspace-determining switches, since jpeg_set_colorspace sets
+ * default quant table numbers.
+ */
+
+ } else if (keymatch(arg, "qtables", 2)) {
+ /* Quantization tables fetched from file. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ qtablefile = argv[argn];
+ /* We postpone actually reading the file in case -quality comes later. */
+
+ } else if (keymatch(arg, "restart", 1)) {
+ /* Restart interval in MCU rows (or in MCUs with 'b'). */
+ long lval;
+ char ch = 'x';
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
+ usage();
+ if (lval < 0 || lval > 65535L)
+ usage();
+ if (ch == 'b' || ch == 'B') {
+ cinfo->restart_interval = (unsigned int) lval;
+ cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */
+ } else {
+ cinfo->restart_in_rows = (int) lval;
+ /* restart_interval will be computed during startup */
+ }
+
+ } else if (keymatch(arg, "sample", 2)) {
+ /* Set sampling factors. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ samplearg = argv[argn];
+ /* Must delay setting sample factors until after we have processed any
+ * colorspace-determining switches, since jpeg_set_colorspace sets
+ * default sampling factors.
+ */
+
+ } else if (keymatch(arg, "scale", 4)) {
+ /* Scale the image by a fraction M/N. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%d/%d",
+ &cinfo->scale_num, &cinfo->scale_denom) != 2)
+ usage();
+
+ } else if (keymatch(arg, "scans", 4)) {
+ /* Set scan script. */
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ scansarg = argv[argn];
+ /* We must postpone reading the file in case -progressive appears. */
+#else
+ fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "smooth", 2)) {
+ /* Set input smoothing factor. */
+ int val;
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%d", &val) != 1)
+ usage();
+ if (val < 0 || val > 100)
+ usage();
+ cinfo->smoothing_factor = val;
+
+ } else if (keymatch(arg, "targa", 1)) {
+ /* Input file is Targa format. */
+ is_targa = TRUE;
+
+ } else {
+ usage(); /* bogus switch */
+ }
+ }
+
+ /* Post-switch-scanning cleanup */
+
+ if (for_real) {
+
+ /* Set quantization tables for selected quality. */
+ /* Some or all may be overridden if -qtables is present. */
+ if (qualityarg != NULL) /* process -quality if it was present */
+ if (! set_quality_ratings(cinfo, qualityarg, force_baseline))
+ usage();
+
+ if (qtablefile != NULL) /* process -qtables if it was present */
+ if (! read_quant_tables(cinfo, qtablefile, force_baseline))
+ usage();
+
+ if (qslotsarg != NULL) /* process -qslots if it was present */
+ if (! set_quant_slots(cinfo, qslotsarg))
+ usage();
+
+ if (samplearg != NULL) /* process -sample if it was present */
+ if (! set_sample_factors(cinfo, samplearg))
+ usage();
+
+#ifdef C_PROGRESSIVE_SUPPORTED
+ if (simple_progressive) /* process -progressive; -scans can override */
+ jpeg_simple_progression(cinfo);
+#endif
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ if (scansarg != NULL) /* process -scans if it was present */
+ if (! read_scan_script(cinfo, scansarg))
+ usage();
+#endif
+ }
+
+ return argn; /* return index of next arg (file name) */
+}
+
+
+/*
+ * The main program.
+ */
+
+int
+main (int argc, char **argv)
+{
+ struct jpeg_compress_struct cinfo;
+ struct jpeg_error_mgr jerr;
+#ifdef PROGRESS_REPORT
+ struct cdjpeg_progress_mgr progress;
+#endif
+ int file_index;
+ cjpeg_source_ptr src_mgr;
+ FILE * input_file;
+ FILE * output_file;
+ JDIMENSION num_scanlines;
+
+ /* On Mac, fetch a command line. */
+#ifdef USE_CCOMMAND
+ argc = ccommand(&argv);
+#endif
+
+ progname = argv[0];
+ if (progname == NULL || progname[0] == 0)
+ progname = "cjpeg"; /* in case C library doesn't provide it */
+
+ /* Initialize the JPEG compression object with default error handling. */
+ cinfo.err = jpeg_std_error(&jerr);
+ jpeg_create_compress(&cinfo);
+ /* Add some application-specific error messages (from cderror.h) */
+ jerr.addon_message_table = cdjpeg_message_table;
+ jerr.first_addon_message = JMSG_FIRSTADDONCODE;
+ jerr.last_addon_message = JMSG_LASTADDONCODE;
+
+ /* Now safe to enable signal catcher. */
+#ifdef NEED_SIGNAL_CATCHER
+ enable_signal_catcher((j_common_ptr) &cinfo);
+#endif
+
+ /* Initialize JPEG parameters.
+ * Much of this may be overridden later.
+ * In particular, we don't yet know the input file's color space,
+ * but we need to provide some value for jpeg_set_defaults() to work.
+ */
+
+ cinfo.in_color_space = JCS_RGB; /* arbitrary guess */
+ jpeg_set_defaults(&cinfo);
+
+ /* Scan command line to find file names.
+ * It is convenient to use just one switch-parsing routine, but the switch
+ * values read here are ignored; we will rescan the switches after opening
+ * the input file.
+ */
+
+ file_index = parse_switches(&cinfo, argc, argv, 0, FALSE);
+
+#ifdef TWO_FILE_COMMANDLINE
+ /* Must have either -outfile switch or explicit output file name */
+ if (outfilename == NULL) {
+ if (file_index != argc-2) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ outfilename = argv[file_index+1];
+ } else {
+ if (file_index != argc-1) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ }
+#else
+ /* Unix style: expect zero or one file name */
+ if (file_index < argc-1) {
+ fprintf(stderr, "%s: only one input file\n", progname);
+ usage();
+ }
+#endif /* TWO_FILE_COMMANDLINE */
+
+ /* Open the input file. */
+ if (file_index < argc) {
+ if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default input file is stdin */
+ input_file = read_stdin();
+ }
+
+ /* Open the output file. */
+ if (outfilename != NULL) {
+ if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default output file is stdout */
+ output_file = write_stdout();
+ }
+
+#ifdef PROGRESS_REPORT
+ start_progress_monitor((j_common_ptr) &cinfo, &progress);
+#endif
+
+ /* Figure out the input file format, and set up to read it. */
+ src_mgr = select_file_type(&cinfo, input_file);
+ src_mgr->input_file = input_file;
+
+ /* Read the input file header to obtain file size & colorspace. */
+ (*src_mgr->start_input) (&cinfo, src_mgr);
+
+ /* Now that we know input colorspace, fix colorspace-dependent defaults */
+ jpeg_default_colorspace(&cinfo);
+
+ /* Adjust default compression parameters by re-parsing the options */
+ file_index = parse_switches(&cinfo, argc, argv, 0, TRUE);
+
+ /* Specify data destination for compression */
+ jpeg_stdio_dest(&cinfo, output_file);
+
+ /* Start compressor */
+ jpeg_start_compress(&cinfo, TRUE);
+
+ /* Process data */
+ while (cinfo.next_scanline < cinfo.image_height) {
+ num_scanlines = (*src_mgr->get_pixel_rows) (&cinfo, src_mgr);
+ (void) jpeg_write_scanlines(&cinfo, src_mgr->buffer, num_scanlines);
+ }
+
+ /* Finish compression and release memory */
+ (*src_mgr->finish_input) (&cinfo, src_mgr);
+ jpeg_finish_compress(&cinfo);
+ jpeg_destroy_compress(&cinfo);
+
+ /* Close files, if we opened them */
+ if (input_file != stdin)
+ fclose(input_file);
+ if (output_file != stdout)
+ fclose(output_file);
+
+#ifdef PROGRESS_REPORT
+ end_progress_monitor((j_common_ptr) &cinfo);
+#endif
+
+ /* All done. */
+ exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS);
+ return 0; /* suppress no-return-value warnings */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/ckconfig.c b/plugins/AdvaImg/src/LibJPEG/ckconfig.c
new file mode 100644
index 0000000000..fb9429af08
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/ckconfig.c
@@ -0,0 +1,402 @@
+/*
+ * ckconfig.c
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ */
+
+/*
+ * This program is intended to help you determine how to configure the JPEG
+ * software for installation on a particular system. The idea is to try to
+ * compile and execute this program. If your compiler fails to compile the
+ * program, make changes as indicated in the comments below. Once you can
+ * compile the program, run it, and it will produce a "jconfig.h" file for
+ * your system.
+ *
+ * As a general rule, each time you try to compile this program,
+ * pay attention only to the *first* error message you get from the compiler.
+ * Many C compilers will issue lots of spurious error messages once they
+ * have gotten confused. Go to the line indicated in the first error message,
+ * and read the comments preceding that line to see what to change.
+ *
+ * Almost all of the edits you may need to make to this program consist of
+ * changing a line that reads "#define SOME_SYMBOL" to "#undef SOME_SYMBOL",
+ * or vice versa. This is called defining or undefining that symbol.
+ */
+
+
+/* First we must see if your system has the include files we need.
+ * We start out with the assumption that your system has all the ANSI-standard
+ * include files. If you get any error trying to include one of these files,
+ * undefine the corresponding HAVE_xxx symbol.
+ */
+
+#define HAVE_STDDEF_H /* replace 'define' by 'undef' if error here */
+#ifdef HAVE_STDDEF_H /* next line will be skipped if you undef... */
+#include <stddef.h>
+#endif
+
+#define HAVE_STDLIB_H /* same thing for stdlib.h */
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#include <stdio.h> /* If you ain't got this, you ain't got C. */
+
+/* We have to see if your string functions are defined by
+ * strings.h (old BSD convention) or string.h (everybody else).
+ * We try the non-BSD convention first; define NEED_BSD_STRINGS
+ * if the compiler says it can't find string.h.
+ */
+
+#undef NEED_BSD_STRINGS
+
+#ifdef NEED_BSD_STRINGS
+#include <strings.h>
+#else
+#include <string.h>
+#endif
+
+/* On some systems (especially older Unix machines), type size_t is
+ * defined only in the include file <sys/types.h>. If you get a failure
+ * on the size_t test below, try defining NEED_SYS_TYPES_H.
+ */
+
+#undef NEED_SYS_TYPES_H /* start by assuming we don't need it */
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+
+/* Usually type size_t is defined in one of the include files we've included
+ * above. If not, you'll get an error on the "typedef size_t my_size_t;" line.
+ * In that case, first try defining NEED_SYS_TYPES_H just above.
+ * If that doesn't work, you'll have to search through your system library
+ * to figure out which include file defines "size_t". Look for a line that
+ * says "typedef something-or-other size_t;". Then, change the line below
+ * that says "#include <someincludefile.h>" to instead include the file
+ * you found size_t in, and define NEED_SPECIAL_INCLUDE. If you can't find
+ * type size_t anywhere, try replacing "#include <someincludefile.h>" with
+ * "typedef unsigned int size_t;".
+ */
+
+#undef NEED_SPECIAL_INCLUDE /* assume we DON'T need it, for starters */
+
+#ifdef NEED_SPECIAL_INCLUDE
+#include <someincludefile.h>
+#endif
+
+typedef size_t my_size_t; /* The payoff: do we have size_t now? */
+
+
+/* The next question is whether your compiler supports ANSI-style function
+ * prototypes. You need to know this in order to choose between using
+ * makefile.ansi and using makefile.unix.
+ * The #define line below is set to assume you have ANSI function prototypes.
+ * If you get an error in this group of lines, undefine HAVE_PROTOTYPES.
+ */
+
+#define HAVE_PROTOTYPES
+
+#ifdef HAVE_PROTOTYPES
+int testfunction (int arg1, int * arg2); /* check prototypes */
+
+struct methods_struct { /* check method-pointer declarations */
+ int (*error_exit) (char *msgtext);
+ int (*trace_message) (char *msgtext);
+ int (*another_method) (void);
+};
+
+int testfunction (int arg1, int * arg2) /* check definitions */
+{
+ return arg2[arg1];
+}
+
+int test2function (void) /* check void arg list */
+{
+ return 0;
+}
+#endif
+
+
+/* Now we want to find out if your compiler knows what "unsigned char" means.
+ * If you get an error on the "unsigned char un_char;" line,
+ * then undefine HAVE_UNSIGNED_CHAR.
+ */
+
+#define HAVE_UNSIGNED_CHAR
+
+#ifdef HAVE_UNSIGNED_CHAR
+unsigned char un_char;
+#endif
+
+
+/* Now we want to find out if your compiler knows what "unsigned short" means.
+ * If you get an error on the "unsigned short un_short;" line,
+ * then undefine HAVE_UNSIGNED_SHORT.
+ */
+
+#define HAVE_UNSIGNED_SHORT
+
+#ifdef HAVE_UNSIGNED_SHORT
+unsigned short un_short;
+#endif
+
+
+/* Now we want to find out if your compiler understands type "void".
+ * If you get an error anywhere in here, undefine HAVE_VOID.
+ */
+
+#define HAVE_VOID
+
+#ifdef HAVE_VOID
+/* Caution: a C++ compiler will insist on complete prototypes */
+typedef void * void_ptr; /* check void * */
+#ifdef HAVE_PROTOTYPES /* check ptr to function returning void */
+typedef void (*void_func) (int a, int b);
+#else
+typedef void (*void_func) ();
+#endif
+
+#ifdef HAVE_PROTOTYPES /* check void function result */
+void test3function (void_ptr arg1, void_func arg2)
+#else
+void test3function (arg1, arg2)
+ void_ptr arg1;
+ void_func arg2;
+#endif
+{
+ char * locptr = (char *) arg1; /* check casting to and from void * */
+ arg1 = (void *) locptr;
+ (*arg2) (1, 2); /* check call of fcn returning void */
+}
+#endif
+
+
+/* Now we want to find out if your compiler knows what "const" means.
+ * If you get an error here, undefine HAVE_CONST.
+ */
+
+#define HAVE_CONST
+
+#ifdef HAVE_CONST
+static const int carray[3] = {1, 2, 3};
+
+#ifdef HAVE_PROTOTYPES
+int test4function (const int arg1)
+#else
+int test4function (arg1)
+ const int arg1;
+#endif
+{
+ return carray[arg1];
+}
+#endif
+
+
+/* If you get an error or warning about this structure definition,
+ * define INCOMPLETE_TYPES_BROKEN.
+ */
+
+#undef INCOMPLETE_TYPES_BROKEN
+
+#ifndef INCOMPLETE_TYPES_BROKEN
+typedef struct undefined_structure * undef_struct_ptr;
+#endif
+
+
+/* If you get an error about duplicate names,
+ * define NEED_SHORT_EXTERNAL_NAMES.
+ */
+
+#undef NEED_SHORT_EXTERNAL_NAMES
+
+#ifndef NEED_SHORT_EXTERNAL_NAMES
+
+int possibly_duplicate_function ()
+{
+ return 0;
+}
+
+int possibly_dupli_function ()
+{
+ return 1;
+}
+
+#endif
+
+
+
+/************************************************************************
+ * OK, that's it. You should not have to change anything beyond this
+ * point in order to compile and execute this program. (You might get
+ * some warnings, but you can ignore them.)
+ * When you run the program, it will make a couple more tests that it
+ * can do automatically, and then it will create jconfig.h and print out
+ * any additional suggestions it has.
+ ************************************************************************
+ */
+
+
+#ifdef HAVE_PROTOTYPES
+int is_char_signed (int arg)
+#else
+int is_char_signed (arg)
+ int arg;
+#endif
+{
+ if (arg == 189) { /* expected result for unsigned char */
+ return 0; /* type char is unsigned */
+ }
+ else if (arg != -67) { /* expected result for signed char */
+ printf("Hmm, it seems 'char' is not eight bits wide on your machine.\n");
+ printf("I fear the JPEG software will not work at all.\n\n");
+ }
+ return 1; /* assume char is signed otherwise */
+}
+
+
+#ifdef HAVE_PROTOTYPES
+int is_shifting_signed (long arg)
+#else
+int is_shifting_signed (arg)
+ long arg;
+#endif
+/* See whether right-shift on a long is signed or not. */
+{
+ long res = arg >> 4;
+
+ if (res == -0x7F7E80CL) { /* expected result for signed shift */
+ return 1; /* right shift is signed */
+ }
+ /* see if unsigned-shift hack will fix it. */
+ /* we can't just test exact value since it depends on width of long... */
+ res |= (~0L) << (32-4);
+ if (res == -0x7F7E80CL) { /* expected result now? */
+ return 0; /* right shift is unsigned */
+ }
+ printf("Right shift isn't acting as I expect it to.\n");
+ printf("I fear the JPEG software will not work at all.\n\n");
+ return 0; /* try it with unsigned anyway */
+}
+
+
+#ifdef HAVE_PROTOTYPES
+int main (int argc, char ** argv)
+#else
+int main (argc, argv)
+ int argc;
+ char ** argv;
+#endif
+{
+ char signed_char_check = (char) (-67);
+ FILE *outfile;
+
+ /* Attempt to write jconfig.h */
+ if ((outfile = fopen("jconfig.h", "w")) == NULL) {
+ printf("Failed to write jconfig.h\n");
+ return 1;
+ }
+
+ /* Write out all the info */
+ fprintf(outfile, "/* jconfig.h --- generated by ckconfig.c */\n");
+ fprintf(outfile, "/* see jconfig.txt for explanations */\n\n");
+#ifdef HAVE_PROTOTYPES
+ fprintf(outfile, "#define HAVE_PROTOTYPES\n");
+#else
+ fprintf(outfile, "#undef HAVE_PROTOTYPES\n");
+#endif
+#ifdef HAVE_UNSIGNED_CHAR
+ fprintf(outfile, "#define HAVE_UNSIGNED_CHAR\n");
+#else
+ fprintf(outfile, "#undef HAVE_UNSIGNED_CHAR\n");
+#endif
+#ifdef HAVE_UNSIGNED_SHORT
+ fprintf(outfile, "#define HAVE_UNSIGNED_SHORT\n");
+#else
+ fprintf(outfile, "#undef HAVE_UNSIGNED_SHORT\n");
+#endif
+#ifdef HAVE_VOID
+ fprintf(outfile, "/* #define void char */\n");
+#else
+ fprintf(outfile, "#define void char\n");
+#endif
+#ifdef HAVE_CONST
+ fprintf(outfile, "/* #define const */\n");
+#else
+ fprintf(outfile, "#define const\n");
+#endif
+ if (is_char_signed((int) signed_char_check))
+ fprintf(outfile, "#undef CHAR_IS_UNSIGNED\n");
+ else
+ fprintf(outfile, "#define CHAR_IS_UNSIGNED\n");
+#ifdef HAVE_STDDEF_H
+ fprintf(outfile, "#define HAVE_STDDEF_H\n");
+#else
+ fprintf(outfile, "#undef HAVE_STDDEF_H\n");
+#endif
+#ifdef HAVE_STDLIB_H
+ fprintf(outfile, "#define HAVE_STDLIB_H\n");
+#else
+ fprintf(outfile, "#undef HAVE_STDLIB_H\n");
+#endif
+#ifdef NEED_BSD_STRINGS
+ fprintf(outfile, "#define NEED_BSD_STRINGS\n");
+#else
+ fprintf(outfile, "#undef NEED_BSD_STRINGS\n");
+#endif
+#ifdef NEED_SYS_TYPES_H
+ fprintf(outfile, "#define NEED_SYS_TYPES_H\n");
+#else
+ fprintf(outfile, "#undef NEED_SYS_TYPES_H\n");
+#endif
+ fprintf(outfile, "#undef NEED_FAR_POINTERS\n");
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+ fprintf(outfile, "#define NEED_SHORT_EXTERNAL_NAMES\n");
+#else
+ fprintf(outfile, "#undef NEED_SHORT_EXTERNAL_NAMES\n");
+#endif
+#ifdef INCOMPLETE_TYPES_BROKEN
+ fprintf(outfile, "#define INCOMPLETE_TYPES_BROKEN\n");
+#else
+ fprintf(outfile, "#undef INCOMPLETE_TYPES_BROKEN\n");
+#endif
+ fprintf(outfile, "\n#ifdef JPEG_INTERNALS\n\n");
+ if (is_shifting_signed(-0x7F7E80B1L))
+ fprintf(outfile, "#undef RIGHT_SHIFT_IS_UNSIGNED\n");
+ else
+ fprintf(outfile, "#define RIGHT_SHIFT_IS_UNSIGNED\n");
+ fprintf(outfile, "\n#endif /* JPEG_INTERNALS */\n");
+ fprintf(outfile, "\n#ifdef JPEG_CJPEG_DJPEG\n\n");
+ fprintf(outfile, "#define BMP_SUPPORTED /* BMP image file format */\n");
+ fprintf(outfile, "#define GIF_SUPPORTED /* GIF image file format */\n");
+ fprintf(outfile, "#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */\n");
+ fprintf(outfile, "#undef RLE_SUPPORTED /* Utah RLE image file format */\n");
+ fprintf(outfile, "#define TARGA_SUPPORTED /* Targa image file format */\n\n");
+ fprintf(outfile, "#undef TWO_FILE_COMMANDLINE /* You may need this on non-Unix systems */\n");
+ fprintf(outfile, "#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */\n");
+ fprintf(outfile, "#undef DONT_USE_B_MODE\n");
+ fprintf(outfile, "/* #define PROGRESS_REPORT */ /* optional */\n");
+ fprintf(outfile, "\n#endif /* JPEG_CJPEG_DJPEG */\n");
+
+ /* Close the jconfig.h file */
+ fclose(outfile);
+
+ /* User report */
+ printf("Configuration check for Independent JPEG Group's software done.\n");
+ printf("\nI have written the jconfig.h file for you.\n\n");
+#ifdef HAVE_PROTOTYPES
+ printf("You should use makefile.ansi as the starting point for your Makefile.\n");
+#else
+ printf("You should use makefile.unix as the starting point for your Makefile.\n");
+#endif
+
+#ifdef NEED_SPECIAL_INCLUDE
+ printf("\nYou'll need to change jconfig.h to include the system include file\n");
+ printf("that you found type size_t in, or add a direct definition of type\n");
+ printf("size_t if that's what you used. Just add it to the end.\n");
+#endif
+
+ return 0;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/djpeg.c b/plugins/AdvaImg/src/LibJPEG/djpeg.c
new file mode 100644
index 0000000000..363c628cbe
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/djpeg.c
@@ -0,0 +1,617 @@
+/*
+ * djpeg.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a command-line user interface for the JPEG decompressor.
+ * It should work on any system with Unix- or MS-DOS-style command lines.
+ *
+ * Two different command line styles are permitted, depending on the
+ * compile-time switch TWO_FILE_COMMANDLINE:
+ * djpeg [options] inputfile outputfile
+ * djpeg [options] [inputfile]
+ * In the second style, output is always to standard output, which you'd
+ * normally redirect to a file or pipe to some other program. Input is
+ * either from a named file or from standard input (typically redirected).
+ * The second style is convenient on Unix but is unhelpful on systems that
+ * don't support pipes. Also, you MUST use the first style if your system
+ * doesn't do binary I/O to stdin/stdout.
+ * To simplify script writing, the "-outfile" switch is provided. The syntax
+ * djpeg [options] -outfile outputfile inputfile
+ * works regardless of which command line style is used.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+#include "jversion.h" /* for version message */
+
+#include <ctype.h> /* to declare isprint() */
+
+#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
+#ifdef __MWERKS__
+#include <SIOUX.h> /* Metrowerks needs this */
+#include <console.h> /* ... and this */
+#endif
+#ifdef THINK_C
+#include <console.h> /* Think declares it here */
+#endif
+#endif
+
+
+/* Create the add-on message string table. */
+
+#define JMESSAGE(code,string) string ,
+
+static const char * const cdjpeg_message_table[] = {
+#include "cderror.h"
+ NULL
+};
+
+
+/*
+ * This list defines the known output image formats
+ * (not all of which need be supported by a given version).
+ * You can change the default output format by defining DEFAULT_FMT;
+ * indeed, you had better do so if you undefine PPM_SUPPORTED.
+ */
+
+typedef enum {
+ FMT_BMP, /* BMP format (Windows flavor) */
+ FMT_GIF, /* GIF format */
+ FMT_OS2, /* BMP format (OS/2 flavor) */
+ FMT_PPM, /* PPM/PGM (PBMPLUS formats) */
+ FMT_RLE, /* RLE format */
+ FMT_TARGA, /* Targa format */
+ FMT_TIFF /* TIFF format */
+} IMAGE_FORMATS;
+
+#ifndef DEFAULT_FMT /* so can override from CFLAGS in Makefile */
+#define DEFAULT_FMT FMT_PPM
+#endif
+
+static IMAGE_FORMATS requested_fmt;
+
+
+/*
+ * Argument-parsing code.
+ * The switch parser is designed to be useful with DOS-style command line
+ * syntax, ie, intermixed switches and file names, where only the switches
+ * to the left of a given file name affect processing of that file.
+ * The main program in this file doesn't actually use this capability...
+ */
+
+
+static const char * progname; /* program name for error messages */
+static char * outfilename; /* for -outfile switch */
+
+
+LOCAL(void)
+usage (void)
+/* complain about bad command line */
+{
+ fprintf(stderr, "usage: %s [switches] ", progname);
+#ifdef TWO_FILE_COMMANDLINE
+ fprintf(stderr, "inputfile outputfile\n");
+#else
+ fprintf(stderr, "[inputfile]\n");
+#endif
+
+ fprintf(stderr, "Switches (names may be abbreviated):\n");
+ fprintf(stderr, " -colors N Reduce image to no more than N colors\n");
+ fprintf(stderr, " -fast Fast, low-quality processing\n");
+ fprintf(stderr, " -grayscale Force grayscale output\n");
+#ifdef IDCT_SCALING_SUPPORTED
+ fprintf(stderr, " -scale M/N Scale output image by fraction M/N, eg, 1/8\n");
+#endif
+#ifdef BMP_SUPPORTED
+ fprintf(stderr, " -bmp Select BMP output format (Windows style)%s\n",
+ (DEFAULT_FMT == FMT_BMP ? " (default)" : ""));
+#endif
+#ifdef GIF_SUPPORTED
+ fprintf(stderr, " -gif Select GIF output format%s\n",
+ (DEFAULT_FMT == FMT_GIF ? " (default)" : ""));
+#endif
+#ifdef BMP_SUPPORTED
+ fprintf(stderr, " -os2 Select BMP output format (OS/2 style)%s\n",
+ (DEFAULT_FMT == FMT_OS2 ? " (default)" : ""));
+#endif
+#ifdef PPM_SUPPORTED
+ fprintf(stderr, " -pnm Select PBMPLUS (PPM/PGM) output format%s\n",
+ (DEFAULT_FMT == FMT_PPM ? " (default)" : ""));
+#endif
+#ifdef RLE_SUPPORTED
+ fprintf(stderr, " -rle Select Utah RLE output format%s\n",
+ (DEFAULT_FMT == FMT_RLE ? " (default)" : ""));
+#endif
+#ifdef TARGA_SUPPORTED
+ fprintf(stderr, " -targa Select Targa output format%s\n",
+ (DEFAULT_FMT == FMT_TARGA ? " (default)" : ""));
+#endif
+ fprintf(stderr, "Switches for advanced users:\n");
+#ifdef DCT_ISLOW_SUPPORTED
+ fprintf(stderr, " -dct int Use integer DCT method%s\n",
+ (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : ""));
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ fprintf(stderr, " -dct fast Use fast integer DCT (less accurate)%s\n",
+ (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : ""));
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ fprintf(stderr, " -dct float Use floating-point DCT method%s\n",
+ (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : ""));
+#endif
+ fprintf(stderr, " -dither fs Use F-S dithering (default)\n");
+ fprintf(stderr, " -dither none Don't use dithering in quantization\n");
+ fprintf(stderr, " -dither ordered Use ordered dither (medium speed, quality)\n");
+#ifdef QUANT_2PASS_SUPPORTED
+ fprintf(stderr, " -map FILE Map to colors used in named image file\n");
+#endif
+ fprintf(stderr, " -nosmooth Don't use high-quality upsampling\n");
+#ifdef QUANT_1PASS_SUPPORTED
+ fprintf(stderr, " -onepass Use 1-pass quantization (fast, low quality)\n");
+#endif
+ fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n");
+ fprintf(stderr, " -outfile name Specify name for output file\n");
+ fprintf(stderr, " -verbose or -debug Emit debug output\n");
+ exit(EXIT_FAILURE);
+}
+
+
+LOCAL(int)
+parse_switches (j_decompress_ptr cinfo, int argc, char **argv,
+ int last_file_arg_seen, boolean for_real)
+/* Parse optional switches.
+ * Returns argv[] index of first file-name argument (== argc if none).
+ * Any file names with indexes <= last_file_arg_seen are ignored;
+ * they have presumably been processed in a previous iteration.
+ * (Pass 0 for last_file_arg_seen on the first or only iteration.)
+ * for_real is FALSE on the first (dummy) pass; we may skip any expensive
+ * processing.
+ */
+{
+ int argn;
+ char * arg;
+
+ /* Set up default JPEG parameters. */
+ requested_fmt = DEFAULT_FMT; /* set default output file format */
+ outfilename = NULL;
+ cinfo->err->trace_level = 0;
+
+ /* Scan command line options, adjust parameters */
+
+ for (argn = 1; argn < argc; argn++) {
+ arg = argv[argn];
+ if (*arg != '-') {
+ /* Not a switch, must be a file name argument */
+ if (argn <= last_file_arg_seen) {
+ outfilename = NULL; /* -outfile applies to just one input file */
+ continue; /* ignore this name if previously processed */
+ }
+ break; /* else done parsing switches */
+ }
+ arg++; /* advance past switch marker character */
+
+ if (keymatch(arg, "bmp", 1)) {
+ /* BMP output format. */
+ requested_fmt = FMT_BMP;
+
+ } else if (keymatch(arg, "colors", 1) || keymatch(arg, "colours", 1) ||
+ keymatch(arg, "quantize", 1) || keymatch(arg, "quantise", 1)) {
+ /* Do color quantization. */
+ int val;
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%d", &val) != 1)
+ usage();
+ cinfo->desired_number_of_colors = val;
+ cinfo->quantize_colors = TRUE;
+
+ } else if (keymatch(arg, "dct", 2)) {
+ /* Select IDCT algorithm. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (keymatch(argv[argn], "int", 1)) {
+ cinfo->dct_method = JDCT_ISLOW;
+ } else if (keymatch(argv[argn], "fast", 2)) {
+ cinfo->dct_method = JDCT_IFAST;
+ } else if (keymatch(argv[argn], "float", 2)) {
+ cinfo->dct_method = JDCT_FLOAT;
+ } else
+ usage();
+
+ } else if (keymatch(arg, "dither", 2)) {
+ /* Select dithering algorithm. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (keymatch(argv[argn], "fs", 2)) {
+ cinfo->dither_mode = JDITHER_FS;
+ } else if (keymatch(argv[argn], "none", 2)) {
+ cinfo->dither_mode = JDITHER_NONE;
+ } else if (keymatch(argv[argn], "ordered", 2)) {
+ cinfo->dither_mode = JDITHER_ORDERED;
+ } else
+ usage();
+
+ } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
+ /* Enable debug printouts. */
+ /* On first -d, print version identification */
+ static boolean printed_version = FALSE;
+
+ if (! printed_version) {
+ fprintf(stderr, "Independent JPEG Group's DJPEG, version %s\n%s\n",
+ JVERSION, JCOPYRIGHT);
+ printed_version = TRUE;
+ }
+ cinfo->err->trace_level++;
+
+ } else if (keymatch(arg, "fast", 1)) {
+ /* Select recommended processing options for quick-and-dirty output. */
+ cinfo->two_pass_quantize = FALSE;
+ cinfo->dither_mode = JDITHER_ORDERED;
+ if (! cinfo->quantize_colors) /* don't override an earlier -colors */
+ cinfo->desired_number_of_colors = 216;
+ cinfo->dct_method = JDCT_FASTEST;
+ cinfo->do_fancy_upsampling = FALSE;
+
+ } else if (keymatch(arg, "gif", 1)) {
+ /* GIF output format. */
+ requested_fmt = FMT_GIF;
+
+ } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) {
+ /* Force monochrome output. */
+ cinfo->out_color_space = JCS_GRAYSCALE;
+
+ } else if (keymatch(arg, "map", 3)) {
+ /* Quantize to a color map taken from an input file. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (for_real) { /* too expensive to do twice! */
+#ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */
+ FILE * mapfile;
+
+ if ((mapfile = fopen(argv[argn], READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
+ exit(EXIT_FAILURE);
+ }
+ read_color_map(cinfo, mapfile);
+ fclose(mapfile);
+ cinfo->quantize_colors = TRUE;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+
+ } else if (keymatch(arg, "maxmemory", 3)) {
+ /* Maximum memory in Kb (or Mb with 'm'). */
+ long lval;
+ char ch = 'x';
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
+ usage();
+ if (ch == 'm' || ch == 'M')
+ lval *= 1000L;
+ cinfo->mem->max_memory_to_use = lval * 1000L;
+
+ } else if (keymatch(arg, "nosmooth", 3)) {
+ /* Suppress fancy upsampling */
+ cinfo->do_fancy_upsampling = FALSE;
+
+ } else if (keymatch(arg, "onepass", 3)) {
+ /* Use fast one-pass quantization. */
+ cinfo->two_pass_quantize = FALSE;
+
+ } else if (keymatch(arg, "os2", 3)) {
+ /* BMP output format (OS/2 flavor). */
+ requested_fmt = FMT_OS2;
+
+ } else if (keymatch(arg, "outfile", 4)) {
+ /* Set output file name. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ outfilename = argv[argn]; /* save it away for later use */
+
+ } else if (keymatch(arg, "pnm", 1) || keymatch(arg, "ppm", 1)) {
+ /* PPM/PGM output format. */
+ requested_fmt = FMT_PPM;
+
+ } else if (keymatch(arg, "rle", 1)) {
+ /* RLE output format. */
+ requested_fmt = FMT_RLE;
+
+ } else if (keymatch(arg, "scale", 1)) {
+ /* Scale the output image by a fraction M/N. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%d/%d",
+ &cinfo->scale_num, &cinfo->scale_denom) < 1)
+ usage();
+
+ } else if (keymatch(arg, "targa", 1)) {
+ /* Targa output format. */
+ requested_fmt = FMT_TARGA;
+
+ } else {
+ usage(); /* bogus switch */
+ }
+ }
+
+ return argn; /* return index of next arg (file name) */
+}
+
+
+/*
+ * Marker processor for COM and interesting APPn markers.
+ * This replaces the library's built-in processor, which just skips the marker.
+ * We want to print out the marker as text, to the extent possible.
+ * Note this code relies on a non-suspending data source.
+ */
+
+LOCAL(unsigned int)
+jpeg_getc (j_decompress_ptr cinfo)
+/* Read next byte */
+{
+ struct jpeg_source_mgr * datasrc = cinfo->src;
+
+ if (datasrc->bytes_in_buffer == 0) {
+ if (! (*datasrc->fill_input_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ }
+ datasrc->bytes_in_buffer--;
+ return GETJOCTET(*datasrc->next_input_byte++);
+}
+
+
+METHODDEF(boolean)
+print_text_marker (j_decompress_ptr cinfo)
+{
+ boolean traceit = (cinfo->err->trace_level >= 1);
+ INT32 length;
+ unsigned int ch;
+ unsigned int lastch = 0;
+
+ length = jpeg_getc(cinfo) << 8;
+ length += jpeg_getc(cinfo);
+ length -= 2; /* discount the length word itself */
+
+ if (traceit) {
+ if (cinfo->unread_marker == JPEG_COM)
+ fprintf(stderr, "Comment, length %ld:\n", (long) length);
+ else /* assume it is an APPn otherwise */
+ fprintf(stderr, "APP%d, length %ld:\n",
+ cinfo->unread_marker - JPEG_APP0, (long) length);
+ }
+
+ while (--length >= 0) {
+ ch = jpeg_getc(cinfo);
+ if (traceit) {
+ /* Emit the character in a readable form.
+ * Nonprintables are converted to \nnn form,
+ * while \ is converted to \\.
+ * Newlines in CR, CR/LF, or LF form will be printed as one newline.
+ */
+ if (ch == '\r') {
+ fprintf(stderr, "\n");
+ } else if (ch == '\n') {
+ if (lastch != '\r')
+ fprintf(stderr, "\n");
+ } else if (ch == '\\') {
+ fprintf(stderr, "\\\\");
+ } else if (isprint(ch)) {
+ putc(ch, stderr);
+ } else {
+ fprintf(stderr, "\\%03o", ch);
+ }
+ lastch = ch;
+ }
+ }
+
+ if (traceit)
+ fprintf(stderr, "\n");
+
+ return TRUE;
+}
+
+
+/*
+ * The main program.
+ */
+
+int
+main (int argc, char **argv)
+{
+ struct jpeg_decompress_struct cinfo;
+ struct jpeg_error_mgr jerr;
+#ifdef PROGRESS_REPORT
+ struct cdjpeg_progress_mgr progress;
+#endif
+ int file_index;
+ djpeg_dest_ptr dest_mgr = NULL;
+ FILE * input_file;
+ FILE * output_file;
+ JDIMENSION num_scanlines;
+
+ /* On Mac, fetch a command line. */
+#ifdef USE_CCOMMAND
+ argc = ccommand(&argv);
+#endif
+
+ progname = argv[0];
+ if (progname == NULL || progname[0] == 0)
+ progname = "djpeg"; /* in case C library doesn't provide it */
+
+ /* Initialize the JPEG decompression object with default error handling. */
+ cinfo.err = jpeg_std_error(&jerr);
+ jpeg_create_decompress(&cinfo);
+ /* Add some application-specific error messages (from cderror.h) */
+ jerr.addon_message_table = cdjpeg_message_table;
+ jerr.first_addon_message = JMSG_FIRSTADDONCODE;
+ jerr.last_addon_message = JMSG_LASTADDONCODE;
+
+ /* Insert custom marker processor for COM and APP12.
+ * APP12 is used by some digital camera makers for textual info,
+ * so we provide the ability to display it as text.
+ * If you like, additional APPn marker types can be selected for display,
+ * but don't try to override APP0 or APP14 this way (see libjpeg.doc).
+ */
+ jpeg_set_marker_processor(&cinfo, JPEG_COM, print_text_marker);
+ jpeg_set_marker_processor(&cinfo, JPEG_APP0+12, print_text_marker);
+
+ /* Now safe to enable signal catcher. */
+#ifdef NEED_SIGNAL_CATCHER
+ enable_signal_catcher((j_common_ptr) &cinfo);
+#endif
+
+ /* Scan command line to find file names. */
+ /* It is convenient to use just one switch-parsing routine, but the switch
+ * values read here are ignored; we will rescan the switches after opening
+ * the input file.
+ * (Exception: tracing level set here controls verbosity for COM markers
+ * found during jpeg_read_header...)
+ */
+
+ file_index = parse_switches(&cinfo, argc, argv, 0, FALSE);
+
+#ifdef TWO_FILE_COMMANDLINE
+ /* Must have either -outfile switch or explicit output file name */
+ if (outfilename == NULL) {
+ if (file_index != argc-2) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ outfilename = argv[file_index+1];
+ } else {
+ if (file_index != argc-1) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ }
+#else
+ /* Unix style: expect zero or one file name */
+ if (file_index < argc-1) {
+ fprintf(stderr, "%s: only one input file\n", progname);
+ usage();
+ }
+#endif /* TWO_FILE_COMMANDLINE */
+
+ /* Open the input file. */
+ if (file_index < argc) {
+ if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default input file is stdin */
+ input_file = read_stdin();
+ }
+
+ /* Open the output file. */
+ if (outfilename != NULL) {
+ if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default output file is stdout */
+ output_file = write_stdout();
+ }
+
+#ifdef PROGRESS_REPORT
+ start_progress_monitor((j_common_ptr) &cinfo, &progress);
+#endif
+
+ /* Specify data source for decompression */
+ jpeg_stdio_src(&cinfo, input_file);
+
+ /* Read file header, set default decompression parameters */
+ (void) jpeg_read_header(&cinfo, TRUE);
+
+ /* Adjust default decompression parameters by re-parsing the options */
+ file_index = parse_switches(&cinfo, argc, argv, 0, TRUE);
+
+ /* Initialize the output module now to let it override any crucial
+ * option settings (for instance, GIF wants to force color quantization).
+ */
+ switch (requested_fmt) {
+#ifdef BMP_SUPPORTED
+ case FMT_BMP:
+ dest_mgr = jinit_write_bmp(&cinfo, FALSE);
+ break;
+ case FMT_OS2:
+ dest_mgr = jinit_write_bmp(&cinfo, TRUE);
+ break;
+#endif
+#ifdef GIF_SUPPORTED
+ case FMT_GIF:
+ dest_mgr = jinit_write_gif(&cinfo);
+ break;
+#endif
+#ifdef PPM_SUPPORTED
+ case FMT_PPM:
+ dest_mgr = jinit_write_ppm(&cinfo);
+ break;
+#endif
+#ifdef RLE_SUPPORTED
+ case FMT_RLE:
+ dest_mgr = jinit_write_rle(&cinfo);
+ break;
+#endif
+#ifdef TARGA_SUPPORTED
+ case FMT_TARGA:
+ dest_mgr = jinit_write_targa(&cinfo);
+ break;
+#endif
+ default:
+ ERREXIT(&cinfo, JERR_UNSUPPORTED_FORMAT);
+ break;
+ }
+ dest_mgr->output_file = output_file;
+
+ /* Start decompressor */
+ (void) jpeg_start_decompress(&cinfo);
+
+ /* Write output file header */
+ (*dest_mgr->start_output) (&cinfo, dest_mgr);
+
+ /* Process data */
+ while (cinfo.output_scanline < cinfo.output_height) {
+ num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer,
+ dest_mgr->buffer_height);
+ (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines);
+ }
+
+#ifdef PROGRESS_REPORT
+ /* Hack: count final pass as done in case finish_output does an extra pass.
+ * The library won't have updated completed_passes.
+ */
+ progress.pub.completed_passes = progress.pub.total_passes;
+#endif
+
+ /* Finish decompression and release memory.
+ * I must do it in this order because output module has allocated memory
+ * of lifespan JPOOL_IMAGE; it needs to finish before releasing memory.
+ */
+ (*dest_mgr->finish_output) (&cinfo, dest_mgr);
+ (void) jpeg_finish_decompress(&cinfo);
+ jpeg_destroy_decompress(&cinfo);
+
+ /* Close files, if we opened them */
+ if (input_file != stdin)
+ fclose(input_file);
+ if (output_file != stdout)
+ fclose(output_file);
+
+#ifdef PROGRESS_REPORT
+ end_progress_monitor((j_common_ptr) &cinfo);
+#endif
+
+ /* All done. */
+ exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS);
+ return 0; /* suppress no-return-value warnings */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/example.c b/plugins/AdvaImg/src/LibJPEG/example.c
new file mode 100644
index 0000000000..e21cf12126
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/example.c
@@ -0,0 +1,433 @@
+/*
+ * example.c
+ *
+ * This file illustrates how to use the IJG code as a subroutine library
+ * to read or write JPEG image files. You should look at this code in
+ * conjunction with the documentation file libjpeg.txt.
+ *
+ * This code will not do anything useful as-is, but it may be helpful as a
+ * skeleton for constructing routines that call the JPEG library.
+ *
+ * We present these routines in the same coding style used in the JPEG code
+ * (ANSI function definitions, etc); but you are of course free to code your
+ * routines in a different style if you prefer.
+ */
+
+#include <stdio.h>
+
+/*
+ * Include file for users of JPEG library.
+ * You will need to have included system headers that define at least
+ * the typedefs FILE and size_t before you can include jpeglib.h.
+ * (stdio.h is sufficient on ANSI-conforming systems.)
+ * You may also wish to include "jerror.h".
+ */
+
+#include "jpeglib.h"
+
+/*
+ * <setjmp.h> is used for the optional error recovery mechanism shown in
+ * the second part of the example.
+ */
+
+#include <setjmp.h>
+
+
+
+/******************** JPEG COMPRESSION SAMPLE INTERFACE *******************/
+
+/* This half of the example shows how to feed data into the JPEG compressor.
+ * We present a minimal version that does not worry about refinements such
+ * as error recovery (the JPEG code will just exit() if it gets an error).
+ */
+
+
+/*
+ * IMAGE DATA FORMATS:
+ *
+ * The standard input image format is a rectangular array of pixels, with
+ * each pixel having the same number of "component" values (color channels).
+ * Each pixel row is an array of JSAMPLEs (which typically are unsigned chars).
+ * If you are working with color data, then the color values for each pixel
+ * must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit
+ * RGB color.
+ *
+ * For this example, we'll assume that this data structure matches the way
+ * our application has stored the image in memory, so we can just pass a
+ * pointer to our image buffer. In particular, let's say that the image is
+ * RGB color and is described by:
+ */
+
+extern JSAMPLE * image_buffer; /* Points to large array of R,G,B-order data */
+extern int image_height; /* Number of rows in image */
+extern int image_width; /* Number of columns in image */
+
+
+/*
+ * Sample routine for JPEG compression. We assume that the target file name
+ * and a compression quality factor are passed in.
+ */
+
+GLOBAL(void)
+write_JPEG_file (char * filename, int quality)
+{
+ /* This struct contains the JPEG compression parameters and pointers to
+ * working space (which is allocated as needed by the JPEG library).
+ * It is possible to have several such structures, representing multiple
+ * compression/decompression processes, in existence at once. We refer
+ * to any one struct (and its associated working data) as a "JPEG object".
+ */
+ struct jpeg_compress_struct cinfo;
+ /* This struct represents a JPEG error handler. It is declared separately
+ * because applications often want to supply a specialized error handler
+ * (see the second half of this file for an example). But here we just
+ * take the easy way out and use the standard error handler, which will
+ * print a message on stderr and call exit() if compression fails.
+ * Note that this struct must live as long as the main JPEG parameter
+ * struct, to avoid dangling-pointer problems.
+ */
+ struct jpeg_error_mgr jerr;
+ /* More stuff */
+ FILE * outfile; /* target file */
+ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
+ int row_stride; /* physical row width in image buffer */
+
+ /* Step 1: allocate and initialize JPEG compression object */
+
+ /* We have to set up the error handler first, in case the initialization
+ * step fails. (Unlikely, but it could happen if you are out of memory.)
+ * This routine fills in the contents of struct jerr, and returns jerr's
+ * address which we place into the link field in cinfo.
+ */
+ cinfo.err = jpeg_std_error(&jerr);
+ /* Now we can initialize the JPEG compression object. */
+ jpeg_create_compress(&cinfo);
+
+ /* Step 2: specify data destination (eg, a file) */
+ /* Note: steps 2 and 3 can be done in either order. */
+
+ /* Here we use the library-supplied code to send compressed data to a
+ * stdio stream. You can also write your own code to do something else.
+ * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
+ * requires it in order to write binary files.
+ */
+ if ((outfile = fopen(filename, "wb")) == NULL) {
+ fprintf(stderr, "can't open %s\n", filename);
+ exit(1);
+ }
+ jpeg_stdio_dest(&cinfo, outfile);
+
+ /* Step 3: set parameters for compression */
+
+ /* First we supply a description of the input image.
+ * Four fields of the cinfo struct must be filled in:
+ */
+ cinfo.image_width = image_width; /* image width and height, in pixels */
+ cinfo.image_height = image_height;
+ cinfo.input_components = 3; /* # of color components per pixel */
+ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
+ /* Now use the library's routine to set default compression parameters.
+ * (You must set at least cinfo.in_color_space before calling this,
+ * since the defaults depend on the source color space.)
+ */
+ jpeg_set_defaults(&cinfo);
+ /* Now you can set any non-default parameters you wish to.
+ * Here we just illustrate the use of quality (quantization table) scaling:
+ */
+ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
+
+ /* Step 4: Start compressor */
+
+ /* TRUE ensures that we will write a complete interchange-JPEG file.
+ * Pass TRUE unless you are very sure of what you're doing.
+ */
+ jpeg_start_compress(&cinfo, TRUE);
+
+ /* Step 5: while (scan lines remain to be written) */
+ /* jpeg_write_scanlines(...); */
+
+ /* Here we use the library's state variable cinfo.next_scanline as the
+ * loop counter, so that we don't have to keep track ourselves.
+ * To keep things simple, we pass one scanline per call; you can pass
+ * more if you wish, though.
+ */
+ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
+
+ while (cinfo.next_scanline < cinfo.image_height) {
+ /* jpeg_write_scanlines expects an array of pointers to scanlines.
+ * Here the array is only one element long, but you could pass
+ * more than one scanline at a time if that's more convenient.
+ */
+ row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
+ (void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
+ }
+
+ /* Step 6: Finish compression */
+
+ jpeg_finish_compress(&cinfo);
+ /* After finish_compress, we can close the output file. */
+ fclose(outfile);
+
+ /* Step 7: release JPEG compression object */
+
+ /* This is an important step since it will release a good deal of memory. */
+ jpeg_destroy_compress(&cinfo);
+
+ /* And we're done! */
+}
+
+
+/*
+ * SOME FINE POINTS:
+ *
+ * In the above loop, we ignored the return value of jpeg_write_scanlines,
+ * which is the number of scanlines actually written. We could get away
+ * with this because we were only relying on the value of cinfo.next_scanline,
+ * which will be incremented correctly. If you maintain additional loop
+ * variables then you should be careful to increment them properly.
+ * Actually, for output to a stdio stream you needn't worry, because
+ * then jpeg_write_scanlines will write all the lines passed (or else exit
+ * with a fatal error). Partial writes can only occur if you use a data
+ * destination module that can demand suspension of the compressor.
+ * (If you don't know what that's for, you don't need it.)
+ *
+ * If the compressor requires full-image buffers (for entropy-coding
+ * optimization or a multi-scan JPEG file), it will create temporary
+ * files for anything that doesn't fit within the maximum-memory setting.
+ * (Note that temp files are NOT needed if you use the default parameters.)
+ * On some systems you may need to set up a signal handler to ensure that
+ * temporary files are deleted if the program is interrupted. See libjpeg.txt.
+ *
+ * Scanlines MUST be supplied in top-to-bottom order if you want your JPEG
+ * files to be compatible with everyone else's. If you cannot readily read
+ * your data in that order, you'll need an intermediate array to hold the
+ * image. See rdtarga.c or rdbmp.c for examples of handling bottom-to-top
+ * source data using the JPEG code's internal virtual-array mechanisms.
+ */
+
+
+
+/******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/
+
+/* This half of the example shows how to read data from the JPEG decompressor.
+ * It's a bit more refined than the above, in that we show:
+ * (a) how to modify the JPEG library's standard error-reporting behavior;
+ * (b) how to allocate workspace using the library's memory manager.
+ *
+ * Just to make this example a little different from the first one, we'll
+ * assume that we do not intend to put the whole image into an in-memory
+ * buffer, but to send it line-by-line someplace else. We need a one-
+ * scanline-high JSAMPLE array as a work buffer, and we will let the JPEG
+ * memory manager allocate it for us. This approach is actually quite useful
+ * because we don't need to remember to deallocate the buffer separately: it
+ * will go away automatically when the JPEG object is cleaned up.
+ */
+
+
+/*
+ * ERROR HANDLING:
+ *
+ * The JPEG library's standard error handler (jerror.c) is divided into
+ * several "methods" which you can override individually. This lets you
+ * adjust the behavior without duplicating a lot of code, which you might
+ * have to update with each future release.
+ *
+ * Our example here shows how to override the "error_exit" method so that
+ * control is returned to the library's caller when a fatal error occurs,
+ * rather than calling exit() as the standard error_exit method does.
+ *
+ * We use C's setjmp/longjmp facility to return control. This means that the
+ * routine which calls the JPEG library must first execute a setjmp() call to
+ * establish the return point. We want the replacement error_exit to do a
+ * longjmp(). But we need to make the setjmp buffer accessible to the
+ * error_exit routine. To do this, we make a private extension of the
+ * standard JPEG error handler object. (If we were using C++, we'd say we
+ * were making a subclass of the regular error handler.)
+ *
+ * Here's the extended error handler struct:
+ */
+
+struct my_error_mgr {
+ struct jpeg_error_mgr pub; /* "public" fields */
+
+ jmp_buf setjmp_buffer; /* for return to caller */
+};
+
+typedef struct my_error_mgr * my_error_ptr;
+
+/*
+ * Here's the routine that will replace the standard error_exit method:
+ */
+
+METHODDEF(void)
+my_error_exit (j_common_ptr cinfo)
+{
+ /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
+ my_error_ptr myerr = (my_error_ptr) cinfo->err;
+
+ /* Always display the message. */
+ /* We could postpone this until after returning, if we chose. */
+ (*cinfo->err->output_message) (cinfo);
+
+ /* Return control to the setjmp point */
+ longjmp(myerr->setjmp_buffer, 1);
+}
+
+
+/*
+ * Sample routine for JPEG decompression. We assume that the source file name
+ * is passed in. We want to return 1 on success, 0 on error.
+ */
+
+
+GLOBAL(int)
+read_JPEG_file (char * filename)
+{
+ /* This struct contains the JPEG decompression parameters and pointers to
+ * working space (which is allocated as needed by the JPEG library).
+ */
+ struct jpeg_decompress_struct cinfo;
+ /* We use our private extension JPEG error handler.
+ * Note that this struct must live as long as the main JPEG parameter
+ * struct, to avoid dangling-pointer problems.
+ */
+ struct my_error_mgr jerr;
+ /* More stuff */
+ FILE * infile; /* source file */
+ JSAMPARRAY buffer; /* Output row buffer */
+ int row_stride; /* physical row width in output buffer */
+
+ /* In this example we want to open the input file before doing anything else,
+ * so that the setjmp() error recovery below can assume the file is open.
+ * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
+ * requires it in order to read binary files.
+ */
+
+ if ((infile = fopen(filename, "rb")) == NULL) {
+ fprintf(stderr, "can't open %s\n", filename);
+ return 0;
+ }
+
+ /* Step 1: allocate and initialize JPEG decompression object */
+
+ /* We set up the normal JPEG error routines, then override error_exit. */
+ cinfo.err = jpeg_std_error(&jerr.pub);
+ jerr.pub.error_exit = my_error_exit;
+ /* Establish the setjmp return context for my_error_exit to use. */
+ if (setjmp(jerr.setjmp_buffer)) {
+ /* If we get here, the JPEG code has signaled an error.
+ * We need to clean up the JPEG object, close the input file, and return.
+ */
+ jpeg_destroy_decompress(&cinfo);
+ fclose(infile);
+ return 0;
+ }
+ /* Now we can initialize the JPEG decompression object. */
+ jpeg_create_decompress(&cinfo);
+
+ /* Step 2: specify data source (eg, a file) */
+
+ jpeg_stdio_src(&cinfo, infile);
+
+ /* Step 3: read file parameters with jpeg_read_header() */
+
+ (void) jpeg_read_header(&cinfo, TRUE);
+ /* We can ignore the return value from jpeg_read_header since
+ * (a) suspension is not possible with the stdio data source, and
+ * (b) we passed TRUE to reject a tables-only JPEG file as an error.
+ * See libjpeg.txt for more info.
+ */
+
+ /* Step 4: set parameters for decompression */
+
+ /* In this example, we don't need to change any of the defaults set by
+ * jpeg_read_header(), so we do nothing here.
+ */
+
+ /* Step 5: Start decompressor */
+
+ (void) jpeg_start_decompress(&cinfo);
+ /* We can ignore the return value since suspension is not possible
+ * with the stdio data source.
+ */
+
+ /* We may need to do some setup of our own at this point before reading
+ * the data. After jpeg_start_decompress() we have the correct scaled
+ * output image dimensions available, as well as the output colormap
+ * if we asked for color quantization.
+ * In this example, we need to make an output work buffer of the right size.
+ */
+ /* JSAMPLEs per row in output buffer */
+ row_stride = cinfo.output_width * cinfo.output_components;
+ /* Make a one-row-high sample array that will go away when done with image */
+ buffer = (*cinfo.mem->alloc_sarray)
+ ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
+
+ /* Step 6: while (scan lines remain to be read) */
+ /* jpeg_read_scanlines(...); */
+
+ /* Here we use the library's state variable cinfo.output_scanline as the
+ * loop counter, so that we don't have to keep track ourselves.
+ */
+ while (cinfo.output_scanline < cinfo.output_height) {
+ /* jpeg_read_scanlines expects an array of pointers to scanlines.
+ * Here the array is only one element long, but you could ask for
+ * more than one scanline at a time if that's more convenient.
+ */
+ (void) jpeg_read_scanlines(&cinfo, buffer, 1);
+ /* Assume put_scanline_someplace wants a pointer and sample count. */
+ put_scanline_someplace(buffer[0], row_stride);
+ }
+
+ /* Step 7: Finish decompression */
+
+ (void) jpeg_finish_decompress(&cinfo);
+ /* We can ignore the return value since suspension is not possible
+ * with the stdio data source.
+ */
+
+ /* Step 8: Release JPEG decompression object */
+
+ /* This is an important step since it will release a good deal of memory. */
+ jpeg_destroy_decompress(&cinfo);
+
+ /* After finish_decompress, we can close the input file.
+ * Here we postpone it until after no more JPEG errors are possible,
+ * so as to simplify the setjmp error logic above. (Actually, I don't
+ * think that jpeg_destroy can do an error exit, but why assume anything...)
+ */
+ fclose(infile);
+
+ /* At this point you may want to check to see whether any corrupt-data
+ * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
+ */
+
+ /* And we're done! */
+ return 1;
+}
+
+
+/*
+ * SOME FINE POINTS:
+ *
+ * In the above code, we ignored the return value of jpeg_read_scanlines,
+ * which is the number of scanlines actually read. We could get away with
+ * this because we asked for only one line at a time and we weren't using
+ * a suspending data source. See libjpeg.txt for more info.
+ *
+ * We cheated a bit by calling alloc_sarray() after jpeg_start_decompress();
+ * we should have done it beforehand to ensure that the space would be
+ * counted against the JPEG max_memory setting. In some systems the above
+ * code would risk an out-of-memory error. However, in general we don't
+ * know the output image dimensions before jpeg_start_decompress(), unless we
+ * call jpeg_calc_output_dimensions(). See libjpeg.txt for more about this.
+ *
+ * Scanlines are returned in the same order as they appear in the JPEG file,
+ * which is standardly top-to-bottom. If you must emit data bottom-to-top,
+ * you can use one of the virtual arrays provided by the JPEG memory manager
+ * to invert the data. See wrbmp.c for an example.
+ *
+ * As with compression, some operating modes may require temporary files.
+ * On some systems you may need to set up a signal handler to ensure that
+ * temporary files are deleted if the program is interrupted. See libjpeg.txt.
+ */
diff --git a/plugins/AdvaImg/src/LibJPEG/jaricom.c b/plugins/AdvaImg/src/LibJPEG/jaricom.c
new file mode 100644
index 0000000000..690068861f
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jaricom.c
@@ -0,0 +1,153 @@
+/*
+ * jaricom.c
+ *
+ * Developed 1997-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains probability estimation tables for common use in
+ * arithmetic entropy encoding and decoding routines.
+ *
+ * This data represents Table D.3 in the JPEG spec (D.2 in the draft),
+ * ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81, and Table 24
+ * in the JBIG spec, ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+/* The following #define specifies the packing of the four components
+ * into the compact INT32 representation.
+ * Note that this formula must match the actual arithmetic encoder
+ * and decoder implementation. The implementation has to be changed
+ * if this formula is changed.
+ * The current organization is leaned on Markus Kuhn's JBIG
+ * implementation (jbig_tab.c).
+ */
+
+#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
+
+const INT32 jpeg_aritab[113+1] = {
+/*
+ * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
+ */
+ V( 0, 0x5a1d, 1, 1, 1 ),
+ V( 1, 0x2586, 14, 2, 0 ),
+ V( 2, 0x1114, 16, 3, 0 ),
+ V( 3, 0x080b, 18, 4, 0 ),
+ V( 4, 0x03d8, 20, 5, 0 ),
+ V( 5, 0x01da, 23, 6, 0 ),
+ V( 6, 0x00e5, 25, 7, 0 ),
+ V( 7, 0x006f, 28, 8, 0 ),
+ V( 8, 0x0036, 30, 9, 0 ),
+ V( 9, 0x001a, 33, 10, 0 ),
+ V( 10, 0x000d, 35, 11, 0 ),
+ V( 11, 0x0006, 9, 12, 0 ),
+ V( 12, 0x0003, 10, 13, 0 ),
+ V( 13, 0x0001, 12, 13, 0 ),
+ V( 14, 0x5a7f, 15, 15, 1 ),
+ V( 15, 0x3f25, 36, 16, 0 ),
+ V( 16, 0x2cf2, 38, 17, 0 ),
+ V( 17, 0x207c, 39, 18, 0 ),
+ V( 18, 0x17b9, 40, 19, 0 ),
+ V( 19, 0x1182, 42, 20, 0 ),
+ V( 20, 0x0cef, 43, 21, 0 ),
+ V( 21, 0x09a1, 45, 22, 0 ),
+ V( 22, 0x072f, 46, 23, 0 ),
+ V( 23, 0x055c, 48, 24, 0 ),
+ V( 24, 0x0406, 49, 25, 0 ),
+ V( 25, 0x0303, 51, 26, 0 ),
+ V( 26, 0x0240, 52, 27, 0 ),
+ V( 27, 0x01b1, 54, 28, 0 ),
+ V( 28, 0x0144, 56, 29, 0 ),
+ V( 29, 0x00f5, 57, 30, 0 ),
+ V( 30, 0x00b7, 59, 31, 0 ),
+ V( 31, 0x008a, 60, 32, 0 ),
+ V( 32, 0x0068, 62, 33, 0 ),
+ V( 33, 0x004e, 63, 34, 0 ),
+ V( 34, 0x003b, 32, 35, 0 ),
+ V( 35, 0x002c, 33, 9, 0 ),
+ V( 36, 0x5ae1, 37, 37, 1 ),
+ V( 37, 0x484c, 64, 38, 0 ),
+ V( 38, 0x3a0d, 65, 39, 0 ),
+ V( 39, 0x2ef1, 67, 40, 0 ),
+ V( 40, 0x261f, 68, 41, 0 ),
+ V( 41, 0x1f33, 69, 42, 0 ),
+ V( 42, 0x19a8, 70, 43, 0 ),
+ V( 43, 0x1518, 72, 44, 0 ),
+ V( 44, 0x1177, 73, 45, 0 ),
+ V( 45, 0x0e74, 74, 46, 0 ),
+ V( 46, 0x0bfb, 75, 47, 0 ),
+ V( 47, 0x09f8, 77, 48, 0 ),
+ V( 48, 0x0861, 78, 49, 0 ),
+ V( 49, 0x0706, 79, 50, 0 ),
+ V( 50, 0x05cd, 48, 51, 0 ),
+ V( 51, 0x04de, 50, 52, 0 ),
+ V( 52, 0x040f, 50, 53, 0 ),
+ V( 53, 0x0363, 51, 54, 0 ),
+ V( 54, 0x02d4, 52, 55, 0 ),
+ V( 55, 0x025c, 53, 56, 0 ),
+ V( 56, 0x01f8, 54, 57, 0 ),
+ V( 57, 0x01a4, 55, 58, 0 ),
+ V( 58, 0x0160, 56, 59, 0 ),
+ V( 59, 0x0125, 57, 60, 0 ),
+ V( 60, 0x00f6, 58, 61, 0 ),
+ V( 61, 0x00cb, 59, 62, 0 ),
+ V( 62, 0x00ab, 61, 63, 0 ),
+ V( 63, 0x008f, 61, 32, 0 ),
+ V( 64, 0x5b12, 65, 65, 1 ),
+ V( 65, 0x4d04, 80, 66, 0 ),
+ V( 66, 0x412c, 81, 67, 0 ),
+ V( 67, 0x37d8, 82, 68, 0 ),
+ V( 68, 0x2fe8, 83, 69, 0 ),
+ V( 69, 0x293c, 84, 70, 0 ),
+ V( 70, 0x2379, 86, 71, 0 ),
+ V( 71, 0x1edf, 87, 72, 0 ),
+ V( 72, 0x1aa9, 87, 73, 0 ),
+ V( 73, 0x174e, 72, 74, 0 ),
+ V( 74, 0x1424, 72, 75, 0 ),
+ V( 75, 0x119c, 74, 76, 0 ),
+ V( 76, 0x0f6b, 74, 77, 0 ),
+ V( 77, 0x0d51, 75, 78, 0 ),
+ V( 78, 0x0bb6, 77, 79, 0 ),
+ V( 79, 0x0a40, 77, 48, 0 ),
+ V( 80, 0x5832, 80, 81, 1 ),
+ V( 81, 0x4d1c, 88, 82, 0 ),
+ V( 82, 0x438e, 89, 83, 0 ),
+ V( 83, 0x3bdd, 90, 84, 0 ),
+ V( 84, 0x34ee, 91, 85, 0 ),
+ V( 85, 0x2eae, 92, 86, 0 ),
+ V( 86, 0x299a, 93, 87, 0 ),
+ V( 87, 0x2516, 86, 71, 0 ),
+ V( 88, 0x5570, 88, 89, 1 ),
+ V( 89, 0x4ca9, 95, 90, 0 ),
+ V( 90, 0x44d9, 96, 91, 0 ),
+ V( 91, 0x3e22, 97, 92, 0 ),
+ V( 92, 0x3824, 99, 93, 0 ),
+ V( 93, 0x32b4, 99, 94, 0 ),
+ V( 94, 0x2e17, 93, 86, 0 ),
+ V( 95, 0x56a8, 95, 96, 1 ),
+ V( 96, 0x4f46, 101, 97, 0 ),
+ V( 97, 0x47e5, 102, 98, 0 ),
+ V( 98, 0x41cf, 103, 99, 0 ),
+ V( 99, 0x3c3d, 104, 100, 0 ),
+ V( 100, 0x375e, 99, 93, 0 ),
+ V( 101, 0x5231, 105, 102, 0 ),
+ V( 102, 0x4c0f, 106, 103, 0 ),
+ V( 103, 0x4639, 107, 104, 0 ),
+ V( 104, 0x415e, 103, 99, 0 ),
+ V( 105, 0x5627, 105, 106, 1 ),
+ V( 106, 0x50e7, 108, 107, 0 ),
+ V( 107, 0x4b85, 109, 103, 0 ),
+ V( 108, 0x5597, 110, 109, 0 ),
+ V( 109, 0x504f, 111, 107, 0 ),
+ V( 110, 0x5a10, 110, 111, 1 ),
+ V( 111, 0x5522, 112, 109, 0 ),
+ V( 112, 0x59eb, 112, 111, 1 ),
+/*
+ * This last entry is used for fixed probability estimate of 0.5
+ * as suggested in Section 10.3 Table 5 of ITU-T Rec. T.851.
+ */
+ V( 113, 0x5a1d, 113, 113, 0 )
+};
diff --git a/plugins/AdvaImg/src/LibJPEG/jcapimin.c b/plugins/AdvaImg/src/LibJPEG/jcapimin.c
new file mode 100644
index 0000000000..639ce86f44
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcapimin.c
@@ -0,0 +1,288 @@
+/*
+ * jcapimin.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * Modified 2003-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the compression half
+ * of the JPEG library. These are the "minimum" API routines that may be
+ * needed in either the normal full-compression case or the transcoding-only
+ * case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jcapistd.c. But also see jcparam.c for
+ * parameter-setup helper routines, jcomapi.c for routines shared by
+ * compression and decompression, and jctrans.c for the transcoding case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG compression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL(void)
+jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
+{
+ int i;
+
+ /* Guard against version mismatches between library and caller. */
+ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
+ if (version != JPEG_LIB_VERSION)
+ ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+ if (structsize != SIZEOF(struct jpeg_compress_struct))
+ ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
+ (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
+
+ /* For debugging purposes, we zero the whole master structure.
+ * But the application has already set the err pointer, and may have set
+ * client_data, so we have to save and restore those fields.
+ * Note: if application hasn't set client_data, tools like Purify may
+ * complain here.
+ */
+ {
+ struct jpeg_error_mgr * err = cinfo->err;
+ void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+ MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
+ cinfo->err = err;
+ cinfo->client_data = client_data;
+ }
+ cinfo->is_decompressor = FALSE;
+
+ /* Initialize a memory manager instance for this object */
+ jinit_memory_mgr((j_common_ptr) cinfo);
+
+ /* Zero out pointers to permanent structures. */
+ cinfo->progress = NULL;
+ cinfo->dest = NULL;
+
+ cinfo->comp_info = NULL;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ cinfo->quant_tbl_ptrs[i] = NULL;
+ cinfo->q_scale_factor[i] = 100;
+ }
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ cinfo->dc_huff_tbl_ptrs[i] = NULL;
+ cinfo->ac_huff_tbl_ptrs[i] = NULL;
+ }
+
+ /* Must do it here for emit_dqt in case jpeg_write_tables is used */
+ cinfo->block_size = DCTSIZE;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+
+ cinfo->script_space = NULL;
+
+ cinfo->input_gamma = 1.0; /* in case application forgets */
+
+ /* OK, I'm ready */
+ cinfo->global_state = CSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG compression object
+ */
+
+GLOBAL(void)
+jpeg_destroy_compress (j_compress_ptr cinfo)
+{
+ jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG compression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL(void)
+jpeg_abort_compress (j_compress_ptr cinfo)
+{
+ jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Forcibly suppress or un-suppress all quantization and Huffman tables.
+ * Marks all currently defined tables as already written (if suppress)
+ * or not written (if !suppress). This will control whether they get emitted
+ * by a subsequent jpeg_start_compress call.
+ *
+ * This routine is exported for use by applications that want to produce
+ * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
+ * since it is called by jpeg_start_compress, we put it here --- otherwise
+ * jcparam.o would be linked whether the application used it or not.
+ */
+
+GLOBAL(void)
+jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
+{
+ int i;
+ JQUANT_TBL * qtbl;
+ JHUFF_TBL * htbl;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
+ qtbl->sent_table = suppress;
+ }
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
+ htbl->sent_table = suppress;
+ if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
+ htbl->sent_table = suppress;
+ }
+}
+
+
+/*
+ * Finish JPEG compression.
+ *
+ * If a multipass operating mode was selected, this may do a great deal of
+ * work including most of the actual output.
+ */
+
+GLOBAL(void)
+jpeg_finish_compress (j_compress_ptr cinfo)
+{
+ JDIMENSION iMCU_row;
+
+ if (cinfo->global_state == CSTATE_SCANNING ||
+ cinfo->global_state == CSTATE_RAW_OK) {
+ /* Terminate first pass */
+ if (cinfo->next_scanline < cinfo->image_height)
+ ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+ (*cinfo->master->finish_pass) (cinfo);
+ } else if (cinfo->global_state != CSTATE_WRCOEFS)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Perform any remaining passes */
+ while (! cinfo->master->is_last_pass) {
+ (*cinfo->master->prepare_for_pass) (cinfo);
+ for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) iMCU_row;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+ /* We bypass the main controller and invoke coef controller directly;
+ * all work is being done from the coefficient buffer.
+ */
+ if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ }
+ (*cinfo->master->finish_pass) (cinfo);
+ }
+ /* Write EOI, do final cleanup */
+ (*cinfo->marker->write_file_trailer) (cinfo);
+ (*cinfo->dest->term_destination) (cinfo);
+ /* We can use jpeg_abort to release memory and reset global_state */
+ jpeg_abort((j_common_ptr) cinfo);
+}
+
+
+/*
+ * Write a special marker.
+ * This is only recommended for writing COM or APPn markers.
+ * Must be called after jpeg_start_compress() and before
+ * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
+ */
+
+GLOBAL(void)
+jpeg_write_marker (j_compress_ptr cinfo, int marker,
+ const JOCTET *dataptr, unsigned int datalen)
+{
+ JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
+
+ if (cinfo->next_scanline != 0 ||
+ (cinfo->global_state != CSTATE_SCANNING &&
+ cinfo->global_state != CSTATE_RAW_OK &&
+ cinfo->global_state != CSTATE_WRCOEFS))
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+ write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
+ while (datalen--) {
+ (*write_marker_byte) (cinfo, *dataptr);
+ dataptr++;
+ }
+}
+
+/* Same, but piecemeal. */
+
+GLOBAL(void)
+jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+{
+ if (cinfo->next_scanline != 0 ||
+ (cinfo->global_state != CSTATE_SCANNING &&
+ cinfo->global_state != CSTATE_RAW_OK &&
+ cinfo->global_state != CSTATE_WRCOEFS))
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+}
+
+GLOBAL(void)
+jpeg_write_m_byte (j_compress_ptr cinfo, int val)
+{
+ (*cinfo->marker->write_marker_byte) (cinfo, val);
+}
+
+
+/*
+ * Alternate compression function: just write an abbreviated table file.
+ * Before calling this, all parameters and a data destination must be set up.
+ *
+ * To produce a pair of files containing abbreviated tables and abbreviated
+ * image data, one would proceed as follows:
+ *
+ * initialize JPEG object
+ * set JPEG parameters
+ * set destination to table file
+ * jpeg_write_tables(cinfo);
+ * set destination to image file
+ * jpeg_start_compress(cinfo, FALSE);
+ * write data...
+ * jpeg_finish_compress(cinfo);
+ *
+ * jpeg_write_tables has the side effect of marking all tables written
+ * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
+ * will not re-emit the tables unless it is passed write_all_tables=TRUE.
+ */
+
+GLOBAL(void)
+jpeg_write_tables (j_compress_ptr cinfo)
+{
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* (Re)initialize error mgr and destination modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->dest->init_destination) (cinfo);
+ /* Initialize the marker writer ... bit of a crock to do it here. */
+ jinit_marker_writer(cinfo);
+ /* Write them tables! */
+ (*cinfo->marker->write_tables_only) (cinfo);
+ /* And clean up. */
+ (*cinfo->dest->term_destination) (cinfo);
+ /*
+ * In library releases up through v6a, we called jpeg_abort() here to free
+ * any working memory allocated by the destination manager and marker
+ * writer. Some applications had a problem with that: they allocated space
+ * of their own from the library memory manager, and didn't want it to go
+ * away during write_tables. So now we do nothing. This will cause a
+ * memory leak if an app calls write_tables repeatedly without doing a full
+ * compression cycle or otherwise resetting the JPEG object. However, that
+ * seems less bad than unexpectedly freeing memory in the normal case.
+ * An app that prefers the old behavior can call jpeg_abort for itself after
+ * each call to jpeg_write_tables().
+ */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcapistd.c b/plugins/AdvaImg/src/LibJPEG/jcapistd.c
new file mode 100644
index 0000000000..c0320b1b19
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcapistd.c
@@ -0,0 +1,161 @@
+/*
+ * jcapistd.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the compression half
+ * of the JPEG library. These are the "standard" API routines that are
+ * used in the normal full-compression case. They are not used by a
+ * transcoding-only application. Note that if an application links in
+ * jpeg_start_compress, it will end up linking in the entire compressor.
+ * We thus must separate this file from jcapimin.c to avoid linking the
+ * whole compression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Compression initialization.
+ * Before calling this, all parameters and a data destination must be set up.
+ *
+ * We require a write_all_tables parameter as a failsafe check when writing
+ * multiple datastreams from the same compression object. Since prior runs
+ * will have left all the tables marked sent_table=TRUE, a subsequent run
+ * would emit an abbreviated stream (no tables) by default. This may be what
+ * is wanted, but for safety's sake it should not be the default behavior:
+ * programmers should have to make a deliberate choice to emit abbreviated
+ * images. Therefore the documentation and examples should encourage people
+ * to pass write_all_tables=TRUE; then it will take active thought to do the
+ * wrong thing.
+ */
+
+GLOBAL(void)
+jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
+{
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (write_all_tables)
+ jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
+
+ /* (Re)initialize error mgr and destination modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->dest->init_destination) (cinfo);
+ /* Perform master selection of active modules */
+ jinit_compress_master(cinfo);
+ /* Set up for the first pass */
+ (*cinfo->master->prepare_for_pass) (cinfo);
+ /* Ready for application to drive first pass through jpeg_write_scanlines
+ * or jpeg_write_raw_data.
+ */
+ cinfo->next_scanline = 0;
+ cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
+}
+
+
+/*
+ * Write some scanlines of data to the JPEG compressor.
+ *
+ * The return value will be the number of lines actually written.
+ * This should be less than the supplied num_lines only in case that
+ * the data destination module has requested suspension of the compressor,
+ * or if more than image_height scanlines are passed in.
+ *
+ * Note: we warn about excess calls to jpeg_write_scanlines() since
+ * this likely signals an application programmer error. However,
+ * excess scanlines passed in the last valid call are *silently* ignored,
+ * so that the application need not adjust num_lines for end-of-image
+ * when using a multiple-scanline buffer.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
+ JDIMENSION num_lines)
+{
+ JDIMENSION row_ctr, rows_left;
+
+ if (cinfo->global_state != CSTATE_SCANNING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->next_scanline >= cinfo->image_height)
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->image_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Give master control module another chance if this is first call to
+ * jpeg_write_scanlines. This lets output of the frame/scan headers be
+ * delayed so that application can write COM, etc, markers between
+ * jpeg_start_compress and jpeg_write_scanlines.
+ */
+ if (cinfo->master->call_pass_startup)
+ (*cinfo->master->pass_startup) (cinfo);
+
+ /* Ignore any extra scanlines at bottom of image. */
+ rows_left = cinfo->image_height - cinfo->next_scanline;
+ if (num_lines > rows_left)
+ num_lines = rows_left;
+
+ row_ctr = 0;
+ (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
+ cinfo->next_scanline += row_ctr;
+ return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to write raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
+ JDIMENSION num_lines)
+{
+ JDIMENSION lines_per_iMCU_row;
+
+ if (cinfo->global_state != CSTATE_RAW_OK)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->next_scanline >= cinfo->image_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->image_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Give master control module another chance if this is first call to
+ * jpeg_write_raw_data. This lets output of the frame/scan headers be
+ * delayed so that application can write COM, etc, markers between
+ * jpeg_start_compress and jpeg_write_raw_data.
+ */
+ if (cinfo->master->call_pass_startup)
+ (*cinfo->master->pass_startup) (cinfo);
+
+ /* Verify that at least one iMCU row has been passed. */
+ lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
+ if (num_lines < lines_per_iMCU_row)
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* Directly compress the row. */
+ if (! (*cinfo->coef->compress_data) (cinfo, data)) {
+ /* If compressor did not consume the whole row, suspend processing. */
+ return 0;
+ }
+
+ /* OK, we processed one iMCU row. */
+ cinfo->next_scanline += lines_per_iMCU_row;
+ return lines_per_iMCU_row;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcarith.c b/plugins/AdvaImg/src/LibJPEG/jcarith.c
new file mode 100644
index 0000000000..033f67069e
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcarith.c
@@ -0,0 +1,937 @@
+/*
+ * jcarith.c
+ *
+ * Developed 1997-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy encoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy encoder object for arithmetic encoding. */
+
+typedef struct {
+ struct jpeg_entropy_encoder pub; /* public fields */
+
+ INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
+ INT32 a; /* A register, normalized size of coding interval */
+ INT32 sc; /* counter for stacked 0xFF values which might overflow */
+ INT32 zc; /* counter for pending 0x00 output values which might *
+ * be discarded at the end ("Pacman" termination) */
+ int ct; /* bit shift counter, determines when next byte will be written */
+ int buffer; /* buffer for most recent output byte != 0xFF */
+
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ int next_restart_num; /* next restart number to write (0-7) */
+
+ /* Pointers to statistics areas (these workspaces have image lifespan) */
+ unsigned char * dc_stats[NUM_ARITH_TBLS];
+ unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+ /* Statistics bin for coding with fixed probability 0.5 */
+ unsigned char fixed_bin[4];
+} arith_entropy_encoder;
+
+typedef arith_entropy_encoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+/* NOTE: Uncomment the following #define if you want to use the
+ * given formula for calculating the AC conditioning parameter Kx
+ * for spectral selection progressive coding in section G.1.3.2
+ * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
+ * Although the spec and P&M authors claim that this "has proven
+ * to give good results for 8 bit precision samples", I'm not
+ * convinced yet that this is really beneficial.
+ * Early tests gave only very marginal compression enhancements
+ * (a few - around 5 or so - bytes even for very large files),
+ * which would turn out rather negative if we'd suppress the
+ * DAC (Define Arithmetic Conditioning) marker segments for
+ * the default parameters in the future.
+ * Note that currently the marker writing module emits 12-byte
+ * DAC segments for a full-component scan in a color image.
+ * This is not worth worrying about IMHO. However, since the
+ * spec defines the default values to be used if the tables
+ * are omitted (unlike Huffman tables, which are required
+ * anyway), one might optimize this behaviour in the future,
+ * and then it would be disadvantageous to use custom tables if
+ * they don't provide sufficient gain to exceed the DAC size.
+ *
+ * On the other hand, I'd consider it as a reasonable result
+ * that the conditioning has no significant influence on the
+ * compression performance. This means that the basic
+ * statistical model is already rather stable.
+ *
+ * Thus, at the moment, we use the default conditioning values
+ * anyway, and do not use the custom formula.
+ *
+#define CALCULATE_SPECTRAL_CONDITIONING
+ */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS int ishift_temp;
+#define IRIGHT_SHIFT(x,shft) \
+ ((ishift_temp = (x)) < 0 ? \
+ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+ (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+LOCAL(void)
+emit_byte (int val, j_compress_ptr cinfo)
+/* Write next output byte; we do not support suspension in this module. */
+{
+ struct jpeg_destination_mgr * dest = cinfo->dest;
+
+ *dest->next_output_byte++ = (JOCTET) val;
+ if (--dest->free_in_buffer == 0)
+ if (! (*dest->empty_output_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+}
+
+
+/*
+ * Finish up at the end of an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass (j_compress_ptr cinfo)
+{
+ arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+ INT32 temp;
+
+ /* Section D.1.8: Termination of encoding */
+
+ /* Find the e->c in the coding interval with the largest
+ * number of trailing zero bits */
+ if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
+ e->c = temp + 0x8000L;
+ else
+ e->c = temp;
+ /* Send remaining bytes to output */
+ e->c <<= e->ct;
+ if (e->c & 0xF8000000L) {
+ /* One final overflow has to be handled */
+ if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer + 1, cinfo);
+ if (e->buffer + 1 == 0xFF)
+ emit_byte(0x00, cinfo);
+ }
+ e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
+ e->sc = 0;
+ } else {
+ if (e->buffer == 0)
+ ++e->zc;
+ else if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer, cinfo);
+ }
+ if (e->sc) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ do {
+ emit_byte(0xFF, cinfo);
+ emit_byte(0x00, cinfo);
+ } while (--e->sc);
+ }
+ }
+ /* Output final bytes only if they are not 0x00 */
+ if (e->c & 0x7FFF800L) {
+ if (e->zc) /* output final pending zero bytes */
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte((e->c >> 19) & 0xFF, cinfo);
+ if (((e->c >> 19) & 0xFF) == 0xFF)
+ emit_byte(0x00, cinfo);
+ if (e->c & 0x7F800L) {
+ emit_byte((e->c >> 11) & 0xFF, cinfo);
+ if (((e->c >> 11) & 0xFF) == 0xFF)
+ emit_byte(0x00, cinfo);
+ }
+ }
+}
+
+
+/*
+ * The core arithmetic encoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
+ *
+ * Note: I've added full "Pacman" termination support to the
+ * byte output routines, which is equivalent to the optional
+ * Discard_final_zeros procedure (Figure D.15) in the spec.
+ * Thus, we always produce the shortest possible output
+ * stream compliant to the spec (no trailing zero bytes,
+ * except for FF stuffing).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(void)
+arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
+{
+ register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+ register unsigned char nl, nm;
+ register INT32 qe, temp;
+ register int sv;
+
+ /* Fetch values from our compact representation of Table D.3(D.2):
+ * Qe values and probability estimation state machine
+ */
+ sv = *st;
+ qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
+ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
+ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
+
+ /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
+ e->a -= qe;
+ if (val != (sv >> 7)) {
+ /* Encode the less probable symbol */
+ if (e->a >= qe) {
+ /* If the interval size (qe) for the less probable symbol (LPS)
+ * is larger than the interval size for the MPS, then exchange
+ * the two symbols for coding efficiency, otherwise code the LPS
+ * as usual: */
+ e->c += e->a;
+ e->a = qe;
+ }
+ *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
+ } else {
+ /* Encode the more probable symbol */
+ if (e->a >= 0x8000L)
+ return; /* A >= 0x8000 -> ready, no renormalization required */
+ if (e->a < qe) {
+ /* If the interval size (qe) for the less probable symbol (LPS)
+ * is larger than the interval size for the MPS, then exchange
+ * the two symbols for coding efficiency: */
+ e->c += e->a;
+ e->a = qe;
+ }
+ *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
+ }
+
+ /* Renormalization & data output per section D.1.6 */
+ do {
+ e->a <<= 1;
+ e->c <<= 1;
+ if (--e->ct == 0) {
+ /* Another byte is ready for output */
+ temp = e->c >> 19;
+ if (temp > 0xFF) {
+ /* Handle overflow over all stacked 0xFF bytes */
+ if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer + 1, cinfo);
+ if (e->buffer + 1 == 0xFF)
+ emit_byte(0x00, cinfo);
+ }
+ e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
+ e->sc = 0;
+ /* Note: The 3 spacer bits in the C register guarantee
+ * that the new buffer byte can't be 0xFF here
+ * (see page 160 in the P&M JPEG book). */
+ e->buffer = temp & 0xFF; /* new output byte, might overflow later */
+ } else if (temp == 0xFF) {
+ ++e->sc; /* stack 0xFF byte (which might overflow later) */
+ } else {
+ /* Output all stacked 0xFF bytes, they will not overflow any more */
+ if (e->buffer == 0)
+ ++e->zc;
+ else if (e->buffer >= 0) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ emit_byte(e->buffer, cinfo);
+ }
+ if (e->sc) {
+ if (e->zc)
+ do emit_byte(0x00, cinfo);
+ while (--e->zc);
+ do {
+ emit_byte(0xFF, cinfo);
+ emit_byte(0x00, cinfo);
+ } while (--e->sc);
+ }
+ e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
+ }
+ e->c &= 0x7FFFFL;
+ e->ct += 8;
+ }
+ } while (e->a < 0x8000L);
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(void)
+emit_restart (j_compress_ptr cinfo, int restart_num)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci;
+ jpeg_component_info * compptr;
+
+ finish_pass(cinfo);
+
+ emit_byte(0xFF, cinfo);
+ emit_byte(JPEG_RST0 + restart_num, cinfo);
+
+ /* Re-initialize statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+ /* Reset DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+ }
+ }
+
+ /* Reset arithmetic encoding variables */
+ entropy->c = 0;
+ entropy->a = 0x10000L;
+ entropy->sc = 0;
+ entropy->zc = 0;
+ entropy->ct = 11;
+ entropy->buffer = -1; /* empty */
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl;
+ int v, v2, m;
+ ISHIFT_TEMPS
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+ /* Compute the DC value after the required point transform by Al.
+ * This is simply an arithmetic right shift.
+ */
+ m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
+
+ /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.4: Encode_DC_DIFF */
+ if ((v = m - entropy->last_dc_val[ci]) == 0) {
+ arith_encode(cinfo, st, 0);
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ } else {
+ entropy->last_dc_val[ci] = m;
+ arith_encode(cinfo, st, 1);
+ /* Figure F.6: Encoding nonzero value v */
+ /* Figure F.7: Encoding the sign of v */
+ if (v > 0) {
+ arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
+ st += 2; /* Table F.4: SP = S0 + 2 */
+ entropy->dc_context[ci] = 4; /* small positive diff category */
+ } else {
+ v = -v;
+ arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
+ st += 3; /* Table F.4: SN = S0 + 3 */
+ entropy->dc_context[ci] = 8; /* small negative diff category */
+ }
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] += 8; /* large diff category */
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int tbl, k, ke;
+ int v, v2, m;
+ const int * natural_order;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+ /* Establish EOB (end-of-block) index */
+ for (ke = cinfo->Se; ke > 0; ke--)
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value.
+ */
+ if ((v = (*block)[natural_order[ke]]) >= 0) {
+ if (v >>= cinfo->Al) break;
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) break;
+ }
+
+ /* Figure F.5: Encode_AC_Coefficients */
+ for (k = cinfo->Ss; k <= ke; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 0); /* EOB decision */
+ for (;;) {
+ if ((v = (*block)[natural_order[k]]) >= 0) {
+ if (v >>= cinfo->Al) {
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 0);
+ break;
+ }
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) {
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 1);
+ break;
+ }
+ }
+ arith_encode(cinfo, st + 1, 0); st += 3; k++;
+ }
+ st += 2;
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ if (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+ /* Encode EOB decision only if k <= cinfo->Se */
+ if (k <= cinfo->Se) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 1);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ unsigned char *st;
+ int Al, blkn;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ st = entropy->fixed_bin; /* use fixed probability estimation */
+ Al = cinfo->Al;
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ /* We simply emit the Al'th bit of the DC coefficient value. */
+ arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int tbl, k, ke, kex;
+ int v;
+ const int * natural_order;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ /* Section G.1.3.3: Encoding of AC coefficients */
+
+ /* Establish EOB (end-of-block) index */
+ for (ke = cinfo->Se; ke > 0; ke--)
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value.
+ */
+ if ((v = (*block)[natural_order[ke]]) >= 0) {
+ if (v >>= cinfo->Al) break;
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) break;
+ }
+
+ /* Establish EOBx (previous stage end-of-block) index */
+ for (kex = ke; kex > 0; kex--)
+ if ((v = (*block)[natural_order[kex]]) >= 0) {
+ if (v >>= cinfo->Ah) break;
+ } else {
+ v = -v;
+ if (v >>= cinfo->Ah) break;
+ }
+
+ /* Figure G.10: Encode_AC_Coefficients_SA */
+ for (k = cinfo->Ss; k <= ke; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (k > kex)
+ arith_encode(cinfo, st, 0); /* EOB decision */
+ for (;;) {
+ if ((v = (*block)[natural_order[k]]) >= 0) {
+ if (v >>= cinfo->Al) {
+ if (v >> 1) /* previously nonzero coef */
+ arith_encode(cinfo, st + 2, (v & 1));
+ else { /* newly nonzero coef */
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 0);
+ }
+ break;
+ }
+ } else {
+ v = -v;
+ if (v >>= cinfo->Al) {
+ if (v >> 1) /* previously nonzero coef */
+ arith_encode(cinfo, st + 2, (v & 1));
+ else { /* newly nonzero coef */
+ arith_encode(cinfo, st + 1, 1);
+ arith_encode(cinfo, entropy->fixed_bin, 1);
+ }
+ break;
+ }
+ }
+ arith_encode(cinfo, st + 1, 0); st += 3; k++;
+ }
+ }
+ /* Encode EOB decision only if k <= cinfo->Se */
+ if (k <= cinfo->Se) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ arith_encode(cinfo, st, 1);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ jpeg_component_info * compptr;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl, k, ke;
+ int v, v2, m;
+ const int * natural_order;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ emit_restart(cinfo, entropy->next_restart_num);
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+
+ /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+ tbl = compptr->dc_tbl_no;
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.4: Encode_DC_DIFF */
+ if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
+ arith_encode(cinfo, st, 0);
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ } else {
+ entropy->last_dc_val[ci] = (*block)[0];
+ arith_encode(cinfo, st, 1);
+ /* Figure F.6: Encoding nonzero value v */
+ /* Figure F.7: Encoding the sign of v */
+ if (v > 0) {
+ arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
+ st += 2; /* Table F.4: SP = S0 + 2 */
+ entropy->dc_context[ci] = 4; /* small positive diff category */
+ } else {
+ v = -v;
+ arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
+ st += 3; /* Table F.4: SN = S0 + 3 */
+ entropy->dc_context[ci] = 8; /* small negative diff category */
+ }
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] += 8; /* large diff category */
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+
+ /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+ if ((ke = cinfo->lim_Se) == 0) continue;
+ tbl = compptr->ac_tbl_no;
+
+ /* Establish EOB (end-of-block) index */
+ do {
+ if ((*block)[natural_order[ke]]) break;
+ } while (--ke);
+
+ /* Figure F.5: Encode_AC_Coefficients */
+ for (k = 0; k < ke;) {
+ st = entropy->ac_stats[tbl] + 3 * k;
+ arith_encode(cinfo, st, 0); /* EOB decision */
+ while ((v = (*block)[natural_order[++k]]) == 0) {
+ arith_encode(cinfo, st + 1, 0);
+ st += 3;
+ }
+ arith_encode(cinfo, st + 1, 1);
+ /* Figure F.6: Encoding nonzero value v */
+ /* Figure F.7: Encoding the sign of v */
+ if (v > 0) {
+ arith_encode(cinfo, entropy->fixed_bin, 0);
+ } else {
+ v = -v;
+ arith_encode(cinfo, entropy->fixed_bin, 1);
+ }
+ st += 2;
+ /* Figure F.8: Encoding the magnitude category of v */
+ m = 0;
+ if (v -= 1) {
+ arith_encode(cinfo, st, 1);
+ m = 1;
+ v2 = v;
+ if (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (v2 >>= 1) {
+ arith_encode(cinfo, st, 1);
+ m <<= 1;
+ st += 1;
+ }
+ }
+ }
+ arith_encode(cinfo, st, 0);
+ /* Figure F.9: Encoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ arith_encode(cinfo, st, (m & v) ? 1 : 0);
+ }
+ /* Encode EOB decision only if k < cinfo->lim_Se */
+ if (k < cinfo->lim_Se) {
+ st = entropy->ac_stats[tbl] + 3 * k;
+ arith_encode(cinfo, st, 1);
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_compress_ptr cinfo, boolean gather_statistics)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+
+ if (gather_statistics)
+ /* Make sure to avoid that in the master control logic!
+ * We are fully adaptive here and need no extra
+ * statistics gathering pass!
+ */
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+
+ /* We assume jcmaster.c already validated the progressive scan parameters. */
+
+ /* Select execution routines */
+ if (cinfo->progressive_mode) {
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_first;
+ else
+ entropy->pub.encode_mcu = encode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_refine;
+ else
+ entropy->pub.encode_mcu = encode_mcu_AC_refine;
+ }
+ } else
+ entropy->pub.encode_mcu = encode_mcu;
+
+ /* Allocate & initialize requested statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ tbl = compptr->dc_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->dc_stats[tbl] == NULL)
+ entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+ MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+ /* Initialize DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ tbl = compptr->ac_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->ac_stats[tbl] == NULL)
+ entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+ MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+#ifdef CALCULATE_SPECTRAL_CONDITIONING
+ if (cinfo->progressive_mode)
+ /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
+ cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
+#endif
+ }
+ }
+
+ /* Initialize arithmetic encoding variables */
+ entropy->c = 0;
+ entropy->a = 0x10000L;
+ entropy->sc = 0;
+ entropy->zc = 0;
+ entropy->ct = 11;
+ entropy->buffer = -1; /* empty */
+
+ /* Initialize restart stuff */
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_arith_encoder (j_compress_ptr cinfo)
+{
+ arith_entropy_ptr entropy;
+ int i;
+
+ entropy = (arith_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(arith_entropy_encoder));
+ cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+ entropy->pub.start_pass = start_pass;
+ entropy->pub.finish_pass = finish_pass;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ entropy->dc_stats[i] = NULL;
+ entropy->ac_stats[i] = NULL;
+ }
+
+ /* Initialize index for fixed probability estimation */
+ entropy->fixed_bin[0] = 113;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jccoefct.c b/plugins/AdvaImg/src/LibJPEG/jccoefct.c
new file mode 100644
index 0000000000..924a703dda
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jccoefct.c
@@ -0,0 +1,454 @@
+/*
+ * jccoefct.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 2003-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for compression.
+ * This controller is the top level of the JPEG compressor proper.
+ * The coefficient buffer lies between forward-DCT and entropy encoding steps.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* We use a full-image coefficient buffer when doing Huffman optimization,
+ * and also for writing multiple-scan JPEG files. In all cases, the DCT
+ * step is run during the first pass, and subsequent passes need only read
+ * the buffered coefficients.
+ */
+#ifdef ENTROPY_OPT_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#else
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#endif
+#endif
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_coef_controller pub; /* public fields */
+
+ JDIMENSION iMCU_row_num; /* iMCU row # within image */
+ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* For single-pass compression, it's sufficient to buffer just one MCU
+ * (although this may prove a bit slow in practice). We allocate a
+ * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
+ * MCU constructed and sent. (On 80x86, the workspace is FAR even though
+ * it's not really very big; this is to keep the module interfaces unchanged
+ * when a large coefficient buffer is necessary.)
+ * In multi-pass modes, this array points to the current MCU's blocks
+ * within the virtual arrays.
+ */
+ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+
+ /* In multi-pass modes, we need a virtual block array for each component. */
+ jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+/* Forward declarations */
+METHODDEF(boolean) compress_data
+ JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+METHODDEF(boolean) compress_first_pass
+ JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+METHODDEF(boolean) compress_output
+ JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+#endif
+
+
+LOCAL(void)
+start_iMCU_row (j_compress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->mcu_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ coef->iMCU_row_num = 0;
+ start_iMCU_row(cinfo);
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (coef->whole_image[0] != NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ coef->pub.compress_data = compress_data;
+ break;
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+ case JBUF_SAVE_AND_PASS:
+ if (coef->whole_image[0] == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ coef->pub.compress_data = compress_first_pass;
+ break;
+ case JBUF_CRANK_DEST:
+ if (coef->whole_image[0] == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ coef->pub.compress_data = compress_output;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data in the single-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(boolean)
+compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, bi, ci, yindex, yoffset, blockcnt;
+ JDIMENSION ypos, xpos;
+ jpeg_component_info *compptr;
+ forward_DCT_ptr forward_DCT;
+
+ /* Loop to write as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Determine where data comes from in input_buf and do the DCT thing.
+ * Each call on forward_DCT processes a horizontal row of DCT blocks
+ * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
+ * sequentially. Dummy blocks at the right or bottom edge are filled in
+ * specially. The data in them does not matter for image reconstruction,
+ * so we fill them with values that will encode to the smallest amount of
+ * data, viz: all zeroes in the AC entries, DC entries equal to previous
+ * block's DC value. (Thanks to Thomas Kinsman for this idea.)
+ */
+ blkn = 0;
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
+ blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ xpos = MCU_col_num * compptr->MCU_sample_width;
+ ypos = yoffset * compptr->DCT_v_scaled_size;
+ /* ypos == (yoffset+yindex) * DCTSIZE */
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (coef->iMCU_row_num < last_iMCU_row ||
+ yoffset+yindex < compptr->last_row_height) {
+ (*forward_DCT) (cinfo, compptr,
+ input_buf[compptr->component_index],
+ coef->MCU_buffer[blkn],
+ ypos, xpos, (JDIMENSION) blockcnt);
+ if (blockcnt < compptr->MCU_width) {
+ /* Create some dummy blocks at the right edge of the image. */
+ FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt],
+ (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
+ for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
+ coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
+ }
+ }
+ } else {
+ /* Create a row of dummy blocks at the bottom of the image. */
+ FMEMZERO((void FAR *) coef->MCU_buffer[blkn],
+ compptr->MCU_width * SIZEOF(JBLOCK));
+ for (bi = 0; bi < compptr->MCU_width; bi++) {
+ coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
+ }
+ }
+ blkn += compptr->MCU_width;
+ ypos += compptr->DCT_v_scaled_size;
+ }
+ }
+ /* Try to write the MCU. In event of a suspension failure, we will
+ * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
+ */
+ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->mcu_ctr = MCU_col_num;
+ return FALSE;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->mcu_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ coef->iMCU_row_num++;
+ start_iMCU_row(cinfo);
+ return TRUE;
+}
+
+
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+
+/*
+ * Process some data in the first pass of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * This amount of data is read from the source buffer, DCT'd and quantized,
+ * and saved into the virtual arrays. We also generate suitable dummy blocks
+ * as needed at the right and lower edges. (The dummy blocks are constructed
+ * in the virtual arrays, which have been padded appropriately.) This makes
+ * it possible for subsequent passes not to worry about real vs. dummy blocks.
+ *
+ * We must also emit the data to the entropy encoder. This is conveniently
+ * done by calling compress_output() after we've loaded the current strip
+ * of the virtual arrays.
+ *
+ * NB: input_buf contains a plane for each component in image. All
+ * components are DCT'd and loaded into the virtual arrays in this pass.
+ * However, it may be that only a subset of the components are emitted to
+ * the entropy encoder during this first pass; be careful about looking
+ * at the scan-dependent variables (MCU dimensions, etc).
+ */
+
+METHODDEF(boolean)
+compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION blocks_across, MCUs_across, MCUindex;
+ int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
+ JCOEF lastDC;
+ jpeg_component_info *compptr;
+ JBLOCKARRAY buffer;
+ JBLOCKROW thisblockrow, lastblockrow;
+ forward_DCT_ptr forward_DCT;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ coef->iMCU_row_num * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (coef->iMCU_row_num < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here, since may not be set! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ blocks_across = compptr->width_in_blocks;
+ h_samp_factor = compptr->h_samp_factor;
+ /* Count number of dummy blocks to be added at the right margin. */
+ ndummy = (int) (blocks_across % h_samp_factor);
+ if (ndummy > 0)
+ ndummy = h_samp_factor - ndummy;
+ forward_DCT = cinfo->fdct->forward_DCT[ci];
+ /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
+ * on forward_DCT processes a complete horizontal row of DCT blocks.
+ */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ thisblockrow = buffer[block_row];
+ (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
+ (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
+ (JDIMENSION) 0, blocks_across);
+ if (ndummy > 0) {
+ /* Create dummy blocks at the right edge of the image. */
+ thisblockrow += blocks_across; /* => first dummy block */
+ FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
+ lastDC = thisblockrow[-1][0];
+ for (bi = 0; bi < ndummy; bi++) {
+ thisblockrow[bi][0] = lastDC;
+ }
+ }
+ }
+ /* If at end of image, create dummy block rows as needed.
+ * The tricky part here is that within each MCU, we want the DC values
+ * of the dummy blocks to match the last real block's DC value.
+ * This squeezes a few more bytes out of the resulting file...
+ */
+ if (coef->iMCU_row_num == last_iMCU_row) {
+ blocks_across += ndummy; /* include lower right corner */
+ MCUs_across = blocks_across / h_samp_factor;
+ for (block_row = block_rows; block_row < compptr->v_samp_factor;
+ block_row++) {
+ thisblockrow = buffer[block_row];
+ lastblockrow = buffer[block_row-1];
+ FMEMZERO((void FAR *) thisblockrow,
+ (size_t) (blocks_across * SIZEOF(JBLOCK)));
+ for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
+ lastDC = lastblockrow[h_samp_factor-1][0];
+ for (bi = 0; bi < h_samp_factor; bi++) {
+ thisblockrow[bi][0] = lastDC;
+ }
+ thisblockrow += h_samp_factor; /* advance to next MCU in row */
+ lastblockrow += h_samp_factor;
+ }
+ }
+ }
+ }
+ /* NB: compress_output will increment iMCU_row_num if successful.
+ * A suspension return will result in redoing all the work above next time.
+ */
+
+ /* Emit data to the entropy encoder, sharing code with subsequent passes */
+ return compress_output(cinfo, input_buf);
+}
+
+
+/*
+ * Process some data in subsequent passes of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF(boolean)
+compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan.
+ * NB: during first pass, this is safe only because the buffers will
+ * already be aligned properly, so jmemmgr.c won't need to do any I/O.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ coef->iMCU_row_num * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ /* Try to write the MCU. */
+ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->mcu_ctr = MCU_col_num;
+ return FALSE;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->mcu_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ coef->iMCU_row_num++;
+ start_iMCU_row(cinfo);
+ return TRUE;
+}
+
+#endif /* FULL_COEF_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+ coef->pub.start_pass = start_pass_coef;
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ int ci;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) compptr->v_samp_factor);
+ }
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ coef->whole_image[0] = NULL; /* flag for no virtual arrays */
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jccolor.c b/plugins/AdvaImg/src/LibJPEG/jccolor.c
new file mode 100644
index 0000000000..3e2d0e9277
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jccolor.c
@@ -0,0 +1,490 @@
+/*
+ * jccolor.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_converter pub; /* public fields */
+
+ /* Private state for RGB->YCC conversion */
+ INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
+} my_color_converter;
+
+typedef my_color_converter * my_cconvert_ptr;
+
+
+/**************** RGB -> YCbCr conversion: most common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
+ * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
+ * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
+ * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
+ * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
+ * were not represented exactly. Now we sacrifice exact representation of
+ * maximum red and maximum blue in order to get exact grayscales.
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times R,G,B for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable. It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
+ * in the tables to save adding them separately in the inner loop.
+ */
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+/* We allocate one big table and divide it up into eight parts, instead of
+ * doing eight alloc_small requests. This lets us use a single table base
+ * address, which can be held in a register in the inner loops on many
+ * machines (more than can hold all eight addresses, anyway).
+ */
+
+#define R_Y_OFF 0 /* offset to R => Y section */
+#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
+#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
+#define R_CB_OFF (3*(MAXJSAMPLE+1))
+#define G_CB_OFF (4*(MAXJSAMPLE+1))
+#define B_CB_OFF (5*(MAXJSAMPLE+1))
+#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
+#define G_CR_OFF (6*(MAXJSAMPLE+1))
+#define B_CR_OFF (7*(MAXJSAMPLE+1))
+#define TABLE_SIZE (8*(MAXJSAMPLE+1))
+
+
+/*
+ * Initialize for RGB->YCC colorspace conversion.
+ */
+
+METHODDEF(void)
+rgb_ycc_start (j_compress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ INT32 * rgb_ycc_tab;
+ INT32 i;
+
+ /* Allocate and fill in the conversion tables. */
+ cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (TABLE_SIZE * SIZEOF(INT32)));
+
+ for (i = 0; i <= MAXJSAMPLE; i++) {
+ rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
+ rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
+ rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
+ rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
+ rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
+ /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
+ * This ensures that the maximum output will round to MAXJSAMPLE
+ * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
+ */
+ rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
+/* B=>Cb and R=>Cr tables are the same
+ rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
+*/
+ rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
+ rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ *
+ * Note that we change from the application's interleaved-pixel format
+ * to our internal noninterleaved, one-plane-per-component format.
+ * The input buffer is therefore three times as wide as the output buffer.
+ *
+ * A starting row offset is provided only for the output buffer. The caller
+ * can easily adjust the passed input_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+METHODDEF(void)
+rgb_ycc_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_ycc_tab;
+ register JSAMPROW inptr;
+ register JSAMPROW outptr0, outptr1, outptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr0 = output_buf[0][output_row];
+ outptr1 = output_buf[1][output_row];
+ outptr2 = output_buf[2][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ r = GETJSAMPLE(inptr[RGB_RED]);
+ g = GETJSAMPLE(inptr[RGB_GREEN]);
+ b = GETJSAMPLE(inptr[RGB_BLUE]);
+ inptr += RGB_PIXELSIZE;
+ /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+ * must be too; we do not need an explicit range-limiting operation.
+ * Hence the value being shifted is never negative, and we don't
+ * need the general RIGHT_SHIFT macro.
+ */
+ /* Y */
+ outptr0[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ /* Cb */
+ outptr1[col] = (JSAMPLE)
+ ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+ >> SCALEBITS);
+ /* Cr */
+ outptr2[col] = (JSAMPLE)
+ ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/**************** Cases other than RGB -> YCbCr **************/
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles RGB->grayscale conversion, which is the same
+ * as the RGB->Y portion of RGB->YCbCr.
+ * We assume rgb_ycc_start has been called (we only use the Y tables).
+ */
+
+METHODDEF(void)
+rgb_gray_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_ycc_tab;
+ register JSAMPROW inptr;
+ register JSAMPROW outptr;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr = output_buf[0][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ r = GETJSAMPLE(inptr[RGB_RED]);
+ g = GETJSAMPLE(inptr[RGB_GREEN]);
+ b = GETJSAMPLE(inptr[RGB_BLUE]);
+ inptr += RGB_PIXELSIZE;
+ /* Y */
+ outptr[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles Adobe-style CMYK->YCCK conversion,
+ * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume rgb_ycc_start has been called.
+ */
+
+METHODDEF(void)
+cmyk_ycck_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_ycc_tab;
+ register JSAMPROW inptr;
+ register JSAMPROW outptr0, outptr1, outptr2, outptr3;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr0 = output_buf[0][output_row];
+ outptr1 = output_buf[1][output_row];
+ outptr2 = output_buf[2][output_row];
+ outptr3 = output_buf[3][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
+ g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
+ b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
+ /* K passes through as-is */
+ outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
+ inptr += 4;
+ /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+ * must be too; we do not need an explicit range-limiting operation.
+ * Hence the value being shifted is never negative, and we don't
+ * need the general RIGHT_SHIFT macro.
+ */
+ /* Y */
+ outptr0[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ /* Cb */
+ outptr1[col] = (JSAMPLE)
+ ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+ >> SCALEBITS);
+ /* Cr */
+ outptr2[col] = (JSAMPLE)
+ ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles grayscale output with no conversion.
+ * The source can be either plain grayscale or YCbCr (since Y == gray).
+ */
+
+METHODDEF(void)
+grayscale_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ register JSAMPROW inptr;
+ register JSAMPROW outptr;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+ int instride = cinfo->input_components;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr = output_buf[0][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
+ inptr += instride;
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * No colorspace conversion, but change from interleaved
+ * to separate-planes representation.
+ */
+
+METHODDEF(void)
+rgb_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ register JSAMPROW inptr;
+ register JSAMPROW outptr0, outptr1, outptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ inptr = *input_buf++;
+ outptr0 = output_buf[0][output_row];
+ outptr1 = output_buf[1][output_row];
+ outptr2 = output_buf[2][output_row];
+ output_row++;
+ for (col = 0; col < num_cols; col++) {
+ /* We can dispense with GETJSAMPLE() here */
+ outptr0[col] = inptr[RGB_RED];
+ outptr1[col] = inptr[RGB_GREEN];
+ outptr2[col] = inptr[RGB_BLUE];
+ inptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles multi-component colorspaces without conversion.
+ * We assume input_components == num_components.
+ */
+
+METHODDEF(void)
+null_convert (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows)
+{
+ register JSAMPROW inptr;
+ register JSAMPROW outptr;
+ register JDIMENSION col;
+ register int ci;
+ int nc = cinfo->num_components;
+ JDIMENSION num_cols = cinfo->image_width;
+
+ while (--num_rows >= 0) {
+ /* It seems fastest to make a separate pass for each component. */
+ for (ci = 0; ci < nc; ci++) {
+ inptr = *input_buf;
+ outptr = output_buf[ci][output_row];
+ for (col = 0; col < num_cols; col++) {
+ outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
+ inptr += nc;
+ }
+ }
+ input_buf++;
+ output_row++;
+ }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF(void)
+null_method (j_compress_ptr cinfo)
+{
+ /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for input colorspace conversion.
+ */
+
+GLOBAL(void)
+jinit_color_converter (j_compress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert;
+
+ cconvert = (my_cconvert_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_color_converter));
+ cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
+ /* set start_pass to null method until we find out differently */
+ cconvert->pub.start_pass = null_method;
+
+ /* Make sure input_components agrees with in_color_space */
+ switch (cinfo->in_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->input_components != 1)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ case JCS_RGB:
+ if (cinfo->input_components != RGB_PIXELSIZE)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ case JCS_YCbCr:
+ if (cinfo->input_components != 3)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ case JCS_CMYK:
+ case JCS_YCCK:
+ if (cinfo->input_components != 4)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+
+ default: /* JCS_UNKNOWN can be anything */
+ if (cinfo->input_components < 1)
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ break;
+ }
+
+ /* Check num_components, set conversion method based on requested space */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->num_components != 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_GRAYSCALE ||
+ cinfo->in_color_space == JCS_YCbCr)
+ cconvert->pub.color_convert = grayscale_convert;
+ else if (cinfo->in_color_space == JCS_RGB) {
+ cconvert->pub.start_pass = rgb_ycc_start;
+ cconvert->pub.color_convert = rgb_gray_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_RGB:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_RGB)
+ cconvert->pub.color_convert = rgb_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_YCbCr:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_RGB) {
+ cconvert->pub.start_pass = rgb_ycc_start;
+ cconvert->pub.color_convert = rgb_ycc_convert;
+ } else if (cinfo->in_color_space == JCS_YCbCr)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_CMYK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_CMYK)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_YCCK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ if (cinfo->in_color_space == JCS_CMYK) {
+ cconvert->pub.start_pass = rgb_ycc_start;
+ cconvert->pub.color_convert = cmyk_ycck_convert;
+ } else if (cinfo->in_color_space == JCS_YCCK)
+ cconvert->pub.color_convert = null_convert;
+ else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ default: /* allow null conversion of JCS_UNKNOWN */
+ if (cinfo->jpeg_color_space != cinfo->in_color_space ||
+ cinfo->num_components != cinfo->input_components)
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ cconvert->pub.color_convert = null_convert;
+ break;
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c b/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c
new file mode 100644
index 0000000000..0bbdbb685d
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcdctmgr.c
@@ -0,0 +1,482 @@
+/*
+ * jcdctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the forward-DCT management logic.
+ * This code selects a particular DCT implementation to be used,
+ * and it performs related housekeeping chores including coefficient
+ * quantization.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+ struct jpeg_forward_dct pub; /* public fields */
+
+ /* Pointer to the DCT routine actually in use */
+ forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
+
+ /* The actual post-DCT divisors --- not identical to the quant table
+ * entries, because of scaling (especially for an unnormalized DCT).
+ * Each table is given in normal array order.
+ */
+ DCTELEM * divisors[NUM_QUANT_TBLS];
+
+#ifdef DCT_FLOAT_SUPPORTED
+ /* Same as above for the floating-point case. */
+ float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
+ FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
+#endif
+} my_fdct_controller;
+
+typedef my_fdct_controller * my_fdct_ptr;
+
+
+/* The current scaled-DCT routines require ISLOW-style divisor tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef DCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Perform forward DCT on one or more blocks of a component.
+ *
+ * The input samples are taken from the sample_data[] array starting at
+ * position start_row/start_col, and moving to the right for any additional
+ * blocks. The quantized coefficients are returned in coef_blocks[].
+ */
+
+METHODDEF(void)
+forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks)
+/* This version is used for integer DCT implementations. */
+{
+ /* This routine is heavily used, so it's worth coding it tightly. */
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+ forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
+ DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
+ DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
+ JDIMENSION bi;
+
+ sample_data += start_row; /* fold in the vertical offset once */
+
+ for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
+ /* Perform the DCT */
+ (*do_dct) (workspace, sample_data, start_col);
+
+ /* Quantize/descale the coefficients, and store into coef_blocks[] */
+ { register DCTELEM temp, qval;
+ register int i;
+ register JCOEFPTR output_ptr = coef_blocks[bi];
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ qval = divisors[i];
+ temp = workspace[i];
+ /* Divide the coefficient value by qval, ensuring proper rounding.
+ * Since C does not specify the direction of rounding for negative
+ * quotients, we have to force the dividend positive for portability.
+ *
+ * In most files, at least half of the output values will be zero
+ * (at default quantization settings, more like three-quarters...)
+ * so we should ensure that this case is fast. On many machines,
+ * a comparison is enough cheaper than a divide to make a special test
+ * a win. Since both inputs will be nonnegative, we need only test
+ * for a < b to discover whether a/b is 0.
+ * If your machine's division is fast enough, define FAST_DIVIDE.
+ */
+#ifdef FAST_DIVIDE
+#define DIVIDE_BY(a,b) a /= b
+#else
+#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
+#endif
+ if (temp < 0) {
+ temp = -temp;
+ temp += qval>>1; /* for rounding */
+ DIVIDE_BY(temp, qval);
+ temp = -temp;
+ } else {
+ temp += qval>>1; /* for rounding */
+ DIVIDE_BY(temp, qval);
+ }
+ output_ptr[i] = (JCOEF) temp;
+ }
+ }
+ }
+}
+
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+METHODDEF(void)
+forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks)
+/* This version is used for floating-point DCT implementations. */
+{
+ /* This routine is heavily used, so it's worth coding it tightly. */
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+ float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
+ FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
+ FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
+ JDIMENSION bi;
+
+ sample_data += start_row; /* fold in the vertical offset once */
+
+ for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
+ /* Perform the DCT */
+ (*do_dct) (workspace, sample_data, start_col);
+
+ /* Quantize/descale the coefficients, and store into coef_blocks[] */
+ { register FAST_FLOAT temp;
+ register int i;
+ register JCOEFPTR output_ptr = coef_blocks[bi];
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ /* Apply the quantization and scaling factor */
+ temp = workspace[i] * divisors[i];
+ /* Round to nearest integer.
+ * Since C does not specify the direction of rounding for negative
+ * quotients, we have to force the dividend positive for portability.
+ * The maximum coefficient size is +-16K (for 12-bit data), so this
+ * code should work for either 16-bit or 32-bit ints.
+ */
+ output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
+ }
+ }
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
+
+
+/*
+ * Initialize for a processing pass.
+ * Verify that all referenced Q-tables are present, and set up
+ * the divisor table for each one.
+ * In the current implementation, DCT of all components is done during
+ * the first pass, even if only some components will be output in the
+ * first scan. Hence all components should be examined here.
+ */
+
+METHODDEF(void)
+start_pass_fdctmgr (j_compress_ptr cinfo)
+{
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+ int ci, qtblno, i;
+ jpeg_component_info *compptr;
+ int method = 0;
+ JQUANT_TBL * qtbl;
+ DCTELEM * dtbl;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Select the proper DCT routine for this component's scaling */
+ switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
+#ifdef DCT_SCALING_SUPPORTED
+ case ((1 << 8) + 1):
+ fdct->do_dct[ci] = jpeg_fdct_1x1;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((2 << 8) + 2):
+ fdct->do_dct[ci] = jpeg_fdct_2x2;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((3 << 8) + 3):
+ fdct->do_dct[ci] = jpeg_fdct_3x3;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((4 << 8) + 4):
+ fdct->do_dct[ci] = jpeg_fdct_4x4;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((5 << 8) + 5):
+ fdct->do_dct[ci] = jpeg_fdct_5x5;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((6 << 8) + 6):
+ fdct->do_dct[ci] = jpeg_fdct_6x6;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((7 << 8) + 7):
+ fdct->do_dct[ci] = jpeg_fdct_7x7;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((9 << 8) + 9):
+ fdct->do_dct[ci] = jpeg_fdct_9x9;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((10 << 8) + 10):
+ fdct->do_dct[ci] = jpeg_fdct_10x10;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((11 << 8) + 11):
+ fdct->do_dct[ci] = jpeg_fdct_11x11;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((12 << 8) + 12):
+ fdct->do_dct[ci] = jpeg_fdct_12x12;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((13 << 8) + 13):
+ fdct->do_dct[ci] = jpeg_fdct_13x13;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((14 << 8) + 14):
+ fdct->do_dct[ci] = jpeg_fdct_14x14;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((15 << 8) + 15):
+ fdct->do_dct[ci] = jpeg_fdct_15x15;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((16 << 8) + 16):
+ fdct->do_dct[ci] = jpeg_fdct_16x16;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((16 << 8) + 8):
+ fdct->do_dct[ci] = jpeg_fdct_16x8;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((14 << 8) + 7):
+ fdct->do_dct[ci] = jpeg_fdct_14x7;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((12 << 8) + 6):
+ fdct->do_dct[ci] = jpeg_fdct_12x6;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((10 << 8) + 5):
+ fdct->do_dct[ci] = jpeg_fdct_10x5;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((8 << 8) + 4):
+ fdct->do_dct[ci] = jpeg_fdct_8x4;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((6 << 8) + 3):
+ fdct->do_dct[ci] = jpeg_fdct_6x3;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((4 << 8) + 2):
+ fdct->do_dct[ci] = jpeg_fdct_4x2;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((2 << 8) + 1):
+ fdct->do_dct[ci] = jpeg_fdct_2x1;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((8 << 8) + 16):
+ fdct->do_dct[ci] = jpeg_fdct_8x16;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((7 << 8) + 14):
+ fdct->do_dct[ci] = jpeg_fdct_7x14;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((6 << 8) + 12):
+ fdct->do_dct[ci] = jpeg_fdct_6x12;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((5 << 8) + 10):
+ fdct->do_dct[ci] = jpeg_fdct_5x10;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((4 << 8) + 8):
+ fdct->do_dct[ci] = jpeg_fdct_4x8;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((3 << 8) + 6):
+ fdct->do_dct[ci] = jpeg_fdct_3x6;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((2 << 8) + 4):
+ fdct->do_dct[ci] = jpeg_fdct_2x4;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+ case ((1 << 8) + 2):
+ fdct->do_dct[ci] = jpeg_fdct_1x2;
+ method = JDCT_ISLOW; /* jfdctint uses islow-style table */
+ break;
+#endif
+ case ((DCTSIZE << 8) + DCTSIZE):
+ switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+ case JDCT_ISLOW:
+ fdct->do_dct[ci] = jpeg_fdct_islow;
+ method = JDCT_ISLOW;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ fdct->do_dct[ci] = jpeg_fdct_ifast;
+ method = JDCT_IFAST;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ fdct->do_float_dct[ci] = jpeg_fdct_float;
+ method = JDCT_FLOAT;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ break;
+ default:
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+ compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
+ break;
+ }
+ qtblno = compptr->quant_tbl_no;
+ /* Make sure specified quantization table is present */
+ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+ cinfo->quant_tbl_ptrs[qtblno] == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+ qtbl = cinfo->quant_tbl_ptrs[qtblno];
+ /* Compute divisors for this quant table */
+ /* We may do this more than once for same table, but it's not a big deal */
+ switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+ case JDCT_ISLOW:
+ /* For LL&M IDCT method, divisors are equal to raw quantization
+ * coefficients multiplied by 8 (to counteract scaling).
+ */
+ if (fdct->divisors[qtblno] == NULL) {
+ fdct->divisors[qtblno] = (DCTELEM *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ DCTSIZE2 * SIZEOF(DCTELEM));
+ }
+ dtbl = fdct->divisors[qtblno];
+ for (i = 0; i < DCTSIZE2; i++) {
+ dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
+ }
+ fdct->pub.forward_DCT[ci] = forward_DCT;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ {
+ /* For AA&N IDCT method, divisors are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * We apply a further scale factor of 8.
+ */
+#define CONST_BITS 14
+ static const INT16 aanscales[DCTSIZE2] = {
+ /* precomputed values scaled up by 14 bits */
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
+ };
+ SHIFT_TEMPS
+
+ if (fdct->divisors[qtblno] == NULL) {
+ fdct->divisors[qtblno] = (DCTELEM *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ DCTSIZE2 * SIZEOF(DCTELEM));
+ }
+ dtbl = fdct->divisors[qtblno];
+ for (i = 0; i < DCTSIZE2; i++) {
+ dtbl[i] = (DCTELEM)
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+ (INT32) aanscales[i]),
+ CONST_BITS-3);
+ }
+ }
+ fdct->pub.forward_DCT[ci] = forward_DCT;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ {
+ /* For float AA&N IDCT method, divisors are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * We apply a further scale factor of 8.
+ * What's actually stored is 1/divisor so that the inner loop can
+ * use a multiplication rather than a division.
+ */
+ FAST_FLOAT * fdtbl;
+ int row, col;
+ static const double aanscalefactor[DCTSIZE] = {
+ 1.0, 1.387039845, 1.306562965, 1.175875602,
+ 1.0, 0.785694958, 0.541196100, 0.275899379
+ };
+
+ if (fdct->float_divisors[qtblno] == NULL) {
+ fdct->float_divisors[qtblno] = (FAST_FLOAT *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ DCTSIZE2 * SIZEOF(FAST_FLOAT));
+ }
+ fdtbl = fdct->float_divisors[qtblno];
+ i = 0;
+ for (row = 0; row < DCTSIZE; row++) {
+ for (col = 0; col < DCTSIZE; col++) {
+ fdtbl[i] = (FAST_FLOAT)
+ (1.0 / (((double) qtbl->quantval[i] *
+ aanscalefactor[row] * aanscalefactor[col] * 8.0)));
+ i++;
+ }
+ }
+ }
+ fdct->pub.forward_DCT[ci] = forward_DCT_float;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ }
+}
+
+
+/*
+ * Initialize FDCT manager.
+ */
+
+GLOBAL(void)
+jinit_forward_dct (j_compress_ptr cinfo)
+{
+ my_fdct_ptr fdct;
+ int i;
+
+ fdct = (my_fdct_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_fdct_controller));
+ cinfo->fdct = (struct jpeg_forward_dct *) fdct;
+ fdct->pub.start_pass = start_pass_fdctmgr;
+
+ /* Mark divisor tables unallocated */
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ fdct->divisors[i] = NULL;
+#ifdef DCT_FLOAT_SUPPORTED
+ fdct->float_divisors[i] = NULL;
+#endif
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jchuff.c b/plugins/AdvaImg/src/LibJPEG/jchuff.c
new file mode 100644
index 0000000000..257d7aa1f5
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jchuff.c
@@ -0,0 +1,1576 @@
+/*
+ * jchuff.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2006-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy encoding routines.
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Much of the complexity here has to do with supporting output suspension.
+ * If the data destination module demands suspension, we want to be able to
+ * back up to the start of the current MCU. To do this, we copy state
+ * variables into local working storage, and update them back to the
+ * permanent JPEG objects only upon successful completion of an MCU.
+ *
+ * We do not support output suspension for the progressive JPEG mode, since
+ * the library currently does not allow multiple-scan files to be written
+ * with output suspension.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* The legal range of a DCT coefficient is
+ * -1024 .. +1023 for 8-bit data;
+ * -16384 .. +16383 for 12-bit data.
+ * Hence the magnitude should always fit in 10 or 14 bits respectively.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MAX_COEF_BITS 10
+#else
+#define MAX_COEF_BITS 14
+#endif
+
+/* Derived data constructed for each Huffman table */
+
+typedef struct {
+ unsigned int ehufco[256]; /* code for each symbol */
+ char ehufsi[256]; /* length of code for each symbol */
+ /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
+} c_derived_tbl;
+
+
+/* Expanded entropy encoder object for Huffman encoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+ INT32 put_buffer; /* current bit-accumulation buffer */
+ int put_bits; /* # of bits now in it */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment. You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src) ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src) \
+ ((dest).put_buffer = (src).put_buffer, \
+ (dest).put_bits = (src).put_bits, \
+ (dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+ struct jpeg_entropy_encoder pub; /* public fields */
+
+ savable_state saved; /* Bit buffer & DC state at start of MCU */
+
+ /* These fields are NOT loaded into local working state. */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ int next_restart_num; /* next restart number to write (0-7) */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+ c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+
+ /* Statistics tables for optimization */
+ long * dc_count_ptrs[NUM_HUFF_TBLS];
+ long * ac_count_ptrs[NUM_HUFF_TBLS];
+
+ /* Following fields used only in progressive mode */
+
+ /* Mode flag: TRUE for optimization, FALSE for actual data output */
+ boolean gather_statistics;
+
+ /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
+ */
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+ j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
+
+ /* Coding status for AC components */
+ int ac_tbl_no; /* the table number of the single component */
+ unsigned int EOBRUN; /* run length of EOBs */
+ unsigned int BE; /* # of buffered correction bits before MCU */
+ char * bit_buffer; /* buffer for correction bits (1 per char) */
+ /* packing correction bits tightly would save some space but cost time... */
+} huff_entropy_encoder;
+
+typedef huff_entropy_encoder * huff_entropy_ptr;
+
+/* Working state while writing an MCU (sequential mode).
+ * This struct contains all the fields that are needed by subroutines.
+ */
+
+typedef struct {
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+ savable_state cur; /* Current bit buffer & DC state */
+ j_compress_ptr cinfo; /* dump_buffer needs access to this */
+} working_state;
+
+/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
+ * buffer can hold. Larger sizes may slightly improve compression, but
+ * 1000 is already well into the realm of overkill.
+ * The minimum safe size is 64 bits.
+ */
+
+#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS int ishift_temp;
+#define IRIGHT_SHIFT(x,shft) \
+ ((ishift_temp = (x)) < 0 ? \
+ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+ (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * This routine also performs some validation checks on the table.
+ */
+
+LOCAL(void)
+jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
+ c_derived_tbl ** pdtbl)
+{
+ JHUFF_TBL *htbl;
+ c_derived_tbl *dtbl;
+ int p, i, l, lastp, si, maxsymbol;
+ char huffsize[257];
+ unsigned int huffcode[257];
+ unsigned int code;
+
+ /* Note that huffsize[] and huffcode[] are filled in code-length order,
+ * paralleling the order of the symbols themselves in htbl->huffval[].
+ */
+
+ /* Find the input Huffman table */
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+ htbl =
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+ /* Allocate a workspace if we haven't already done so. */
+ if (*pdtbl == NULL)
+ *pdtbl = (c_derived_tbl *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(c_derived_tbl));
+ dtbl = *pdtbl;
+
+ /* Figure C.1: make table of Huffman code length for each symbol */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ i = (int) htbl->bits[l];
+ if (i < 0 || p + i > 256) /* protect against table overrun */
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ while (i--)
+ huffsize[p++] = (char) l;
+ }
+ huffsize[p] = 0;
+ lastp = p;
+
+ /* Figure C.2: generate the codes themselves */
+ /* We also validate that the counts represent a legal Huffman code tree. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (((int) huffsize[p]) == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ /* code is now 1 more than the last code used for codelength si; but
+ * it must still fit in si bits, since no code is allowed to be all ones.
+ */
+ if (((INT32) code) >= (((INT32) 1) << si))
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure C.3: generate encoding tables */
+ /* These are code and size indexed by symbol value */
+
+ /* Set all codeless symbols to have code length 0;
+ * this lets us detect duplicate VAL entries here, and later
+ * allows emit_bits to detect any attempt to emit such symbols.
+ */
+ MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
+
+ /* This is also a convenient place to check for out-of-range
+ * and duplicated VAL entries. We allow 0..255 for AC symbols
+ * but only 0..15 for DC. (We could constrain them further
+ * based on data depth and mode, but this seems enough.)
+ */
+ maxsymbol = isDC ? 15 : 255;
+
+ for (p = 0; p < lastp; p++) {
+ i = htbl->huffval[p];
+ if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ dtbl->ehufco[i] = huffcode[p];
+ dtbl->ehufsi[i] = huffsize[p];
+ }
+}
+
+
+/* Outputting bytes to the file.
+ * NB: these must be called only when actually outputting,
+ * that is, entropy->gather_statistics == FALSE.
+ */
+
+/* Emit a byte, taking 'action' if must suspend. */
+#define emit_byte_s(state,val,action) \
+ { *(state)->next_output_byte++ = (JOCTET) (val); \
+ if (--(state)->free_in_buffer == 0) \
+ if (! dump_buffer_s(state)) \
+ { action; } }
+
+/* Emit a byte */
+#define emit_byte_e(entropy,val) \
+ { *(entropy)->next_output_byte++ = (JOCTET) (val); \
+ if (--(entropy)->free_in_buffer == 0) \
+ dump_buffer_e(entropy); }
+
+
+LOCAL(boolean)
+dump_buffer_s (working_state * state)
+/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
+{
+ struct jpeg_destination_mgr * dest = state->cinfo->dest;
+
+ if (! (*dest->empty_output_buffer) (state->cinfo))
+ return FALSE;
+ /* After a successful buffer dump, must reset buffer pointers */
+ state->next_output_byte = dest->next_output_byte;
+ state->free_in_buffer = dest->free_in_buffer;
+ return TRUE;
+}
+
+
+LOCAL(void)
+dump_buffer_e (huff_entropy_ptr entropy)
+/* Empty the output buffer; we do not support suspension in this case. */
+{
+ struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
+
+ if (! (*dest->empty_output_buffer) (entropy->cinfo))
+ ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
+ /* After a successful buffer dump, must reset buffer pointers */
+ entropy->next_output_byte = dest->next_output_byte;
+ entropy->free_in_buffer = dest->free_in_buffer;
+}
+
+
+/* Outputting bits to the file */
+
+/* Only the right 24 bits of put_buffer are used; the valid bits are
+ * left-justified in this part. At most 16 bits can be passed to emit_bits
+ * in one call, and we never retain more than 7 bits in put_buffer
+ * between calls, so 24 bits are sufficient.
+ */
+
+INLINE
+LOCAL(boolean)
+emit_bits_s (working_state * state, unsigned int code, int size)
+/* Emit some bits; return TRUE if successful, FALSE if must suspend */
+{
+ /* This routine is heavily used, so it's worth coding tightly. */
+ register INT32 put_buffer = (INT32) code;
+ register int put_bits = state->cur.put_bits;
+
+ /* if size is 0, caller used an invalid Huffman table entry */
+ if (size == 0)
+ ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
+
+ put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+
+ put_bits += size; /* new number of bits in buffer */
+
+ put_buffer <<= 24 - put_bits; /* align incoming bits */
+
+ put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
+
+ while (put_bits >= 8) {
+ int c = (int) ((put_buffer >> 16) & 0xFF);
+
+ emit_byte_s(state, c, return FALSE);
+ if (c == 0xFF) { /* need to stuff a zero byte? */
+ emit_byte_s(state, 0, return FALSE);
+ }
+ put_buffer <<= 8;
+ put_bits -= 8;
+ }
+
+ state->cur.put_buffer = put_buffer; /* update state variables */
+ state->cur.put_bits = put_bits;
+
+ return TRUE;
+}
+
+
+INLINE
+LOCAL(void)
+emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
+/* Emit some bits, unless we are in gather mode */
+{
+ /* This routine is heavily used, so it's worth coding tightly. */
+ register INT32 put_buffer = (INT32) code;
+ register int put_bits = entropy->saved.put_bits;
+
+ /* if size is 0, caller used an invalid Huffman table entry */
+ if (size == 0)
+ ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+
+ if (entropy->gather_statistics)
+ return; /* do nothing if we're only getting stats */
+
+ put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+
+ put_bits += size; /* new number of bits in buffer */
+
+ put_buffer <<= 24 - put_bits; /* align incoming bits */
+
+ /* and merge with old buffer contents */
+ put_buffer |= entropy->saved.put_buffer;
+
+ while (put_bits >= 8) {
+ int c = (int) ((put_buffer >> 16) & 0xFF);
+
+ emit_byte_e(entropy, c);
+ if (c == 0xFF) { /* need to stuff a zero byte? */
+ emit_byte_e(entropy, 0);
+ }
+ put_buffer <<= 8;
+ put_bits -= 8;
+ }
+
+ entropy->saved.put_buffer = put_buffer; /* update variables */
+ entropy->saved.put_bits = put_bits;
+}
+
+
+LOCAL(boolean)
+flush_bits_s (working_state * state)
+{
+ if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
+ return FALSE;
+ state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
+ state->cur.put_bits = 0;
+ return TRUE;
+}
+
+
+LOCAL(void)
+flush_bits_e (huff_entropy_ptr entropy)
+{
+ emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
+ entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
+ entropy->saved.put_bits = 0;
+}
+
+
+/*
+ * Emit (or just count) a Huffman symbol.
+ */
+
+INLINE
+LOCAL(void)
+emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
+{
+ if (entropy->gather_statistics)
+ entropy->dc_count_ptrs[tbl_no][symbol]++;
+ else {
+ c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
+ emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
+ }
+}
+
+
+INLINE
+LOCAL(void)
+emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
+{
+ if (entropy->gather_statistics)
+ entropy->ac_count_ptrs[tbl_no][symbol]++;
+ else {
+ c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
+ emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
+ }
+}
+
+
+/*
+ * Emit bits from a correction bit buffer.
+ */
+
+LOCAL(void)
+emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
+ unsigned int nbits)
+{
+ if (entropy->gather_statistics)
+ return; /* no real work */
+
+ while (nbits > 0) {
+ emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
+ bufstart++;
+ nbits--;
+ }
+}
+
+
+/*
+ * Emit any pending EOBRUN symbol.
+ */
+
+LOCAL(void)
+emit_eobrun (huff_entropy_ptr entropy)
+{
+ register int temp, nbits;
+
+ if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
+ temp = entropy->EOBRUN;
+ nbits = 0;
+ while ((temp >>= 1))
+ nbits++;
+ /* safety check: shouldn't happen given limited correction-bit buffer */
+ if (nbits > 14)
+ ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
+ if (nbits)
+ emit_bits_e(entropy, entropy->EOBRUN, nbits);
+
+ entropy->EOBRUN = 0;
+
+ /* Emit any buffered correction bits */
+ emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
+ entropy->BE = 0;
+ }
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(boolean)
+emit_restart_s (working_state * state, int restart_num)
+{
+ int ci;
+
+ if (! flush_bits_s(state))
+ return FALSE;
+
+ emit_byte_s(state, 0xFF, return FALSE);
+ emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
+ state->cur.last_dc_val[ci] = 0;
+
+ /* The restart counter is not updated until we successfully write the MCU. */
+
+ return TRUE;
+}
+
+
+LOCAL(void)
+emit_restart_e (huff_entropy_ptr entropy, int restart_num)
+{
+ int ci;
+
+ emit_eobrun(entropy);
+
+ if (! entropy->gather_statistics) {
+ flush_bits_e(entropy);
+ emit_byte_e(entropy, 0xFF);
+ emit_byte_e(entropy, JPEG_RST0 + restart_num);
+ }
+
+ if (entropy->cinfo->Ss == 0) {
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ } else {
+ /* Re-initialize all AC-related fields to 0 */
+ entropy->EOBRUN = 0;
+ entropy->BE = 0;
+ }
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp, temp2;
+ register int nbits;
+ int blkn, ci;
+ int Al = cinfo->Al;
+ JBLOCKROW block;
+ jpeg_component_info * compptr;
+ ISHIFT_TEMPS
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+
+ /* Compute the DC value after the required point transform by Al.
+ * This is simply an arithmetic right shift.
+ */
+ temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
+
+ /* DC differences are figured on the point-transformed values. */
+ temp = temp2 - entropy->saved.last_dc_val[ci];
+ entropy->saved.last_dc_val[ci] = temp2;
+
+ /* Encode the DC coefficient difference per section G.1.2.1 */
+ temp2 = temp;
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ /* For a negative input, want temp2 = bitwise complement of abs(input) */
+ /* This code assumes we are on a two's complement machine */
+ temp2--;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+ /* Check for out-of-range coefficient values.
+ * Since we're encoding a difference, the range limit is twice as much.
+ */
+ if (nbits > MAX_COEF_BITS+1)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count/emit the Huffman-coded symbol for the number of bits */
+ emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ if (nbits) /* emit_bits rejects calls with size 0 */
+ emit_bits_e(entropy, (unsigned int) temp2, nbits);
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp, temp2;
+ register int nbits;
+ register int r, k;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+
+ /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = cinfo->Ss; k <= Se; k++) {
+ if ((temp = (*block)[natural_order[k]]) == 0) {
+ r++;
+ continue;
+ }
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value; so the code is
+ * interwoven with finding the abs value (temp) and output bits (temp2).
+ */
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ temp >>= Al; /* apply the point transform */
+ /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
+ temp2 = ~temp;
+ } else {
+ temp >>= Al; /* apply the point transform */
+ temp2 = temp;
+ }
+ /* Watch out for case that nonzero coef is zero after point transform */
+ if (temp == 0) {
+ r++;
+ continue;
+ }
+
+ /* Emit any pending EOBRUN */
+ if (entropy->EOBRUN > 0)
+ emit_eobrun(entropy);
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+ r -= 16;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 1; /* there must be at least one 1 bit */
+ while ((temp >>= 1))
+ nbits++;
+ /* Check for out-of-range coefficient values */
+ if (nbits > MAX_COEF_BITS)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count/emit Huffman symbol for run length / number of bits */
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ emit_bits_e(entropy, (unsigned int) temp2, nbits);
+
+ r = 0; /* reset zero run length */
+ }
+
+ if (r > 0) { /* If there are trailing zeroes, */
+ entropy->EOBRUN++; /* count an EOB */
+ if (entropy->EOBRUN == 0x7FFF)
+ emit_eobrun(entropy); /* force it out to avoid overflow */
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp;
+ int blkn;
+ int Al = cinfo->Al;
+ JBLOCKROW block;
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+
+ /* We simply emit the Al'th bit of the DC coefficient value. */
+ temp = (*block)[0];
+ emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int temp;
+ register int r, k;
+ int EOB;
+ char *BR_buffer;
+ unsigned int BR;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+ int absvalues[DCTSIZE2];
+
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval)
+ if (entropy->restarts_to_go == 0)
+ emit_restart_e(entropy, entropy->next_restart_num);
+
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
+
+ /* Encode the MCU data block */
+ block = MCU_data[0];
+
+ /* It is convenient to make a pre-pass to determine the transformed
+ * coefficients' absolute values and the EOB position.
+ */
+ EOB = 0;
+ for (k = cinfo->Ss; k <= Se; k++) {
+ temp = (*block)[natural_order[k]];
+ /* We must apply the point transform by Al. For AC coefficients this
+ * is an integer division with rounding towards 0. To do this portably
+ * in C, we shift after obtaining the absolute value.
+ */
+ if (temp < 0)
+ temp = -temp; /* temp is abs value of input */
+ temp >>= Al; /* apply the point transform */
+ absvalues[k] = temp; /* save abs value for main pass */
+ if (temp == 1)
+ EOB = k; /* EOB = index of last newly-nonzero coef */
+ }
+
+ /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
+
+ r = 0; /* r = run length of zeros */
+ BR = 0; /* BR = count of buffered bits added now */
+ BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
+
+ for (k = cinfo->Ss; k <= Se; k++) {
+ if ((temp = absvalues[k]) == 0) {
+ r++;
+ continue;
+ }
+
+ /* Emit any required ZRLs, but not if they can be folded into EOB */
+ while (r > 15 && k <= EOB) {
+ /* emit any pending EOBRUN and the BE correction bits */
+ emit_eobrun(entropy);
+ /* Emit ZRL */
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+ r -= 16;
+ /* Emit buffered correction bits that must be associated with ZRL */
+ emit_buffered_bits(entropy, BR_buffer, BR);
+ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+ BR = 0;
+ }
+
+ /* If the coef was previously nonzero, it only needs a correction bit.
+ * NOTE: a straight translation of the spec's figure G.7 would suggest
+ * that we also need to test r > 15. But if r > 15, we can only get here
+ * if k > EOB, which implies that this coefficient is not 1.
+ */
+ if (temp > 1) {
+ /* The correction bit is the next bit of the absolute value. */
+ BR_buffer[BR++] = (char) (temp & 1);
+ continue;
+ }
+
+ /* Emit any pending EOBRUN and the BE correction bits */
+ emit_eobrun(entropy);
+
+ /* Count/emit Huffman symbol for run length / number of bits */
+ emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
+
+ /* Emit output bit for newly-nonzero coef */
+ temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
+ emit_bits_e(entropy, (unsigned int) temp, 1);
+
+ /* Emit buffered correction bits that must be associated with this code */
+ emit_buffered_bits(entropy, BR_buffer, BR);
+ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+ BR = 0;
+ r = 0; /* reset zero run length */
+ }
+
+ if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
+ entropy->EOBRUN++; /* count an EOB */
+ entropy->BE += BR; /* concat my correction bits to older ones */
+ /* We force out the EOB if we risk either:
+ * 1. overflow of the EOB counter;
+ * 2. overflow of the correction bit buffer during the next MCU.
+ */
+ if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
+ emit_eobrun(entropy);
+ }
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/* Encode a single block's worth of coefficients */
+
+LOCAL(boolean)
+encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
+ c_derived_tbl *dctbl, c_derived_tbl *actbl)
+{
+ register int temp, temp2;
+ register int nbits;
+ register int k, r, i;
+ int Se = state->cinfo->lim_Se;
+ const int * natural_order = state->cinfo->natural_order;
+
+ /* Encode the DC coefficient difference per section F.1.2.1 */
+
+ temp = temp2 = block[0] - last_dc_val;
+
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ /* For a negative input, want temp2 = bitwise complement of abs(input) */
+ /* This code assumes we are on a two's complement machine */
+ temp2--;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+ /* Check for out-of-range coefficient values.
+ * Since we're encoding a difference, the range limit is twice as much.
+ */
+ if (nbits > MAX_COEF_BITS+1)
+ ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
+
+ /* Emit the Huffman-coded symbol for the number of bits */
+ if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
+ return FALSE;
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ if (nbits) /* emit_bits rejects calls with size 0 */
+ if (! emit_bits_s(state, (unsigned int) temp2, nbits))
+ return FALSE;
+
+ /* Encode the AC coefficients per section F.1.2.2 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = 1; k <= Se; k++) {
+ if ((temp = block[natural_order[k]]) == 0) {
+ r++;
+ } else {
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
+ return FALSE;
+ r -= 16;
+ }
+
+ temp2 = temp;
+ if (temp < 0) {
+ temp = -temp; /* temp is abs value of input */
+ /* This code assumes we are on a two's complement machine */
+ temp2--;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 1; /* there must be at least one 1 bit */
+ while ((temp >>= 1))
+ nbits++;
+ /* Check for out-of-range coefficient values */
+ if (nbits > MAX_COEF_BITS)
+ ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
+
+ /* Emit Huffman symbol for run length / number of bits */
+ i = (r << 4) + nbits;
+ if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
+ return FALSE;
+
+ /* Emit that number of bits of the value, if positive, */
+ /* or the complement of its magnitude, if negative. */
+ if (! emit_bits_s(state, (unsigned int) temp2, nbits))
+ return FALSE;
+
+ r = 0;
+ }
+ }
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0)
+ if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
+ return FALSE;
+
+ return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of Huffman-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ working_state state;
+ int blkn, ci;
+ jpeg_component_info * compptr;
+
+ /* Load up working state */
+ state.next_output_byte = cinfo->dest->next_output_byte;
+ state.free_in_buffer = cinfo->dest->free_in_buffer;
+ ASSIGN_STATE(state.cur, entropy->saved);
+ state.cinfo = cinfo;
+
+ /* Emit restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! emit_restart_s(&state, entropy->next_restart_num))
+ return FALSE;
+ }
+
+ /* Encode the MCU data blocks */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ if (! encode_one_block(&state,
+ MCU_data[blkn][0], state.cur.last_dc_val[ci],
+ entropy->dc_derived_tbls[compptr->dc_tbl_no],
+ entropy->ac_derived_tbls[compptr->ac_tbl_no]))
+ return FALSE;
+ /* Update last_dc_val */
+ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
+ }
+
+ /* Completed MCU, so update state */
+ cinfo->dest->next_output_byte = state.next_output_byte;
+ cinfo->dest->free_in_buffer = state.free_in_buffer;
+ ASSIGN_STATE(entropy->saved, state.cur);
+
+ /* Update restart-interval state too */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num++;
+ entropy->next_restart_num &= 7;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Finish up at the end of a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass_huff (j_compress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ working_state state;
+
+ if (cinfo->progressive_mode) {
+ entropy->next_output_byte = cinfo->dest->next_output_byte;
+ entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+ /* Flush out any buffered data */
+ emit_eobrun(entropy);
+ flush_bits_e(entropy);
+
+ cinfo->dest->next_output_byte = entropy->next_output_byte;
+ cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+ } else {
+ /* Load up working state ... flush_bits needs it */
+ state.next_output_byte = cinfo->dest->next_output_byte;
+ state.free_in_buffer = cinfo->dest->free_in_buffer;
+ ASSIGN_STATE(state.cur, entropy->saved);
+ state.cinfo = cinfo;
+
+ /* Flush out the last data */
+ if (! flush_bits_s(&state))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+ /* Update state */
+ cinfo->dest->next_output_byte = state.next_output_byte;
+ cinfo->dest->free_in_buffer = state.free_in_buffer;
+ ASSIGN_STATE(entropy->saved, state.cur);
+ }
+}
+
+
+/*
+ * Huffman coding optimization.
+ *
+ * We first scan the supplied data and count the number of uses of each symbol
+ * that is to be Huffman-coded. (This process MUST agree with the code above.)
+ * Then we build a Huffman coding tree for the observed counts.
+ * Symbols which are not needed at all for the particular image are not
+ * assigned any code, which saves space in the DHT marker as well as in
+ * the compressed data.
+ */
+
+
+/* Process a single block's worth of coefficients */
+
+LOCAL(void)
+htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
+ long dc_counts[], long ac_counts[])
+{
+ register int temp;
+ register int nbits;
+ register int k, r;
+ int Se = cinfo->lim_Se;
+ const int * natural_order = cinfo->natural_order;
+
+ /* Encode the DC coefficient difference per section F.1.2.1 */
+
+ temp = block[0] - last_dc_val;
+ if (temp < 0)
+ temp = -temp;
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 0;
+ while (temp) {
+ nbits++;
+ temp >>= 1;
+ }
+ /* Check for out-of-range coefficient values.
+ * Since we're encoding a difference, the range limit is twice as much.
+ */
+ if (nbits > MAX_COEF_BITS+1)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count the Huffman symbol for the number of bits */
+ dc_counts[nbits]++;
+
+ /* Encode the AC coefficients per section F.1.2.2 */
+
+ r = 0; /* r = run length of zeros */
+
+ for (k = 1; k <= Se; k++) {
+ if ((temp = block[natural_order[k]]) == 0) {
+ r++;
+ } else {
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+ while (r > 15) {
+ ac_counts[0xF0]++;
+ r -= 16;
+ }
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ if (temp < 0)
+ temp = -temp;
+
+ /* Find the number of bits needed for the magnitude of the coefficient */
+ nbits = 1; /* there must be at least one 1 bit */
+ while ((temp >>= 1))
+ nbits++;
+ /* Check for out-of-range coefficient values */
+ if (nbits > MAX_COEF_BITS)
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+ /* Count Huffman symbol for run length / number of bits */
+ ac_counts[(r << 4) + nbits]++;
+
+ r = 0;
+ }
+ }
+
+ /* If the last coef(s) were zero, emit an end-of-block code */
+ if (r > 0)
+ ac_counts[0]++;
+}
+
+
+/*
+ * Trial-encode one MCU's worth of Huffman-compressed coefficients.
+ * No data is actually output, so no suspension return is possible.
+ */
+
+METHODDEF(boolean)
+encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int blkn, ci;
+ jpeg_component_info * compptr;
+
+ /* Take care of restart intervals if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0) {
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ /* Update restart state */
+ entropy->restarts_to_go = cinfo->restart_interval;
+ }
+ entropy->restarts_to_go--;
+ }
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
+ entropy->dc_count_ptrs[compptr->dc_tbl_no],
+ entropy->ac_count_ptrs[compptr->ac_tbl_no]);
+ entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Generate the best Huffman code table for the given counts, fill htbl.
+ *
+ * The JPEG standard requires that no symbol be assigned a codeword of all
+ * one bits (so that padding bits added at the end of a compressed segment
+ * can't look like a valid code). Because of the canonical ordering of
+ * codewords, this just means that there must be an unused slot in the
+ * longest codeword length category. Section K.2 of the JPEG spec suggests
+ * reserving such a slot by pretending that symbol 256 is a valid symbol
+ * with count 1. In theory that's not optimal; giving it count zero but
+ * including it in the symbol set anyway should give a better Huffman code.
+ * But the theoretically better code actually seems to come out worse in
+ * practice, because it produces more all-ones bytes (which incur stuffed
+ * zero bytes in the final file). In any case the difference is tiny.
+ *
+ * The JPEG standard requires Huffman codes to be no more than 16 bits long.
+ * If some symbols have a very small but nonzero probability, the Huffman tree
+ * must be adjusted to meet the code length restriction. We currently use
+ * the adjustment method suggested in JPEG section K.2. This method is *not*
+ * optimal; it may not choose the best possible limited-length code. But
+ * typically only very-low-frequency symbols will be given less-than-optimal
+ * lengths, so the code is almost optimal. Experimental comparisons against
+ * an optimal limited-length-code algorithm indicate that the difference is
+ * microscopic --- usually less than a hundredth of a percent of total size.
+ * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
+ */
+
+LOCAL(void)
+jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
+{
+#define MAX_CLEN 32 /* assumed maximum initial code length */
+ UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
+ int codesize[257]; /* codesize[k] = code length of symbol k */
+ int others[257]; /* next symbol in current branch of tree */
+ int c1, c2;
+ int p, i, j;
+ long v;
+
+ /* This algorithm is explained in section K.2 of the JPEG standard */
+
+ MEMZERO(bits, SIZEOF(bits));
+ MEMZERO(codesize, SIZEOF(codesize));
+ for (i = 0; i < 257; i++)
+ others[i] = -1; /* init links to empty */
+
+ freq[256] = 1; /* make sure 256 has a nonzero count */
+ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
+ * that no real symbol is given code-value of all ones, because 256
+ * will be placed last in the largest codeword category.
+ */
+
+ /* Huffman's basic algorithm to assign optimal code lengths to symbols */
+
+ for (;;) {
+ /* Find the smallest nonzero frequency, set c1 = its symbol */
+ /* In case of ties, take the larger symbol number */
+ c1 = -1;
+ v = 1000000000L;
+ for (i = 0; i <= 256; i++) {
+ if (freq[i] && freq[i] <= v) {
+ v = freq[i];
+ c1 = i;
+ }
+ }
+
+ /* Find the next smallest nonzero frequency, set c2 = its symbol */
+ /* In case of ties, take the larger symbol number */
+ c2 = -1;
+ v = 1000000000L;
+ for (i = 0; i <= 256; i++) {
+ if (freq[i] && freq[i] <= v && i != c1) {
+ v = freq[i];
+ c2 = i;
+ }
+ }
+
+ /* Done if we've merged everything into one frequency */
+ if (c2 < 0)
+ break;
+
+ /* Else merge the two counts/trees */
+ freq[c1] += freq[c2];
+ freq[c2] = 0;
+
+ /* Increment the codesize of everything in c1's tree branch */
+ codesize[c1]++;
+ while (others[c1] >= 0) {
+ c1 = others[c1];
+ codesize[c1]++;
+ }
+
+ others[c1] = c2; /* chain c2 onto c1's tree branch */
+
+ /* Increment the codesize of everything in c2's tree branch */
+ codesize[c2]++;
+ while (others[c2] >= 0) {
+ c2 = others[c2];
+ codesize[c2]++;
+ }
+ }
+
+ /* Now count the number of symbols of each code length */
+ for (i = 0; i <= 256; i++) {
+ if (codesize[i]) {
+ /* The JPEG standard seems to think that this can't happen, */
+ /* but I'm paranoid... */
+ if (codesize[i] > MAX_CLEN)
+ ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
+
+ bits[codesize[i]]++;
+ }
+ }
+
+ /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
+ * Huffman procedure assigned any such lengths, we must adjust the coding.
+ * Here is what the JPEG spec says about how this next bit works:
+ * Since symbols are paired for the longest Huffman code, the symbols are
+ * removed from this length category two at a time. The prefix for the pair
+ * (which is one bit shorter) is allocated to one of the pair; then,
+ * skipping the BITS entry for that prefix length, a code word from the next
+ * shortest nonzero BITS entry is converted into a prefix for two code words
+ * one bit longer.
+ */
+
+ for (i = MAX_CLEN; i > 16; i--) {
+ while (bits[i] > 0) {
+ j = i - 2; /* find length of new prefix to be used */
+ while (bits[j] == 0)
+ j--;
+
+ bits[i] -= 2; /* remove two symbols */
+ bits[i-1]++; /* one goes in this length */
+ bits[j+1] += 2; /* two new symbols in this length */
+ bits[j]--; /* symbol of this length is now a prefix */
+ }
+ }
+
+ /* Remove the count for the pseudo-symbol 256 from the largest codelength */
+ while (bits[i] == 0) /* find largest codelength still in use */
+ i--;
+ bits[i]--;
+
+ /* Return final symbol counts (only for lengths 0..16) */
+ MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
+
+ /* Return a list of the symbols sorted by code length */
+ /* It's not real clear to me why we don't need to consider the codelength
+ * changes made above, but the JPEG spec seems to think this works.
+ */
+ p = 0;
+ for (i = 1; i <= MAX_CLEN; i++) {
+ for (j = 0; j <= 255; j++) {
+ if (codesize[j] == i) {
+ htbl->huffval[p] = (UINT8) j;
+ p++;
+ }
+ }
+ }
+
+ /* Set sent_table FALSE so updated table will be written to JPEG file. */
+ htbl->sent_table = FALSE;
+}
+
+
+/*
+ * Finish up a statistics-gathering pass and create the new Huffman tables.
+ */
+
+METHODDEF(void)
+finish_pass_gather (j_compress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+ JHUFF_TBL **htblptr;
+ boolean did_dc[NUM_HUFF_TBLS];
+ boolean did_ac[NUM_HUFF_TBLS];
+
+ /* It's important not to apply jpeg_gen_optimal_table more than once
+ * per table, because it clobbers the input frequency counts!
+ */
+ if (cinfo->progressive_mode)
+ /* Flush out buffered data (all we care about is counting the EOB symbol) */
+ emit_eobrun(entropy);
+
+ MEMZERO(did_dc, SIZEOF(did_dc));
+ MEMZERO(did_ac, SIZEOF(did_ac));
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ tbl = compptr->dc_tbl_no;
+ if (! did_dc[tbl]) {
+ htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+ jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
+ did_dc[tbl] = TRUE;
+ }
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ tbl = compptr->ac_tbl_no;
+ if (! did_ac[tbl]) {
+ htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+ jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
+ did_ac[tbl] = TRUE;
+ }
+ }
+ }
+}
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ * If gather_statistics is TRUE, we do not output anything during the scan,
+ * just count the Huffman symbols used and generate Huffman code tables.
+ */
+
+METHODDEF(void)
+start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+
+ if (gather_statistics)
+ entropy->pub.finish_pass = finish_pass_gather;
+ else
+ entropy->pub.finish_pass = finish_pass_huff;
+
+ if (cinfo->progressive_mode) {
+ entropy->cinfo = cinfo;
+ entropy->gather_statistics = gather_statistics;
+
+ /* We assume jcmaster.c already validated the scan parameters. */
+
+ /* Select execution routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_first;
+ else
+ entropy->pub.encode_mcu = encode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.encode_mcu = encode_mcu_DC_refine;
+ else {
+ entropy->pub.encode_mcu = encode_mcu_AC_refine;
+ /* AC refinement needs a correction bit buffer */
+ if (entropy->bit_buffer == NULL)
+ entropy->bit_buffer = (char *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ MAX_CORR_BITS * SIZEOF(char));
+ }
+ }
+
+ /* Initialize AC stuff */
+ entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
+ entropy->EOBRUN = 0;
+ entropy->BE = 0;
+ } else {
+ if (gather_statistics)
+ entropy->pub.encode_mcu = encode_mcu_gather;
+ else
+ entropy->pub.encode_mcu = encode_mcu_huff;
+ }
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+ tbl = compptr->dc_tbl_no;
+ if (gather_statistics) {
+ /* Check for invalid table index */
+ /* (make_c_derived_tbl does this in the other path) */
+ if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
+ /* Allocate and zero the statistics tables */
+ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
+ if (entropy->dc_count_ptrs[tbl] == NULL)
+ entropy->dc_count_ptrs[tbl] = (long *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 257 * SIZEOF(long));
+ MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
+ } else {
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for a table, but it's not expensive */
+ jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->dc_derived_tbls[tbl]);
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+ /* AC needs no table when not present */
+ if (cinfo->Se) {
+ tbl = compptr->ac_tbl_no;
+ if (gather_statistics) {
+ if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
+ if (entropy->ac_count_ptrs[tbl] == NULL)
+ entropy->ac_count_ptrs[tbl] = (long *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 257 * SIZEOF(long));
+ MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
+ } else {
+ jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
+ & entropy->ac_derived_tbls[tbl]);
+ }
+ }
+ }
+
+ /* Initialize bit buffer to empty */
+ entropy->saved.put_buffer = 0;
+ entropy->saved.put_bits = 0;
+
+ /* Initialize restart stuff */
+ entropy->restarts_to_go = cinfo->restart_interval;
+ entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Module initialization routine for Huffman entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_huff_encoder (j_compress_ptr cinfo)
+{
+ huff_entropy_ptr entropy;
+ int i;
+
+ entropy = (huff_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(huff_entropy_encoder));
+ cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+ entropy->pub.start_pass = start_pass_huff;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+ entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
+ }
+
+ if (cinfo->progressive_mode)
+ entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcinit.c b/plugins/AdvaImg/src/LibJPEG/jcinit.c
new file mode 100644
index 0000000000..0ba310f217
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcinit.c
@@ -0,0 +1,65 @@
+/*
+ * jcinit.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains initialization logic for the JPEG compressor.
+ * This routine is in charge of selecting the modules to be executed and
+ * making an initialization call to each one.
+ *
+ * Logically, this code belongs in jcmaster.c. It's split out because
+ * linking this routine implies linking the entire compression library.
+ * For a transcoding-only application, we want to be able to use jcmaster.c
+ * without linking in the whole library.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Master selection of compression modules.
+ * This is done once at the start of processing an image. We determine
+ * which modules will be used and give them appropriate initialization calls.
+ */
+
+GLOBAL(void)
+jinit_compress_master (j_compress_ptr cinfo)
+{
+ /* Initialize master control (includes parameter checking/processing) */
+ jinit_c_master_control(cinfo, FALSE /* full compression */);
+
+ /* Preprocessing */
+ if (! cinfo->raw_data_in) {
+ jinit_color_converter(cinfo);
+ jinit_downsampler(cinfo);
+ jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
+ }
+ /* Forward DCT */
+ jinit_forward_dct(cinfo);
+ /* Entropy encoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_encoder(cinfo);
+ else {
+ jinit_huff_encoder(cinfo);
+ }
+
+ /* Need a full-image coefficient buffer in any multi-pass mode. */
+ jinit_c_coef_controller(cinfo,
+ (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
+ jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+ jinit_marker_writer(cinfo);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Write the datastream header (SOI) immediately.
+ * Frame and scan headers are postponed till later.
+ * This lets application insert special markers after the SOI.
+ */
+ (*cinfo->marker->write_file_header) (cinfo);
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcmainct.c b/plugins/AdvaImg/src/LibJPEG/jcmainct.c
new file mode 100644
index 0000000000..7de75d1675
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcmainct.c
@@ -0,0 +1,293 @@
+/*
+ * jcmainct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for compression.
+ * The main buffer lies between the pre-processor and the JPEG
+ * compressor proper; it holds downsampled data in the JPEG colorspace.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Note: currently, there is no operating mode in which a full-image buffer
+ * is needed at this step. If there were, that mode could not be used with
+ * "raw data" input, since this module is bypassed in that case. However,
+ * we've left the code here for possible use in special applications.
+ */
+#undef FULL_MAIN_BUFFER_SUPPORTED
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_main_controller pub; /* public fields */
+
+ JDIMENSION cur_iMCU_row; /* number of current iMCU row */
+ JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
+ boolean suspended; /* remember if we suspended output */
+ J_BUF_MODE pass_mode; /* current operating mode */
+
+ /* If using just a strip buffer, this points to the entire set of buffers
+ * (we allocate one for each component). In the full-image case, this
+ * points to the currently accessible strips of the virtual arrays.
+ */
+ JSAMPARRAY buffer[MAX_COMPONENTS];
+
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ /* If using full-image storage, this array holds pointers to virtual-array
+ * control blocks for each component. Unused if not full-image storage.
+ */
+ jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
+#endif
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+
+/* Forward declarations */
+METHODDEF(void) process_data_simple_main
+ JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+METHODDEF(void) process_data_buffer_main
+ JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ /* Do nothing in raw-data mode. */
+ if (cinfo->raw_data_in)
+ return;
+
+ main->cur_iMCU_row = 0; /* initialize counters */
+ main->rowgroup_ctr = 0;
+ main->suspended = FALSE;
+ main->pass_mode = pass_mode; /* save mode for use by process_data */
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ if (main->whole_image[0] != NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+ main->pub.process_data = process_data_simple_main;
+ break;
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ case JBUF_SAVE_SOURCE:
+ case JBUF_CRANK_DEST:
+ case JBUF_SAVE_AND_PASS:
+ if (main->whole_image[0] == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ main->pub.process_data = process_data_buffer_main;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This routine handles the simple pass-through mode,
+ * where we have only a strip buffer.
+ */
+
+METHODDEF(void)
+process_data_simple_main (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
+ /* Read input data if we haven't filled the main buffer yet */
+ if (main->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
+ (*cinfo->prep->pre_process_data) (cinfo,
+ input_buf, in_row_ctr, in_rows_avail,
+ main->buffer, &main->rowgroup_ctr,
+ (JDIMENSION) cinfo->min_DCT_v_scaled_size);
+
+ /* If we don't have a full iMCU row buffered, return to application for
+ * more data. Note that preprocessor will always pad to fill the iMCU row
+ * at the bottom of the image.
+ */
+ if (main->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
+ return;
+
+ /* Send the completed row to the compressor */
+ if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
+ /* If compressor did not consume the whole row, then we must need to
+ * suspend processing and return to the application. In this situation
+ * we pretend we didn't yet consume the last input row; otherwise, if
+ * it happened to be the last row of the image, the application would
+ * think we were done.
+ */
+ if (! main->suspended) {
+ (*in_row_ctr)--;
+ main->suspended = TRUE;
+ }
+ return;
+ }
+ /* We did finish the row. Undo our little suspension hack if a previous
+ * call suspended; then mark the main buffer empty.
+ */
+ if (main->suspended) {
+ (*in_row_ctr)++;
+ main->suspended = FALSE;
+ }
+ main->rowgroup_ctr = 0;
+ main->cur_iMCU_row++;
+ }
+}
+
+
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+
+/*
+ * Process some data.
+ * This routine handles all of the modes that use a full-size buffer.
+ */
+
+METHODDEF(void)
+process_data_buffer_main (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci;
+ jpeg_component_info *compptr;
+ boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
+
+ while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
+ /* Realign the virtual buffers if at the start of an iMCU row. */
+ if (main->rowgroup_ctr == 0) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, main->whole_image[ci],
+ main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
+ (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
+ }
+ /* In a read pass, pretend we just read some source data. */
+ if (! writing) {
+ *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
+ main->rowgroup_ctr = DCTSIZE;
+ }
+ }
+
+ /* If a write pass, read input data until the current iMCU row is full. */
+ /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
+ if (writing) {
+ (*cinfo->prep->pre_process_data) (cinfo,
+ input_buf, in_row_ctr, in_rows_avail,
+ main->buffer, &main->rowgroup_ctr,
+ (JDIMENSION) DCTSIZE);
+ /* Return to application if we need more data to fill the iMCU row. */
+ if (main->rowgroup_ctr < DCTSIZE)
+ return;
+ }
+
+ /* Emit data, unless this is a sink-only pass. */
+ if (main->pass_mode != JBUF_SAVE_SOURCE) {
+ if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
+ /* If compressor did not consume the whole row, then we must need to
+ * suspend processing and return to the application. In this situation
+ * we pretend we didn't yet consume the last input row; otherwise, if
+ * it happened to be the last row of the image, the application would
+ * think we were done.
+ */
+ if (! main->suspended) {
+ (*in_row_ctr)--;
+ main->suspended = TRUE;
+ }
+ return;
+ }
+ /* We did finish the row. Undo our little suspension hack if a previous
+ * call suspended; then mark the main buffer empty.
+ */
+ if (main->suspended) {
+ (*in_row_ctr)++;
+ main->suspended = FALSE;
+ }
+ }
+
+ /* If get here, we are done with this iMCU row. Mark buffer empty. */
+ main->rowgroup_ctr = 0;
+ main->cur_iMCU_row++;
+ }
+}
+
+#endif /* FULL_MAIN_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL(void)
+jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+ my_main_ptr main;
+ int ci;
+ jpeg_component_info *compptr;
+
+ main = (my_main_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_main_controller));
+ cinfo->main = (struct jpeg_c_main_controller *) main;
+ main->pub.start_pass = start_pass_main;
+
+ /* We don't need to create a buffer in raw-data mode. */
+ if (cinfo->raw_data_in)
+ return;
+
+ /* Create the buffer. It holds downsampled data, so each component
+ * may be of a different size.
+ */
+ if (need_full_buffer) {
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ /* Allocate a full-image virtual array for each component */
+ /* Note we pad the bottom to a multiple of the iMCU height */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor) * DCTSIZE,
+ (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
+ }
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+ } else {
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+ main->whole_image[0] = NULL; /* flag for no virtual arrays */
+#endif
+ /* Allocate a strip buffer for each component */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
+ }
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcmarker.c b/plugins/AdvaImg/src/LibJPEG/jcmarker.c
new file mode 100644
index 0000000000..606c19af39
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcmarker.c
@@ -0,0 +1,682 @@
+/*
+ * jcmarker.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2003-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write JPEG datastream markers.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+typedef enum { /* JPEG marker codes */
+ M_SOF0 = 0xc0,
+ M_SOF1 = 0xc1,
+ M_SOF2 = 0xc2,
+ M_SOF3 = 0xc3,
+
+ M_SOF5 = 0xc5,
+ M_SOF6 = 0xc6,
+ M_SOF7 = 0xc7,
+
+ M_JPG = 0xc8,
+ M_SOF9 = 0xc9,
+ M_SOF10 = 0xca,
+ M_SOF11 = 0xcb,
+
+ M_SOF13 = 0xcd,
+ M_SOF14 = 0xce,
+ M_SOF15 = 0xcf,
+
+ M_DHT = 0xc4,
+
+ M_DAC = 0xcc,
+
+ M_RST0 = 0xd0,
+ M_RST1 = 0xd1,
+ M_RST2 = 0xd2,
+ M_RST3 = 0xd3,
+ M_RST4 = 0xd4,
+ M_RST5 = 0xd5,
+ M_RST6 = 0xd6,
+ M_RST7 = 0xd7,
+
+ M_SOI = 0xd8,
+ M_EOI = 0xd9,
+ M_SOS = 0xda,
+ M_DQT = 0xdb,
+ M_DNL = 0xdc,
+ M_DRI = 0xdd,
+ M_DHP = 0xde,
+ M_EXP = 0xdf,
+
+ M_APP0 = 0xe0,
+ M_APP1 = 0xe1,
+ M_APP2 = 0xe2,
+ M_APP3 = 0xe3,
+ M_APP4 = 0xe4,
+ M_APP5 = 0xe5,
+ M_APP6 = 0xe6,
+ M_APP7 = 0xe7,
+ M_APP8 = 0xe8,
+ M_APP9 = 0xe9,
+ M_APP10 = 0xea,
+ M_APP11 = 0xeb,
+ M_APP12 = 0xec,
+ M_APP13 = 0xed,
+ M_APP14 = 0xee,
+ M_APP15 = 0xef,
+
+ M_JPG0 = 0xf0,
+ M_JPG13 = 0xfd,
+ M_COM = 0xfe,
+
+ M_TEM = 0x01,
+
+ M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_marker_writer pub; /* public fields */
+
+ unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
+} my_marker_writer;
+
+typedef my_marker_writer * my_marker_ptr;
+
+
+/*
+ * Basic output routines.
+ *
+ * Note that we do not support suspension while writing a marker.
+ * Therefore, an application using suspension must ensure that there is
+ * enough buffer space for the initial markers (typ. 600-700 bytes) before
+ * calling jpeg_start_compress, and enough space to write the trailing EOI
+ * (a few bytes) before calling jpeg_finish_compress. Multipass compression
+ * modes are not supported at all with suspension, so those two are the only
+ * points where markers will be written.
+ */
+
+LOCAL(void)
+emit_byte (j_compress_ptr cinfo, int val)
+/* Emit a byte */
+{
+ struct jpeg_destination_mgr * dest = cinfo->dest;
+
+ *(dest->next_output_byte)++ = (JOCTET) val;
+ if (--dest->free_in_buffer == 0) {
+ if (! (*dest->empty_output_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ }
+}
+
+
+LOCAL(void)
+emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
+/* Emit a marker code */
+{
+ emit_byte(cinfo, 0xFF);
+ emit_byte(cinfo, (int) mark);
+}
+
+
+LOCAL(void)
+emit_2bytes (j_compress_ptr cinfo, int value)
+/* Emit a 2-byte integer; these are always MSB first in JPEG files */
+{
+ emit_byte(cinfo, (value >> 8) & 0xFF);
+ emit_byte(cinfo, value & 0xFF);
+}
+
+
+/*
+ * Routines to write specific marker types.
+ */
+
+LOCAL(int)
+emit_dqt (j_compress_ptr cinfo, int index)
+/* Emit a DQT marker */
+/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
+{
+ JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
+ int prec;
+ int i;
+
+ if (qtbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
+
+ prec = 0;
+ for (i = 0; i <= cinfo->lim_Se; i++) {
+ if (qtbl->quantval[cinfo->natural_order[i]] > 255)
+ prec = 1;
+ }
+
+ if (! qtbl->sent_table) {
+ emit_marker(cinfo, M_DQT);
+
+ emit_2bytes(cinfo,
+ prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2);
+
+ emit_byte(cinfo, index + (prec<<4));
+
+ for (i = 0; i <= cinfo->lim_Se; i++) {
+ /* The table entries must be emitted in zigzag order. */
+ unsigned int qval = qtbl->quantval[cinfo->natural_order[i]];
+ if (prec)
+ emit_byte(cinfo, (int) (qval >> 8));
+ emit_byte(cinfo, (int) (qval & 0xFF));
+ }
+
+ qtbl->sent_table = TRUE;
+ }
+
+ return prec;
+}
+
+
+LOCAL(void)
+emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
+/* Emit a DHT marker */
+{
+ JHUFF_TBL * htbl;
+ int length, i;
+
+ if (is_ac) {
+ htbl = cinfo->ac_huff_tbl_ptrs[index];
+ index += 0x10; /* output index has AC bit set */
+ } else {
+ htbl = cinfo->dc_huff_tbl_ptrs[index];
+ }
+
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
+
+ if (! htbl->sent_table) {
+ emit_marker(cinfo, M_DHT);
+
+ length = 0;
+ for (i = 1; i <= 16; i++)
+ length += htbl->bits[i];
+
+ emit_2bytes(cinfo, length + 2 + 1 + 16);
+ emit_byte(cinfo, index);
+
+ for (i = 1; i <= 16; i++)
+ emit_byte(cinfo, htbl->bits[i]);
+
+ for (i = 0; i < length; i++)
+ emit_byte(cinfo, htbl->huffval[i]);
+
+ htbl->sent_table = TRUE;
+ }
+}
+
+
+LOCAL(void)
+emit_dac (j_compress_ptr cinfo)
+/* Emit a DAC marker */
+/* Since the useful info is so small, we want to emit all the tables in */
+/* one DAC marker. Therefore this routine does its own scan of the table. */
+{
+#ifdef C_ARITH_CODING_SUPPORTED
+ char dc_in_use[NUM_ARITH_TBLS];
+ char ac_in_use[NUM_ARITH_TBLS];
+ int length, i;
+ jpeg_component_info *compptr;
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++)
+ dc_in_use[i] = ac_in_use[i] = 0;
+
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ compptr = cinfo->cur_comp_info[i];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0)
+ dc_in_use[compptr->dc_tbl_no] = 1;
+ /* AC needs no table when not present */
+ if (cinfo->Se)
+ ac_in_use[compptr->ac_tbl_no] = 1;
+ }
+
+ length = 0;
+ for (i = 0; i < NUM_ARITH_TBLS; i++)
+ length += dc_in_use[i] + ac_in_use[i];
+
+ if (length) {
+ emit_marker(cinfo, M_DAC);
+
+ emit_2bytes(cinfo, length*2 + 2);
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ if (dc_in_use[i]) {
+ emit_byte(cinfo, i);
+ emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
+ }
+ if (ac_in_use[i]) {
+ emit_byte(cinfo, i + 0x10);
+ emit_byte(cinfo, cinfo->arith_ac_K[i]);
+ }
+ }
+ }
+#endif /* C_ARITH_CODING_SUPPORTED */
+}
+
+
+LOCAL(void)
+emit_dri (j_compress_ptr cinfo)
+/* Emit a DRI marker */
+{
+ emit_marker(cinfo, M_DRI);
+
+ emit_2bytes(cinfo, 4); /* fixed length */
+
+ emit_2bytes(cinfo, (int) cinfo->restart_interval);
+}
+
+
+LOCAL(void)
+emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
+/* Emit a SOF marker */
+{
+ int ci;
+ jpeg_component_info *compptr;
+
+ emit_marker(cinfo, code);
+
+ emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
+
+ /* Make sure image isn't bigger than SOF field can handle */
+ if ((long) cinfo->jpeg_height > 65535L ||
+ (long) cinfo->jpeg_width > 65535L)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
+
+ emit_byte(cinfo, cinfo->data_precision);
+ emit_2bytes(cinfo, (int) cinfo->jpeg_height);
+ emit_2bytes(cinfo, (int) cinfo->jpeg_width);
+
+ emit_byte(cinfo, cinfo->num_components);
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ emit_byte(cinfo, compptr->component_id);
+ emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
+ emit_byte(cinfo, compptr->quant_tbl_no);
+ }
+}
+
+
+LOCAL(void)
+emit_sos (j_compress_ptr cinfo)
+/* Emit a SOS marker */
+{
+ int i, td, ta;
+ jpeg_component_info *compptr;
+
+ emit_marker(cinfo, M_SOS);
+
+ emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
+
+ emit_byte(cinfo, cinfo->comps_in_scan);
+
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ compptr = cinfo->cur_comp_info[i];
+ emit_byte(cinfo, compptr->component_id);
+
+ /* We emit 0 for unused field(s); this is recommended by the P&M text
+ * but does not seem to be specified in the standard.
+ */
+
+ /* DC needs no table for refinement scan */
+ td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0;
+ /* AC needs no table when not present */
+ ta = cinfo->Se ? compptr->ac_tbl_no : 0;
+
+ emit_byte(cinfo, (td << 4) + ta);
+ }
+
+ emit_byte(cinfo, cinfo->Ss);
+ emit_byte(cinfo, cinfo->Se);
+ emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
+}
+
+
+LOCAL(void)
+emit_pseudo_sos (j_compress_ptr cinfo)
+/* Emit a pseudo SOS marker */
+{
+ emit_marker(cinfo, M_SOS);
+
+ emit_2bytes(cinfo, 2 + 1 + 3); /* length */
+
+ emit_byte(cinfo, 0); /* Ns */
+
+ emit_byte(cinfo, 0); /* Ss */
+ emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */
+ emit_byte(cinfo, 0); /* Ah/Al */
+}
+
+
+LOCAL(void)
+emit_jfif_app0 (j_compress_ptr cinfo)
+/* Emit a JFIF-compliant APP0 marker */
+{
+ /*
+ * Length of APP0 block (2 bytes)
+ * Block ID (4 bytes - ASCII "JFIF")
+ * Zero byte (1 byte to terminate the ID string)
+ * Version Major, Minor (2 bytes - major first)
+ * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
+ * Xdpu (2 bytes - dots per unit horizontal)
+ * Ydpu (2 bytes - dots per unit vertical)
+ * Thumbnail X size (1 byte)
+ * Thumbnail Y size (1 byte)
+ */
+
+ emit_marker(cinfo, M_APP0);
+
+ emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
+
+ emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
+ emit_byte(cinfo, 0x46);
+ emit_byte(cinfo, 0x49);
+ emit_byte(cinfo, 0x46);
+ emit_byte(cinfo, 0);
+ emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
+ emit_byte(cinfo, cinfo->JFIF_minor_version);
+ emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
+ emit_2bytes(cinfo, (int) cinfo->X_density);
+ emit_2bytes(cinfo, (int) cinfo->Y_density);
+ emit_byte(cinfo, 0); /* No thumbnail image */
+ emit_byte(cinfo, 0);
+}
+
+
+LOCAL(void)
+emit_adobe_app14 (j_compress_ptr cinfo)
+/* Emit an Adobe APP14 marker */
+{
+ /*
+ * Length of APP14 block (2 bytes)
+ * Block ID (5 bytes - ASCII "Adobe")
+ * Version Number (2 bytes - currently 100)
+ * Flags0 (2 bytes - currently 0)
+ * Flags1 (2 bytes - currently 0)
+ * Color transform (1 byte)
+ *
+ * Although Adobe TN 5116 mentions Version = 101, all the Adobe files
+ * now in circulation seem to use Version = 100, so that's what we write.
+ *
+ * We write the color transform byte as 1 if the JPEG color space is
+ * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
+ * whether the encoder performed a transformation, which is pretty useless.
+ */
+
+ emit_marker(cinfo, M_APP14);
+
+ emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
+
+ emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
+ emit_byte(cinfo, 0x64);
+ emit_byte(cinfo, 0x6F);
+ emit_byte(cinfo, 0x62);
+ emit_byte(cinfo, 0x65);
+ emit_2bytes(cinfo, 100); /* Version */
+ emit_2bytes(cinfo, 0); /* Flags0 */
+ emit_2bytes(cinfo, 0); /* Flags1 */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_YCbCr:
+ emit_byte(cinfo, 1); /* Color transform = 1 */
+ break;
+ case JCS_YCCK:
+ emit_byte(cinfo, 2); /* Color transform = 2 */
+ break;
+ default:
+ emit_byte(cinfo, 0); /* Color transform = 0 */
+ break;
+ }
+}
+
+
+/*
+ * These routines allow writing an arbitrary marker with parameters.
+ * The only intended use is to emit COM or APPn markers after calling
+ * write_file_header and before calling write_frame_header.
+ * Other uses are not guaranteed to produce desirable results.
+ * Counting the parameter bytes properly is the caller's responsibility.
+ */
+
+METHODDEF(void)
+write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+/* Emit an arbitrary marker header */
+{
+ if (datalen > (unsigned int) 65533) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ emit_marker(cinfo, (JPEG_MARKER) marker);
+
+ emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
+}
+
+METHODDEF(void)
+write_marker_byte (j_compress_ptr cinfo, int val)
+/* Emit one byte of marker parameters following write_marker_header */
+{
+ emit_byte(cinfo, val);
+}
+
+
+/*
+ * Write datastream header.
+ * This consists of an SOI and optional APPn markers.
+ * We recommend use of the JFIF marker, but not the Adobe marker,
+ * when using YCbCr or grayscale data. The JFIF marker should NOT
+ * be used for any other JPEG colorspace. The Adobe marker is helpful
+ * to distinguish RGB, CMYK, and YCCK colorspaces.
+ * Note that an application can write additional header markers after
+ * jpeg_start_compress returns.
+ */
+
+METHODDEF(void)
+write_file_header (j_compress_ptr cinfo)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+ emit_marker(cinfo, M_SOI); /* first the SOI */
+
+ /* SOI is defined to reset restart interval to 0 */
+ marker->last_restart_interval = 0;
+
+ if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
+ emit_jfif_app0(cinfo);
+ if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
+ emit_adobe_app14(cinfo);
+}
+
+
+/*
+ * Write frame header.
+ * This consists of DQT and SOFn markers, and a conditional pseudo SOS marker.
+ * Note that we do not emit the SOF until we have emitted the DQT(s).
+ * This avoids compatibility problems with incorrect implementations that
+ * try to error-check the quant table numbers as soon as they see the SOF.
+ */
+
+METHODDEF(void)
+write_frame_header (j_compress_ptr cinfo)
+{
+ int ci, prec;
+ boolean is_baseline;
+ jpeg_component_info *compptr;
+
+ /* Emit DQT for each quantization table.
+ * Note that emit_dqt() suppresses any duplicate tables.
+ */
+ prec = 0;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ prec += emit_dqt(cinfo, compptr->quant_tbl_no);
+ }
+ /* now prec is nonzero iff there are any 16-bit quant tables. */
+
+ /* Check for a non-baseline specification.
+ * Note we assume that Huffman table numbers won't be changed later.
+ */
+ if (cinfo->arith_code || cinfo->progressive_mode ||
+ cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) {
+ is_baseline = FALSE;
+ } else {
+ is_baseline = TRUE;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
+ is_baseline = FALSE;
+ }
+ if (prec && is_baseline) {
+ is_baseline = FALSE;
+ /* If it's baseline except for quantizer size, warn the user */
+ TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
+ }
+ }
+
+ /* Emit the proper SOF marker */
+ if (cinfo->arith_code) {
+ if (cinfo->progressive_mode)
+ emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
+ else
+ emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
+ } else {
+ if (cinfo->progressive_mode)
+ emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
+ else if (is_baseline)
+ emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
+ else
+ emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
+ }
+
+ /* Check to emit pseudo SOS marker */
+ if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE)
+ emit_pseudo_sos(cinfo);
+}
+
+
+/*
+ * Write scan header.
+ * This consists of DHT or DAC markers, optional DRI, and SOS.
+ * Compressed data will be written following the SOS.
+ */
+
+METHODDEF(void)
+write_scan_header (j_compress_ptr cinfo)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+ int i;
+ jpeg_component_info *compptr;
+
+ if (cinfo->arith_code) {
+ /* Emit arith conditioning info. We may have some duplication
+ * if the file has multiple scans, but it's so small it's hardly
+ * worth worrying about.
+ */
+ emit_dac(cinfo);
+ } else {
+ /* Emit Huffman tables.
+ * Note that emit_dht() suppresses any duplicate tables.
+ */
+ for (i = 0; i < cinfo->comps_in_scan; i++) {
+ compptr = cinfo->cur_comp_info[i];
+ /* DC needs no table for refinement scan */
+ if (cinfo->Ss == 0 && cinfo->Ah == 0)
+ emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
+ /* AC needs no table when not present */
+ if (cinfo->Se)
+ emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
+ }
+ }
+
+ /* Emit DRI if required --- note that DRI value could change for each scan.
+ * We avoid wasting space with unnecessary DRIs, however.
+ */
+ if (cinfo->restart_interval != marker->last_restart_interval) {
+ emit_dri(cinfo);
+ marker->last_restart_interval = cinfo->restart_interval;
+ }
+
+ emit_sos(cinfo);
+}
+
+
+/*
+ * Write datastream trailer.
+ */
+
+METHODDEF(void)
+write_file_trailer (j_compress_ptr cinfo)
+{
+ emit_marker(cinfo, M_EOI);
+}
+
+
+/*
+ * Write an abbreviated table-specification datastream.
+ * This consists of SOI, DQT and DHT tables, and EOI.
+ * Any table that is defined and not marked sent_table = TRUE will be
+ * emitted. Note that all tables will be marked sent_table = TRUE at exit.
+ */
+
+METHODDEF(void)
+write_tables_only (j_compress_ptr cinfo)
+{
+ int i;
+
+ emit_marker(cinfo, M_SOI);
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++) {
+ if (cinfo->quant_tbl_ptrs[i] != NULL)
+ (void) emit_dqt(cinfo, i);
+ }
+
+ if (! cinfo->arith_code) {
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
+ emit_dht(cinfo, i, FALSE);
+ if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
+ emit_dht(cinfo, i, TRUE);
+ }
+ }
+
+ emit_marker(cinfo, M_EOI);
+}
+
+
+/*
+ * Initialize the marker writer module.
+ */
+
+GLOBAL(void)
+jinit_marker_writer (j_compress_ptr cinfo)
+{
+ my_marker_ptr marker;
+
+ /* Create the subobject */
+ marker = (my_marker_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_marker_writer));
+ cinfo->marker = (struct jpeg_marker_writer *) marker;
+ /* Initialize method pointers */
+ marker->pub.write_file_header = write_file_header;
+ marker->pub.write_frame_header = write_frame_header;
+ marker->pub.write_scan_header = write_scan_header;
+ marker->pub.write_file_trailer = write_file_trailer;
+ marker->pub.write_tables_only = write_tables_only;
+ marker->pub.write_marker_header = write_marker_header;
+ marker->pub.write_marker_byte = write_marker_byte;
+ /* Initialize private state */
+ marker->last_restart_interval = 0;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcmaster.c b/plugins/AdvaImg/src/LibJPEG/jcmaster.c
new file mode 100644
index 0000000000..caf80a53b3
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcmaster.c
@@ -0,0 +1,858 @@
+/*
+ * jcmaster.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2003-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG compressor.
+ * These routines are concerned with parameter validation, initial setup,
+ * and inter-pass control (determining the number of passes and the work
+ * to be done in each pass).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef enum {
+ main_pass, /* input data, also do first output step */
+ huff_opt_pass, /* Huffman code optimization pass */
+ output_pass /* data output pass */
+} c_pass_type;
+
+typedef struct {
+ struct jpeg_comp_master pub; /* public fields */
+
+ c_pass_type pass_type; /* the type of the current pass */
+
+ int pass_number; /* # of passes completed */
+ int total_passes; /* total # of passes needed */
+
+ int scan_number; /* current index in scan_info[] */
+} my_comp_master;
+
+typedef my_comp_master * my_master_ptr;
+
+
+/*
+ * Support routines that do various essential calculations.
+ */
+
+/*
+ * Compute JPEG image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ */
+
+GLOBAL(void)
+jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
+/* Do computations that are needed before master selection phase */
+{
+#ifdef DCT_SCALING_SUPPORTED
+
+ /* Sanity check on input image dimensions to prevent overflow in
+ * following calculation.
+ * We do check jpeg_width and jpeg_height in initial_setup below,
+ * but image_width and image_height can come from arbitrary data,
+ * and we need some space for multiplication by block_size.
+ */
+ if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24))
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+ /* Compute actual JPEG image dimensions and DCT scaling choices. */
+ if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/1 scaling */
+ cinfo->jpeg_width = cinfo->image_width * cinfo->block_size;
+ cinfo->jpeg_height = cinfo->image_height * cinfo->block_size;
+ cinfo->min_DCT_h_scaled_size = 1;
+ cinfo->min_DCT_v_scaled_size = 1;
+ } else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/2 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L);
+ cinfo->min_DCT_h_scaled_size = 2;
+ cinfo->min_DCT_v_scaled_size = 2;
+ } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/3 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L);
+ cinfo->min_DCT_h_scaled_size = 3;
+ cinfo->min_DCT_v_scaled_size = 3;
+ } else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/4 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L);
+ cinfo->min_DCT_h_scaled_size = 4;
+ cinfo->min_DCT_v_scaled_size = 4;
+ } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/5 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L);
+ cinfo->min_DCT_h_scaled_size = 5;
+ cinfo->min_DCT_v_scaled_size = 5;
+ } else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/6 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L);
+ cinfo->min_DCT_h_scaled_size = 6;
+ cinfo->min_DCT_v_scaled_size = 6;
+ } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/7 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L);
+ cinfo->min_DCT_h_scaled_size = 7;
+ cinfo->min_DCT_v_scaled_size = 7;
+ } else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/8 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L);
+ cinfo->min_DCT_h_scaled_size = 8;
+ cinfo->min_DCT_v_scaled_size = 8;
+ } else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/9 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L);
+ cinfo->min_DCT_h_scaled_size = 9;
+ cinfo->min_DCT_v_scaled_size = 9;
+ } else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/10 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L);
+ cinfo->min_DCT_h_scaled_size = 10;
+ cinfo->min_DCT_v_scaled_size = 10;
+ } else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/11 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L);
+ cinfo->min_DCT_h_scaled_size = 11;
+ cinfo->min_DCT_v_scaled_size = 11;
+ } else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/12 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L);
+ cinfo->min_DCT_h_scaled_size = 12;
+ cinfo->min_DCT_v_scaled_size = 12;
+ } else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/13 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L);
+ cinfo->min_DCT_h_scaled_size = 13;
+ cinfo->min_DCT_v_scaled_size = 13;
+ } else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/14 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L);
+ cinfo->min_DCT_h_scaled_size = 14;
+ cinfo->min_DCT_v_scaled_size = 14;
+ } else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) {
+ /* Provide block_size/15 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L);
+ cinfo->min_DCT_h_scaled_size = 15;
+ cinfo->min_DCT_v_scaled_size = 15;
+ } else {
+ /* Provide block_size/16 scaling */
+ cinfo->jpeg_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L);
+ cinfo->jpeg_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L);
+ cinfo->min_DCT_h_scaled_size = 16;
+ cinfo->min_DCT_v_scaled_size = 16;
+ }
+
+#else /* !DCT_SCALING_SUPPORTED */
+
+ /* Hardwire it to "no scaling" */
+ cinfo->jpeg_width = cinfo->image_width;
+ cinfo->jpeg_height = cinfo->image_height;
+ cinfo->min_DCT_h_scaled_size = DCTSIZE;
+ cinfo->min_DCT_v_scaled_size = DCTSIZE;
+
+#endif /* DCT_SCALING_SUPPORTED */
+}
+
+
+LOCAL(void)
+jpeg_calc_trans_dimensions (j_compress_ptr cinfo)
+{
+ if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size)
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+ cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size);
+
+ cinfo->block_size = cinfo->min_DCT_h_scaled_size;
+}
+
+
+LOCAL(void)
+initial_setup (j_compress_ptr cinfo, boolean transcode_only)
+/* Do computations that are needed before master selection phase */
+{
+ int ci, ssize;
+ jpeg_component_info *compptr;
+ long samplesperrow;
+ JDIMENSION jd_samplesperrow;
+
+ if (transcode_only)
+ jpeg_calc_trans_dimensions(cinfo);
+ else
+ jpeg_calc_jpeg_dimensions(cinfo);
+
+ /* Sanity check on block_size */
+ if (cinfo->block_size < 1 || cinfo->block_size > 16)
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size);
+
+ /* Derive natural_order from block_size */
+ switch (cinfo->block_size) {
+ case 2: cinfo->natural_order = jpeg_natural_order2; break;
+ case 3: cinfo->natural_order = jpeg_natural_order3; break;
+ case 4: cinfo->natural_order = jpeg_natural_order4; break;
+ case 5: cinfo->natural_order = jpeg_natural_order5; break;
+ case 6: cinfo->natural_order = jpeg_natural_order6; break;
+ case 7: cinfo->natural_order = jpeg_natural_order7; break;
+ default: cinfo->natural_order = jpeg_natural_order; break;
+ }
+
+ /* Derive lim_Se from block_size */
+ cinfo->lim_Se = cinfo->block_size < DCTSIZE ?
+ cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1;
+
+ /* Sanity check on image dimensions */
+ if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 ||
+ cinfo->num_components <= 0 || cinfo->input_components <= 0)
+ ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+ /* Make sure image isn't bigger than I can handle */
+ if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
+ (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+ /* Width of an input scanline must be representable as JDIMENSION. */
+ samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
+ jd_samplesperrow = (JDIMENSION) samplesperrow;
+ if ((long) jd_samplesperrow != samplesperrow)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+ /* For now, precision must match compiled-in value... */
+ if (cinfo->data_precision != BITS_IN_JSAMPLE)
+ ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+ /* Check that number of components won't exceed internal array sizes */
+ if (cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+
+ /* Compute maximum sampling factors; check factor validity */
+ cinfo->max_h_samp_factor = 1;
+ cinfo->max_v_samp_factor = 1;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+ compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+ ERREXIT(cinfo, JERR_BAD_SAMPLING);
+ cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+ compptr->h_samp_factor);
+ cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+ compptr->v_samp_factor);
+ }
+
+ /* Compute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Fill in the correct component_index value; don't rely on application */
+ compptr->component_index = ci;
+ /* In selecting the actual DCT scaling for each component, we try to
+ * scale down the chroma components via DCT scaling rather than downsampling.
+ * This saves time if the downsampler gets to use 1:1 scaling.
+ * Note this code adapts subsampling ratios which are powers of 2.
+ */
+ ssize = 1;
+#ifdef DCT_SCALING_SUPPORTED
+ while (cinfo->min_DCT_h_scaled_size * ssize <=
+ (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+#endif
+ compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
+ ssize = 1;
+#ifdef DCT_SCALING_SUPPORTED
+ while (cinfo->min_DCT_v_scaled_size * ssize <=
+ (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+#endif
+ compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
+
+ /* We don't support DCT ratios larger than 2. */
+ if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
+ compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
+ else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
+ compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
+
+ /* Size in DCT blocks */
+ compptr->width_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->height_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ /* Size in samples */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_width *
+ (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height *
+ (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ /* Mark component needed (this flag isn't actually used for compression) */
+ compptr->component_needed = TRUE;
+ }
+
+ /* Compute number of fully interleaved MCU rows (number of times that
+ * main controller will call coefficient controller).
+ */
+ cinfo->total_iMCU_rows = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+}
+
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+
+LOCAL(void)
+validate_script (j_compress_ptr cinfo)
+/* Verify that the scan script in cinfo->scan_info[] is valid; also
+ * determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
+ */
+{
+ const jpeg_scan_info * scanptr;
+ int scanno, ncomps, ci, coefi, thisi;
+ int Ss, Se, Ah, Al;
+ boolean component_sent[MAX_COMPONENTS];
+#ifdef C_PROGRESSIVE_SUPPORTED
+ int * last_bitpos_ptr;
+ int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
+ /* -1 until that coefficient has been seen; then last Al for it */
+#endif
+
+ if (cinfo->num_scans <= 0)
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
+
+ /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
+ * for progressive JPEG, no scan can have this.
+ */
+ scanptr = cinfo->scan_info;
+ if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+ cinfo->progressive_mode = TRUE;
+ last_bitpos_ptr = & last_bitpos[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (coefi = 0; coefi < DCTSIZE2; coefi++)
+ *last_bitpos_ptr++ = -1;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ cinfo->progressive_mode = FALSE;
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ component_sent[ci] = FALSE;
+ }
+
+ for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
+ /* Validate component indexes */
+ ncomps = scanptr->comps_in_scan;
+ if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
+ for (ci = 0; ci < ncomps; ci++) {
+ thisi = scanptr->component_index[ci];
+ if (thisi < 0 || thisi >= cinfo->num_components)
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+ /* Components must appear in SOF order within each scan */
+ if (ci > 0 && thisi <= scanptr->component_index[ci-1])
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+ }
+ /* Validate progression parameters */
+ Ss = scanptr->Ss;
+ Se = scanptr->Se;
+ Ah = scanptr->Ah;
+ Al = scanptr->Al;
+ if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+ /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
+ * seems wrong: the upper bound ought to depend on data precision.
+ * Perhaps they really meant 0..N+1 for N-bit precision.
+ * Here we allow 0..10 for 8-bit data; Al larger than 10 results in
+ * out-of-range reconstructed DC values during the first DC scan,
+ * which might cause problems for some decoders.
+ */
+#if BITS_IN_JSAMPLE == 8
+#define MAX_AH_AL 10
+#else
+#define MAX_AH_AL 13
+#endif
+ if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
+ Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ if (Ss == 0) {
+ if (Se != 0) /* DC and AC together not OK */
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ } else {
+ if (ncomps != 1) /* AC scans must be for only one component */
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ }
+ for (ci = 0; ci < ncomps; ci++) {
+ last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
+ if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ for (coefi = Ss; coefi <= Se; coefi++) {
+ if (last_bitpos_ptr[coefi] < 0) {
+ /* first scan of this coefficient */
+ if (Ah != 0)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ } else {
+ /* not first scan */
+ if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ }
+ last_bitpos_ptr[coefi] = Al;
+ }
+ }
+#endif
+ } else {
+ /* For sequential JPEG, all progression parameters must be these: */
+ if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
+ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+ /* Make sure components are not sent twice */
+ for (ci = 0; ci < ncomps; ci++) {
+ thisi = scanptr->component_index[ci];
+ if (component_sent[thisi])
+ ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+ component_sent[thisi] = TRUE;
+ }
+ }
+ }
+
+ /* Now verify that everything got sent. */
+ if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+ /* For progressive mode, we only check that at least some DC data
+ * got sent for each component; the spec does not require that all bits
+ * of all coefficients be transmitted. Would it be wiser to enforce
+ * transmission of all coefficient bits??
+ */
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ if (last_bitpos[ci][0] < 0)
+ ERREXIT(cinfo, JERR_MISSING_DATA);
+ }
+#endif
+ } else {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ if (! component_sent[ci])
+ ERREXIT(cinfo, JERR_MISSING_DATA);
+ }
+ }
+}
+
+
+LOCAL(void)
+reduce_script (j_compress_ptr cinfo)
+/* Adapt scan script for use with reduced block size;
+ * assume that script has been validated before.
+ */
+{
+ jpeg_scan_info * scanptr;
+ int idxout, idxin;
+
+ /* Circumvent const declaration for this function */
+ scanptr = (jpeg_scan_info *) cinfo->scan_info;
+ idxout = 0;
+
+ for (idxin = 0; idxin < cinfo->num_scans; idxin++) {
+ /* After skipping, idxout becomes smaller than idxin */
+ if (idxin != idxout)
+ /* Copy rest of data;
+ * note we stay in given chunk of allocated memory.
+ */
+ scanptr[idxout] = scanptr[idxin];
+ if (scanptr[idxout].Ss > cinfo->lim_Se)
+ /* Entire scan out of range - skip this entry */
+ continue;
+ if (scanptr[idxout].Se > cinfo->lim_Se)
+ /* Limit scan to end of block */
+ scanptr[idxout].Se = cinfo->lim_Se;
+ idxout++;
+ }
+
+ cinfo->num_scans = idxout;
+}
+
+#endif /* C_MULTISCAN_FILES_SUPPORTED */
+
+
+LOCAL(void)
+select_scan_parameters (j_compress_ptr cinfo)
+/* Set up the scan parameters for the current scan */
+{
+ int ci;
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ if (cinfo->scan_info != NULL) {
+ /* Prepare for current scan --- the script is already validated */
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+ const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
+
+ cinfo->comps_in_scan = scanptr->comps_in_scan;
+ for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
+ cinfo->cur_comp_info[ci] =
+ &cinfo->comp_info[scanptr->component_index[ci]];
+ }
+ if (cinfo->progressive_mode) {
+ cinfo->Ss = scanptr->Ss;
+ cinfo->Se = scanptr->Se;
+ cinfo->Ah = scanptr->Ah;
+ cinfo->Al = scanptr->Al;
+ return;
+ }
+ }
+ else
+#endif
+ {
+ /* Prepare for single sequential-JPEG scan containing all components */
+ if (cinfo->num_components > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPS_IN_SCAN);
+ cinfo->comps_in_scan = cinfo->num_components;
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
+ }
+ }
+ cinfo->Ss = 0;
+ cinfo->Se = cinfo->block_size * cinfo->block_size - 1;
+ cinfo->Ah = 0;
+ cinfo->Al = 0;
+}
+
+
+LOCAL(void)
+per_scan_setup (j_compress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
+{
+ int ci, mcublks, tmp;
+ jpeg_component_info *compptr;
+
+ if (cinfo->comps_in_scan == 1) {
+
+ /* Noninterleaved (single-component) scan */
+ compptr = cinfo->cur_comp_info[0];
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = compptr->width_in_blocks;
+ cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+
+ /* For noninterleaved scan, always one block per MCU */
+ compptr->MCU_width = 1;
+ compptr->MCU_height = 1;
+ compptr->MCU_blocks = 1;
+ compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
+ compptr->last_col_width = 1;
+ /* For noninterleaved scans, it is convenient to define last_row_height
+ * as the number of block rows present in the last iMCU row.
+ */
+ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (tmp == 0) tmp = compptr->v_samp_factor;
+ compptr->last_row_height = tmp;
+
+ /* Prepare array describing MCU composition */
+ cinfo->blocks_in_MCU = 1;
+ cinfo->MCU_membership[0] = 0;
+
+ } else {
+
+ /* Interleaved (multi-component) scan */
+ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+ MAX_COMPS_IN_SCAN);
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_width,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ cinfo->MCU_rows_in_scan = (JDIMENSION)
+ jdiv_round_up((long) cinfo->jpeg_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+
+ cinfo->blocks_in_MCU = 0;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Sampling factors give # of blocks of component in each MCU */
+ compptr->MCU_width = compptr->h_samp_factor;
+ compptr->MCU_height = compptr->v_samp_factor;
+ compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+ compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
+ /* Figure number of non-dummy blocks in last MCU column & row */
+ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+ if (tmp == 0) tmp = compptr->MCU_width;
+ compptr->last_col_width = tmp;
+ tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+ if (tmp == 0) tmp = compptr->MCU_height;
+ compptr->last_row_height = tmp;
+ /* Prepare array describing MCU composition */
+ mcublks = compptr->MCU_blocks;
+ if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
+ ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+ while (mcublks-- > 0) {
+ cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+ }
+ }
+
+ }
+
+ /* Convert restart specified in rows to actual MCU count. */
+ /* Note that count must fit in 16 bits, so we provide limiting. */
+ if (cinfo->restart_in_rows > 0) {
+ long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
+ cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
+ }
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each pass. We determine which modules
+ * will be active during this pass and give them appropriate start_pass calls.
+ * We also set is_last_pass to indicate whether any more passes will be
+ * required.
+ */
+
+METHODDEF(void)
+prepare_for_pass (j_compress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ switch (master->pass_type) {
+ case main_pass:
+ /* Initial pass: will collect input data, and do either Huffman
+ * optimization or data output for the first scan.
+ */
+ select_scan_parameters(cinfo);
+ per_scan_setup(cinfo);
+ if (! cinfo->raw_data_in) {
+ (*cinfo->cconvert->start_pass) (cinfo);
+ (*cinfo->downsample->start_pass) (cinfo);
+ (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
+ }
+ (*cinfo->fdct->start_pass) (cinfo);
+ (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
+ (*cinfo->coef->start_pass) (cinfo,
+ (master->total_passes > 1 ?
+ JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+ (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+ if (cinfo->optimize_coding) {
+ /* No immediate data output; postpone writing frame/scan headers */
+ master->pub.call_pass_startup = FALSE;
+ } else {
+ /* Will write frame/scan headers at first jpeg_write_scanlines call */
+ master->pub.call_pass_startup = TRUE;
+ }
+ break;
+#ifdef ENTROPY_OPT_SUPPORTED
+ case huff_opt_pass:
+ /* Do Huffman optimization for a scan after the first one. */
+ select_scan_parameters(cinfo);
+ per_scan_setup(cinfo);
+ if (cinfo->Ss != 0 || cinfo->Ah == 0) {
+ (*cinfo->entropy->start_pass) (cinfo, TRUE);
+ (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+ master->pub.call_pass_startup = FALSE;
+ break;
+ }
+ /* Special case: Huffman DC refinement scans need no Huffman table
+ * and therefore we can skip the optimization pass for them.
+ */
+ master->pass_type = output_pass;
+ master->pass_number++;
+ /*FALLTHROUGH*/
+#endif
+ case output_pass:
+ /* Do a data-output pass. */
+ /* We need not repeat per-scan setup if prior optimization pass did it. */
+ if (! cinfo->optimize_coding) {
+ select_scan_parameters(cinfo);
+ per_scan_setup(cinfo);
+ }
+ (*cinfo->entropy->start_pass) (cinfo, FALSE);
+ (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+ /* We emit frame/scan headers now */
+ if (master->scan_number == 0)
+ (*cinfo->marker->write_frame_header) (cinfo);
+ (*cinfo->marker->write_scan_header) (cinfo);
+ master->pub.call_pass_startup = FALSE;
+ break;
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ }
+
+ master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
+
+ /* Set up progress monitor's pass info if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->completed_passes = master->pass_number;
+ cinfo->progress->total_passes = master->total_passes;
+ }
+}
+
+
+/*
+ * Special start-of-pass hook.
+ * This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
+ * In single-pass processing, we need this hook because we don't want to
+ * write frame/scan headers during jpeg_start_compress; we want to let the
+ * application write COM markers etc. between jpeg_start_compress and the
+ * jpeg_write_scanlines loop.
+ * In multi-pass processing, this routine is not used.
+ */
+
+METHODDEF(void)
+pass_startup (j_compress_ptr cinfo)
+{
+ cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
+
+ (*cinfo->marker->write_frame_header) (cinfo);
+ (*cinfo->marker->write_scan_header) (cinfo);
+}
+
+
+/*
+ * Finish up at end of pass.
+ */
+
+METHODDEF(void)
+finish_pass_master (j_compress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ /* The entropy coder always needs an end-of-pass call,
+ * either to analyze statistics or to flush its output buffer.
+ */
+ (*cinfo->entropy->finish_pass) (cinfo);
+
+ /* Update state for next pass */
+ switch (master->pass_type) {
+ case main_pass:
+ /* next pass is either output of scan 0 (after optimization)
+ * or output of scan 1 (if no optimization).
+ */
+ master->pass_type = output_pass;
+ if (! cinfo->optimize_coding)
+ master->scan_number++;
+ break;
+ case huff_opt_pass:
+ /* next pass is always output of current scan */
+ master->pass_type = output_pass;
+ break;
+ case output_pass:
+ /* next pass is either optimization or output of next scan */
+ if (cinfo->optimize_coding)
+ master->pass_type = huff_opt_pass;
+ master->scan_number++;
+ break;
+ }
+
+ master->pass_number++;
+}
+
+
+/*
+ * Initialize master compression control.
+ */
+
+GLOBAL(void)
+jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
+{
+ my_master_ptr master;
+
+ master = (my_master_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_comp_master));
+ cinfo->master = (struct jpeg_comp_master *) master;
+ master->pub.prepare_for_pass = prepare_for_pass;
+ master->pub.pass_startup = pass_startup;
+ master->pub.finish_pass = finish_pass_master;
+ master->pub.is_last_pass = FALSE;
+
+ /* Validate parameters, determine derived values */
+ initial_setup(cinfo, transcode_only);
+
+ if (cinfo->scan_info != NULL) {
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ validate_script(cinfo);
+ if (cinfo->block_size < DCTSIZE)
+ reduce_script(cinfo);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ cinfo->progressive_mode = FALSE;
+ cinfo->num_scans = 1;
+ }
+
+ if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) &&
+ !cinfo->arith_code) /* TEMPORARY HACK ??? */
+ /* assume default tables no good for progressive or downscale mode */
+ cinfo->optimize_coding = TRUE;
+
+ /* Initialize my private state */
+ if (transcode_only) {
+ /* no main pass in transcoding */
+ if (cinfo->optimize_coding)
+ master->pass_type = huff_opt_pass;
+ else
+ master->pass_type = output_pass;
+ } else {
+ /* for normal compression, first pass is always this type: */
+ master->pass_type = main_pass;
+ }
+ master->scan_number = 0;
+ master->pass_number = 0;
+ if (cinfo->optimize_coding)
+ master->total_passes = cinfo->num_scans * 2;
+ else
+ master->total_passes = cinfo->num_scans;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcomapi.c b/plugins/AdvaImg/src/LibJPEG/jcomapi.c
new file mode 100644
index 0000000000..9b1fa7568a
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcomapi.c
@@ -0,0 +1,106 @@
+/*
+ * jcomapi.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface routines that are used for both
+ * compression and decompression.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Abort processing of a JPEG compression or decompression operation,
+ * but don't destroy the object itself.
+ *
+ * For this, we merely clean up all the nonpermanent memory pools.
+ * Note that temp files (virtual arrays) are not allowed to belong to
+ * the permanent pool, so we will be able to close all temp files here.
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL(void)
+jpeg_abort (j_common_ptr cinfo)
+{
+ int pool;
+
+ /* Do nothing if called on a not-initialized or destroyed JPEG object. */
+ if (cinfo->mem == NULL)
+ return;
+
+ /* Releasing pools in reverse order might help avoid fragmentation
+ * with some (brain-damaged) malloc libraries.
+ */
+ for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
+ (*cinfo->mem->free_pool) (cinfo, pool);
+ }
+
+ /* Reset overall state for possible reuse of object */
+ if (cinfo->is_decompressor) {
+ cinfo->global_state = DSTATE_START;
+ /* Try to keep application from accessing now-deleted marker list.
+ * A bit kludgy to do it here, but this is the most central place.
+ */
+ ((j_decompress_ptr) cinfo)->marker_list = NULL;
+ } else {
+ cinfo->global_state = CSTATE_START;
+ }
+}
+
+
+/*
+ * Destruction of a JPEG object.
+ *
+ * Everything gets deallocated except the master jpeg_compress_struct itself
+ * and the error manager struct. Both of these are supplied by the application
+ * and must be freed, if necessary, by the application. (Often they are on
+ * the stack and so don't need to be freed anyway.)
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL(void)
+jpeg_destroy (j_common_ptr cinfo)
+{
+ /* We need only tell the memory manager to release everything. */
+ /* NB: mem pointer is NULL if memory mgr failed to initialize. */
+ if (cinfo->mem != NULL)
+ (*cinfo->mem->self_destruct) (cinfo);
+ cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
+ cinfo->global_state = 0; /* mark it destroyed */
+}
+
+
+/*
+ * Convenience routines for allocating quantization and Huffman tables.
+ * (Would jutils.c be a more reasonable place to put these?)
+ */
+
+GLOBAL(JQUANT_TBL *)
+jpeg_alloc_quant_table (j_common_ptr cinfo)
+{
+ JQUANT_TBL *tbl;
+
+ tbl = (JQUANT_TBL *)
+ (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
+ tbl->sent_table = FALSE; /* make sure this is false in any new table */
+ return tbl;
+}
+
+
+GLOBAL(JHUFF_TBL *)
+jpeg_alloc_huff_table (j_common_ptr cinfo)
+{
+ JHUFF_TBL *tbl;
+
+ tbl = (JHUFF_TBL *)
+ (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
+ tbl->sent_table = FALSE; /* make sure this is false in any new table */
+ return tbl;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jconfig.h b/plugins/AdvaImg/src/LibJPEG/jconfig.h
new file mode 100644
index 0000000000..44e5c52ee5
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jconfig.h
@@ -0,0 +1,47 @@
+/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
+/* see jconfig.doc for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#undef CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#ifndef HAVE_STDLIB_H
+#define HAVE_STDLIB_H
+#endif
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+/* Define "boolean" as unsigned char, not int, per Windows custom */
+#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
+typedef unsigned char boolean;
+#endif
+#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
+
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#define TWO_FILE_COMMANDLINE /* optional */
+#define USE_SETMODE /* Microsoft has setmode() */
+#undef NEED_SIGNAL_CATCHER
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/plugins/AdvaImg/src/LibJPEG/jconfig.txt b/plugins/AdvaImg/src/LibJPEG/jconfig.txt
new file mode 100644
index 0000000000..27086a3644
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jconfig.txt
@@ -0,0 +1,164 @@
+/*
+ * jconfig.txt
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file documents the configuration options that are required to
+ * customize the JPEG software for a particular system.
+ *
+ * The actual configuration options for a particular installation are stored
+ * in jconfig.h. On many machines, jconfig.h can be generated automatically
+ * or copied from one of the "canned" jconfig files that we supply. But if
+ * you need to generate a jconfig.h file by hand, this file tells you how.
+ *
+ * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
+ * EDIT A COPY NAMED JCONFIG.H.
+ */
+
+
+/*
+ * These symbols indicate the properties of your machine or compiler.
+ * #define the symbol if yes, #undef it if no.
+ */
+
+/* Does your compiler support function prototypes?
+ * (If not, you also need to use ansi2knr, see install.txt)
+ */
+#define HAVE_PROTOTYPES
+
+/* Does your compiler support the declaration "unsigned char" ?
+ * How about "unsigned short" ?
+ */
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+
+/* Define "void" as "char" if your compiler doesn't know about type void.
+ * NOTE: be sure to define void such that "void *" represents the most general
+ * pointer type, e.g., that returned by malloc().
+ */
+/* #define void char */
+
+/* Define "const" as empty if your compiler doesn't know the "const" keyword.
+ */
+/* #define const */
+
+/* Define this if an ordinary "char" type is unsigned.
+ * If you're not sure, leaving it undefined will work at some cost in speed.
+ * If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
+ */
+#undef CHAR_IS_UNSIGNED
+
+/* Define this if your system has an ANSI-conforming <stddef.h> file.
+ */
+#define HAVE_STDDEF_H
+
+/* Define this if your system has an ANSI-conforming <stdlib.h> file.
+ */
+#define HAVE_STDLIB_H
+
+/* Define this if your system does not have an ANSI/SysV <string.h>,
+ * but does have a BSD-style <strings.h>.
+ */
+#undef NEED_BSD_STRINGS
+
+/* Define this if your system does not provide typedef size_t in any of the
+ * ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
+ * <sys/types.h> instead.
+ */
+#undef NEED_SYS_TYPES_H
+
+/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
+ * unless you are using a large-data memory model or 80386 flat-memory mode.
+ * On less brain-damaged CPUs this symbol must not be defined.
+ * (Defining this symbol causes large data structures to be referenced through
+ * "far" pointers and to be allocated with a special version of malloc.)
+ */
+#undef NEED_FAR_POINTERS
+
+/* Define this if your linker needs global names to be unique in less
+ * than the first 15 characters.
+ */
+#undef NEED_SHORT_EXTERNAL_NAMES
+
+/* Although a real ANSI C compiler can deal perfectly well with pointers to
+ * unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
+ * and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
+ * define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you
+ * actually get "missing structure definition" warnings or errors while
+ * compiling the JPEG code.
+ */
+#undef INCOMPLETE_TYPES_BROKEN
+
+/* Define "boolean" as unsigned char, not int, on Windows systems.
+ */
+#ifdef _WIN32
+#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
+typedef unsigned char boolean;
+#endif
+#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
+#endif
+
+
+/*
+ * The following options affect code selection within the JPEG library,
+ * but they don't need to be visible to applications using the library.
+ * To minimize application namespace pollution, the symbols won't be
+ * defined unless JPEG_INTERNALS has been defined.
+ */
+
+#ifdef JPEG_INTERNALS
+
+/* Define this if your compiler implements ">>" on signed values as a logical
+ * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
+ * which is the normal and rational definition.
+ */
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+
+#endif /* JPEG_INTERNALS */
+
+
+/*
+ * The remaining options do not affect the JPEG library proper,
+ * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
+ * Other applications can ignore these.
+ */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+/* These defines indicate which image (non-JPEG) file formats are allowed. */
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+/* Define this if you want to name both input and output files on the command
+ * line, rather than using stdout and optionally stdin. You MUST do this if
+ * your system can't cope with binary I/O to stdin/stdout. See comments at
+ * head of cjpeg.c or djpeg.c.
+ */
+#undef TWO_FILE_COMMANDLINE
+
+/* Define this if your system needs explicit cleanup of temporary files.
+ * This is crucial under MS-DOS, where the temporary "files" may be areas
+ * of extended memory; on most other systems it's not as important.
+ */
+#undef NEED_SIGNAL_CATCHER
+
+/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
+ * This is necessary on systems that distinguish text files from binary files,
+ * and is harmless on most systems that don't. If you have one of the rare
+ * systems that complains about the "b" spec, define this symbol.
+ */
+#undef DONT_USE_B_MODE
+
+/* Define this if you want percent-done progress reports from cjpeg/djpeg.
+ */
+#undef PROGRESS_REPORT
+
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/plugins/AdvaImg/src/LibJPEG/jcparam.c b/plugins/AdvaImg/src/LibJPEG/jcparam.c
new file mode 100644
index 0000000000..1c81d2ec59
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcparam.c
@@ -0,0 +1,632 @@
+/*
+ * jcparam.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2003-2008 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains optional default-setting code for the JPEG compressor.
+ * Applications do not have to use this file, but those that don't use it
+ * must know a lot more about the innards of the JPEG code.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Quantization table setup routines
+ */
+
+GLOBAL(void)
+jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
+ const unsigned int *basic_table,
+ int scale_factor, boolean force_baseline)
+/* Define a quantization table equal to the basic_table times
+ * a scale factor (given as a percentage).
+ * If force_baseline is TRUE, the computed quantization table entries
+ * are limited to 1..255 for JPEG baseline compatibility.
+ */
+{
+ JQUANT_TBL ** qtblptr;
+ int i;
+ long temp;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
+ ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
+
+ qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
+
+ if (*qtblptr == NULL)
+ *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
+ /* limit the values to the valid range */
+ if (temp <= 0L) temp = 1L;
+ if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
+ if (force_baseline && temp > 255L)
+ temp = 255L; /* limit to baseline range if requested */
+ (*qtblptr)->quantval[i] = (UINT16) temp;
+ }
+
+ /* Initialize sent_table FALSE so table will be written to JPEG file. */
+ (*qtblptr)->sent_table = FALSE;
+}
+
+
+/* These are the sample quantization tables given in JPEG spec section K.1.
+ * The spec says that the values given produce "good" quality, and
+ * when divided by 2, "very good" quality.
+ */
+static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
+ 16, 11, 10, 16, 24, 40, 51, 61,
+ 12, 12, 14, 19, 26, 58, 60, 55,
+ 14, 13, 16, 24, 40, 57, 69, 56,
+ 14, 17, 22, 29, 51, 87, 80, 62,
+ 18, 22, 37, 56, 68, 109, 103, 77,
+ 24, 35, 55, 64, 81, 104, 113, 92,
+ 49, 64, 78, 87, 103, 121, 120, 101,
+ 72, 92, 95, 98, 112, 100, 103, 99
+};
+static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
+ 17, 18, 24, 47, 99, 99, 99, 99,
+ 18, 21, 26, 66, 99, 99, 99, 99,
+ 24, 26, 56, 99, 99, 99, 99, 99,
+ 47, 66, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99
+};
+
+
+GLOBAL(void)
+jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables
+ * and straight percentage-scaling quality scales.
+ * This entry point allows different scalings for luminance and chrominance.
+ */
+{
+ /* Set up two quantization tables using the specified scaling */
+ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+ cinfo->q_scale_factor[0], force_baseline);
+ jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+ cinfo->q_scale_factor[1], force_baseline);
+}
+
+
+GLOBAL(void)
+jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
+ boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables
+ * and a straight percentage-scaling quality scale. In most cases it's better
+ * to use jpeg_set_quality (below); this entry point is provided for
+ * applications that insist on a linear percentage scaling.
+ */
+{
+ /* Set up two quantization tables using the specified scaling */
+ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+ scale_factor, force_baseline);
+ jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+ scale_factor, force_baseline);
+}
+
+
+GLOBAL(int)
+jpeg_quality_scaling (int quality)
+/* Convert a user-specified quality rating to a percentage scaling factor
+ * for an underlying quantization table, using our recommended scaling curve.
+ * The input 'quality' factor should be 0 (terrible) to 100 (very good).
+ */
+{
+ /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
+ if (quality <= 0) quality = 1;
+ if (quality > 100) quality = 100;
+
+ /* The basic table is used as-is (scaling 100) for a quality of 50.
+ * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
+ * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
+ * to make all the table entries 1 (hence, minimum quantization loss).
+ * Qualities 1..50 are converted to scaling percentage 5000/Q.
+ */
+ if (quality < 50)
+ quality = 5000 / quality;
+ else
+ quality = 200 - quality*2;
+
+ return quality;
+}
+
+
+GLOBAL(void)
+jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables.
+ * This is the standard quality-adjusting entry point for typical user
+ * interfaces; only those who want detailed control over quantization tables
+ * would use the preceding three routines directly.
+ */
+{
+ /* Convert user 0-100 rating to percentage scaling */
+ quality = jpeg_quality_scaling(quality);
+
+ /* Set up standard quality tables */
+ jpeg_set_linear_quality(cinfo, quality, force_baseline);
+}
+
+
+/*
+ * Huffman table setup routines
+ */
+
+LOCAL(void)
+add_huff_table (j_compress_ptr cinfo,
+ JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
+/* Define a Huffman table */
+{
+ int nsymbols, len;
+
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+
+ /* Copy the number-of-symbols-of-each-code-length counts */
+ MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+
+ /* Validate the counts. We do this here mainly so we can copy the right
+ * number of symbols from the val[] array, without risking marching off
+ * the end of memory. jchuff.c will do a more thorough test later.
+ */
+ nsymbols = 0;
+ for (len = 1; len <= 16; len++)
+ nsymbols += bits[len];
+ if (nsymbols < 1 || nsymbols > 256)
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+
+ MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
+
+ /* Initialize sent_table FALSE so table will be written to JPEG file. */
+ (*htblptr)->sent_table = FALSE;
+}
+
+
+LOCAL(void)
+std_huff_tables (j_compress_ptr cinfo)
+/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
+/* IMPORTANT: these are only valid for 8-bit data precision! */
+{
+ static const UINT8 bits_dc_luminance[17] =
+ { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
+ static const UINT8 val_dc_luminance[] =
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+
+ static const UINT8 bits_dc_chrominance[17] =
+ { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
+ static const UINT8 val_dc_chrominance[] =
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+
+ static const UINT8 bits_ac_luminance[17] =
+ { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
+ static const UINT8 val_ac_luminance[] =
+ { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
+ 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+ 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
+ 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
+ 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
+ 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
+ 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
+ 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+ 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
+ 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+ 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
+ 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+ 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
+ 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
+ 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
+ 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
+ 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
+ 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
+ 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa };
+
+ static const UINT8 bits_ac_chrominance[17] =
+ { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
+ static const UINT8 val_ac_chrominance[] =
+ { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
+ 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+ 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
+ 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
+ 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
+ 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
+ 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
+ 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+ 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+ 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+ 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+ 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
+ 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
+ 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
+ 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
+ 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
+ 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
+ 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
+ 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa };
+
+ add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
+ bits_dc_luminance, val_dc_luminance);
+ add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
+ bits_ac_luminance, val_ac_luminance);
+ add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
+ bits_dc_chrominance, val_dc_chrominance);
+ add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
+ bits_ac_chrominance, val_ac_chrominance);
+}
+
+
+/*
+ * Default parameter setup for compression.
+ *
+ * Applications that don't choose to use this routine must do their
+ * own setup of all these parameters. Alternately, you can call this
+ * to establish defaults and then alter parameters selectively. This
+ * is the recommended approach since, if we add any new parameters,
+ * your code will still work (they'll be set to reasonable defaults).
+ */
+
+GLOBAL(void)
+jpeg_set_defaults (j_compress_ptr cinfo)
+{
+ int i;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* Allocate comp_info array large enough for maximum component count.
+ * Array is made permanent in case application wants to compress
+ * multiple images at same param settings.
+ */
+ if (cinfo->comp_info == NULL)
+ cinfo->comp_info = (jpeg_component_info *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ MAX_COMPONENTS * SIZEOF(jpeg_component_info));
+
+ /* Initialize everything not dependent on the color space */
+
+ cinfo->scale_num = 1; /* 1:1 scaling */
+ cinfo->scale_denom = 1;
+ cinfo->data_precision = BITS_IN_JSAMPLE;
+ /* Set up two quantization tables using default quality of 75 */
+ jpeg_set_quality(cinfo, 75, TRUE);
+ /* Set up two Huffman tables */
+ std_huff_tables(cinfo);
+
+ /* Initialize default arithmetic coding conditioning */
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ cinfo->arith_dc_L[i] = 0;
+ cinfo->arith_dc_U[i] = 1;
+ cinfo->arith_ac_K[i] = 5;
+ }
+
+ /* Default is no multiple-scan output */
+ cinfo->scan_info = NULL;
+ cinfo->num_scans = 0;
+
+ /* Expect normal source image, not raw downsampled data */
+ cinfo->raw_data_in = FALSE;
+
+ /* Use Huffman coding, not arithmetic coding, by default */
+ cinfo->arith_code = FALSE;
+
+ /* By default, don't do extra passes to optimize entropy coding */
+ cinfo->optimize_coding = FALSE;
+ /* The standard Huffman tables are only valid for 8-bit data precision.
+ * If the precision is higher, force optimization on so that usable
+ * tables will be computed. This test can be removed if default tables
+ * are supplied that are valid for the desired precision.
+ */
+ if (cinfo->data_precision > 8)
+ cinfo->optimize_coding = TRUE;
+
+ /* By default, use the simpler non-cosited sampling alignment */
+ cinfo->CCIR601_sampling = FALSE;
+
+ /* By default, apply fancy downsampling */
+ cinfo->do_fancy_downsampling = TRUE;
+
+ /* No input smoothing */
+ cinfo->smoothing_factor = 0;
+
+ /* DCT algorithm preference */
+ cinfo->dct_method = JDCT_DEFAULT;
+
+ /* No restart markers */
+ cinfo->restart_interval = 0;
+ cinfo->restart_in_rows = 0;
+
+ /* Fill in default JFIF marker parameters. Note that whether the marker
+ * will actually be written is determined by jpeg_set_colorspace.
+ *
+ * By default, the library emits JFIF version code 1.01.
+ * An application that wants to emit JFIF 1.02 extension markers should set
+ * JFIF_minor_version to 2. We could probably get away with just defaulting
+ * to 1.02, but there may still be some decoders in use that will complain
+ * about that; saying 1.01 should minimize compatibility problems.
+ */
+ cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
+ cinfo->JFIF_minor_version = 1;
+ cinfo->density_unit = 0; /* Pixel size is unknown by default */
+ cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
+ cinfo->Y_density = 1;
+
+ /* Choose JPEG colorspace based on input space, set defaults accordingly */
+
+ jpeg_default_colorspace(cinfo);
+}
+
+
+/*
+ * Select an appropriate JPEG colorspace for in_color_space.
+ */
+
+GLOBAL(void)
+jpeg_default_colorspace (j_compress_ptr cinfo)
+{
+ switch (cinfo->in_color_space) {
+ case JCS_GRAYSCALE:
+ jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
+ break;
+ case JCS_RGB:
+ jpeg_set_colorspace(cinfo, JCS_YCbCr);
+ break;
+ case JCS_YCbCr:
+ jpeg_set_colorspace(cinfo, JCS_YCbCr);
+ break;
+ case JCS_CMYK:
+ jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
+ break;
+ case JCS_YCCK:
+ jpeg_set_colorspace(cinfo, JCS_YCCK);
+ break;
+ case JCS_UNKNOWN:
+ jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+ }
+}
+
+
+/*
+ * Set the JPEG colorspace, and choose colorspace-dependent default values.
+ */
+
+GLOBAL(void)
+jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
+{
+ jpeg_component_info * compptr;
+ int ci;
+
+#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
+ (compptr = &cinfo->comp_info[index], \
+ compptr->component_id = (id), \
+ compptr->h_samp_factor = (hsamp), \
+ compptr->v_samp_factor = (vsamp), \
+ compptr->quant_tbl_no = (quant), \
+ compptr->dc_tbl_no = (dctbl), \
+ compptr->ac_tbl_no = (actbl))
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
+ * tables 1 for chrominance components.
+ */
+
+ cinfo->jpeg_color_space = colorspace;
+
+ cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
+ cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
+
+ switch (colorspace) {
+ case JCS_GRAYSCALE:
+ cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+ cinfo->num_components = 1;
+ /* JFIF specifies component ID 1 */
+ SET_COMP(0, 1, 1,1, 0, 0,0);
+ break;
+ case JCS_RGB:
+ cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
+ cinfo->num_components = 3;
+ SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
+ SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
+ SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
+ break;
+ case JCS_YCbCr:
+ cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+ cinfo->num_components = 3;
+ /* JFIF specifies component IDs 1,2,3 */
+ /* We default to 2x2 subsamples of chrominance */
+ SET_COMP(0, 1, 2,2, 0, 0,0);
+ SET_COMP(1, 2, 1,1, 1, 1,1);
+ SET_COMP(2, 3, 1,1, 1, 1,1);
+ break;
+ case JCS_CMYK:
+ cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
+ cinfo->num_components = 4;
+ SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
+ SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
+ SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
+ SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
+ break;
+ case JCS_YCCK:
+ cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
+ cinfo->num_components = 4;
+ SET_COMP(0, 1, 2,2, 0, 0,0);
+ SET_COMP(1, 2, 1,1, 1, 1,1);
+ SET_COMP(2, 3, 1,1, 1, 1,1);
+ SET_COMP(3, 4, 2,2, 0, 0,0);
+ break;
+ case JCS_UNKNOWN:
+ cinfo->num_components = cinfo->input_components;
+ if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ SET_COMP(ci, ci, 1,1, 0, 0,0);
+ }
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ }
+}
+
+
+#ifdef C_PROGRESSIVE_SUPPORTED
+
+LOCAL(jpeg_scan_info *)
+fill_a_scan (jpeg_scan_info * scanptr, int ci,
+ int Ss, int Se, int Ah, int Al)
+/* Support routine: generate one scan for specified component */
+{
+ scanptr->comps_in_scan = 1;
+ scanptr->component_index[0] = ci;
+ scanptr->Ss = Ss;
+ scanptr->Se = Se;
+ scanptr->Ah = Ah;
+ scanptr->Al = Al;
+ scanptr++;
+ return scanptr;
+}
+
+LOCAL(jpeg_scan_info *)
+fill_scans (jpeg_scan_info * scanptr, int ncomps,
+ int Ss, int Se, int Ah, int Al)
+/* Support routine: generate one scan for each component */
+{
+ int ci;
+
+ for (ci = 0; ci < ncomps; ci++) {
+ scanptr->comps_in_scan = 1;
+ scanptr->component_index[0] = ci;
+ scanptr->Ss = Ss;
+ scanptr->Se = Se;
+ scanptr->Ah = Ah;
+ scanptr->Al = Al;
+ scanptr++;
+ }
+ return scanptr;
+}
+
+LOCAL(jpeg_scan_info *)
+fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
+/* Support routine: generate interleaved DC scan if possible, else N scans */
+{
+ int ci;
+
+ if (ncomps <= MAX_COMPS_IN_SCAN) {
+ /* Single interleaved DC scan */
+ scanptr->comps_in_scan = ncomps;
+ for (ci = 0; ci < ncomps; ci++)
+ scanptr->component_index[ci] = ci;
+ scanptr->Ss = scanptr->Se = 0;
+ scanptr->Ah = Ah;
+ scanptr->Al = Al;
+ scanptr++;
+ } else {
+ /* Noninterleaved DC scan for each component */
+ scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
+ }
+ return scanptr;
+}
+
+
+/*
+ * Create a recommended progressive-JPEG script.
+ * cinfo->num_components and cinfo->jpeg_color_space must be correct.
+ */
+
+GLOBAL(void)
+jpeg_simple_progression (j_compress_ptr cinfo)
+{
+ int ncomps = cinfo->num_components;
+ int nscans;
+ jpeg_scan_info * scanptr;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* Figure space needed for script. Calculation must match code below! */
+ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+ /* Custom script for YCbCr color images. */
+ nscans = 10;
+ } else {
+ /* All-purpose script for other color spaces. */
+ if (ncomps > MAX_COMPS_IN_SCAN)
+ nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
+ else
+ nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
+ }
+
+ /* Allocate space for script.
+ * We need to put it in the permanent pool in case the application performs
+ * multiple compressions without changing the settings. To avoid a memory
+ * leak if jpeg_simple_progression is called repeatedly for the same JPEG
+ * object, we try to re-use previously allocated space, and we allocate
+ * enough space to handle YCbCr even if initially asked for grayscale.
+ */
+ if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
+ cinfo->script_space_size = MAX(nscans, 10);
+ cinfo->script_space = (jpeg_scan_info *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ cinfo->script_space_size * SIZEOF(jpeg_scan_info));
+ }
+ scanptr = cinfo->script_space;
+ cinfo->scan_info = scanptr;
+ cinfo->num_scans = nscans;
+
+ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+ /* Custom script for YCbCr color images. */
+ /* Initial DC scan */
+ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+ /* Initial AC scan: get some luma data out in a hurry */
+ scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
+ /* Chroma data is too small to be worth expending many scans on */
+ scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
+ scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
+ /* Complete spectral selection for luma AC */
+ scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
+ /* Refine next bit of luma AC */
+ scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
+ /* Finish DC successive approximation */
+ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+ /* Finish AC successive approximation */
+ scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
+ scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
+ /* Luma bottom bit comes last since it's usually largest scan */
+ scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
+ } else {
+ /* All-purpose script for other color spaces. */
+ /* Successive approximation first pass */
+ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+ scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
+ scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
+ /* Successive approximation second pass */
+ scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
+ /* Successive approximation final pass */
+ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+ scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
+ }
+}
+
+#endif /* C_PROGRESSIVE_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jcprepct.c b/plugins/AdvaImg/src/LibJPEG/jcprepct.c
new file mode 100644
index 0000000000..be44cc4b45
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcprepct.c
@@ -0,0 +1,358 @@
+/*
+ * jcprepct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the compression preprocessing controller.
+ * This controller manages the color conversion, downsampling,
+ * and edge expansion steps.
+ *
+ * Most of the complexity here is associated with buffering input rows
+ * as required by the downsampler. See the comments at the head of
+ * jcsample.c for the downsampler's needs.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* At present, jcsample.c can request context rows only for smoothing.
+ * In the future, we might also need context rows for CCIR601 sampling
+ * or other more-complex downsampling procedures. The code to support
+ * context rows should be compiled only if needed.
+ */
+#ifdef INPUT_SMOOTHING_SUPPORTED
+#define CONTEXT_ROWS_SUPPORTED
+#endif
+
+
+/*
+ * For the simple (no-context-row) case, we just need to buffer one
+ * row group's worth of pixels for the downsampling step. At the bottom of
+ * the image, we pad to a full row group by replicating the last pixel row.
+ * The downsampler's last output row is then replicated if needed to pad
+ * out to a full iMCU row.
+ *
+ * When providing context rows, we must buffer three row groups' worth of
+ * pixels. Three row groups are physically allocated, but the row pointer
+ * arrays are made five row groups high, with the extra pointers above and
+ * below "wrapping around" to point to the last and first real row groups.
+ * This allows the downsampler to access the proper context rows.
+ * At the top and bottom of the image, we create dummy context rows by
+ * copying the first or last real pixel row. This copying could be avoided
+ * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
+ * trouble on the compression side.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_prep_controller pub; /* public fields */
+
+ /* Downsampling input buffer. This buffer holds color-converted data
+ * until we have enough to do a downsample step.
+ */
+ JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+ JDIMENSION rows_to_go; /* counts rows remaining in source image */
+ int next_buf_row; /* index of next row to store in color_buf */
+
+#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
+ int this_row_group; /* starting row index of group to process */
+ int next_buf_stop; /* downsample when we reach this index */
+#endif
+} my_prep_controller;
+
+typedef my_prep_controller * my_prep_ptr;
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+
+ if (pass_mode != JBUF_PASS_THRU)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ /* Initialize total-height counter for detecting bottom of image */
+ prep->rows_to_go = cinfo->image_height;
+ /* Mark the conversion buffer empty */
+ prep->next_buf_row = 0;
+#ifdef CONTEXT_ROWS_SUPPORTED
+ /* Preset additional state variables for context mode.
+ * These aren't used in non-context mode, so we needn't test which mode.
+ */
+ prep->this_row_group = 0;
+ /* Set next_buf_stop to stop after two row groups have been read in. */
+ prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
+#endif
+}
+
+
+/*
+ * Expand an image vertically from height input_rows to height output_rows,
+ * by duplicating the bottom row.
+ */
+
+LOCAL(void)
+expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
+ int input_rows, int output_rows)
+{
+ register int row;
+
+ for (row = input_rows; row < output_rows; row++) {
+ jcopy_sample_rows(image_data, input_rows-1, image_data, row,
+ 1, num_cols);
+ }
+}
+
+
+/*
+ * Process some data in the simple no-context case.
+ *
+ * Preprocessor output data is counted in "row groups". A row group
+ * is defined to be v_samp_factor sample rows of each component.
+ * Downsampling will produce this much data from each max_v_samp_factor
+ * input rows.
+ */
+
+METHODDEF(void)
+pre_process_data (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+ int numrows, ci;
+ JDIMENSION inrows;
+ jpeg_component_info * compptr;
+
+ while (*in_row_ctr < in_rows_avail &&
+ *out_row_group_ctr < out_row_groups_avail) {
+ /* Do color conversion to fill the conversion buffer. */
+ inrows = in_rows_avail - *in_row_ctr;
+ numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
+ numrows = (int) MIN((JDIMENSION) numrows, inrows);
+ (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+ prep->color_buf,
+ (JDIMENSION) prep->next_buf_row,
+ numrows);
+ *in_row_ctr += numrows;
+ prep->next_buf_row += numrows;
+ prep->rows_to_go -= numrows;
+ /* If at bottom of image, pad to fill the conversion buffer. */
+ if (prep->rows_to_go == 0 &&
+ prep->next_buf_row < cinfo->max_v_samp_factor) {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+ prep->next_buf_row, cinfo->max_v_samp_factor);
+ }
+ prep->next_buf_row = cinfo->max_v_samp_factor;
+ }
+ /* If we've filled the conversion buffer, empty it. */
+ if (prep->next_buf_row == cinfo->max_v_samp_factor) {
+ (*cinfo->downsample->downsample) (cinfo,
+ prep->color_buf, (JDIMENSION) 0,
+ output_buf, *out_row_group_ctr);
+ prep->next_buf_row = 0;
+ (*out_row_group_ctr)++;
+ }
+ /* If at bottom of image, pad the output to a full iMCU height.
+ * Note we assume the caller is providing a one-iMCU-height output buffer!
+ */
+ if (prep->rows_to_go == 0 &&
+ *out_row_group_ctr < out_row_groups_avail) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size;
+ expand_bottom_edge(output_buf[ci],
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (int) (*out_row_group_ctr * numrows),
+ (int) (out_row_groups_avail * numrows));
+ }
+ *out_row_group_ctr = out_row_groups_avail;
+ break; /* can exit outer loop without test */
+ }
+ }
+}
+
+
+#ifdef CONTEXT_ROWS_SUPPORTED
+
+/*
+ * Process some data in the context case.
+ */
+
+METHODDEF(void)
+pre_process_context (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+ int numrows, ci;
+ int buf_height = cinfo->max_v_samp_factor * 3;
+ JDIMENSION inrows;
+
+ while (*out_row_group_ctr < out_row_groups_avail) {
+ if (*in_row_ctr < in_rows_avail) {
+ /* Do color conversion to fill the conversion buffer. */
+ inrows = in_rows_avail - *in_row_ctr;
+ numrows = prep->next_buf_stop - prep->next_buf_row;
+ numrows = (int) MIN((JDIMENSION) numrows, inrows);
+ (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+ prep->color_buf,
+ (JDIMENSION) prep->next_buf_row,
+ numrows);
+ /* Pad at top of image, if first time through */
+ if (prep->rows_to_go == cinfo->image_height) {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ int row;
+ for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
+ jcopy_sample_rows(prep->color_buf[ci], 0,
+ prep->color_buf[ci], -row,
+ 1, cinfo->image_width);
+ }
+ }
+ }
+ *in_row_ctr += numrows;
+ prep->next_buf_row += numrows;
+ prep->rows_to_go -= numrows;
+ } else {
+ /* Return for more data, unless we are at the bottom of the image. */
+ if (prep->rows_to_go != 0)
+ break;
+ /* When at bottom of image, pad to fill the conversion buffer. */
+ if (prep->next_buf_row < prep->next_buf_stop) {
+ for (ci = 0; ci < cinfo->num_components; ci++) {
+ expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+ prep->next_buf_row, prep->next_buf_stop);
+ }
+ prep->next_buf_row = prep->next_buf_stop;
+ }
+ }
+ /* If we've gotten enough data, downsample a row group. */
+ if (prep->next_buf_row == prep->next_buf_stop) {
+ (*cinfo->downsample->downsample) (cinfo,
+ prep->color_buf,
+ (JDIMENSION) prep->this_row_group,
+ output_buf, *out_row_group_ctr);
+ (*out_row_group_ctr)++;
+ /* Advance pointers with wraparound as necessary. */
+ prep->this_row_group += cinfo->max_v_samp_factor;
+ if (prep->this_row_group >= buf_height)
+ prep->this_row_group = 0;
+ if (prep->next_buf_row >= buf_height)
+ prep->next_buf_row = 0;
+ prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
+ }
+ }
+}
+
+
+/*
+ * Create the wrapped-around downsampling input buffer needed for context mode.
+ */
+
+LOCAL(void)
+create_context_buffer (j_compress_ptr cinfo)
+{
+ my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+ int rgroup_height = cinfo->max_v_samp_factor;
+ int ci, i;
+ jpeg_component_info * compptr;
+ JSAMPARRAY true_buffer, fake_buffer;
+
+ /* Grab enough space for fake row pointers for all the components;
+ * we need five row groups' worth of pointers for each component.
+ */
+ fake_buffer = (JSAMPARRAY)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (cinfo->num_components * 5 * rgroup_height) *
+ SIZEOF(JSAMPROW));
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Allocate the actual buffer space (3 row groups) for this component.
+ * We make the buffer wide enough to allow the downsampler to edge-expand
+ * horizontally within the buffer, if it so chooses.
+ */
+ true_buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (((long) compptr->width_in_blocks *
+ cinfo->min_DCT_h_scaled_size *
+ cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+ (JDIMENSION) (3 * rgroup_height));
+ /* Copy true buffer row pointers into the middle of the fake row array */
+ MEMCOPY(fake_buffer + rgroup_height, true_buffer,
+ 3 * rgroup_height * SIZEOF(JSAMPROW));
+ /* Fill in the above and below wraparound pointers */
+ for (i = 0; i < rgroup_height; i++) {
+ fake_buffer[i] = true_buffer[2 * rgroup_height + i];
+ fake_buffer[4 * rgroup_height + i] = true_buffer[i];
+ }
+ prep->color_buf[ci] = fake_buffer + rgroup_height;
+ fake_buffer += 5 * rgroup_height; /* point to space for next component */
+ }
+}
+
+#endif /* CONTEXT_ROWS_SUPPORTED */
+
+
+/*
+ * Initialize preprocessing controller.
+ */
+
+GLOBAL(void)
+jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+ my_prep_ptr prep;
+ int ci;
+ jpeg_component_info * compptr;
+
+ if (need_full_buffer) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ prep = (my_prep_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_prep_controller));
+ cinfo->prep = (struct jpeg_c_prep_controller *) prep;
+ prep->pub.start_pass = start_pass_prep;
+
+ /* Allocate the color conversion buffer.
+ * We make the buffer wide enough to allow the downsampler to edge-expand
+ * horizontally within the buffer, if it so chooses.
+ */
+ if (cinfo->downsample->need_context_rows) {
+ /* Set up to provide context rows */
+#ifdef CONTEXT_ROWS_SUPPORTED
+ prep->pub.pre_process_data = pre_process_context;
+ create_context_buffer(cinfo);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* No context, just make it tall enough for one row group */
+ prep->pub.pre_process_data = pre_process_data;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (((long) compptr->width_in_blocks *
+ cinfo->min_DCT_h_scaled_size *
+ cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+ (JDIMENSION) cinfo->max_v_samp_factor);
+ }
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jcsample.c b/plugins/AdvaImg/src/LibJPEG/jcsample.c
new file mode 100644
index 0000000000..4d36f85f35
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jcsample.c
@@ -0,0 +1,545 @@
+/*
+ * jcsample.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains downsampling routines.
+ *
+ * Downsampling input data is counted in "row groups". A row group
+ * is defined to be max_v_samp_factor pixel rows of each component,
+ * from which the downsampler produces v_samp_factor sample rows.
+ * A single row group is processed in each call to the downsampler module.
+ *
+ * The downsampler is responsible for edge-expansion of its output data
+ * to fill an integral number of DCT blocks horizontally. The source buffer
+ * may be modified if it is helpful for this purpose (the source buffer is
+ * allocated wide enough to correspond to the desired output width).
+ * The caller (the prep controller) is responsible for vertical padding.
+ *
+ * The downsampler may request "context rows" by setting need_context_rows
+ * during startup. In this case, the input arrays will contain at least
+ * one row group's worth of pixels above and below the passed-in data;
+ * the caller will create dummy rows at image top and bottom by replicating
+ * the first or last real pixel row.
+ *
+ * An excellent reference for image resampling is
+ * Digital Image Warping, George Wolberg, 1990.
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ *
+ * The downsampling algorithm used here is a simple average of the source
+ * pixels covered by the output pixel. The hi-falutin sampling literature
+ * refers to this as a "box filter". In general the characteristics of a box
+ * filter are not very good, but for the specific cases we normally use (1:1
+ * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
+ * nearly so bad. If you intend to use other sampling ratios, you'd be well
+ * advised to improve this code.
+ *
+ * A simple input-smoothing capability is provided. This is mainly intended
+ * for cleaning up color-dithered GIF input files (if you find it inadequate,
+ * we suggest using an external filtering program such as pnmconvol). When
+ * enabled, each input pixel P is replaced by a weighted sum of itself and its
+ * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
+ * where SF = (smoothing_factor / 1024).
+ * Currently, smoothing is only supported for 2h2v sampling factors.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Pointer to routine to downsample a single component */
+typedef JMETHOD(void, downsample1_ptr,
+ (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data));
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_downsampler pub; /* public fields */
+
+ /* Downsampling method pointers, one per component */
+ downsample1_ptr methods[MAX_COMPONENTS];
+
+ /* Height of an output row group for each component. */
+ int rowgroup_height[MAX_COMPONENTS];
+
+ /* These arrays save pixel expansion factors so that int_downsample need not
+ * recompute them each time. They are unused for other downsampling methods.
+ */
+ UINT8 h_expand[MAX_COMPONENTS];
+ UINT8 v_expand[MAX_COMPONENTS];
+} my_downsampler;
+
+typedef my_downsampler * my_downsample_ptr;
+
+
+/*
+ * Initialize for a downsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_downsample (j_compress_ptr cinfo)
+{
+ /* no work for now */
+}
+
+
+/*
+ * Expand a component horizontally from width input_cols to width output_cols,
+ * by duplicating the rightmost samples.
+ */
+
+LOCAL(void)
+expand_right_edge (JSAMPARRAY image_data, int num_rows,
+ JDIMENSION input_cols, JDIMENSION output_cols)
+{
+ register JSAMPROW ptr;
+ register JSAMPLE pixval;
+ register int count;
+ int row;
+ int numcols = (int) (output_cols - input_cols);
+
+ if (numcols > 0) {
+ for (row = 0; row < num_rows; row++) {
+ ptr = image_data[row] + input_cols;
+ pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
+ for (count = numcols; count > 0; count--)
+ *ptr++ = pixval;
+ }
+ }
+}
+
+
+/*
+ * Do downsampling for a whole row group (all components).
+ *
+ * In this version we simply downsample each component independently.
+ */
+
+METHODDEF(void)
+sep_downsample (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+ JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
+{
+ my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
+ int ci;
+ jpeg_component_info * compptr;
+ JSAMPARRAY in_ptr, out_ptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ in_ptr = input_buf[ci] + in_row_index;
+ out_ptr = output_buf[ci] +
+ (out_row_group_index * downsample->rowgroup_height[ci]);
+ (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * One row group is processed per call.
+ * This version handles arbitrary integral sampling ratios, without smoothing.
+ * Note that this version is not actually used for customary sampling ratios.
+ */
+
+METHODDEF(void)
+int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
+ int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
+ JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ JSAMPROW inptr, outptr;
+ INT32 outvalue;
+
+ h_expand = downsample->h_expand[compptr->component_index];
+ v_expand = downsample->v_expand[compptr->component_index];
+ numpix = h_expand * v_expand;
+ numpix2 = numpix/2;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data, cinfo->max_v_samp_factor,
+ cinfo->image_width, output_cols * h_expand);
+
+ inrow = outrow = 0;
+ while (inrow < cinfo->max_v_samp_factor) {
+ outptr = output_data[outrow];
+ for (outcol = 0, outcol_h = 0; outcol < output_cols;
+ outcol++, outcol_h += h_expand) {
+ outvalue = 0;
+ for (v = 0; v < v_expand; v++) {
+ inptr = input_data[inrow+v] + outcol_h;
+ for (h = 0; h < h_expand; h++) {
+ outvalue += (INT32) GETJSAMPLE(*inptr++);
+ }
+ }
+ *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
+ }
+ inrow += v_expand;
+ outrow++;
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the special case of a full-size component,
+ * without smoothing.
+ */
+
+METHODDEF(void)
+fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ /* Copy the data */
+ jcopy_sample_rows(input_data, 0, output_data, 0,
+ cinfo->max_v_samp_factor, cinfo->image_width);
+ /* Edge-expand */
+ expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size);
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the common case of 2:1 horizontal and 1:1 vertical,
+ * without smoothing.
+ *
+ * A note about the "bias" calculations: when rounding fractional values to
+ * integer, we do not want to always round 0.5 up to the next integer.
+ * If we did that, we'd introduce a noticeable bias towards larger values.
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at
+ * alternate pixel locations (a simple ordered dither pattern).
+ */
+
+METHODDEF(void)
+h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow;
+ JDIMENSION outcol;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr, outptr;
+ register int bias;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data, cinfo->max_v_samp_factor,
+ cinfo->image_width, output_cols * 2);
+
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+ outptr = output_data[inrow];
+ inptr = input_data[inrow];
+ bias = 0; /* bias = 0,1,0,1,... for successive samples */
+ for (outcol = 0; outcol < output_cols; outcol++) {
+ *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+ + bias) >> 1);
+ bias ^= 1; /* 0=>1, 1=>0 */
+ inptr += 2;
+ }
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+ * without smoothing.
+ */
+
+METHODDEF(void)
+h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow, outrow;
+ JDIMENSION outcol;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr0, inptr1, outptr;
+ register int bias;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data, cinfo->max_v_samp_factor,
+ cinfo->image_width, output_cols * 2);
+
+ inrow = outrow = 0;
+ while (inrow < cinfo->max_v_samp_factor) {
+ outptr = output_data[outrow];
+ inptr0 = input_data[inrow];
+ inptr1 = input_data[inrow+1];
+ bias = 1; /* bias = 1,2,1,2,... for successive samples */
+ for (outcol = 0; outcol < output_cols; outcol++) {
+ *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+ + bias) >> 2);
+ bias ^= 3; /* 1=>2, 2=>1 */
+ inptr0 += 2; inptr1 += 2;
+ }
+ inrow += 2;
+ outrow++;
+ }
+}
+
+
+#ifdef INPUT_SMOOTHING_SUPPORTED
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+ * with smoothing. One row of context is required.
+ */
+
+METHODDEF(void)
+h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow, outrow;
+ JDIMENSION colctr;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
+ INT32 membersum, neighsum, memberscale, neighscale;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+ cinfo->image_width, output_cols * 2);
+
+ /* We don't bother to form the individual "smoothed" input pixel values;
+ * we can directly compute the output which is the average of the four
+ * smoothed values. Each of the four member pixels contributes a fraction
+ * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
+ * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
+ * output. The four corner-adjacent neighbor pixels contribute a fraction
+ * SF to just one smoothed pixel, or SF/4 to the final output; while the
+ * eight edge-adjacent neighbors contribute SF to each of two smoothed
+ * pixels, or SF/2 overall. In order to use integer arithmetic, these
+ * factors are scaled by 2^16 = 65536.
+ * Also recall that SF = smoothing_factor / 1024.
+ */
+
+ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
+ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
+
+ inrow = outrow = 0;
+ while (inrow < cinfo->max_v_samp_factor) {
+ outptr = output_data[outrow];
+ inptr0 = input_data[inrow];
+ inptr1 = input_data[inrow+1];
+ above_ptr = input_data[inrow-1];
+ below_ptr = input_data[inrow+2];
+
+ /* Special case for first column: pretend column -1 is same as column 0 */
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+ GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
+ neighsum += neighsum;
+ neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+
+ for (colctr = output_cols - 2; colctr > 0; colctr--) {
+ /* sum of pixels directly mapped to this output element */
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+ /* sum of edge-neighbor pixels */
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+ GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
+ GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
+ /* The edge-neighbors count twice as much as corner-neighbors */
+ neighsum += neighsum;
+ /* Add in the corner-neighbors */
+ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
+ GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
+ /* form final output scaled up by 2^16 */
+ membersum = membersum * memberscale + neighsum * neighscale;
+ /* round, descale and output it */
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+ }
+
+ /* Special case for last column */
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+ GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
+ GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
+ neighsum += neighsum;
+ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
+ GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+
+ inrow += 2;
+ outrow++;
+ }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the special case of a full-size component,
+ * with smoothing. One row of context is required.
+ */
+
+METHODDEF(void)
+fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
+ JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+ int inrow;
+ JDIMENSION colctr;
+ JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
+ register JSAMPROW inptr, above_ptr, below_ptr, outptr;
+ INT32 membersum, neighsum, memberscale, neighscale;
+ int colsum, lastcolsum, nextcolsum;
+
+ /* Expand input data enough to let all the output samples be generated
+ * by the standard loop. Special-casing padded output would be more
+ * efficient.
+ */
+ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+ cinfo->image_width, output_cols);
+
+ /* Each of the eight neighbor pixels contributes a fraction SF to the
+ * smoothed pixel, while the main pixel contributes (1-8*SF). In order
+ * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
+ * Also recall that SF = smoothing_factor / 1024.
+ */
+
+ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
+ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
+
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+ outptr = output_data[inrow];
+ inptr = input_data[inrow];
+ above_ptr = input_data[inrow-1];
+ below_ptr = input_data[inrow+1];
+
+ /* Special case for first column */
+ colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
+ GETJSAMPLE(*inptr);
+ membersum = GETJSAMPLE(*inptr++);
+ nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+ GETJSAMPLE(*inptr);
+ neighsum = colsum + (colsum - membersum) + nextcolsum;
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ lastcolsum = colsum; colsum = nextcolsum;
+
+ for (colctr = output_cols - 2; colctr > 0; colctr--) {
+ membersum = GETJSAMPLE(*inptr++);
+ above_ptr++; below_ptr++;
+ nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+ GETJSAMPLE(*inptr);
+ neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+ lastcolsum = colsum; colsum = nextcolsum;
+ }
+
+ /* Special case for last column */
+ membersum = GETJSAMPLE(*inptr);
+ neighsum = lastcolsum + (colsum - membersum) + colsum;
+ membersum = membersum * memberscale + neighsum * neighscale;
+ *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+
+ }
+}
+
+#endif /* INPUT_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Module initialization routine for downsampling.
+ * Note that we must select a routine for each component.
+ */
+
+GLOBAL(void)
+jinit_downsampler (j_compress_ptr cinfo)
+{
+ my_downsample_ptr downsample;
+ int ci;
+ jpeg_component_info * compptr;
+ boolean smoothok = TRUE;
+ int h_in_group, v_in_group, h_out_group, v_out_group;
+
+ downsample = (my_downsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_downsampler));
+ cinfo->downsample = (struct jpeg_downsampler *) downsample;
+ downsample->pub.start_pass = start_pass_downsample;
+ downsample->pub.downsample = sep_downsample;
+ downsample->pub.need_context_rows = FALSE;
+
+ if (cinfo->CCIR601_sampling)
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+ /* Verify we can handle the sampling factors, and set up method pointers */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Compute size of an "output group" for DCT scaling. This many samples
+ * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
+ */
+ h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
+ cinfo->min_DCT_h_scaled_size;
+ v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size;
+ h_in_group = cinfo->max_h_samp_factor;
+ v_in_group = cinfo->max_v_samp_factor;
+ downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
+ if (h_in_group == h_out_group && v_in_group == v_out_group) {
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ if (cinfo->smoothing_factor) {
+ downsample->methods[ci] = fullsize_smooth_downsample;
+ downsample->pub.need_context_rows = TRUE;
+ } else
+#endif
+ downsample->methods[ci] = fullsize_downsample;
+ } else if (h_in_group == h_out_group * 2 &&
+ v_in_group == v_out_group) {
+ smoothok = FALSE;
+ downsample->methods[ci] = h2v1_downsample;
+ } else if (h_in_group == h_out_group * 2 &&
+ v_in_group == v_out_group * 2) {
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ if (cinfo->smoothing_factor) {
+ downsample->methods[ci] = h2v2_smooth_downsample;
+ downsample->pub.need_context_rows = TRUE;
+ } else
+#endif
+ downsample->methods[ci] = h2v2_downsample;
+ } else if ((h_in_group % h_out_group) == 0 &&
+ (v_in_group % v_out_group) == 0) {
+ smoothok = FALSE;
+ downsample->methods[ci] = int_downsample;
+ downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
+ downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
+ } else
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+ }
+
+#ifdef INPUT_SMOOTHING_SUPPORTED
+ if (cinfo->smoothing_factor && !smoothok)
+ TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
+#endif
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jctrans.c b/plugins/AdvaImg/src/LibJPEG/jctrans.c
new file mode 100644
index 0000000000..f7d7b81491
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jctrans.c
@@ -0,0 +1,382 @@
+/*
+ * jctrans.c
+ *
+ * Copyright (C) 1995-1998, Thomas G. Lane.
+ * Modified 2000-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding compression,
+ * that is, writing raw DCT coefficient arrays to an output JPEG file.
+ * The routines in jcapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(void) transencode_master_selection
+ JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+LOCAL(void) transencode_coef_controller
+ JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+
+
+/*
+ * Compression initialization for writing raw-coefficient data.
+ * Before calling this, all parameters and a data destination must be set up.
+ * Call jpeg_finish_compress() to actually write the data.
+ *
+ * The number of passed virtual arrays must match cinfo->num_components.
+ * Note that the virtual arrays need not be filled or even realized at
+ * the time write_coefficients is called; indeed, if the virtual arrays
+ * were requested from this compression object's memory manager, they
+ * typically will be realized during this routine and filled afterwards.
+ */
+
+GLOBAL(void)
+jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
+{
+ if (cinfo->global_state != CSTATE_START)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Mark all tables to be written */
+ jpeg_suppress_tables(cinfo, FALSE);
+ /* (Re)initialize error mgr and destination modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->dest->init_destination) (cinfo);
+ /* Perform master selection of active modules */
+ transencode_master_selection(cinfo, coef_arrays);
+ /* Wait for jpeg_finish_compress() call */
+ cinfo->next_scanline = 0; /* so jpeg_write_marker works */
+ cinfo->global_state = CSTATE_WRCOEFS;
+}
+
+
+/*
+ * Initialize the compression object with default parameters,
+ * then copy from the source object all parameters needed for lossless
+ * transcoding. Parameters that can be varied without loss (such as
+ * scan script and Huffman optimization) are left in their default states.
+ */
+
+GLOBAL(void)
+jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo)
+{
+ JQUANT_TBL ** qtblptr;
+ jpeg_component_info *incomp, *outcomp;
+ JQUANT_TBL *c_quant, *slot_quant;
+ int tblno, ci, coefi;
+
+ /* Safety check to ensure start_compress not called yet. */
+ if (dstinfo->global_state != CSTATE_START)
+ ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
+ /* Copy fundamental image dimensions */
+ dstinfo->image_width = srcinfo->image_width;
+ dstinfo->image_height = srcinfo->image_height;
+ dstinfo->input_components = srcinfo->num_components;
+ dstinfo->in_color_space = srcinfo->jpeg_color_space;
+ dstinfo->jpeg_width = srcinfo->output_width;
+ dstinfo->jpeg_height = srcinfo->output_height;
+ dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
+ dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
+ /* Initialize all parameters to default values */
+ jpeg_set_defaults(dstinfo);
+ /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
+ * Fix it to get the right header markers for the image colorspace.
+ */
+ jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
+ dstinfo->data_precision = srcinfo->data_precision;
+ dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
+ /* Copy the source's quantization tables. */
+ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+ if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
+ qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
+ if (*qtblptr == NULL)
+ *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
+ MEMCOPY((*qtblptr)->quantval,
+ srcinfo->quant_tbl_ptrs[tblno]->quantval,
+ SIZEOF((*qtblptr)->quantval));
+ (*qtblptr)->sent_table = FALSE;
+ }
+ }
+ /* Copy the source's per-component info.
+ * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
+ */
+ dstinfo->num_components = srcinfo->num_components;
+ if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
+ MAX_COMPONENTS);
+ for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
+ ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
+ outcomp->component_id = incomp->component_id;
+ outcomp->h_samp_factor = incomp->h_samp_factor;
+ outcomp->v_samp_factor = incomp->v_samp_factor;
+ outcomp->quant_tbl_no = incomp->quant_tbl_no;
+ /* Make sure saved quantization table for component matches the qtable
+ * slot. If not, the input file re-used this qtable slot.
+ * IJG encoder currently cannot duplicate this.
+ */
+ tblno = outcomp->quant_tbl_no;
+ if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
+ srcinfo->quant_tbl_ptrs[tblno] == NULL)
+ ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
+ slot_quant = srcinfo->quant_tbl_ptrs[tblno];
+ c_quant = incomp->quant_table;
+ if (c_quant != NULL) {
+ for (coefi = 0; coefi < DCTSIZE2; coefi++) {
+ if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
+ ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
+ }
+ }
+ /* Note: we do not copy the source's Huffman table assignments;
+ * instead we rely on jpeg_set_colorspace to have made a suitable choice.
+ */
+ }
+ /* Also copy JFIF version and resolution information, if available.
+ * Strictly speaking this isn't "critical" info, but it's nearly
+ * always appropriate to copy it if available. In particular,
+ * if the application chooses to copy JFIF 1.02 extension markers from
+ * the source file, we need to copy the version to make sure we don't
+ * emit a file that has 1.02 extensions but a claimed version of 1.01.
+ * We will *not*, however, copy version info from mislabeled "2.01" files.
+ */
+ if (srcinfo->saw_JFIF_marker) {
+ if (srcinfo->JFIF_major_version == 1) {
+ dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
+ dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
+ }
+ dstinfo->density_unit = srcinfo->density_unit;
+ dstinfo->X_density = srcinfo->X_density;
+ dstinfo->Y_density = srcinfo->Y_density;
+ }
+}
+
+
+/*
+ * Master selection of compression modules for transcoding.
+ * This substitutes for jcinit.c's initialization of the full compressor.
+ */
+
+LOCAL(void)
+transencode_master_selection (j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays)
+{
+ /* Initialize master control (includes parameter checking/processing) */
+ jinit_c_master_control(cinfo, TRUE /* transcode only */);
+
+ /* Entropy encoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_encoder(cinfo);
+ else {
+ jinit_huff_encoder(cinfo);
+ }
+
+ /* We need a special coefficient buffer controller. */
+ transencode_coef_controller(cinfo, coef_arrays);
+
+ jinit_marker_writer(cinfo);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Write the datastream header (SOI, JFIF) immediately.
+ * Frame and scan headers are postponed till later.
+ * This lets application insert special markers after the SOI.
+ */
+ (*cinfo->marker->write_file_header) (cinfo);
+}
+
+
+/*
+ * The rest of this file is a special implementation of the coefficient
+ * buffer controller. This is similar to jccoefct.c, but it handles only
+ * output from presupplied virtual arrays. Furthermore, we generate any
+ * dummy padding blocks on-the-fly rather than expecting them to be present
+ * in the arrays.
+ */
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_c_coef_controller pub; /* public fields */
+
+ JDIMENSION iMCU_row_num; /* iMCU row # within image */
+ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* Virtual block array for each component. */
+ jvirt_barray_ptr * whole_image;
+
+ /* Workspace for constructing dummy blocks at right/bottom edges. */
+ JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+LOCAL(void)
+start_iMCU_row (j_compress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->mcu_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ if (pass_mode != JBUF_CRANK_DEST)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ coef->iMCU_row_num = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Process some data.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF(boolean)
+compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, blockcnt;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ coef->iMCU_row_num * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (coef->iMCU_row_num < last_iMCU_row ||
+ yindex+yoffset < compptr->last_row_height) {
+ /* Fill in pointers to real blocks in this row */
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < blockcnt; xindex++)
+ MCU_buffer[blkn++] = buffer_ptr++;
+ } else {
+ /* At bottom of image, need a whole row of dummy blocks */
+ xindex = 0;
+ }
+ /* Fill in any dummy blocks needed in this row.
+ * Dummy blocks are filled in the same way as in jccoefct.c:
+ * all zeroes in the AC entries, DC entries equal to previous
+ * block's DC value. The init routine has already zeroed the
+ * AC entries, so we need only set the DC entries correctly.
+ */
+ for (; xindex < compptr->MCU_width; xindex++) {
+ MCU_buffer[blkn] = coef->dummy_buffer[blkn];
+ MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
+ blkn++;
+ }
+ }
+ }
+ /* Try to write the MCU. */
+ if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->mcu_ctr = MCU_col_num;
+ return FALSE;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->mcu_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ coef->iMCU_row_num++;
+ start_iMCU_row(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Initialize coefficient buffer controller.
+ *
+ * Each passed coefficient array must be the right size for that
+ * coefficient: width_in_blocks wide and height_in_blocks high,
+ * with unitheight at least v_samp_factor.
+ */
+
+LOCAL(void)
+transencode_coef_controller (j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays)
+{
+ my_coef_ptr coef;
+ JBLOCKROW buffer;
+ int i;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+ coef->pub.start_pass = start_pass_coef;
+ coef->pub.compress_data = compress_output;
+
+ /* Save pointer to virtual arrays */
+ coef->whole_image = coef_arrays;
+
+ /* Allocate and pre-zero space for dummy DCT blocks. */
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ FMEMZERO((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+ coef->dummy_buffer[i] = buffer + i;
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdapimin.c b/plugins/AdvaImg/src/LibJPEG/jdapimin.c
new file mode 100644
index 0000000000..7f1ce4c05b
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdapimin.c
@@ -0,0 +1,396 @@
+/*
+ * jdapimin.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library. These are the "minimum" API routines that may be
+ * needed in either the normal full-decompression case or the
+ * transcoding-only case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jdapistd.c. But also see jcomapi.c for routines
+ * shared by compression and decompression, and jdtrans.c for the transcoding
+ * case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG decompression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL(void)
+jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
+{
+ int i;
+
+ /* Guard against version mismatches between library and caller. */
+ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
+ if (version != JPEG_LIB_VERSION)
+ ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+ if (structsize != SIZEOF(struct jpeg_decompress_struct))
+ ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
+ (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
+
+ /* For debugging purposes, we zero the whole master structure.
+ * But the application has already set the err pointer, and may have set
+ * client_data, so we have to save and restore those fields.
+ * Note: if application hasn't set client_data, tools like Purify may
+ * complain here.
+ */
+ {
+ struct jpeg_error_mgr * err = cinfo->err;
+ void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+ MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
+ cinfo->err = err;
+ cinfo->client_data = client_data;
+ }
+ cinfo->is_decompressor = TRUE;
+
+ /* Initialize a memory manager instance for this object */
+ jinit_memory_mgr((j_common_ptr) cinfo);
+
+ /* Zero out pointers to permanent structures. */
+ cinfo->progress = NULL;
+ cinfo->src = NULL;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++)
+ cinfo->quant_tbl_ptrs[i] = NULL;
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ cinfo->dc_huff_tbl_ptrs[i] = NULL;
+ cinfo->ac_huff_tbl_ptrs[i] = NULL;
+ }
+
+ /* Initialize marker processor so application can override methods
+ * for COM, APPn markers before calling jpeg_read_header.
+ */
+ cinfo->marker_list = NULL;
+ jinit_marker_reader(cinfo);
+
+ /* And initialize the overall input controller. */
+ jinit_input_controller(cinfo);
+
+ /* OK, I'm ready */
+ cinfo->global_state = DSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG decompression object
+ */
+
+GLOBAL(void)
+jpeg_destroy_decompress (j_decompress_ptr cinfo)
+{
+ jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG decompression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL(void)
+jpeg_abort_decompress (j_decompress_ptr cinfo)
+{
+ jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Set default decompression parameters.
+ */
+
+LOCAL(void)
+default_decompress_parms (j_decompress_ptr cinfo)
+{
+ /* Guess the input colorspace, and set output colorspace accordingly. */
+ /* (Wish JPEG committee had provided a real way to specify this...) */
+ /* Note application may override our guesses. */
+ switch (cinfo->num_components) {
+ case 1:
+ cinfo->jpeg_color_space = JCS_GRAYSCALE;
+ cinfo->out_color_space = JCS_GRAYSCALE;
+ break;
+
+ case 3:
+ if (cinfo->saw_JFIF_marker) {
+ cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
+ } else if (cinfo->saw_Adobe_marker) {
+ switch (cinfo->Adobe_transform) {
+ case 0:
+ cinfo->jpeg_color_space = JCS_RGB;
+ break;
+ case 1:
+ cinfo->jpeg_color_space = JCS_YCbCr;
+ break;
+ default:
+ WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+ break;
+ }
+ } else {
+ /* Saw no special markers, try to guess from the component IDs */
+ int cid0 = cinfo->comp_info[0].component_id;
+ int cid1 = cinfo->comp_info[1].component_id;
+ int cid2 = cinfo->comp_info[2].component_id;
+
+ if (cid0 == 1 && cid1 == 2 && cid2 == 3)
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
+ else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
+ cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
+ else {
+ TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+ }
+ }
+ /* Always guess RGB is proper output colorspace. */
+ cinfo->out_color_space = JCS_RGB;
+ break;
+
+ case 4:
+ if (cinfo->saw_Adobe_marker) {
+ switch (cinfo->Adobe_transform) {
+ case 0:
+ cinfo->jpeg_color_space = JCS_CMYK;
+ break;
+ case 2:
+ cinfo->jpeg_color_space = JCS_YCCK;
+ break;
+ default:
+ WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+ cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
+ break;
+ }
+ } else {
+ /* No special markers, assume straight CMYK. */
+ cinfo->jpeg_color_space = JCS_CMYK;
+ }
+ cinfo->out_color_space = JCS_CMYK;
+ break;
+
+ default:
+ cinfo->jpeg_color_space = JCS_UNKNOWN;
+ cinfo->out_color_space = JCS_UNKNOWN;
+ break;
+ }
+
+ /* Set defaults for other decompression parameters. */
+ cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */
+ cinfo->scale_denom = cinfo->block_size;
+ cinfo->output_gamma = 1.0;
+ cinfo->buffered_image = FALSE;
+ cinfo->raw_data_out = FALSE;
+ cinfo->dct_method = JDCT_DEFAULT;
+ cinfo->do_fancy_upsampling = TRUE;
+ cinfo->do_block_smoothing = TRUE;
+ cinfo->quantize_colors = FALSE;
+ /* We set these in case application only sets quantize_colors. */
+ cinfo->dither_mode = JDITHER_FS;
+#ifdef QUANT_2PASS_SUPPORTED
+ cinfo->two_pass_quantize = TRUE;
+#else
+ cinfo->two_pass_quantize = FALSE;
+#endif
+ cinfo->desired_number_of_colors = 256;
+ cinfo->colormap = NULL;
+ /* Initialize for no mode change in buffered-image mode. */
+ cinfo->enable_1pass_quant = FALSE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+}
+
+
+/*
+ * Decompression startup: read start of JPEG datastream to see what's there.
+ * Need only initialize JPEG object and supply a data source before calling.
+ *
+ * This routine will read as far as the first SOS marker (ie, actual start of
+ * compressed data), and will save all tables and parameters in the JPEG
+ * object. It will also initialize the decompression parameters to default
+ * values, and finally return JPEG_HEADER_OK. On return, the application may
+ * adjust the decompression parameters and then call jpeg_start_decompress.
+ * (Or, if the application only wanted to determine the image parameters,
+ * the data need not be decompressed. In that case, call jpeg_abort or
+ * jpeg_destroy to release any temporary space.)
+ * If an abbreviated (tables only) datastream is presented, the routine will
+ * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
+ * re-use the JPEG object to read the abbreviated image datastream(s).
+ * It is unnecessary (but OK) to call jpeg_abort in this case.
+ * The JPEG_SUSPENDED return code only occurs if the data source module
+ * requests suspension of the decompressor. In this case the application
+ * should load more source data and then re-call jpeg_read_header to resume
+ * processing.
+ * If a non-suspending data source is used and require_image is TRUE, then the
+ * return code need not be inspected since only JPEG_HEADER_OK is possible.
+ *
+ * This routine is now just a front end to jpeg_consume_input, with some
+ * extra error checking.
+ */
+
+GLOBAL(int)
+jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
+{
+ int retcode;
+
+ if (cinfo->global_state != DSTATE_START &&
+ cinfo->global_state != DSTATE_INHEADER)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ retcode = jpeg_consume_input(cinfo);
+
+ switch (retcode) {
+ case JPEG_REACHED_SOS:
+ retcode = JPEG_HEADER_OK;
+ break;
+ case JPEG_REACHED_EOI:
+ if (require_image) /* Complain if application wanted an image */
+ ERREXIT(cinfo, JERR_NO_IMAGE);
+ /* Reset to start state; it would be safer to require the application to
+ * call jpeg_abort, but we can't change it now for compatibility reasons.
+ * A side effect is to free any temporary memory (there shouldn't be any).
+ */
+ jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
+ retcode = JPEG_HEADER_TABLES_ONLY;
+ break;
+ case JPEG_SUSPENDED:
+ /* no work */
+ break;
+ }
+
+ return retcode;
+}
+
+
+/*
+ * Consume data in advance of what the decompressor requires.
+ * This can be called at any time once the decompressor object has
+ * been created and a data source has been set up.
+ *
+ * This routine is essentially a state machine that handles a couple
+ * of critical state-transition actions, namely initial setup and
+ * transition from header scanning to ready-for-start_decompress.
+ * All the actual input is done via the input controller's consume_input
+ * method.
+ */
+
+GLOBAL(int)
+jpeg_consume_input (j_decompress_ptr cinfo)
+{
+ int retcode = JPEG_SUSPENDED;
+
+ /* NB: every possible DSTATE value should be listed in this switch */
+ switch (cinfo->global_state) {
+ case DSTATE_START:
+ /* Start-of-datastream actions: reset appropriate modules */
+ (*cinfo->inputctl->reset_input_controller) (cinfo);
+ /* Initialize application's data source module */
+ (*cinfo->src->init_source) (cinfo);
+ cinfo->global_state = DSTATE_INHEADER;
+ /*FALLTHROUGH*/
+ case DSTATE_INHEADER:
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
+ /* Set up default parameters based on header data */
+ default_decompress_parms(cinfo);
+ /* Set global state: ready for start_decompress */
+ cinfo->global_state = DSTATE_READY;
+ }
+ break;
+ case DSTATE_READY:
+ /* Can't advance past first SOS until start_decompress is called */
+ retcode = JPEG_REACHED_SOS;
+ break;
+ case DSTATE_PRELOAD:
+ case DSTATE_PRESCAN:
+ case DSTATE_SCANNING:
+ case DSTATE_RAW_OK:
+ case DSTATE_BUFIMAGE:
+ case DSTATE_BUFPOST:
+ case DSTATE_STOPPING:
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ break;
+ default:
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ return retcode;
+}
+
+
+/*
+ * Have we finished reading the input file?
+ */
+
+GLOBAL(boolean)
+jpeg_input_complete (j_decompress_ptr cinfo)
+{
+ /* Check for valid jpeg object */
+ if (cinfo->global_state < DSTATE_START ||
+ cinfo->global_state > DSTATE_STOPPING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return cinfo->inputctl->eoi_reached;
+}
+
+
+/*
+ * Is there more than one scan?
+ */
+
+GLOBAL(boolean)
+jpeg_has_multiple_scans (j_decompress_ptr cinfo)
+{
+ /* Only valid after jpeg_read_header completes */
+ if (cinfo->global_state < DSTATE_READY ||
+ cinfo->global_state > DSTATE_STOPPING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return cinfo->inputctl->has_multiple_scans;
+}
+
+
+/*
+ * Finish JPEG decompression.
+ *
+ * This will normally just verify the file trailer and release temp storage.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_finish_decompress (j_decompress_ptr cinfo)
+{
+ if ((cinfo->global_state == DSTATE_SCANNING ||
+ cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
+ /* Terminate final pass of non-buffered mode */
+ if (cinfo->output_scanline < cinfo->output_height)
+ ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+ (*cinfo->master->finish_output_pass) (cinfo);
+ cinfo->global_state = DSTATE_STOPPING;
+ } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
+ /* Finishing after a buffered-image operation */
+ cinfo->global_state = DSTATE_STOPPING;
+ } else if (cinfo->global_state != DSTATE_STOPPING) {
+ /* STOPPING = repeat call after a suspension, anything else is error */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ /* Read until EOI */
+ while (! cinfo->inputctl->eoi_reached) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return FALSE; /* Suspend, come back later */
+ }
+ /* Do final cleanup */
+ (*cinfo->src->term_source) (cinfo);
+ /* We can use jpeg_abort to release memory and reset global_state */
+ jpeg_abort((j_common_ptr) cinfo);
+ return TRUE;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdapistd.c b/plugins/AdvaImg/src/LibJPEG/jdapistd.c
new file mode 100644
index 0000000000..9d74537772
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdapistd.c
@@ -0,0 +1,275 @@
+/*
+ * jdapistd.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library. These are the "standard" API routines that are
+ * used in the normal full-decompression case. They are not used by a
+ * transcoding-only application. Note that if an application links in
+ * jpeg_start_decompress, it will end up linking in the entire decompressor.
+ * We thus must separate this file from jdapimin.c to avoid linking the
+ * whole decompression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Decompression initialization.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * If a multipass operating mode was selected, this will do all but the
+ * last pass, and thus may take a great deal of time.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_start_decompress (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state == DSTATE_READY) {
+ /* First call: initialize master control, select active modules */
+ jinit_master_decompress(cinfo);
+ if (cinfo->buffered_image) {
+ /* No more work here; expecting jpeg_start_output next */
+ cinfo->global_state = DSTATE_BUFIMAGE;
+ return TRUE;
+ }
+ cinfo->global_state = DSTATE_PRELOAD;
+ }
+ if (cinfo->global_state == DSTATE_PRELOAD) {
+ /* If file has multiple scans, absorb them all into the coef buffer */
+ if (cinfo->inputctl->has_multiple_scans) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ for (;;) {
+ int retcode;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL)
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ /* Absorb some more input */
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_SUSPENDED)
+ return FALSE;
+ if (retcode == JPEG_REACHED_EOI)
+ break;
+ /* Advance progress counter if appropriate */
+ if (cinfo->progress != NULL &&
+ (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+ if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+ /* jdmaster underestimated number of scans; ratchet up one scan */
+ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+ }
+ }
+ }
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+ }
+ cinfo->output_scan_number = cinfo->input_scan_number;
+ } else if (cinfo->global_state != DSTATE_PRESCAN)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Perform any dummy output passes, and set up for the final pass */
+ return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Set up for an output pass, and perform any dummy pass(es) needed.
+ * Common subroutine for jpeg_start_decompress and jpeg_start_output.
+ * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
+ * Exit: If done, returns TRUE and sets global_state for proper output mode.
+ * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
+ */
+
+LOCAL(boolean)
+output_pass_setup (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state != DSTATE_PRESCAN) {
+ /* First call: do pass setup */
+ (*cinfo->master->prepare_for_output_pass) (cinfo);
+ cinfo->output_scanline = 0;
+ cinfo->global_state = DSTATE_PRESCAN;
+ }
+ /* Loop over any required dummy passes */
+ while (cinfo->master->is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+ /* Crank through the dummy pass */
+ while (cinfo->output_scanline < cinfo->output_height) {
+ JDIMENSION last_scanline;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+ /* Process some data */
+ last_scanline = cinfo->output_scanline;
+ (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
+ &cinfo->output_scanline, (JDIMENSION) 0);
+ if (cinfo->output_scanline == last_scanline)
+ return FALSE; /* No progress made, must suspend */
+ }
+ /* Finish up dummy pass, and set up for another one */
+ (*cinfo->master->finish_output_pass) (cinfo);
+ (*cinfo->master->prepare_for_output_pass) (cinfo);
+ cinfo->output_scanline = 0;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+ }
+ /* Ready for application to drive output pass through
+ * jpeg_read_scanlines or jpeg_read_raw_data.
+ */
+ cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
+ return TRUE;
+}
+
+
+/*
+ * Read some scanlines of data from the JPEG decompressor.
+ *
+ * The return value will be the number of lines actually read.
+ * This may be less than the number requested in several cases,
+ * including bottom of image, data source suspension, and operating
+ * modes that emit multiple scanlines at a time.
+ *
+ * Note: we warn about excess calls to jpeg_read_scanlines() since
+ * this likely signals an application programmer error. However,
+ * an oversize buffer (max_lines > scanlines remaining) is not an error.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
+ JDIMENSION max_lines)
+{
+ JDIMENSION row_ctr;
+
+ if (cinfo->global_state != DSTATE_SCANNING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->output_scanline >= cinfo->output_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Process some data */
+ row_ctr = 0;
+ (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
+ cinfo->output_scanline += row_ctr;
+ return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to read raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
+ JDIMENSION max_lines)
+{
+ JDIMENSION lines_per_iMCU_row;
+
+ if (cinfo->global_state != DSTATE_RAW_OK)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->output_scanline >= cinfo->output_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Verify that at least one iMCU row can be returned. */
+ lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
+ if (max_lines < lines_per_iMCU_row)
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* Decompress directly into user's buffer. */
+ if (! (*cinfo->coef->decompress_data) (cinfo, data))
+ return 0; /* suspension forced, can do nothing more */
+
+ /* OK, we processed one iMCU row. */
+ cinfo->output_scanline += lines_per_iMCU_row;
+ return lines_per_iMCU_row;
+}
+
+
+/* Additional entry points for buffered-image mode. */
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Initialize for an output pass in buffered-image mode.
+ */
+
+GLOBAL(boolean)
+jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
+{
+ if (cinfo->global_state != DSTATE_BUFIMAGE &&
+ cinfo->global_state != DSTATE_PRESCAN)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Limit scan number to valid range */
+ if (scan_number <= 0)
+ scan_number = 1;
+ if (cinfo->inputctl->eoi_reached &&
+ scan_number > cinfo->input_scan_number)
+ scan_number = cinfo->input_scan_number;
+ cinfo->output_scan_number = scan_number;
+ /* Perform any dummy output passes, and set up for the real pass */
+ return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Finish up after an output pass in buffered-image mode.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_finish_output (j_decompress_ptr cinfo)
+{
+ if ((cinfo->global_state == DSTATE_SCANNING ||
+ cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
+ /* Terminate this pass. */
+ /* We do not require the whole pass to have been completed. */
+ (*cinfo->master->finish_output_pass) (cinfo);
+ cinfo->global_state = DSTATE_BUFPOST;
+ } else if (cinfo->global_state != DSTATE_BUFPOST) {
+ /* BUFPOST = repeat call after a suspension, anything else is error */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ /* Read markers looking for SOS or EOI */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ ! cinfo->inputctl->eoi_reached) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return FALSE; /* Suspend, come back later */
+ }
+ cinfo->global_state = DSTATE_BUFIMAGE;
+ return TRUE;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jdarith.c b/plugins/AdvaImg/src/LibJPEG/jdarith.c
new file mode 100644
index 0000000000..092f8af5fe
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdarith.c
@@ -0,0 +1,776 @@
+/*
+ * jdarith.c
+ *
+ * Developed 1997-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy decoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy decoder object for arithmetic decoding. */
+
+typedef struct {
+ struct jpeg_entropy_decoder pub; /* public fields */
+
+ INT32 c; /* C register, base of coding interval + input bit buffer */
+ INT32 a; /* A register, normalized size of coding interval */
+ int ct; /* bit shift counter, # of bits left in bit buffer part of C */
+ /* init: ct = -16 */
+ /* run: ct = 0..7 */
+ /* error: ct = -1 */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+
+ /* Pointers to statistics areas (these workspaces have image lifespan) */
+ unsigned char * dc_stats[NUM_ARITH_TBLS];
+ unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+ /* Statistics bin for coding with fixed probability 0.5 */
+ unsigned char fixed_bin[4];
+} arith_entropy_decoder;
+
+typedef arith_entropy_decoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+
+LOCAL(int)
+get_byte (j_decompress_ptr cinfo)
+/* Read next input byte; we do not support suspension in this module. */
+{
+ struct jpeg_source_mgr * src = cinfo->src;
+
+ if (src->bytes_in_buffer == 0)
+ if (! (*src->fill_input_buffer) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+ src->bytes_in_buffer--;
+ return GETJOCTET(*src->next_input_byte++);
+}
+
+
+/*
+ * The core arithmetic decoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Return value is 0 or 1 (binary decision).
+ *
+ * Note: I've changed the handling of the code base & bit
+ * buffer register C compared to other implementations
+ * based on the standards layout & procedures.
+ * While it also contains both the actual base of the
+ * coding interval (16 bits) and the next-bits buffer,
+ * the cut-point between these two parts is floating
+ * (instead of fixed) with the bit shift counter CT.
+ * Thus, we also need only one (variable instead of
+ * fixed size) shift for the LPS/MPS decision, and
+ * we can get away with any renormalization update
+ * of C (except for new data insertion, of course).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(int)
+arith_decode (j_decompress_ptr cinfo, unsigned char *st)
+{
+ register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+ register unsigned char nl, nm;
+ register INT32 qe, temp;
+ register int sv, data;
+
+ /* Renormalization & data input per section D.2.6 */
+ while (e->a < 0x8000L) {
+ if (--e->ct < 0) {
+ /* Need to fetch next data byte */
+ if (cinfo->unread_marker)
+ data = 0; /* stuff zero data */
+ else {
+ data = get_byte(cinfo); /* read next input byte */
+ if (data == 0xFF) { /* zero stuff or marker code */
+ do data = get_byte(cinfo);
+ while (data == 0xFF); /* swallow extra 0xFF bytes */
+ if (data == 0)
+ data = 0xFF; /* discard stuffed zero byte */
+ else {
+ /* Note: Different from the Huffman decoder, hitting
+ * a marker while processing the compressed data
+ * segment is legal in arithmetic coding.
+ * The convention is to supply zero data
+ * then until decoding is complete.
+ */
+ cinfo->unread_marker = data;
+ data = 0;
+ }
+ }
+ }
+ e->c = (e->c << 8) | data; /* insert data into C register */
+ if ((e->ct += 8) < 0) /* update bit shift counter */
+ /* Need more initial bytes */
+ if (++e->ct == 0)
+ /* Got 2 initial bytes -> re-init A and exit loop */
+ e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
+ }
+ e->a <<= 1;
+ }
+
+ /* Fetch values from our compact representation of Table D.3(D.2):
+ * Qe values and probability estimation state machine
+ */
+ sv = *st;
+ qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
+ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
+ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
+
+ /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
+ temp = e->a - qe;
+ e->a = temp;
+ temp <<= e->ct;
+ if (e->c >= temp) {
+ e->c -= temp;
+ /* Conditional LPS (less probable symbol) exchange */
+ if (e->a < qe) {
+ e->a = qe;
+ *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
+ } else {
+ e->a = qe;
+ *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
+ sv ^= 0x80; /* Exchange LPS/MPS */
+ }
+ } else if (e->a < 0x8000L) {
+ /* Conditional MPS (more probable symbol) exchange */
+ if (e->a < qe) {
+ *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
+ sv ^= 0x80; /* Exchange LPS/MPS */
+ } else {
+ *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
+ }
+ }
+
+ return sv >> 7;
+}
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ */
+
+LOCAL(void)
+process_restart (j_decompress_ptr cinfo)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci;
+ jpeg_component_info * compptr;
+
+ /* Advance past the RSTn marker */
+ if (! (*cinfo->marker->read_restart_marker) (cinfo))
+ ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+ /* Re-initialize statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+ MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+ /* Reset DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
+ (cinfo->progressive_mode && cinfo->Ss)) {
+ MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+ }
+ }
+
+ /* Reset arithmetic decoding variables */
+ entropy->c = 0;
+ entropy->a = 0;
+ entropy->ct = -16; /* force reading 2 initial bytes to fill C */
+
+ /* Reset restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Arithmetic MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * arithmetic-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl, sign;
+ int v, m;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+ /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.19: Decode_DC_DIFF */
+ if (arith_decode(cinfo, st) == 0)
+ entropy->dc_context[ci] = 0;
+ else {
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, st + 1);
+ st += 2; st += sign;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+ else
+ entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ entropy->last_dc_val[ci] += v;
+ }
+
+ /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
+ (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ unsigned char *st;
+ int tbl, sign, k;
+ int v, m;
+ const int * natural_order;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ natural_order = cinfo->natural_order;
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+ /* Figure F.20: Decode_AC_coefficients */
+ for (k = cinfo->Ss; k <= cinfo->Se; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (arith_decode(cinfo, st)) break; /* EOB flag */
+ while (arith_decode(cinfo, st + 1) == 0) {
+ st += 3; k++;
+ if (k > cinfo->Se) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* spectral overflow */
+ return TRUE;
+ }
+ }
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, entropy->fixed_bin);
+ st += 2;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ if (arith_decode(cinfo, st)) {
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ }
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ /* Scale and output coefficient in natural (dezigzagged) order */
+ (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ unsigned char *st;
+ int p1, blkn;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ st = entropy->fixed_bin; /* use fixed probability estimation */
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ /* Encoded data is simply the next bit of the two's-complement DC value */
+ if (arith_decode(cinfo, st))
+ MCU_data[blkn][0][0] |= p1;
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ JBLOCKROW block;
+ JCOEFPTR thiscoef;
+ unsigned char *st;
+ int tbl, k, kex;
+ int p1, m1;
+ const int * natural_order;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ natural_order = cinfo->natural_order;
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
+
+ /* Establish EOBx (previous stage end-of-block) index */
+ for (kex = cinfo->Se; kex > 0; kex--)
+ if ((*block)[natural_order[kex]]) break;
+
+ for (k = cinfo->Ss; k <= cinfo->Se; k++) {
+ st = entropy->ac_stats[tbl] + 3 * (k - 1);
+ if (k > kex)
+ if (arith_decode(cinfo, st)) break; /* EOB flag */
+ for (;;) {
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef) { /* previously nonzero coef */
+ if (arith_decode(cinfo, st + 2)) {
+ if (*thiscoef < 0)
+ *thiscoef += m1;
+ else
+ *thiscoef += p1;
+ }
+ break;
+ }
+ if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
+ if (arith_decode(cinfo, entropy->fixed_bin))
+ *thiscoef = m1;
+ else
+ *thiscoef = p1;
+ break;
+ }
+ st += 3; k++;
+ if (k > cinfo->Se) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* spectral overflow */
+ return TRUE;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ jpeg_component_info * compptr;
+ JBLOCKROW block;
+ unsigned char *st;
+ int blkn, ci, tbl, sign, k;
+ int v, m;
+ const int * natural_order;
+
+ /* Process restart marker if needed */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ process_restart(cinfo);
+ entropy->restarts_to_go--;
+ }
+
+ if (entropy->ct == -1) return TRUE; /* if error do nothing */
+
+ natural_order = cinfo->natural_order;
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+
+ /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+ tbl = compptr->dc_tbl_no;
+
+ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+ st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+ /* Figure F.19: Decode_DC_DIFF */
+ if (arith_decode(cinfo, st) == 0)
+ entropy->dc_context[ci] = 0;
+ else {
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, st + 1);
+ st += 2; st += sign;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+ entropy->dc_context[ci] = 0; /* zero diff category */
+ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+ entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+ else
+ entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ entropy->last_dc_val[ci] += v;
+ }
+
+ (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
+
+ /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+ if (cinfo->lim_Se == 0) continue;
+ tbl = compptr->ac_tbl_no;
+ k = 0;
+
+ /* Figure F.20: Decode_AC_coefficients */
+ do {
+ st = entropy->ac_stats[tbl] + 3 * k;
+ if (arith_decode(cinfo, st)) break; /* EOB flag */
+ for (;;) {
+ k++;
+ if (arith_decode(cinfo, st + 1)) break;
+ st += 3;
+ if (k >= cinfo->lim_Se) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* spectral overflow */
+ return TRUE;
+ }
+ }
+ /* Figure F.21: Decoding nonzero value v */
+ /* Figure F.22: Decoding the sign of v */
+ sign = arith_decode(cinfo, entropy->fixed_bin);
+ st += 2;
+ /* Figure F.23: Decoding the magnitude category of v */
+ if ((m = arith_decode(cinfo, st)) != 0) {
+ if (arith_decode(cinfo, st)) {
+ m <<= 1;
+ st = entropy->ac_stats[tbl] +
+ (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+ while (arith_decode(cinfo, st)) {
+ if ((m <<= 1) == 0x8000) {
+ WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+ entropy->ct = -1; /* magnitude overflow */
+ return TRUE;
+ }
+ st += 1;
+ }
+ }
+ }
+ v = m;
+ /* Figure F.24: Decoding the magnitude bit pattern of v */
+ st += 14;
+ while (m >>= 1)
+ if (arith_decode(cinfo, st)) v |= m;
+ v += 1; if (sign) v = -v;
+ (*block)[natural_order[k]] = (JCOEF) v;
+ } while (k < cinfo->lim_Se);
+ }
+
+ return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+ int ci, tbl;
+ jpeg_component_info * compptr;
+
+ if (cinfo->progressive_mode) {
+ /* Validate progressive scan parameters */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Se != 0)
+ goto bad;
+ } else {
+ /* need not check Ss/Se < 0 since they came from unsigned bytes */
+ if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
+ goto bad;
+ /* AC scans may have only one component */
+ if (cinfo->comps_in_scan != 1)
+ goto bad;
+ }
+ if (cinfo->Ah != 0) {
+ /* Successive approximation refinement scan: must have Al = Ah-1. */
+ if (cinfo->Ah-1 != cinfo->Al)
+ goto bad;
+ }
+ if (cinfo->Al > 13) { /* need not check for < 0 */
+ bad:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ }
+ /* Update progression status, and verify that scan order is legal.
+ * Note that inter-scan inconsistencies are treated as warnings
+ * not fatal errors ... not clear if this is right way to behave.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+ int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+ if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+ for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+ int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+ if (cinfo->Ah != expected)
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+ coef_bit_ptr[coefi] = cinfo->Al;
+ }
+ }
+ /* Select MCU decoding routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_first;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_refine;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_refine;
+ }
+ } else {
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+ * This ought to be an error condition, but we make it a warning.
+ */
+ if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+ (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+ /* Select MCU decoding routine */
+ entropy->pub.decode_mcu = decode_mcu;
+ }
+
+ /* Allocate & initialize requested statistics areas */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+ tbl = compptr->dc_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->dc_stats[tbl] == NULL)
+ entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+ MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+ /* Initialize DC predictions to 0 */
+ entropy->last_dc_val[ci] = 0;
+ entropy->dc_context[ci] = 0;
+ }
+ if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
+ (cinfo->progressive_mode && cinfo->Ss)) {
+ tbl = compptr->ac_tbl_no;
+ if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+ ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+ if (entropy->ac_stats[tbl] == NULL)
+ entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+ MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+ }
+ }
+
+ /* Initialize arithmetic decoding variables */
+ entropy->c = 0;
+ entropy->a = 0;
+ entropy->ct = -16; /* force reading 2 initial bytes to fill C */
+
+ /* Initialize restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_arith_decoder (j_decompress_ptr cinfo)
+{
+ arith_entropy_ptr entropy;
+ int i;
+
+ entropy = (arith_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(arith_entropy_decoder));
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+ entropy->pub.start_pass = start_pass;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ entropy->dc_stats[i] = NULL;
+ entropy->ac_stats[i] = NULL;
+ }
+
+ /* Initialize index for fixed probability estimation */
+ entropy->fixed_bin[0] = 113;
+
+ if (cinfo->progressive_mode) {
+ /* Create progression status table */
+ int *coef_bit_ptr, ci;
+ cinfo->coef_bits = (int (*)[DCTSIZE2])
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components*DCTSIZE2*SIZEOF(int));
+ coef_bit_ptr = & cinfo->coef_bits[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (i = 0; i < DCTSIZE2; i++)
+ *coef_bit_ptr++ = -1;
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdatadst.c b/plugins/AdvaImg/src/LibJPEG/jdatadst.c
new file mode 100644
index 0000000000..6981fb73de
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdatadst.c
@@ -0,0 +1,267 @@
+/*
+ * jdatadst.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009-2012 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains compression data destination routines for the case of
+ * emitting JPEG data to memory or to a file (or any stdio stream).
+ * While these routines are sufficient for most applications,
+ * some will want to use a different destination manager.
+ * IMPORTANT: we assume that fwrite() will correctly transcribe an array of
+ * JOCTETs into 8-bit-wide elements on external storage. If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+
+/* Expanded data destination object for stdio output */
+
+typedef struct {
+ struct jpeg_destination_mgr pub; /* public fields */
+
+ FILE * outfile; /* target stream */
+ JOCTET * buffer; /* start of buffer */
+} my_destination_mgr;
+
+typedef my_destination_mgr * my_dest_ptr;
+
+#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
+
+
+/* Expanded data destination object for memory output */
+
+typedef struct {
+ struct jpeg_destination_mgr pub; /* public fields */
+
+ unsigned char ** outbuffer; /* target buffer */
+ unsigned long * outsize;
+ unsigned char * newbuffer; /* newly allocated buffer */
+ JOCTET * buffer; /* start of buffer */
+ size_t bufsize;
+} my_mem_destination_mgr;
+
+typedef my_mem_destination_mgr * my_mem_dest_ptr;
+
+
+/*
+ * Initialize destination --- called by jpeg_start_compress
+ * before any data is actually written.
+ */
+
+METHODDEF(void)
+init_destination (j_compress_ptr cinfo)
+{
+ my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
+
+ /* Allocate the output buffer --- it will be released when done with image */
+ dest->buffer = (JOCTET *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
+
+ dest->pub.next_output_byte = dest->buffer;
+ dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
+}
+
+METHODDEF(void)
+init_mem_destination (j_compress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Empty the output buffer --- called whenever buffer fills up.
+ *
+ * In typical applications, this should write the entire output buffer
+ * (ignoring the current state of next_output_byte & free_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been dumped.
+ *
+ * In applications that need to be able to suspend compression due to output
+ * overrun, a FALSE return indicates that the buffer cannot be emptied now.
+ * In this situation, the compressor will return to its caller (possibly with
+ * an indication that it has not accepted all the supplied scanlines). The
+ * application should resume compression after it has made more room in the
+ * output buffer. Note that there are substantial restrictions on the use of
+ * suspension --- see the documentation.
+ *
+ * When suspending, the compressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_output_byte & free_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point will be regenerated after resumption, so do not
+ * write it out when emptying the buffer externally.
+ */
+
+METHODDEF(boolean)
+empty_output_buffer (j_compress_ptr cinfo)
+{
+ my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
+
+ if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
+ (size_t) OUTPUT_BUF_SIZE)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+
+ dest->pub.next_output_byte = dest->buffer;
+ dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
+
+ return TRUE;
+}
+
+METHODDEF(boolean)
+empty_mem_output_buffer (j_compress_ptr cinfo)
+{
+ size_t nextsize;
+ JOCTET * nextbuffer;
+ my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
+
+ /* Try to allocate new buffer with double size */
+ nextsize = dest->bufsize * 2;
+ nextbuffer = (JOCTET *) malloc(nextsize);
+
+ if (nextbuffer == NULL)
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
+
+ MEMCOPY(nextbuffer, dest->buffer, dest->bufsize);
+
+ if (dest->newbuffer != NULL)
+ free(dest->newbuffer);
+
+ dest->newbuffer = nextbuffer;
+
+ dest->pub.next_output_byte = nextbuffer + dest->bufsize;
+ dest->pub.free_in_buffer = dest->bufsize;
+
+ dest->buffer = nextbuffer;
+ dest->bufsize = nextsize;
+
+ return TRUE;
+}
+
+
+/*
+ * Terminate destination --- called by jpeg_finish_compress
+ * after all data has been written. Usually needs to flush buffer.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF(void)
+term_destination (j_compress_ptr cinfo)
+{
+ my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
+ size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
+
+ /* Write any data remaining in the buffer */
+ if (datacount > 0) {
+ if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+ }
+ fflush(dest->outfile);
+ /* Make sure we wrote the output file OK */
+ if (ferror(dest->outfile))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+METHODDEF(void)
+term_mem_destination (j_compress_ptr cinfo)
+{
+ my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
+
+ *dest->outbuffer = dest->buffer;
+ *dest->outsize = dest->bufsize - dest->pub.free_in_buffer;
+}
+
+
+/*
+ * Prepare for output to a stdio stream.
+ * The caller must have already opened the stream, and is responsible
+ * for closing it after finishing compression.
+ */
+
+GLOBAL(void)
+jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
+{
+ my_dest_ptr dest;
+
+ /* The destination object is made permanent so that multiple JPEG images
+ * can be written to the same file without re-executing jpeg_stdio_dest.
+ * This makes it dangerous to use this manager and a different destination
+ * manager serially with the same JPEG object, because their private object
+ * sizes may be different. Caveat programmer.
+ */
+ if (cinfo->dest == NULL) { /* first time for this JPEG object? */
+ cinfo->dest = (struct jpeg_destination_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_destination_mgr));
+ }
+
+ dest = (my_dest_ptr) cinfo->dest;
+ dest->pub.init_destination = init_destination;
+ dest->pub.empty_output_buffer = empty_output_buffer;
+ dest->pub.term_destination = term_destination;
+ dest->outfile = outfile;
+}
+
+
+/*
+ * Prepare for output to a memory buffer.
+ * The caller may supply an own initial buffer with appropriate size.
+ * Otherwise, or when the actual data output exceeds the given size,
+ * the library adapts the buffer size as necessary.
+ * The standard library functions malloc/free are used for allocating
+ * larger memory, so the buffer is available to the application after
+ * finishing compression, and then the application is responsible for
+ * freeing the requested memory.
+ */
+
+GLOBAL(void)
+jpeg_mem_dest (j_compress_ptr cinfo,
+ unsigned char ** outbuffer, unsigned long * outsize)
+{
+ my_mem_dest_ptr dest;
+
+ if (outbuffer == NULL || outsize == NULL) /* sanity check */
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* The destination object is made permanent so that multiple JPEG images
+ * can be written to the same buffer without re-executing jpeg_mem_dest.
+ */
+ if (cinfo->dest == NULL) { /* first time for this JPEG object? */
+ cinfo->dest = (struct jpeg_destination_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_mem_destination_mgr));
+ }
+
+ dest = (my_mem_dest_ptr) cinfo->dest;
+ dest->pub.init_destination = init_mem_destination;
+ dest->pub.empty_output_buffer = empty_mem_output_buffer;
+ dest->pub.term_destination = term_mem_destination;
+ dest->outbuffer = outbuffer;
+ dest->outsize = outsize;
+ dest->newbuffer = NULL;
+
+ if (*outbuffer == NULL || *outsize == 0) {
+ /* Allocate initial buffer */
+ dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE);
+ if (dest->newbuffer == NULL)
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
+ *outsize = OUTPUT_BUF_SIZE;
+ }
+
+ dest->pub.next_output_byte = dest->buffer = *outbuffer;
+ dest->pub.free_in_buffer = dest->bufsize = *outsize;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdatasrc.c b/plugins/AdvaImg/src/LibJPEG/jdatasrc.c
new file mode 100644
index 0000000000..7be59a88a1
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdatasrc.c
@@ -0,0 +1,275 @@
+/*
+ * jdatasrc.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains decompression data source routines for the case of
+ * reading JPEG data from memory or from a file (or any stdio stream).
+ * While these routines are sufficient for most applications,
+ * some will want to use a different source manager.
+ * IMPORTANT: we assume that fread() will correctly transcribe an array of
+ * JOCTETs from 8-bit-wide elements on external storage. If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+
+/* Expanded data source object for stdio input */
+
+typedef struct {
+ struct jpeg_source_mgr pub; /* public fields */
+
+ FILE * infile; /* source stream */
+ JOCTET * buffer; /* start of buffer */
+ boolean start_of_file; /* have we gotten any data yet? */
+} my_source_mgr;
+
+typedef my_source_mgr * my_src_ptr;
+
+#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
+
+
+/*
+ * Initialize source --- called by jpeg_read_header
+ * before any data is actually read.
+ */
+
+METHODDEF(void)
+init_source (j_decompress_ptr cinfo)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+
+ /* We reset the empty-input-file flag for each image,
+ * but we don't clear the input buffer.
+ * This is correct behavior for reading a series of images from one source.
+ */
+ src->start_of_file = TRUE;
+}
+
+METHODDEF(void)
+init_mem_source (j_decompress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Fill the input buffer --- called whenever buffer is emptied.
+ *
+ * In typical applications, this should read fresh data into the buffer
+ * (ignoring the current state of next_input_byte & bytes_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been reloaded. It is not necessary to
+ * fill the buffer entirely, only to obtain at least one more byte.
+ *
+ * There is no such thing as an EOF return. If the end of the file has been
+ * reached, the routine has a choice of ERREXIT() or inserting fake data into
+ * the buffer. In most cases, generating a warning message and inserting a
+ * fake EOI marker is the best course of action --- this will allow the
+ * decompressor to output however much of the image is there. However,
+ * the resulting error message is misleading if the real problem is an empty
+ * input file, so we handle that case specially.
+ *
+ * In applications that need to be able to suspend compression due to input
+ * not being available yet, a FALSE return indicates that no more data can be
+ * obtained right now, but more may be forthcoming later. In this situation,
+ * the decompressor will return to its caller (with an indication of the
+ * number of scanlines it has read, if any). The application should resume
+ * decompression after it has loaded more data into the input buffer. Note
+ * that there are substantial restrictions on the use of suspension --- see
+ * the documentation.
+ *
+ * When suspending, the decompressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point must be rescanned after resumption, so move it to
+ * the front of the buffer rather than discarding it.
+ */
+
+METHODDEF(boolean)
+fill_input_buffer (j_decompress_ptr cinfo)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+ size_t nbytes;
+
+ nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
+
+ if (nbytes <= 0) {
+ if (src->start_of_file) /* Treat empty input file as fatal error */
+ ERREXIT(cinfo, JERR_INPUT_EMPTY);
+ WARNMS(cinfo, JWRN_JPEG_EOF);
+ /* Insert a fake EOI marker */
+ src->buffer[0] = (JOCTET) 0xFF;
+ src->buffer[1] = (JOCTET) JPEG_EOI;
+ nbytes = 2;
+ }
+
+ src->pub.next_input_byte = src->buffer;
+ src->pub.bytes_in_buffer = nbytes;
+ src->start_of_file = FALSE;
+
+ return TRUE;
+}
+
+METHODDEF(boolean)
+fill_mem_input_buffer (j_decompress_ptr cinfo)
+{
+ static const JOCTET mybuffer[4] = {
+ (JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0
+ };
+
+ /* The whole JPEG data is expected to reside in the supplied memory
+ * buffer, so any request for more data beyond the given buffer size
+ * is treated as an error.
+ */
+ WARNMS(cinfo, JWRN_JPEG_EOF);
+
+ /* Insert a fake EOI marker */
+
+ cinfo->src->next_input_byte = mybuffer;
+ cinfo->src->bytes_in_buffer = 2;
+
+ return TRUE;
+}
+
+
+/*
+ * Skip data --- used to skip over a potentially large amount of
+ * uninteresting data (such as an APPn marker).
+ *
+ * Writers of suspendable-input applications must note that skip_input_data
+ * is not granted the right to give a suspension return. If the skip extends
+ * beyond the data currently in the buffer, the buffer can be marked empty so
+ * that the next read will cause a fill_input_buffer call that can suspend.
+ * Arranging for additional bytes to be discarded before reloading the input
+ * buffer is the application writer's problem.
+ */
+
+METHODDEF(void)
+skip_input_data (j_decompress_ptr cinfo, long num_bytes)
+{
+ struct jpeg_source_mgr * src = cinfo->src;
+
+ /* Just a dumb implementation for now. Could use fseek() except
+ * it doesn't work on pipes. Not clear that being smart is worth
+ * any trouble anyway --- large skips are infrequent.
+ */
+ if (num_bytes > 0) {
+ while (num_bytes > (long) src->bytes_in_buffer) {
+ num_bytes -= (long) src->bytes_in_buffer;
+ (void) (*src->fill_input_buffer) (cinfo);
+ /* note we assume that fill_input_buffer will never return FALSE,
+ * so suspension need not be handled.
+ */
+ }
+ src->next_input_byte += (size_t) num_bytes;
+ src->bytes_in_buffer -= (size_t) num_bytes;
+ }
+}
+
+
+/*
+ * An additional method that can be provided by data source modules is the
+ * resync_to_restart method for error recovery in the presence of RST markers.
+ * For the moment, this source module just uses the default resync method
+ * provided by the JPEG library. That method assumes that no backtracking
+ * is possible.
+ */
+
+
+/*
+ * Terminate source --- called by jpeg_finish_decompress
+ * after all data has been read. Often a no-op.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF(void)
+term_source (j_decompress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Prepare for input from a stdio stream.
+ * The caller must have already opened the stream, and is responsible
+ * for closing it after finishing decompression.
+ */
+
+GLOBAL(void)
+jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
+{
+ my_src_ptr src;
+
+ /* The source object and input buffer are made permanent so that a series
+ * of JPEG images can be read from the same file by calling jpeg_stdio_src
+ * only before the first one. (If we discarded the buffer at the end of
+ * one image, we'd likely lose the start of the next one.)
+ * This makes it unsafe to use this manager and a different source
+ * manager serially with the same JPEG object. Caveat programmer.
+ */
+ if (cinfo->src == NULL) { /* first time for this JPEG object? */
+ cinfo->src = (struct jpeg_source_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_source_mgr));
+ src = (my_src_ptr) cinfo->src;
+ src->buffer = (JOCTET *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ INPUT_BUF_SIZE * SIZEOF(JOCTET));
+ }
+
+ src = (my_src_ptr) cinfo->src;
+ src->pub.init_source = init_source;
+ src->pub.fill_input_buffer = fill_input_buffer;
+ src->pub.skip_input_data = skip_input_data;
+ src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
+ src->pub.term_source = term_source;
+ src->infile = infile;
+ src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
+ src->pub.next_input_byte = NULL; /* until buffer loaded */
+}
+
+
+/*
+ * Prepare for input from a supplied memory buffer.
+ * The buffer must contain the whole JPEG data.
+ */
+
+GLOBAL(void)
+jpeg_mem_src (j_decompress_ptr cinfo,
+ unsigned char * inbuffer, unsigned long insize)
+{
+ struct jpeg_source_mgr * src;
+
+ if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
+ ERREXIT(cinfo, JERR_INPUT_EMPTY);
+
+ /* The source object is made permanent so that a series of JPEG images
+ * can be read from the same buffer by calling jpeg_mem_src only before
+ * the first one.
+ */
+ if (cinfo->src == NULL) { /* first time for this JPEG object? */
+ cinfo->src = (struct jpeg_source_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(struct jpeg_source_mgr));
+ }
+
+ src = cinfo->src;
+ src->init_source = init_mem_source;
+ src->fill_input_buffer = fill_mem_input_buffer;
+ src->skip_input_data = skip_input_data;
+ src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
+ src->term_source = term_source;
+ src->bytes_in_buffer = (size_t) insize;
+ src->next_input_byte = (JOCTET *) inbuffer;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdcoefct.c b/plugins/AdvaImg/src/LibJPEG/jdcoefct.c
new file mode 100644
index 0000000000..ed02fc378f
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdcoefct.c
@@ -0,0 +1,741 @@
+/*
+ * jdcoefct.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 2002-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for decompression.
+ * This controller is the top level of the JPEG decompressor proper.
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+ *
+ * In buffered-image mode, this controller is the interface between
+ * input-oriented processing and output-oriented processing.
+ * Also, the input side (only) is used when reading a file for transcoding.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+/* Block smoothing is only applicable for progressive JPEG, so: */
+#ifndef D_PROGRESSIVE_SUPPORTED
+#undef BLOCK_SMOOTHING_SUPPORTED
+#endif
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_coef_controller pub; /* public fields */
+
+ /* These variables keep track of the current location of the input side. */
+ /* cinfo->input_iMCU_row is also used for this. */
+ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* The output side's location is represented by cinfo->output_iMCU_row. */
+
+ /* In single-pass modes, it's sufficient to buffer just one MCU.
+ * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
+ * and let the entropy decoder write into that workspace each time.
+ * (On 80x86, the workspace is FAR even though it's not really very big;
+ * this is to keep the module interfaces unchanged when a large coefficient
+ * buffer is necessary.)
+ * In multi-pass modes, this array points to the current MCU's blocks
+ * within the virtual arrays; it is used only by the input side.
+ */
+ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* In multi-pass modes, we need a virtual block array for each component. */
+ jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+#endif
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* When doing block smoothing, we latch coefficient Al values here */
+ int * coef_bits_latch;
+#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
+#endif
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+/* Forward declarations */
+METHODDEF(int) decompress_onepass
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+METHODDEF(int) decompress_data
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
+METHODDEF(int) decompress_smooth_data
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+
+
+LOCAL(void)
+start_iMCU_row (j_decompress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row (input side) */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->MCU_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for an input processing pass.
+ */
+
+METHODDEF(void)
+start_input_pass (j_decompress_ptr cinfo)
+{
+ cinfo->input_iMCU_row = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Initialize for an output processing pass.
+ */
+
+METHODDEF(void)
+start_output_pass (j_decompress_ptr cinfo)
+{
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* If multipass, check to see whether to use block smoothing on this pass */
+ if (coef->pub.coef_arrays != NULL) {
+ if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+ coef->pub.decompress_data = decompress_smooth_data;
+ else
+ coef->pub.decompress_data = decompress_data;
+ }
+#endif
+ cinfo->output_iMCU_row = 0;
+}
+
+
+/*
+ * Decompress and return some data in the single-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Input and output must run in lockstep since we have only a one-MCU buffer.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(int)
+decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, useful_width;
+ JSAMPARRAY output_ptr;
+ JDIMENSION start_col, output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Loop to process as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
+ if (cinfo->lim_Se) /* can bypass in DC only case */
+ FMEMZERO((void FAR *) coef->MCU_buffer[0],
+ (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ /* Determine where data should go in output_buf and do the IDCT thing.
+ * We skip dummy blocks at the right and bottom edges (but blkn gets
+ * incremented past them!). Note the inner loop relies on having
+ * allocated the MCU_buffer[] blocks sequentially.
+ */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed) {
+ blkn += compptr->MCU_blocks;
+ continue;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+ useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ output_ptr = output_buf[compptr->component_index] +
+ yoffset * compptr->DCT_v_scaled_size;
+ start_col = MCU_col_num * compptr->MCU_sample_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (cinfo->input_iMCU_row < last_iMCU_row ||
+ yoffset+yindex < compptr->last_row_height) {
+ output_col = start_col;
+ for (xindex = 0; xindex < useful_width; xindex++) {
+ (*inverse_DCT) (cinfo, compptr,
+ (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
+ output_ptr, output_col);
+ output_col += compptr->DCT_h_scaled_size;
+ }
+ }
+ blkn += compptr->MCU_width;
+ output_ptr += compptr->DCT_v_scaled_size;
+ }
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ cinfo->output_iMCU_row++;
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Dummy consume-input routine for single-pass operation.
+ */
+
+METHODDEF(int)
+dummy_consume_data (j_decompress_ptr cinfo)
+{
+ return JPEG_SUSPENDED; /* Always indicate nothing was done */
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Consume input data and store it in the full-image coefficient buffer.
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+ * ie, v_samp_factor block rows for each component in the scan.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ */
+
+METHODDEF(int)
+consume_data (j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ cinfo->input_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ /* Note: entropy decoder expects buffer to be zeroed,
+ * but this is handled automatically by the memory manager
+ * because we requested a pre-zeroed array.
+ */
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ /* Try to fetch the MCU. */
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Decompress and return some data in the multi-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ */
+
+METHODDEF(int)
+decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num;
+ int ci, block_row, block_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number < cinfo->output_scan_number ||
+ (cinfo->input_scan_number == cinfo->output_scan_number &&
+ cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed)
+ continue;
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ cinfo->output_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row];
+ output_col = 0;
+ for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
+ output_ptr, output_col);
+ buffer_ptr++;
+ output_col += compptr->DCT_h_scaled_size;
+ }
+ output_ptr += compptr->DCT_v_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+
+/*
+ * This code applies interblock smoothing as described by section K.8
+ * of the JPEG standard: the first 5 AC coefficients are estimated from
+ * the DC values of a DCT block and its 8 neighboring blocks.
+ * We apply smoothing only for progressive JPEG decoding, and only if
+ * the coefficients it can estimate are not yet known to full precision.
+ */
+
+/* Natural-order array positions of the first 5 zigzag-order coefficients */
+#define Q01_POS 1
+#define Q10_POS 8
+#define Q20_POS 16
+#define Q11_POS 9
+#define Q02_POS 2
+
+/*
+ * Determine whether block smoothing is applicable and safe.
+ * We also latch the current states of the coef_bits[] entries for the
+ * AC coefficients; otherwise, if the input side of the decompressor
+ * advances into a new scan, we might think the coefficients are known
+ * more accurately than they really are.
+ */
+
+LOCAL(boolean)
+smoothing_ok (j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ boolean smoothing_useful = FALSE;
+ int ci, coefi;
+ jpeg_component_info *compptr;
+ JQUANT_TBL * qtable;
+ int * coef_bits;
+ int * coef_bits_latch;
+
+ if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
+ return FALSE;
+
+ /* Allocate latch area if not already done */
+ if (coef->coef_bits_latch == NULL)
+ coef->coef_bits_latch = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components *
+ (SAVED_COEFS * SIZEOF(int)));
+ coef_bits_latch = coef->coef_bits_latch;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* All components' quantization values must already be latched. */
+ if ((qtable = compptr->quant_table) == NULL)
+ return FALSE;
+ /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
+ if (qtable->quantval[0] == 0 ||
+ qtable->quantval[Q01_POS] == 0 ||
+ qtable->quantval[Q10_POS] == 0 ||
+ qtable->quantval[Q20_POS] == 0 ||
+ qtable->quantval[Q11_POS] == 0 ||
+ qtable->quantval[Q02_POS] == 0)
+ return FALSE;
+ /* DC values must be at least partly known for all components. */
+ coef_bits = cinfo->coef_bits[ci];
+ if (coef_bits[0] < 0)
+ return FALSE;
+ /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+ for (coefi = 1; coefi <= 5; coefi++) {
+ coef_bits_latch[coefi] = coef_bits[coefi];
+ if (coef_bits[coefi] != 0)
+ smoothing_useful = TRUE;
+ }
+ coef_bits_latch += SAVED_COEFS;
+ }
+
+ return smoothing_useful;
+}
+
+
+/*
+ * Variant of decompress_data for use when doing block smoothing.
+ */
+
+METHODDEF(int)
+decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num, last_block_column;
+ int ci, block_row, block_rows, access_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+ boolean first_row, last_row;
+ JBLOCK workspace;
+ int *coef_bits;
+ JQUANT_TBL *quanttbl;
+ INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
+ int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
+ int Al, pred;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ ! cinfo->inputctl->eoi_reached) {
+ if (cinfo->input_scan_number == cinfo->output_scan_number) {
+ /* If input is working on current scan, we ordinarily want it to
+ * have completed the current row. But if input scan is DC,
+ * we want it to keep one row ahead so that next block row's DC
+ * values are up to date.
+ */
+ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
+ if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
+ break;
+ }
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed)
+ continue;
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row) {
+ block_rows = compptr->v_samp_factor;
+ access_rows = block_rows * 2; /* this and next iMCU row */
+ last_row = FALSE;
+ } else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ access_rows = block_rows; /* this iMCU row only */
+ last_row = TRUE;
+ }
+ /* Align the virtual buffer for this component. */
+ if (cinfo->output_iMCU_row > 0) {
+ access_rows += compptr->v_samp_factor; /* prior iMCU row too */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+ (JDIMENSION) access_rows, FALSE);
+ buffer += compptr->v_samp_factor; /* point to current iMCU row */
+ first_row = FALSE;
+ } else {
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
+ first_row = TRUE;
+ }
+ /* Fetch component-dependent info */
+ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+ quanttbl = compptr->quant_table;
+ Q00 = quanttbl->quantval[0];
+ Q01 = quanttbl->quantval[Q01_POS];
+ Q10 = quanttbl->quantval[Q10_POS];
+ Q20 = quanttbl->quantval[Q20_POS];
+ Q11 = quanttbl->quantval[Q11_POS];
+ Q02 = quanttbl->quantval[Q02_POS];
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row];
+ if (first_row && block_row == 0)
+ prev_block_row = buffer_ptr;
+ else
+ prev_block_row = buffer[block_row-1];
+ if (last_row && block_row == block_rows-1)
+ next_block_row = buffer_ptr;
+ else
+ next_block_row = buffer[block_row+1];
+ /* We fetch the surrounding DC values using a sliding-register approach.
+ * Initialize all nine here so as to do the right thing on narrow pics.
+ */
+ DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
+ DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
+ DC7 = DC8 = DC9 = (int) next_block_row[0][0];
+ output_col = 0;
+ last_block_column = compptr->width_in_blocks - 1;
+ for (block_num = 0; block_num <= last_block_column; block_num++) {
+ /* Fetch current DCT block into workspace so we can modify it. */
+ jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
+ /* Update DC values */
+ if (block_num < last_block_column) {
+ DC3 = (int) prev_block_row[1][0];
+ DC6 = (int) buffer_ptr[1][0];
+ DC9 = (int) next_block_row[1][0];
+ }
+ /* Compute coefficient estimates per K.8.
+ * An estimate is applied only if coefficient is still zero,
+ * and is not known to be fully accurate.
+ */
+ /* AC01 */
+ if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
+ num = 36 * Q00 * (DC4 - DC6);
+ if (num >= 0) {
+ pred = (int) (((Q01<<7) + num) / (Q01<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q01<<7) - num) / (Q01<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[1] = (JCOEF) pred;
+ }
+ /* AC10 */
+ if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
+ num = 36 * Q00 * (DC2 - DC8);
+ if (num >= 0) {
+ pred = (int) (((Q10<<7) + num) / (Q10<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q10<<7) - num) / (Q10<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[8] = (JCOEF) pred;
+ }
+ /* AC20 */
+ if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
+ num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
+ if (num >= 0) {
+ pred = (int) (((Q20<<7) + num) / (Q20<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q20<<7) - num) / (Q20<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[16] = (JCOEF) pred;
+ }
+ /* AC11 */
+ if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
+ num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
+ if (num >= 0) {
+ pred = (int) (((Q11<<7) + num) / (Q11<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q11<<7) - num) / (Q11<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[9] = (JCOEF) pred;
+ }
+ /* AC02 */
+ if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
+ num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
+ if (num >= 0) {
+ pred = (int) (((Q02<<7) + num) / (Q02<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q02<<7) - num) / (Q02<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[2] = (JCOEF) pred;
+ }
+ /* OK, do the IDCT */
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
+ output_ptr, output_col);
+ /* Advance for next column */
+ DC1 = DC2; DC2 = DC3;
+ DC4 = DC5; DC5 = DC6;
+ DC7 = DC8; DC8 = DC9;
+ buffer_ptr++, prev_block_row++, next_block_row++;
+ output_col += compptr->DCT_h_scaled_size;
+ }
+ output_ptr += compptr->DCT_v_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* BLOCK_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_d_coef_controller *) coef;
+ coef->pub.start_input_pass = start_input_pass;
+ coef->pub.start_output_pass = start_output_pass;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ coef->coef_bits_latch = NULL;
+#endif
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ /* Note we ask for a pre-zeroed array. */
+ int ci, access_rows;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ access_rows = compptr->v_samp_factor;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* If block smoothing could be used, need a bigger window */
+ if (cinfo->progressive_mode)
+ access_rows *= 3;
+#endif
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) access_rows);
+ }
+ coef->pub.consume_data = consume_data;
+ coef->pub.decompress_data = decompress_data;
+ coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */
+ FMEMZERO((void FAR *) buffer,
+ (size_t) (D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)));
+ coef->pub.consume_data = dummy_consume_data;
+ coef->pub.decompress_data = decompress_onepass;
+ coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdcolor.c b/plugins/AdvaImg/src/LibJPEG/jdcolor.c
new file mode 100644
index 0000000000..83e4d069ab
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdcolor.c
@@ -0,0 +1,512 @@
+/*
+ * jdcolor.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains output colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_deconverter pub; /* public fields */
+
+ /* Private state for YCC->RGB conversion */
+ int * Cr_r_tab; /* => table for Cr to R conversion */
+ int * Cb_b_tab; /* => table for Cb to B conversion */
+ INT32 * Cr_g_tab; /* => table for Cr to G conversion */
+ INT32 * Cb_g_tab; /* => table for Cb to G conversion */
+
+ /* Private state for RGB->Y conversion */
+ INT32 * rgb_y_tab; /* => table for RGB to Y conversion */
+} my_color_deconverter;
+
+typedef my_color_deconverter * my_cconvert_ptr;
+
+
+/**************** YCbCr -> RGB conversion: most common case **************/
+/**************** RGB -> Y conversion: less common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ *
+ * R = Y + 1.40200 * Cr
+ * G = Y - 0.34414 * Cb - 0.71414 * Cr
+ * B = Y + 1.77200 * Cb
+ *
+ * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
+ *
+ * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ * Notice that Y, being an integral input, does not contribute any fraction
+ * so it need not participate in the rounding.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times Cb and Cr for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable. It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
+ * values for the G calculation are left scaled up, since we must add them
+ * together before rounding.
+ */
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+/* We allocate one big table for RGB->Y conversion and divide it up into
+ * three parts, instead of doing three alloc_small requests. This lets us
+ * use a single table base address, which can be held in a register in the
+ * inner loops on many machines (more than can hold all three addresses,
+ * anyway).
+ */
+
+#define R_Y_OFF 0 /* offset to R => Y section */
+#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
+#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
+#define TABLE_SIZE (3*(MAXJSAMPLE+1))
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ */
+
+LOCAL(void)
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ int i;
+ INT32 x;
+ SHIFT_TEMPS
+
+ cconvert->Cr_r_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ cconvert->Cb_b_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ cconvert->Cr_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+ cconvert->Cb_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+
+ for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+ /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+ /* Cr=>R value is nearest int to 1.40200 * x */
+ cconvert->Cr_r_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+ /* Cb=>B value is nearest int to 1.77200 * x */
+ cconvert->Cb_b_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+ /* Cr=>G value is scaled-up -0.71414 * x */
+ cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+ /* Cb=>G value is scaled-up -0.34414 * x */
+ /* We also add in ONE_HALF so that need not do it in inner loop */
+ cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the output colorspace.
+ *
+ * Note that we change from noninterleaved, one-plane-per-component format
+ * to interleaved-pixel format. The output buffer is therefore three times
+ * as wide as the input buffer.
+ * A starting row offset is provided only for the input buffer. The caller
+ * can easily adjust the passed output_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+METHODDEF(void)
+ycc_rgb_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int y, cb, cr;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ register int * Crrtab = cconvert->Cr_r_tab;
+ register int * Cbbtab = cconvert->Cb_b_tab;
+ register INT32 * Crgtab = cconvert->Cr_g_tab;
+ register INT32 * Cbgtab = cconvert->Cb_g_tab;
+ SHIFT_TEMPS
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ y = GETJSAMPLE(inptr0[col]);
+ cb = GETJSAMPLE(inptr1[col]);
+ cr = GETJSAMPLE(inptr2[col]);
+ /* Range-limiting is essential due to noise introduced by DCT losses. */
+ outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
+ outptr[RGB_GREEN] = range_limit[y +
+ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+ SCALEBITS))];
+ outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
+ outptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/**************** Cases other than YCbCr -> RGB **************/
+
+
+/*
+ * Initialize for RGB->grayscale colorspace conversion.
+ */
+
+LOCAL(void)
+build_rgb_y_table (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ INT32 * rgb_y_tab;
+ INT32 i;
+
+ /* Allocate and fill in the conversion tables. */
+ cconvert->rgb_y_tab = rgb_y_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (TABLE_SIZE * SIZEOF(INT32)));
+
+ for (i = 0; i <= MAXJSAMPLE; i++) {
+ rgb_y_tab[i+R_Y_OFF] = FIX(0.29900) * i;
+ rgb_y_tab[i+G_Y_OFF] = FIX(0.58700) * i;
+ rgb_y_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
+ }
+}
+
+
+/*
+ * Convert RGB to grayscale.
+ */
+
+METHODDEF(void)
+rgb_gray_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int r, g, b;
+ register INT32 * ctab = cconvert->rgb_y_tab;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ r = GETJSAMPLE(inptr0[col]);
+ g = GETJSAMPLE(inptr1[col]);
+ b = GETJSAMPLE(inptr2[col]);
+ /* Y */
+ outptr[col] = (JSAMPLE)
+ ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+ >> SCALEBITS);
+ }
+ }
+}
+
+
+/*
+ * No colorspace change, but conversion from separate-planes
+ * to interleaved representation.
+ */
+
+METHODDEF(void)
+rgb_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ /* We can dispense with GETJSAMPLE() here */
+ outptr[RGB_RED] = inptr0[col];
+ outptr[RGB_GREEN] = inptr1[col];
+ outptr[RGB_BLUE] = inptr2[col];
+ outptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/*
+ * Color conversion for no colorspace change: just copy the data,
+ * converting from separate-planes to interleaved representation.
+ */
+
+METHODDEF(void)
+null_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION count;
+ register int num_components = cinfo->num_components;
+ JDIMENSION num_cols = cinfo->output_width;
+ int ci;
+
+ while (--num_rows >= 0) {
+ for (ci = 0; ci < num_components; ci++) {
+ inptr = input_buf[ci][input_row];
+ outptr = output_buf[0] + ci;
+ for (count = num_cols; count > 0; count--) {
+ *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
+ outptr += num_components;
+ }
+ }
+ input_row++;
+ output_buf++;
+ }
+}
+
+
+/*
+ * Color conversion for grayscale: just copy the data.
+ * This also works for YCbCr -> grayscale conversion, in which
+ * we just copy the Y (luminance) component and ignore chrominance.
+ */
+
+METHODDEF(void)
+grayscale_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
+ num_rows, cinfo->output_width);
+}
+
+
+/*
+ * Convert grayscale to RGB: just duplicate the graylevel three times.
+ * This is provided to support applications that don't want to cope
+ * with grayscale as a separate case.
+ */
+
+METHODDEF(void)
+gray_rgb_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+
+ while (--num_rows >= 0) {
+ inptr = input_buf[0][input_row++];
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ /* We can dispense with GETJSAMPLE() here */
+ outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
+ outptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/*
+ * Adobe-style YCCK->CMYK conversion.
+ * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume build_ycc_rgb_table has been called.
+ */
+
+METHODDEF(void)
+ycck_cmyk_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int y, cb, cr;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2, inptr3;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ register int * Crrtab = cconvert->Cr_r_tab;
+ register int * Cbbtab = cconvert->Cb_b_tab;
+ register INT32 * Crgtab = cconvert->Cr_g_tab;
+ register INT32 * Cbgtab = cconvert->Cb_g_tab;
+ SHIFT_TEMPS
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ inptr3 = input_buf[3][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ y = GETJSAMPLE(inptr0[col]);
+ cb = GETJSAMPLE(inptr1[col]);
+ cr = GETJSAMPLE(inptr2[col]);
+ /* Range-limiting is essential due to noise introduced by DCT losses. */
+ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
+ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
+ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+ SCALEBITS)))];
+ outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
+ /* K passes through unchanged */
+ outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
+ outptr += 4;
+ }
+ }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF(void)
+start_pass_dcolor (j_decompress_ptr cinfo)
+{
+ /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for output colorspace conversion.
+ */
+
+GLOBAL(void)
+jinit_color_deconverter (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert;
+ int ci;
+
+ cconvert = (my_cconvert_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_color_deconverter));
+ cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
+ cconvert->pub.start_pass = start_pass_dcolor;
+
+ /* Make sure num_components agrees with jpeg_color_space */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->num_components != 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ case JCS_RGB:
+ case JCS_YCbCr:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ case JCS_CMYK:
+ case JCS_YCCK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ default: /* JCS_UNKNOWN can be anything */
+ if (cinfo->num_components < 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+ }
+
+ /* Set out_color_components and conversion method based on requested space.
+ * Also clear the component_needed flags for any unused components,
+ * so that earlier pipeline stages can avoid useless computation.
+ */
+
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ cinfo->out_color_components = 1;
+ if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
+ cinfo->jpeg_color_space == JCS_YCbCr) {
+ cconvert->pub.color_convert = grayscale_convert;
+ /* For color->grayscale conversion, only the Y (0) component is needed */
+ for (ci = 1; ci < cinfo->num_components; ci++)
+ cinfo->comp_info[ci].component_needed = FALSE;
+ } else if (cinfo->jpeg_color_space == JCS_RGB) {
+ cconvert->pub.color_convert = rgb_gray_convert;
+ build_rgb_y_table(cinfo);
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_RGB:
+ cinfo->out_color_components = RGB_PIXELSIZE;
+ if (cinfo->jpeg_color_space == JCS_YCbCr) {
+ cconvert->pub.color_convert = ycc_rgb_convert;
+ build_ycc_rgb_table(cinfo);
+ } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
+ cconvert->pub.color_convert = gray_rgb_convert;
+ } else if (cinfo->jpeg_color_space == JCS_RGB) {
+ cconvert->pub.color_convert = rgb_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_CMYK:
+ cinfo->out_color_components = 4;
+ if (cinfo->jpeg_color_space == JCS_YCCK) {
+ cconvert->pub.color_convert = ycck_cmyk_convert;
+ build_ycc_rgb_table(cinfo);
+ } else if (cinfo->jpeg_color_space == JCS_CMYK) {
+ cconvert->pub.color_convert = null_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ default:
+ /* Permit null conversion to same output space */
+ if (cinfo->out_color_space == cinfo->jpeg_color_space) {
+ cinfo->out_color_components = cinfo->num_components;
+ cconvert->pub.color_convert = null_convert;
+ } else /* unsupported non-null conversion */
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+ }
+
+ if (cinfo->quantize_colors)
+ cinfo->output_components = 1; /* single colormapped output component */
+ else
+ cinfo->output_components = cinfo->out_color_components;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdct.h b/plugins/AdvaImg/src/LibJPEG/jdct.h
new file mode 100644
index 0000000000..360dec80c9
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdct.h
@@ -0,0 +1,393 @@
+/*
+ * jdct.h
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file contains common declarations for the forward and
+ * inverse DCT modules. These declarations are private to the DCT managers
+ * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
+ * The individual DCT algorithms are kept in separate files to ease
+ * machine-dependent tuning (e.g., assembly coding).
+ */
+
+
+/*
+ * A forward DCT routine is given a pointer to an input sample array and
+ * a pointer to a work area of type DCTELEM[]; the DCT is to be performed
+ * in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
+ * for 12-bit samples. (NOTE: Floating-point DCT implementations use an
+ * array of type FAST_FLOAT, instead.)
+ * The input data is to be fetched from the sample array starting at a
+ * specified column. (Any row offset needed will be applied to the array
+ * pointer before it is passed to the FDCT code.)
+ * Note that the number of samples fetched by the FDCT routine is
+ * DCT_h_scaled_size * DCT_v_scaled_size.
+ * The DCT outputs are returned scaled up by a factor of 8; they therefore
+ * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
+ * convention improves accuracy in integer implementations and saves some
+ * work in floating-point ones.
+ * Quantization of the output coefficients is done by jcdctmgr.c.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef int DCTELEM; /* 16 or 32 bits is fine */
+#else
+typedef INT32 DCTELEM; /* must have 32 bits */
+#endif
+
+typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
+ JSAMPARRAY sample_data,
+ JDIMENSION start_col));
+typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
+ JSAMPARRAY sample_data,
+ JDIMENSION start_col));
+
+
+/*
+ * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
+ * to an output sample array. The routine must dequantize the input data as
+ * well as perform the IDCT; for dequantization, it uses the multiplier table
+ * pointed to by compptr->dct_table. The output data is to be placed into the
+ * sample array starting at a specified column. (Any row offset needed will
+ * be applied to the array pointer before it is passed to the IDCT code.)
+ * Note that the number of samples emitted by the IDCT routine is
+ * DCT_h_scaled_size * DCT_v_scaled_size.
+ */
+
+/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
+
+/*
+ * Each IDCT routine has its own ideas about the best dct_table element type.
+ */
+
+typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
+#if BITS_IN_JSAMPLE == 8
+typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
+#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
+#else
+typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
+#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
+#endif
+typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
+
+
+/*
+ * Each IDCT routine is responsible for range-limiting its results and
+ * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
+ * be quite far out of range if the input data is corrupt, so a bulletproof
+ * range-limiting step is required. We use a mask-and-table-lookup method
+ * to do the combined operations quickly. See the comments with
+ * prepare_range_limit_table (in jdmaster.c) for more info.
+ */
+
+#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
+
+#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_fdct_islow jFDislow
+#define jpeg_fdct_ifast jFDifast
+#define jpeg_fdct_float jFDfloat
+#define jpeg_fdct_7x7 jFD7x7
+#define jpeg_fdct_6x6 jFD6x6
+#define jpeg_fdct_5x5 jFD5x5
+#define jpeg_fdct_4x4 jFD4x4
+#define jpeg_fdct_3x3 jFD3x3
+#define jpeg_fdct_2x2 jFD2x2
+#define jpeg_fdct_1x1 jFD1x1
+#define jpeg_fdct_9x9 jFD9x9
+#define jpeg_fdct_10x10 jFD10x10
+#define jpeg_fdct_11x11 jFD11x11
+#define jpeg_fdct_12x12 jFD12x12
+#define jpeg_fdct_13x13 jFD13x13
+#define jpeg_fdct_14x14 jFD14x14
+#define jpeg_fdct_15x15 jFD15x15
+#define jpeg_fdct_16x16 jFD16x16
+#define jpeg_fdct_16x8 jFD16x8
+#define jpeg_fdct_14x7 jFD14x7
+#define jpeg_fdct_12x6 jFD12x6
+#define jpeg_fdct_10x5 jFD10x5
+#define jpeg_fdct_8x4 jFD8x4
+#define jpeg_fdct_6x3 jFD6x3
+#define jpeg_fdct_4x2 jFD4x2
+#define jpeg_fdct_2x1 jFD2x1
+#define jpeg_fdct_8x16 jFD8x16
+#define jpeg_fdct_7x14 jFD7x14
+#define jpeg_fdct_6x12 jFD6x12
+#define jpeg_fdct_5x10 jFD5x10
+#define jpeg_fdct_4x8 jFD4x8
+#define jpeg_fdct_3x6 jFD3x6
+#define jpeg_fdct_2x4 jFD2x4
+#define jpeg_fdct_1x2 jFD1x2
+#define jpeg_idct_islow jRDislow
+#define jpeg_idct_ifast jRDifast
+#define jpeg_idct_float jRDfloat
+#define jpeg_idct_7x7 jRD7x7
+#define jpeg_idct_6x6 jRD6x6
+#define jpeg_idct_5x5 jRD5x5
+#define jpeg_idct_4x4 jRD4x4
+#define jpeg_idct_3x3 jRD3x3
+#define jpeg_idct_2x2 jRD2x2
+#define jpeg_idct_1x1 jRD1x1
+#define jpeg_idct_9x9 jRD9x9
+#define jpeg_idct_10x10 jRD10x10
+#define jpeg_idct_11x11 jRD11x11
+#define jpeg_idct_12x12 jRD12x12
+#define jpeg_idct_13x13 jRD13x13
+#define jpeg_idct_14x14 jRD14x14
+#define jpeg_idct_15x15 jRD15x15
+#define jpeg_idct_16x16 jRD16x16
+#define jpeg_idct_16x8 jRD16x8
+#define jpeg_idct_14x7 jRD14x7
+#define jpeg_idct_12x6 jRD12x6
+#define jpeg_idct_10x5 jRD10x5
+#define jpeg_idct_8x4 jRD8x4
+#define jpeg_idct_6x3 jRD6x3
+#define jpeg_idct_4x2 jRD4x2
+#define jpeg_idct_2x1 jRD2x1
+#define jpeg_idct_8x16 jRD8x16
+#define jpeg_idct_7x14 jRD7x14
+#define jpeg_idct_6x12 jRD6x12
+#define jpeg_idct_5x10 jRD5x10
+#define jpeg_idct_4x8 jRD4x8
+#define jpeg_idct_3x6 jRD3x8
+#define jpeg_idct_2x4 jRD2x4
+#define jpeg_idct_1x2 jRD1x2
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Extern declarations for the forward and inverse DCT routines. */
+
+EXTERN(void) jpeg_fdct_islow
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_ifast
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_float
+ JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_7x7
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_6x6
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_5x5
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_4x4
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_3x3
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_2x2
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_1x1
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_9x9
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_10x10
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_11x11
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_12x12
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_13x13
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_14x14
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_15x15
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_16x16
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_16x8
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_14x7
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_12x6
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_10x5
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_8x4
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_6x3
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_4x2
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_2x1
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_8x16
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_7x14
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_6x12
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_5x10
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_4x8
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_3x6
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_2x4
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+EXTERN(void) jpeg_fdct_1x2
+ JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
+
+EXTERN(void) jpeg_idct_islow
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_ifast
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_float
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_7x7
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_6x6
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_5x5
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_3x3
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_1x1
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_9x9
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_10x10
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_11x11
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_12x12
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_13x13
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_14x14
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_15x15
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_16x16
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_16x8
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_14x7
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_12x6
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_10x5
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_8x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_6x3
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x1
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_8x16
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_7x14
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_6x12
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_5x10
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x8
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_3x6
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_1x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+
+
+/*
+ * Macros for handling fixed-point arithmetic; these are used by many
+ * but not all of the DCT/IDCT modules.
+ *
+ * All values are expected to be of type INT32.
+ * Fractional constants are scaled left by CONST_BITS bits.
+ * CONST_BITS is defined within each module using these macros,
+ * and may differ from one module to the next.
+ */
+
+#define ONE ((INT32) 1)
+#define CONST_SCALE (ONE << CONST_BITS)
+
+/* Convert a positive real constant to an integer scaled by CONST_SCALE.
+ * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
+ * thus causing a lot of useless floating-point operations at run time.
+ */
+
+#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
+
+/* Descale and correctly round an INT32 value that's scaled by N bits.
+ * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
+ * the fudge factor is correct for either sign of X.
+ */
+
+#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * This macro is used only when the two inputs will actually be no more than
+ * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
+ * full 32x32 multiply. This provides a useful speedup on many machines.
+ * Unfortunately there is no way to specify a 16x16->32 multiply portably
+ * in C, but some C compilers will do the right thing if you provide the
+ * correct combination of casts.
+ */
+
+#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
+#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
+#endif
+#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
+#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
+#endif
+
+#ifndef MULTIPLY16C16 /* default definition */
+#define MULTIPLY16C16(var,const) ((var) * (const))
+#endif
+
+/* Same except both inputs are variables. */
+
+#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
+#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
+#endif
+
+#ifndef MULTIPLY16V16 /* default definition */
+#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
+#endif
diff --git a/plugins/AdvaImg/src/LibJPEG/jddctmgr.c b/plugins/AdvaImg/src/LibJPEG/jddctmgr.c
new file mode 100644
index 0000000000..0ded9d5741
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jddctmgr.c
@@ -0,0 +1,384 @@
+/*
+ * jddctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2002-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the inverse-DCT management logic.
+ * This code selects a particular IDCT implementation to be used,
+ * and it performs related housekeeping chores. No code in this file
+ * is executed per IDCT step, only during output pass setup.
+ *
+ * Note that the IDCT routines are responsible for performing coefficient
+ * dequantization as well as the IDCT proper. This module sets up the
+ * dequantization multiplier table needed by the IDCT routine.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+
+/*
+ * The decompressor input side (jdinput.c) saves away the appropriate
+ * quantization table for each component at the start of the first scan
+ * involving that component. (This is necessary in order to correctly
+ * decode files that reuse Q-table slots.)
+ * When we are ready to make an output pass, the saved Q-table is converted
+ * to a multiplier table that will actually be used by the IDCT routine.
+ * The multiplier table contents are IDCT-method-dependent. To support
+ * application changes in IDCT method between scans, we can remake the
+ * multiplier tables if necessary.
+ * In buffered-image mode, the first output pass may occur before any data
+ * has been seen for some components, and thus before their Q-tables have
+ * been saved away. To handle this case, multiplier tables are preset
+ * to zeroes; the result of the IDCT will be a neutral gray level.
+ */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+ struct jpeg_inverse_dct pub; /* public fields */
+
+ /* This array contains the IDCT method code that each multiplier table
+ * is currently set up for, or -1 if it's not yet set up.
+ * The actual multiplier tables are pointed to by dct_table in the
+ * per-component comp_info structures.
+ */
+ int cur_method[MAX_COMPONENTS];
+} my_idct_controller;
+
+typedef my_idct_controller * my_idct_ptr;
+
+
+/* Allocated multiplier tables: big enough for any supported variant */
+
+typedef union {
+ ISLOW_MULT_TYPE islow_array[DCTSIZE2];
+#ifdef DCT_IFAST_SUPPORTED
+ IFAST_MULT_TYPE ifast_array[DCTSIZE2];
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ FLOAT_MULT_TYPE float_array[DCTSIZE2];
+#endif
+} multiplier_table;
+
+
+/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef IDCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Prepare for an output pass.
+ * Here we select the proper IDCT routine for each component and build
+ * a matching multiplier table.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+ my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
+ int ci, i;
+ jpeg_component_info *compptr;
+ int method = 0;
+ inverse_DCT_method_ptr method_ptr = NULL;
+ JQUANT_TBL * qtbl;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Select the proper IDCT routine for this component's scaling */
+ switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
+#ifdef IDCT_SCALING_SUPPORTED
+ case ((1 << 8) + 1):
+ method_ptr = jpeg_idct_1x1;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((2 << 8) + 2):
+ method_ptr = jpeg_idct_2x2;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((3 << 8) + 3):
+ method_ptr = jpeg_idct_3x3;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((4 << 8) + 4):
+ method_ptr = jpeg_idct_4x4;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((5 << 8) + 5):
+ method_ptr = jpeg_idct_5x5;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((6 << 8) + 6):
+ method_ptr = jpeg_idct_6x6;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((7 << 8) + 7):
+ method_ptr = jpeg_idct_7x7;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((9 << 8) + 9):
+ method_ptr = jpeg_idct_9x9;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((10 << 8) + 10):
+ method_ptr = jpeg_idct_10x10;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((11 << 8) + 11):
+ method_ptr = jpeg_idct_11x11;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((12 << 8) + 12):
+ method_ptr = jpeg_idct_12x12;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((13 << 8) + 13):
+ method_ptr = jpeg_idct_13x13;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((14 << 8) + 14):
+ method_ptr = jpeg_idct_14x14;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((15 << 8) + 15):
+ method_ptr = jpeg_idct_15x15;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((16 << 8) + 16):
+ method_ptr = jpeg_idct_16x16;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((16 << 8) + 8):
+ method_ptr = jpeg_idct_16x8;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((14 << 8) + 7):
+ method_ptr = jpeg_idct_14x7;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((12 << 8) + 6):
+ method_ptr = jpeg_idct_12x6;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((10 << 8) + 5):
+ method_ptr = jpeg_idct_10x5;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((8 << 8) + 4):
+ method_ptr = jpeg_idct_8x4;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((6 << 8) + 3):
+ method_ptr = jpeg_idct_6x3;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((4 << 8) + 2):
+ method_ptr = jpeg_idct_4x2;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((2 << 8) + 1):
+ method_ptr = jpeg_idct_2x1;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((8 << 8) + 16):
+ method_ptr = jpeg_idct_8x16;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((7 << 8) + 14):
+ method_ptr = jpeg_idct_7x14;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((6 << 8) + 12):
+ method_ptr = jpeg_idct_6x12;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((5 << 8) + 10):
+ method_ptr = jpeg_idct_5x10;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((4 << 8) + 8):
+ method_ptr = jpeg_idct_4x8;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((3 << 8) + 6):
+ method_ptr = jpeg_idct_3x6;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((2 << 8) + 4):
+ method_ptr = jpeg_idct_2x4;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+ case ((1 << 8) + 2):
+ method_ptr = jpeg_idct_1x2;
+ method = JDCT_ISLOW; /* jidctint uses islow-style table */
+ break;
+#endif
+ case ((DCTSIZE << 8) + DCTSIZE):
+ switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+ case JDCT_ISLOW:
+ method_ptr = jpeg_idct_islow;
+ method = JDCT_ISLOW;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ method_ptr = jpeg_idct_ifast;
+ method = JDCT_IFAST;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ method_ptr = jpeg_idct_float;
+ method = JDCT_FLOAT;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ break;
+ default:
+ ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+ compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
+ break;
+ }
+ idct->pub.inverse_DCT[ci] = method_ptr;
+ /* Create multiplier table from quant table.
+ * However, we can skip this if the component is uninteresting
+ * or if we already built the table. Also, if no quant table
+ * has yet been saved for the component, we leave the
+ * multiplier table all-zero; we'll be reading zeroes from the
+ * coefficient controller's buffer anyway.
+ */
+ if (! compptr->component_needed || idct->cur_method[ci] == method)
+ continue;
+ qtbl = compptr->quant_table;
+ if (qtbl == NULL) /* happens if no data yet for component */
+ continue;
+ idct->cur_method[ci] = method;
+ switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+ case JDCT_ISLOW:
+ {
+ /* For LL&M IDCT method, multipliers are equal to raw quantization
+ * coefficients, but are stored as ints to ensure access efficiency.
+ */
+ ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ for (i = 0; i < DCTSIZE2; i++) {
+ ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
+ }
+ }
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ {
+ /* For AA&N IDCT method, multipliers are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * For integer operation, the multiplier table is to be scaled by
+ * IFAST_SCALE_BITS.
+ */
+ IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
+#define CONST_BITS 14
+ static const INT16 aanscales[DCTSIZE2] = {
+ /* precomputed values scaled up by 14 bits */
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
+ };
+ SHIFT_TEMPS
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ ifmtbl[i] = (IFAST_MULT_TYPE)
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+ (INT32) aanscales[i]),
+ CONST_BITS-IFAST_SCALE_BITS);
+ }
+ }
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ {
+ /* For float AA&N IDCT method, multipliers are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * We apply a further scale factor of 1/8.
+ */
+ FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
+ int row, col;
+ static const double aanscalefactor[DCTSIZE] = {
+ 1.0, 1.387039845, 1.306562965, 1.175875602,
+ 1.0, 0.785694958, 0.541196100, 0.275899379
+ };
+
+ i = 0;
+ for (row = 0; row < DCTSIZE; row++) {
+ for (col = 0; col < DCTSIZE; col++) {
+ fmtbl[i] = (FLOAT_MULT_TYPE)
+ ((double) qtbl->quantval[i] *
+ aanscalefactor[row] * aanscalefactor[col] * 0.125);
+ i++;
+ }
+ }
+ }
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ }
+}
+
+
+/*
+ * Initialize IDCT manager.
+ */
+
+GLOBAL(void)
+jinit_inverse_dct (j_decompress_ptr cinfo)
+{
+ my_idct_ptr idct;
+ int ci;
+ jpeg_component_info *compptr;
+
+ idct = (my_idct_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_idct_controller));
+ cinfo->idct = (struct jpeg_inverse_dct *) idct;
+ idct->pub.start_pass = start_pass;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Allocate and pre-zero a multiplier table for each component */
+ compptr->dct_table =
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(multiplier_table));
+ MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
+ /* Mark multiplier table not yet set up for any method */
+ idct->cur_method[ci] = -1;
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdhuff.c b/plugins/AdvaImg/src/LibJPEG/jdhuff.c
new file mode 100644
index 0000000000..06f92fe47f
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdhuff.c
@@ -0,0 +1,1541 @@
+/*
+ * jdhuff.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2006-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy decoding routines.
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Much of the complexity here has to do with supporting input suspension.
+ * If the data source module demands suspension, we want to be able to back
+ * up to the start of the current MCU. To do this, we copy state variables
+ * into local working storage, and update them back to the permanent
+ * storage only upon successful completion of an MCU.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Derived data constructed for each Huffman table */
+
+#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
+
+typedef struct {
+ /* Basic tables: (element [0] of each array is unused) */
+ INT32 maxcode[18]; /* largest code of length k (-1 if none) */
+ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+ INT32 valoffset[17]; /* huffval[] offset for codes of length k */
+ /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
+ * the smallest code of length k; so given a code of length k, the
+ * corresponding symbol is huffval[code + valoffset[k]]
+ */
+
+ /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+ JHUFF_TBL *pub;
+
+ /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
+ * the input data stream. If the next Huffman code is no more
+ * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+ * the corresponding symbol directly from these tables.
+ */
+ int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
+ UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
+} d_derived_tbl;
+
+
+/*
+ * Fetching the next N bits from the input stream is a time-critical operation
+ * for the Huffman decoders. We implement it with a combination of inline
+ * macros and out-of-line subroutines. Note that N (the number of bits
+ * demanded at one time) never exceeds 15 for JPEG use.
+ *
+ * We read source bytes into get_buffer and dole out bits as needed.
+ * If get_buffer already contains enough bits, they are fetched in-line
+ * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
+ * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
+ * as full as possible (not just to the number of bits needed; this
+ * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
+ * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
+ * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
+ * at least the requested number of bits --- dummy zeroes are inserted if
+ * necessary.
+ */
+
+typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
+#define BIT_BUF_SIZE 32 /* size of buffer in bits */
+
+/* If long is > 32 bits on your machine, and shifting/masking longs is
+ * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
+ * appropriately should be a win. Unfortunately we can't define the size
+ * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
+ * because not all machines measure sizeof in 8-bit bytes.
+ */
+
+typedef struct { /* Bitreading state saved across MCUs */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+} bitread_perm_state;
+
+typedef struct { /* Bitreading working state within an MCU */
+ /* Current data source location */
+ /* We need a copy, rather than munging the original, in case of suspension */
+ const JOCTET * next_input_byte; /* => next byte to read from source */
+ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
+ /* Bit input buffer --- note these values are kept in register variables,
+ * not in this struct, inside the inner loops.
+ */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+ /* Pointer needed by jpeg_fill_bit_buffer. */
+ j_decompress_ptr cinfo; /* back link to decompress master record */
+} bitread_working_state;
+
+/* Macros to declare and load/save bitread local variables. */
+#define BITREAD_STATE_VARS \
+ register bit_buf_type get_buffer; \
+ register int bits_left; \
+ bitread_working_state br_state
+
+#define BITREAD_LOAD_STATE(cinfop,permstate) \
+ br_state.cinfo = cinfop; \
+ br_state.next_input_byte = cinfop->src->next_input_byte; \
+ br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
+ get_buffer = permstate.get_buffer; \
+ bits_left = permstate.bits_left;
+
+#define BITREAD_SAVE_STATE(cinfop,permstate) \
+ cinfop->src->next_input_byte = br_state.next_input_byte; \
+ cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
+ permstate.get_buffer = get_buffer; \
+ permstate.bits_left = bits_left
+
+/*
+ * These macros provide the in-line portion of bit fetching.
+ * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
+ * before using GET_BITS, PEEK_BITS, or DROP_BITS.
+ * The variables get_buffer and bits_left are assumed to be locals,
+ * but the state struct might not be (jpeg_huff_decode needs this).
+ * CHECK_BIT_BUFFER(state,n,action);
+ * Ensure there are N bits in get_buffer; if suspend, take action.
+ * val = GET_BITS(n);
+ * Fetch next N bits.
+ * val = PEEK_BITS(n);
+ * Fetch next N bits without removing them from the buffer.
+ * DROP_BITS(n);
+ * Discard next N bits.
+ * The value N should be a simple variable, not an expression, because it
+ * is evaluated multiple times.
+ */
+
+#define CHECK_BIT_BUFFER(state,nbits,action) \
+ { if (bits_left < (nbits)) { \
+ if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
+ { action; } \
+ get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+
+#define GET_BITS(nbits) \
+ (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
+
+#define PEEK_BITS(nbits) \
+ (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
+
+#define DROP_BITS(nbits) \
+ (bits_left -= (nbits))
+
+
+/*
+ * Code for extracting next Huffman-coded symbol from input bit stream.
+ * Again, this is time-critical and we make the main paths be macros.
+ *
+ * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
+ * without looping. Usually, more than 95% of the Huffman codes will be 8
+ * or fewer bits long. The few overlength codes are handled with a loop,
+ * which need not be inline code.
+ *
+ * Notes about the HUFF_DECODE macro:
+ * 1. Near the end of the data segment, we may fail to get enough bits
+ * for a lookahead. In that case, we do it the hard way.
+ * 2. If the lookahead table contains no entry, the next code must be
+ * more than HUFF_LOOKAHEAD bits long.
+ * 3. jpeg_huff_decode returns -1 if forced to suspend.
+ */
+
+#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
+{ register int nb, look; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ nb = 1; goto slowlabel; \
+ } \
+ } \
+ look = PEEK_BITS(HUFF_LOOKAHEAD); \
+ if ((nb = htbl->look_nbits[look]) != 0) { \
+ DROP_BITS(nb); \
+ result = htbl->look_sym[look]; \
+ } else { \
+ nb = HUFF_LOOKAHEAD+1; \
+slowlabel: \
+ if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+ { failaction; } \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ } \
+}
+
+
+/*
+ * Expanded entropy decoder object for Huffman decoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+ unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment. You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src) ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src) \
+ ((dest).EOBRUN = (src).EOBRUN, \
+ (dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+ struct jpeg_entropy_decoder pub; /* public fields */
+
+ /* These fields are loaded into local variables at start of each MCU.
+ * In case of suspension, we exit WITHOUT updating them.
+ */
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */
+ savable_state saved; /* Other state at start of MCU */
+
+ /* These fields are NOT loaded into local working state. */
+ boolean insufficient_data; /* set TRUE after emitting warning */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+
+ /* Following two fields used only in progressive mode */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+
+ d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
+
+ /* Following fields used only in sequential mode */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+ d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+
+ /* Precalculated info set up by start_pass for use in decode_mcu: */
+
+ /* Pointers to derived tables to be used for each block within an MCU */
+ d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+ d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+ /* Whether we care about the DC and AC coefficient values for each block */
+ int coef_limit[D_MAX_BLOCKS_IN_MCU];
+} huff_entropy_decoder;
+
+typedef huff_entropy_decoder * huff_entropy_ptr;
+
+
+static const int jpeg_zigzag_order[8][8] = {
+ { 0, 1, 5, 6, 14, 15, 27, 28 },
+ { 2, 4, 7, 13, 16, 26, 29, 42 },
+ { 3, 8, 12, 17, 25, 30, 41, 43 },
+ { 9, 11, 18, 24, 31, 40, 44, 53 },
+ { 10, 19, 23, 32, 39, 45, 52, 54 },
+ { 20, 22, 33, 38, 46, 51, 55, 60 },
+ { 21, 34, 37, 47, 50, 56, 59, 61 },
+ { 35, 36, 48, 49, 57, 58, 62, 63 }
+};
+
+static const int jpeg_zigzag_order7[7][7] = {
+ { 0, 1, 5, 6, 14, 15, 27 },
+ { 2, 4, 7, 13, 16, 26, 28 },
+ { 3, 8, 12, 17, 25, 29, 38 },
+ { 9, 11, 18, 24, 30, 37, 39 },
+ { 10, 19, 23, 31, 36, 40, 45 },
+ { 20, 22, 32, 35, 41, 44, 46 },
+ { 21, 33, 34, 42, 43, 47, 48 }
+};
+
+static const int jpeg_zigzag_order6[6][6] = {
+ { 0, 1, 5, 6, 14, 15 },
+ { 2, 4, 7, 13, 16, 25 },
+ { 3, 8, 12, 17, 24, 26 },
+ { 9, 11, 18, 23, 27, 32 },
+ { 10, 19, 22, 28, 31, 33 },
+ { 20, 21, 29, 30, 34, 35 }
+};
+
+static const int jpeg_zigzag_order5[5][5] = {
+ { 0, 1, 5, 6, 14 },
+ { 2, 4, 7, 13, 15 },
+ { 3, 8, 12, 16, 21 },
+ { 9, 11, 17, 20, 22 },
+ { 10, 18, 19, 23, 24 }
+};
+
+static const int jpeg_zigzag_order4[4][4] = {
+ { 0, 1, 5, 6 },
+ { 2, 4, 7, 12 },
+ { 3, 8, 11, 13 },
+ { 9, 10, 14, 15 }
+};
+
+static const int jpeg_zigzag_order3[3][3] = {
+ { 0, 1, 5 },
+ { 2, 4, 6 },
+ { 3, 7, 8 }
+};
+
+static const int jpeg_zigzag_order2[2][2] = {
+ { 0, 1 },
+ { 2, 3 }
+};
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * This routine also performs some validation checks on the table.
+ */
+
+LOCAL(void)
+jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
+ d_derived_tbl ** pdtbl)
+{
+ JHUFF_TBL *htbl;
+ d_derived_tbl *dtbl;
+ int p, i, l, si, numsymbols;
+ int lookbits, ctr;
+ char huffsize[257];
+ unsigned int huffcode[257];
+ unsigned int code;
+
+ /* Note that huffsize[] and huffcode[] are filled in code-length order,
+ * paralleling the order of the symbols themselves in htbl->huffval[].
+ */
+
+ /* Find the input Huffman table */
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+ htbl =
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+ /* Allocate a workspace if we haven't already done so. */
+ if (*pdtbl == NULL)
+ *pdtbl = (d_derived_tbl *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(d_derived_tbl));
+ dtbl = *pdtbl;
+ dtbl->pub = htbl; /* fill in back link */
+
+ /* Figure C.1: make table of Huffman code length for each symbol */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ i = (int) htbl->bits[l];
+ if (i < 0 || p + i > 256) /* protect against table overrun */
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ while (i--)
+ huffsize[p++] = (char) l;
+ }
+ huffsize[p] = 0;
+ numsymbols = p;
+
+ /* Figure C.2: generate the codes themselves */
+ /* We also validate that the counts represent a legal Huffman code tree. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (((int) huffsize[p]) == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ /* code is now 1 more than the last code used for codelength si; but
+ * it must still fit in si bits, since no code is allowed to be all ones.
+ */
+ if (((INT32) code) >= (((INT32) 1) << si))
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure F.15: generate decoding tables for bit-sequential decoding */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ if (htbl->bits[l]) {
+ /* valoffset[l] = huffval[] index of 1st symbol of code length l,
+ * minus the minimum code of length l
+ */
+ dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
+ p += htbl->bits[l];
+ dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+ } else {
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
+ }
+ }
+ dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
+
+ /* Compute lookahead tables to speed up decoding.
+ * First we set all the table entries to 0, indicating "too long";
+ * then we iterate through the Huffman codes that are short enough and
+ * fill in all the entries that correspond to bit sequences starting
+ * with that code.
+ */
+
+ MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
+
+ p = 0;
+ for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
+ for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
+ /* l = current code's length, p = its index in huffcode[] & huffval[]. */
+ /* Generate left-justified code followed by all possible bit sequences */
+ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
+ for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
+ dtbl->look_nbits[lookbits] = l;
+ dtbl->look_sym[lookbits] = htbl->huffval[p];
+ lookbits++;
+ }
+ }
+ }
+
+ /* Validate symbols as being reasonable.
+ * For AC tables, we make no check, but accept all byte values 0..255.
+ * For DC tables, we require the symbols to be in range 0..15.
+ * (Tighter bounds could be applied depending on the data depth and mode,
+ * but this is sufficient to ensure safe decoding.)
+ */
+ if (isDC) {
+ for (i = 0; i < numsymbols; i++) {
+ int sym = htbl->huffval[i];
+ if (sym < 0 || sym > 15)
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ }
+ }
+}
+
+
+/*
+ * Out-of-line code for bit fetching.
+ * Note: current values of get_buffer and bits_left are passed as parameters,
+ * but are returned in the corresponding fields of the state struct.
+ *
+ * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
+ * of get_buffer to be used. (On machines with wider words, an even larger
+ * buffer could be used.) However, on some machines 32-bit shifts are
+ * quite slow and take time proportional to the number of places shifted.
+ * (This is true with most PC compilers, for instance.) In this case it may
+ * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
+ * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
+ */
+
+#ifdef SLOW_SHIFT_32
+#define MIN_GET_BITS 15 /* minimum allowable value */
+#else
+#define MIN_GET_BITS (BIT_BUF_SIZE-7)
+#endif
+
+
+LOCAL(boolean)
+jpeg_fill_bit_buffer (bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ int nbits)
+/* Load up the bit buffer to a depth of at least nbits */
+{
+ /* Copy heavily used state fields into locals (hopefully registers) */
+ register const JOCTET * next_input_byte = state->next_input_byte;
+ register size_t bytes_in_buffer = state->bytes_in_buffer;
+ j_decompress_ptr cinfo = state->cinfo;
+
+ /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
+ /* (It is assumed that no request will be for more than that many bits.) */
+ /* We fail to do so only if we hit a marker or are forced to suspend. */
+
+ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
+ while (bits_left < MIN_GET_BITS) {
+ register int c;
+
+ /* Attempt to read a byte */
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+
+ /* If it's 0xFF, check and discard stuffed zero byte */
+ if (c == 0xFF) {
+ /* Loop here to discard any padding FF's on terminating marker,
+ * so that we can save a valid unread_marker value. NOTE: we will
+ * accept multiple FF's followed by a 0 as meaning a single FF data
+ * byte. This data pattern is not valid according to the standard.
+ */
+ do {
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+ } while (c == 0xFF);
+
+ if (c == 0) {
+ /* Found FF/00, which represents an FF data byte */
+ c = 0xFF;
+ } else {
+ /* Oops, it's actually a marker indicating end of compressed data.
+ * Save the marker code for later use.
+ * Fine point: it might appear that we should save the marker into
+ * bitread working state, not straight into permanent state. But
+ * once we have hit a marker, we cannot need to suspend within the
+ * current MCU, because we will read no more bytes from the data
+ * source. So it is OK to update permanent state right away.
+ */
+ cinfo->unread_marker = c;
+ /* See if we need to insert some fake zero bits. */
+ goto no_more_bytes;
+ }
+ }
+
+ /* OK, load c into get_buffer */
+ get_buffer = (get_buffer << 8) | c;
+ bits_left += 8;
+ } /* end while */
+ } else {
+ no_more_bytes:
+ /* We get here if we've read the marker that terminates the compressed
+ * data segment. There should be enough bits in the buffer register
+ * to satisfy the request; if so, no problem.
+ */
+ if (nbits > bits_left) {
+ /* Uh-oh. Report corrupted data to user and stuff zeroes into
+ * the data stream, so that we can produce some kind of image.
+ * We use a nonvolatile flag to ensure that only one warning message
+ * appears per data segment.
+ */
+ if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
+ WARNMS(cinfo, JWRN_HIT_MARKER);
+ ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
+ }
+ /* Fill the buffer with zero bits */
+ get_buffer <<= MIN_GET_BITS - bits_left;
+ bits_left = MIN_GET_BITS;
+ }
+ }
+
+ /* Unload the local registers */
+ state->next_input_byte = next_input_byte;
+ state->bytes_in_buffer = bytes_in_buffer;
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ return TRUE;
+}
+
+
+/*
+ * Figure F.12: extend sign bit.
+ * On some machines, a shift and sub will be faster than a table lookup.
+ */
+
+#ifdef AVOID_TABLES
+
+#define BIT_MASK(nbits) ((1<<(nbits))-1)
+#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
+
+#else
+
+#define BIT_MASK(nbits) bmask[nbits]
+#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
+
+static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
+ { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
+ 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
+
+#endif /* AVOID_TABLES */
+
+
+/*
+ * Out-of-line code for Huffman code decoding.
+ */
+
+LOCAL(int)
+jpeg_huff_decode (bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits)
+{
+ register int l = min_bits;
+ register INT32 code;
+
+ /* HUFF_DECODE has determined that the code is at least min_bits */
+ /* bits long, so fetch that many bits in one swoop. */
+
+ CHECK_BIT_BUFFER(*state, l, return -1);
+ code = GET_BITS(l);
+
+ /* Collect the rest of the Huffman code one bit at a time. */
+ /* This is per Figure F.16 in the JPEG spec. */
+
+ while (code > htbl->maxcode[l]) {
+ code <<= 1;
+ CHECK_BIT_BUFFER(*state, 1, return -1);
+ code |= GET_BITS(1);
+ l++;
+ }
+
+ /* Unload the local registers */
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ /* With garbage input we may reach the sentinel value l = 17. */
+
+ if (l > 16) {
+ WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
+ return 0; /* fake a zero as the safest result */
+ }
+
+ return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
+}
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ * Returns FALSE if must suspend.
+ */
+
+LOCAL(boolean)
+process_restart (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci;
+
+ /* Throw away any unused bits remaining in bit buffer; */
+ /* include any full bytes in next_marker's count of discarded bytes */
+ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+ entropy->bitstate.bits_left = 0;
+
+ /* Advance past the RSTn marker */
+ if (! (*cinfo->marker->read_restart_marker) (cinfo))
+ return FALSE;
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ /* Re-init EOB run count, too */
+ entropy->saved.EOBRUN = 0;
+
+ /* Reset restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+
+ /* Reset out-of-data flag, unless read_restart_marker left us smack up
+ * against a marker. In that case we will end up treating the next data
+ * segment as empty, and we can avoid producing bogus output pixels by
+ * leaving the flag set.
+ */
+ if (cinfo->unread_marker == 0)
+ entropy->insufficient_data = FALSE;
+
+ return TRUE;
+}
+
+
+/*
+ * Huffman MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * Huffman-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ * (Wholesale zeroing is usually a little faster than retail...)
+ *
+ * We return FALSE if data source requested suspension. In that case no
+ * changes have been made to permanent state. (Exception: some output
+ * coefficients may already have been assigned. This is harmless for
+ * spectral selection, since we'll just re-assign them on the next call.
+ * Successive approximation AC refinement has to be more careful, however.)
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int Al = cinfo->Al;
+ register int s, r;
+ int blkn, ci;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ savable_state state;
+ d_derived_tbl * tbl;
+ jpeg_component_info * compptr;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ tbl = entropy->derived_tbls[compptr->dc_tbl_no];
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+
+ /* Convert DC difference to actual value, update last_dc_val */
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
+ (*block)[0] = (JCOEF) (s << Al);
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ unsigned int EOBRUN;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ d_derived_tbl * tbl;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
+
+ /* Load up working state.
+ * We can avoid loading/saving bitread state if in an EOB run.
+ */
+ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+ /* There is always only one block per MCU */
+
+ if (EOBRUN > 0) /* if it's a band of zeroes... */
+ EOBRUN--; /* ...process it now (we do nothing) */
+ else {
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ block = MCU_data[0];
+ tbl = entropy->ac_derived_tbl;
+
+ for (k = cinfo->Ss; k <= Se; k++) {
+ HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
+ r = s >> 4;
+ s &= 15;
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Scale and output coefficient in natural (dezigzagged) order */
+ (*block)[natural_order[k]] = (JCOEF) (s << Al);
+ } else {
+ if (r == 15) { /* ZRL */
+ k += 15; /* skip 15 zeroes in band */
+ } else { /* EOBr, run length is 2^r + appended bits */
+ EOBRUN = 1 << r;
+ if (r) { /* EOBr, r > 0 */
+ CHECK_BIT_BUFFER(br_state, r, return FALSE);
+ r = GET_BITS(r);
+ EOBRUN += r;
+ }
+ EOBRUN--; /* this band is processed at this moment */
+ break; /* force end-of-band */
+ }
+ }
+ }
+
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ }
+
+ /* Completed MCU, so update state */
+ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ int blkn;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* Not worth the cycles to check insufficient_data here,
+ * since we will not change the data anyway if we read zeroes.
+ */
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+
+ /* Encoded data is simply the next bit of the two's-complement DC value */
+ CHECK_BIT_BUFFER(br_state, 1, return FALSE);
+ if (GET_BITS(1))
+ (*block)[0] |= p1;
+ /* Note: since we use |=, repeating the assignment later is safe */
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ unsigned int EOBRUN;
+ int Se, p1, m1;
+ const int * natural_order;
+ JBLOCKROW block;
+ JCOEFPTR thiscoef;
+ BITREAD_STATE_VARS;
+ d_derived_tbl * tbl;
+ int num_newnz;
+ int newnz_pos[DCTSIZE2];
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, don't modify the MCU.
+ */
+ if (! entropy->insufficient_data) {
+
+ Se = cinfo->Se;
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
+ natural_order = cinfo->natural_order;
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = entropy->ac_derived_tbl;
+
+ /* If we are forced to suspend, we must undo the assignments to any newly
+ * nonzero coefficients in the block, because otherwise we'd get confused
+ * next time about which coefficients were already nonzero.
+ * But we need not undo addition of bits to already-nonzero coefficients;
+ * instead, we can test the current bit to see if we already did it.
+ */
+ num_newnz = 0;
+
+ /* initialize coefficient loop counter to start of band */
+ k = cinfo->Ss;
+
+ if (EOBRUN == 0) {
+ for (; k <= Se; k++) {
+ HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
+ r = s >> 4;
+ s &= 15;
+ if (s) {
+ if (s != 1) /* size of new coef should always be 1 */
+ WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1))
+ s = p1; /* newly nonzero coef is positive */
+ else
+ s = m1; /* newly nonzero coef is negative */
+ } else {
+ if (r != 15) {
+ EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
+ if (r) {
+ CHECK_BIT_BUFFER(br_state, r, goto undoit);
+ r = GET_BITS(r);
+ EOBRUN += r;
+ }
+ break; /* rest of block is handled by EOB logic */
+ }
+ /* note s = 0 for processing ZRL */
+ }
+ /* Advance over already-nonzero coefs and r still-zero coefs,
+ * appending correction bits to the nonzeroes. A correction bit is 1
+ * if the absolute value of the coefficient must be increased.
+ */
+ do {
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef != 0) {
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1)) {
+ if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
+ if (*thiscoef >= 0)
+ *thiscoef += p1;
+ else
+ *thiscoef += m1;
+ }
+ }
+ } else {
+ if (--r < 0)
+ break; /* reached target zero coefficient */
+ }
+ k++;
+ } while (k <= Se);
+ if (s) {
+ int pos = natural_order[k];
+ /* Output newly nonzero coefficient */
+ (*block)[pos] = (JCOEF) s;
+ /* Remember its position in case we have to suspend */
+ newnz_pos[num_newnz++] = pos;
+ }
+ }
+ }
+
+ if (EOBRUN > 0) {
+ /* Scan any remaining coefficient positions after the end-of-band
+ * (the last newly nonzero coefficient, if any). Append a correction
+ * bit to each already-nonzero coefficient. A correction bit is 1
+ * if the absolute value of the coefficient must be increased.
+ */
+ for (; k <= Se; k++) {
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef != 0) {
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1)) {
+ if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
+ if (*thiscoef >= 0)
+ *thiscoef += p1;
+ else
+ *thiscoef += m1;
+ }
+ }
+ }
+ }
+ /* Count one block completed in EOB run */
+ EOBRUN--;
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+
+undoit:
+ /* Re-zero any output coefficients that we made newly nonzero */
+ while (num_newnz > 0)
+ (*block)[newnz_pos[--num_newnz]] = 0;
+
+ return FALSE;
+}
+
+
+/*
+ * Decode one MCU's worth of Huffman-compressed coefficients,
+ * partial blocks.
+ */
+
+METHODDEF(boolean)
+decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ const int * natural_order;
+ int Se, blkn;
+ BITREAD_STATE_VARS;
+ savable_state state;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ natural_order = cinfo->natural_order;
+ Se = cinfo->lim_Se;
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ JBLOCKROW block = MCU_data[blkn];
+ d_derived_tbl * htbl;
+ register int s, k, r;
+ int coef_limit, ci;
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ htbl = entropy->dc_cur_tbls[blkn];
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+
+ htbl = entropy->ac_cur_tbls[blkn];
+ k = 1;
+ coef_limit = entropy->coef_limit[blkn];
+ if (coef_limit) {
+ /* Convert DC difference to actual value, update last_dc_val */
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+ ci = cinfo->MCU_membership[blkn];
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient */
+ (*block)[0] = (JCOEF) s;
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (; k < coef_limit; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in natural_order[] will save us
+ * if k > Se, which could happen if the data is corrupted.
+ */
+ (*block)[natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ goto EndOfBlock;
+ k += 15;
+ }
+ }
+ } else {
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ }
+ }
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (; k <= Se; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
+
+ EndOfBlock: ;
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of Huffman-compressed coefficients,
+ * full-size blocks.
+ */
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int blkn;
+ BITREAD_STATE_VARS;
+ savable_state state;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ JBLOCKROW block = MCU_data[blkn];
+ d_derived_tbl * htbl;
+ register int s, k, r;
+ int coef_limit, ci;
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ htbl = entropy->dc_cur_tbls[blkn];
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+
+ htbl = entropy->ac_cur_tbls[blkn];
+ k = 1;
+ coef_limit = entropy->coef_limit[blkn];
+ if (coef_limit) {
+ /* Convert DC difference to actual value, update last_dc_val */
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+ ci = cinfo->MCU_membership[blkn];
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient */
+ (*block)[0] = (JCOEF) s;
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (; k < coef_limit; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in jpeg_natural_order[] will save us
+ * if k >= DCTSIZE2, which could happen if the data is corrupted.
+ */
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ goto EndOfBlock;
+ k += 15;
+ }
+ }
+ } else {
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ }
+ }
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
+
+ EndOfBlock: ;
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass_huff_decoder (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, blkn, tbl, i;
+ jpeg_component_info * compptr;
+
+ if (cinfo->progressive_mode) {
+ /* Validate progressive scan parameters */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Se != 0)
+ goto bad;
+ } else {
+ /* need not check Ss/Se < 0 since they came from unsigned bytes */
+ if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
+ goto bad;
+ /* AC scans may have only one component */
+ if (cinfo->comps_in_scan != 1)
+ goto bad;
+ }
+ if (cinfo->Ah != 0) {
+ /* Successive approximation refinement scan: must have Al = Ah-1. */
+ if (cinfo->Ah-1 != cinfo->Al)
+ goto bad;
+ }
+ if (cinfo->Al > 13) { /* need not check for < 0 */
+ /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
+ * but the spec doesn't say so, and we try to be liberal about what we
+ * accept. Note: large Al values could result in out-of-range DC
+ * coefficients during early scans, leading to bizarre displays due to
+ * overflows in the IDCT math. But we won't crash.
+ */
+ bad:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ }
+ /* Update progression status, and verify that scan order is legal.
+ * Note that inter-scan inconsistencies are treated as warnings
+ * not fatal errors ... not clear if this is right way to behave.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+ int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+ if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+ for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+ int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+ if (cinfo->Ah != expected)
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+ coef_bit_ptr[coefi] = cinfo->Al;
+ }
+ }
+
+ /* Select MCU decoding routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_first;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_first;
+ } else {
+ if (cinfo->Ss == 0)
+ entropy->pub.decode_mcu = decode_mcu_DC_refine;
+ else
+ entropy->pub.decode_mcu = decode_mcu_AC_refine;
+ }
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Make sure requested tables are present, and compute derived tables.
+ * We may build same derived table more than once, but it's not expensive.
+ */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Ah == 0) { /* DC refinement needs no table */
+ tbl = compptr->dc_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->derived_tbls[tbl]);
+ }
+ } else {
+ tbl = compptr->ac_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+ & entropy->derived_tbls[tbl]);
+ /* remember the single active table */
+ entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Initialize private state variables */
+ entropy->saved.EOBRUN = 0;
+ } else {
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+ * This ought to be an error condition, but we make it a warning because
+ * there are some baseline files out there with all zeroes in these bytes.
+ */
+ if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+ ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
+ cinfo->Se != cinfo->lim_Se))
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+
+ /* Select MCU decoding routine */
+ /* We retain the hard-coded case for full-size blocks.
+ * This is not necessary, but it appears that this version is slightly
+ * more performant in the given implementation.
+ * With an improved implementation we would prefer a single optimized
+ * function.
+ */
+ if (cinfo->lim_Se != DCTSIZE2-1)
+ entropy->pub.decode_mcu = decode_mcu_sub;
+ else
+ entropy->pub.decode_mcu = decode_mcu;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for a table, but it's not expensive */
+ tbl = compptr->dc_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->dc_derived_tbls[tbl]);
+ if (cinfo->lim_Se) { /* AC needs no table when not present */
+ tbl = compptr->ac_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+ & entropy->ac_derived_tbls[tbl]);
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Precalculate decoding info for each block in an MCU of this scan */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ /* Precalculate which table to use for each block */
+ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+ entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+ /* Decide whether we really care about the coefficient values */
+ if (compptr->component_needed) {
+ ci = compptr->DCT_v_scaled_size;
+ i = compptr->DCT_h_scaled_size;
+ switch (cinfo->lim_Se) {
+ case (1*1-1):
+ entropy->coef_limit[blkn] = 1;
+ break;
+ case (2*2-1):
+ if (ci <= 0 || ci > 2) ci = 2;
+ if (i <= 0 || i > 2) i = 2;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
+ break;
+ case (3*3-1):
+ if (ci <= 0 || ci > 3) ci = 3;
+ if (i <= 0 || i > 3) i = 3;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
+ break;
+ case (4*4-1):
+ if (ci <= 0 || ci > 4) ci = 4;
+ if (i <= 0 || i > 4) i = 4;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
+ break;
+ case (5*5-1):
+ if (ci <= 0 || ci > 5) ci = 5;
+ if (i <= 0 || i > 5) i = 5;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
+ break;
+ case (6*6-1):
+ if (ci <= 0 || ci > 6) ci = 6;
+ if (i <= 0 || i > 6) i = 6;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
+ break;
+ case (7*7-1):
+ if (ci <= 0 || ci > 7) ci = 7;
+ if (i <= 0 || i > 7) i = 7;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
+ break;
+ default:
+ if (ci <= 0 || ci > 8) ci = 8;
+ if (i <= 0 || i > 8) i = 8;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
+ break;
+ }
+ } else {
+ entropy->coef_limit[blkn] = 0;
+ }
+ }
+ }
+
+ /* Initialize bitread state variables */
+ entropy->bitstate.bits_left = 0;
+ entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+ entropy->insufficient_data = FALSE;
+
+ /* Initialize restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Module initialization routine for Huffman entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_huff_decoder (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy;
+ int i;
+
+ entropy = (huff_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(huff_entropy_decoder));
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+ entropy->pub.start_pass = start_pass_huff_decoder;
+
+ if (cinfo->progressive_mode) {
+ /* Create progression status table */
+ int *coef_bit_ptr, ci;
+ cinfo->coef_bits = (int (*)[DCTSIZE2])
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components*DCTSIZE2*SIZEOF(int));
+ coef_bit_ptr = & cinfo->coef_bits[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (i = 0; i < DCTSIZE2; i++)
+ *coef_bit_ptr++ = -1;
+
+ /* Mark derived tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->derived_tbls[i] = NULL;
+ }
+ } else {
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+ }
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdinput.c b/plugins/AdvaImg/src/LibJPEG/jdinput.c
new file mode 100644
index 0000000000..2c5c717b9c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdinput.c
@@ -0,0 +1,661 @@
+/*
+ * jdinput.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2002-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input control logic for the JPEG decompressor.
+ * These routines are concerned with controlling the decompressor's input
+ * processing (marker reading and coefficient decoding). The actual input
+ * reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_input_controller pub; /* public fields */
+
+ int inheaders; /* Nonzero until first SOS is reached */
+} my_input_controller;
+
+typedef my_input_controller * my_inputctl_ptr;
+
+
+/* Forward declarations */
+METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Routines to calculate various quantities related to the size of the image.
+ */
+
+
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ */
+
+GLOBAL(void)
+jpeg_core_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase.
+ * This function is used for transcoding and full decompression.
+ */
+{
+#ifdef IDCT_SCALING_SUPPORTED
+ int ci;
+ jpeg_component_info *compptr;
+
+ /* Compute actual output image dimensions and DCT scaling choices. */
+ if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) {
+ /* Provide 1/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 1;
+ cinfo->min_DCT_v_scaled_size = 1;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) {
+ /* Provide 2/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 2;
+ cinfo->min_DCT_v_scaled_size = 2;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) {
+ /* Provide 3/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 3;
+ cinfo->min_DCT_v_scaled_size = 3;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) {
+ /* Provide 4/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 4;
+ cinfo->min_DCT_v_scaled_size = 4;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) {
+ /* Provide 5/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 5;
+ cinfo->min_DCT_v_scaled_size = 5;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) {
+ /* Provide 6/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 6;
+ cinfo->min_DCT_v_scaled_size = 6;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) {
+ /* Provide 7/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 7;
+ cinfo->min_DCT_v_scaled_size = 7;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) {
+ /* Provide 8/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 8;
+ cinfo->min_DCT_v_scaled_size = 8;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) {
+ /* Provide 9/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 9;
+ cinfo->min_DCT_v_scaled_size = 9;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) {
+ /* Provide 10/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 10;
+ cinfo->min_DCT_v_scaled_size = 10;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) {
+ /* Provide 11/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 11;
+ cinfo->min_DCT_v_scaled_size = 11;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) {
+ /* Provide 12/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 12;
+ cinfo->min_DCT_v_scaled_size = 12;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) {
+ /* Provide 13/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 13;
+ cinfo->min_DCT_v_scaled_size = 13;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) {
+ /* Provide 14/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 14;
+ cinfo->min_DCT_v_scaled_size = 14;
+ } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) {
+ /* Provide 15/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 15;
+ cinfo->min_DCT_v_scaled_size = 15;
+ } else {
+ /* Provide 16/block_size scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size);
+ cinfo->min_DCT_h_scaled_size = 16;
+ cinfo->min_DCT_v_scaled_size = 16;
+ }
+
+ /* Recompute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size;
+ compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size;
+ }
+
+#else /* !IDCT_SCALING_SUPPORTED */
+
+ /* Hardwire it to "no scaling" */
+ cinfo->output_width = cinfo->image_width;
+ cinfo->output_height = cinfo->image_height;
+ /* jdinput.c has already initialized DCT_scaled_size,
+ * and has computed unscaled downsampled_width and downsampled_height.
+ */
+
+#endif /* IDCT_SCALING_SUPPORTED */
+}
+
+
+LOCAL(void)
+initial_setup (j_decompress_ptr cinfo)
+/* Called once, when first SOS marker is reached */
+{
+ int ci;
+ jpeg_component_info *compptr;
+
+ /* Make sure image isn't bigger than I can handle */
+ if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
+ (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+ /* For now, precision must match compiled-in value... */
+ if (cinfo->data_precision != BITS_IN_JSAMPLE)
+ ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+ /* Check that number of components won't exceed internal array sizes */
+ if (cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+
+ /* Compute maximum sampling factors; check factor validity */
+ cinfo->max_h_samp_factor = 1;
+ cinfo->max_v_samp_factor = 1;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+ compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+ ERREXIT(cinfo, JERR_BAD_SAMPLING);
+ cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+ compptr->h_samp_factor);
+ cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+ compptr->v_samp_factor);
+ }
+
+ /* Derive block_size, natural_order, and lim_Se */
+ if (cinfo->is_baseline || (cinfo->progressive_mode &&
+ cinfo->comps_in_scan)) { /* no pseudo SOS marker */
+ cinfo->block_size = DCTSIZE;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ } else
+ switch (cinfo->Se) {
+ case (1*1-1):
+ cinfo->block_size = 1;
+ cinfo->natural_order = jpeg_natural_order; /* not needed */
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (2*2-1):
+ cinfo->block_size = 2;
+ cinfo->natural_order = jpeg_natural_order2;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (3*3-1):
+ cinfo->block_size = 3;
+ cinfo->natural_order = jpeg_natural_order3;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (4*4-1):
+ cinfo->block_size = 4;
+ cinfo->natural_order = jpeg_natural_order4;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (5*5-1):
+ cinfo->block_size = 5;
+ cinfo->natural_order = jpeg_natural_order5;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (6*6-1):
+ cinfo->block_size = 6;
+ cinfo->natural_order = jpeg_natural_order6;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (7*7-1):
+ cinfo->block_size = 7;
+ cinfo->natural_order = jpeg_natural_order7;
+ cinfo->lim_Se = cinfo->Se;
+ break;
+ case (8*8-1):
+ cinfo->block_size = 8;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (9*9-1):
+ cinfo->block_size = 9;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (10*10-1):
+ cinfo->block_size = 10;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (11*11-1):
+ cinfo->block_size = 11;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (12*12-1):
+ cinfo->block_size = 12;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (13*13-1):
+ cinfo->block_size = 13;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (14*14-1):
+ cinfo->block_size = 14;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (15*15-1):
+ cinfo->block_size = 15;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ case (16*16-1):
+ cinfo->block_size = 16;
+ cinfo->natural_order = jpeg_natural_order;
+ cinfo->lim_Se = DCTSIZE2-1;
+ break;
+ default:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ break;
+ }
+
+ /* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
+ * In the full decompressor,
+ * this will be overridden by jpeg_calc_output_dimensions in jdmaster.c;
+ * but in the transcoder,
+ * jpeg_calc_output_dimensions is not used, so we must do it here.
+ */
+ cinfo->min_DCT_h_scaled_size = cinfo->block_size;
+ cinfo->min_DCT_v_scaled_size = cinfo->block_size;
+
+ /* Compute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->DCT_h_scaled_size = cinfo->block_size;
+ compptr->DCT_v_scaled_size = cinfo->block_size;
+ /* Size in DCT blocks */
+ compptr->width_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->height_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ /* downsampled_width and downsampled_height will also be overridden by
+ * jdmaster.c if we are doing full decompression. The transcoder library
+ * doesn't use these values, but the calling application might.
+ */
+ /* Size in samples */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+ (long) cinfo->max_h_samp_factor);
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+ (long) cinfo->max_v_samp_factor);
+ /* Mark component needed, until color conversion says otherwise */
+ compptr->component_needed = TRUE;
+ /* Mark no quantization table yet saved for component */
+ compptr->quant_table = NULL;
+ }
+
+ /* Compute number of fully interleaved MCU rows. */
+ cinfo->total_iMCU_rows = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+
+ /* Decide whether file contains multiple scans */
+ if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
+ cinfo->inputctl->has_multiple_scans = TRUE;
+ else
+ cinfo->inputctl->has_multiple_scans = FALSE;
+}
+
+
+LOCAL(void)
+per_scan_setup (j_decompress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
+{
+ int ci, mcublks, tmp;
+ jpeg_component_info *compptr;
+
+ if (cinfo->comps_in_scan == 1) {
+
+ /* Noninterleaved (single-component) scan */
+ compptr = cinfo->cur_comp_info[0];
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = compptr->width_in_blocks;
+ cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+
+ /* For noninterleaved scan, always one block per MCU */
+ compptr->MCU_width = 1;
+ compptr->MCU_height = 1;
+ compptr->MCU_blocks = 1;
+ compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
+ compptr->last_col_width = 1;
+ /* For noninterleaved scans, it is convenient to define last_row_height
+ * as the number of block rows present in the last iMCU row.
+ */
+ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (tmp == 0) tmp = compptr->v_samp_factor;
+ compptr->last_row_height = tmp;
+
+ /* Prepare array describing MCU composition */
+ cinfo->blocks_in_MCU = 1;
+ cinfo->MCU_membership[0] = 0;
+
+ } else {
+
+ /* Interleaved (multi-component) scan */
+ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+ MAX_COMPS_IN_SCAN);
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width,
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ cinfo->MCU_rows_in_scan = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height,
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+
+ cinfo->blocks_in_MCU = 0;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Sampling factors give # of blocks of component in each MCU */
+ compptr->MCU_width = compptr->h_samp_factor;
+ compptr->MCU_height = compptr->v_samp_factor;
+ compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+ compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
+ /* Figure number of non-dummy blocks in last MCU column & row */
+ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+ if (tmp == 0) tmp = compptr->MCU_width;
+ compptr->last_col_width = tmp;
+ tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+ if (tmp == 0) tmp = compptr->MCU_height;
+ compptr->last_row_height = tmp;
+ /* Prepare array describing MCU composition */
+ mcublks = compptr->MCU_blocks;
+ if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
+ ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+ while (mcublks-- > 0) {
+ cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+ }
+ }
+
+ }
+}
+
+
+/*
+ * Save away a copy of the Q-table referenced by each component present
+ * in the current scan, unless already saved during a prior scan.
+ *
+ * In a multiple-scan JPEG file, the encoder could assign different components
+ * the same Q-table slot number, but change table definitions between scans
+ * so that each component uses a different Q-table. (The IJG encoder is not
+ * currently capable of doing this, but other encoders might.) Since we want
+ * to be able to dequantize all the components at the end of the file, this
+ * means that we have to save away the table actually used for each component.
+ * We do this by copying the table at the start of the first scan containing
+ * the component.
+ * The JPEG spec prohibits the encoder from changing the contents of a Q-table
+ * slot between scans of a component using that slot. If the encoder does so
+ * anyway, this decoder will simply use the Q-table values that were current
+ * at the start of the first scan for the component.
+ *
+ * The decompressor output side looks only at the saved quant tables,
+ * not at the current Q-table slots.
+ */
+
+LOCAL(void)
+latch_quant_tables (j_decompress_ptr cinfo)
+{
+ int ci, qtblno;
+ jpeg_component_info *compptr;
+ JQUANT_TBL * qtbl;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* No work if we already saved Q-table for this component */
+ if (compptr->quant_table != NULL)
+ continue;
+ /* Make sure specified quantization table is present */
+ qtblno = compptr->quant_tbl_no;
+ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+ cinfo->quant_tbl_ptrs[qtblno] == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+ /* OK, save away the quantization table */
+ qtbl = (JQUANT_TBL *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(JQUANT_TBL));
+ MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
+ compptr->quant_table = qtbl;
+ }
+}
+
+
+/*
+ * Initialize the input modules to read a scan of compressed data.
+ * The first call to this is done by jdmaster.c after initializing
+ * the entire decompressor (during jpeg_start_decompress).
+ * Subsequent calls come from consume_markers, below.
+ */
+
+METHODDEF(void)
+start_input_pass (j_decompress_ptr cinfo)
+{
+ per_scan_setup(cinfo);
+ latch_quant_tables(cinfo);
+ (*cinfo->entropy->start_pass) (cinfo);
+ (*cinfo->coef->start_input_pass) (cinfo);
+ cinfo->inputctl->consume_input = cinfo->coef->consume_data;
+}
+
+
+/*
+ * Finish up after inputting a compressed-data scan.
+ * This is called by the coefficient controller after it's read all
+ * the expected data of the scan.
+ */
+
+METHODDEF(void)
+finish_input_pass (j_decompress_ptr cinfo)
+{
+ cinfo->inputctl->consume_input = consume_markers;
+}
+
+
+/*
+ * Read JPEG markers before, between, or after compressed-data scans.
+ * Change state as necessary when a new scan is reached.
+ * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ *
+ * The consume_input method pointer points either here or to the
+ * coefficient controller's consume_data routine, depending on whether
+ * we are reading a compressed data segment or inter-segment markers.
+ *
+ * Note: This function should NOT return a pseudo SOS marker (with zero
+ * component number) to the caller. A pseudo marker received by
+ * read_markers is processed and then skipped for other markers.
+ */
+
+METHODDEF(int)
+consume_markers (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+ int val;
+
+ if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
+ return JPEG_REACHED_EOI;
+
+ for (;;) { /* Loop to pass pseudo SOS marker */
+ val = (*cinfo->marker->read_markers) (cinfo);
+
+ switch (val) {
+ case JPEG_REACHED_SOS: /* Found SOS */
+ if (inputctl->inheaders) { /* 1st SOS */
+ if (inputctl->inheaders == 1)
+ initial_setup(cinfo);
+ if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */
+ inputctl->inheaders = 2;
+ break;
+ }
+ inputctl->inheaders = 0;
+ /* Note: start_input_pass must be called by jdmaster.c
+ * before any more input can be consumed. jdapimin.c is
+ * responsible for enforcing this sequencing.
+ */
+ } else { /* 2nd or later SOS marker */
+ if (! inputctl->pub.has_multiple_scans)
+ ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
+ if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */
+ break;
+ start_input_pass(cinfo);
+ }
+ return val;
+ case JPEG_REACHED_EOI: /* Found EOI */
+ inputctl->pub.eoi_reached = TRUE;
+ if (inputctl->inheaders) { /* Tables-only datastream, apparently */
+ if (cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOF_NO_SOS);
+ } else {
+ /* Prevent infinite loop in coef ctlr's decompress_data routine
+ * if user set output_scan_number larger than number of scans.
+ */
+ if (cinfo->output_scan_number > cinfo->input_scan_number)
+ cinfo->output_scan_number = cinfo->input_scan_number;
+ }
+ return val;
+ case JPEG_SUSPENDED:
+ return val;
+ default:
+ return val;
+ }
+ }
+}
+
+
+/*
+ * Reset state to begin a fresh datastream.
+ */
+
+METHODDEF(void)
+reset_input_controller (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+
+ inputctl->pub.consume_input = consume_markers;
+ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+ inputctl->pub.eoi_reached = FALSE;
+ inputctl->inheaders = 1;
+ /* Reset other modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->marker->reset_marker_reader) (cinfo);
+ /* Reset progression state -- would be cleaner if entropy decoder did this */
+ cinfo->coef_bits = NULL;
+}
+
+
+/*
+ * Initialize the input controller module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL(void)
+jinit_input_controller (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl;
+
+ /* Create subobject in permanent pool */
+ inputctl = (my_inputctl_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_input_controller));
+ cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
+ /* Initialize method pointers */
+ inputctl->pub.consume_input = consume_markers;
+ inputctl->pub.reset_input_controller = reset_input_controller;
+ inputctl->pub.start_input_pass = start_input_pass;
+ inputctl->pub.finish_input_pass = finish_input_pass;
+ /* Initialize state: can't use reset_input_controller since we don't
+ * want to try to reset other modules yet.
+ */
+ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+ inputctl->pub.eoi_reached = FALSE;
+ inputctl->inheaders = 1;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdmainct.c b/plugins/AdvaImg/src/LibJPEG/jdmainct.c
new file mode 100644
index 0000000000..02723ca732
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdmainct.c
@@ -0,0 +1,512 @@
+/*
+ * jdmainct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for decompression.
+ * The main buffer lies between the JPEG decompressor proper and the
+ * post-processor; it holds downsampled data in the JPEG colorspace.
+ *
+ * Note that this code is bypassed in raw-data mode, since the application
+ * supplies the equivalent of the main buffer in that case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * In the current system design, the main buffer need never be a full-image
+ * buffer; any full-height buffers will be found inside the coefficient or
+ * postprocessing controllers. Nonetheless, the main controller is not
+ * trivial. Its responsibility is to provide context rows for upsampling/
+ * rescaling, and doing this in an efficient fashion is a bit tricky.
+ *
+ * Postprocessor input data is counted in "row groups". A row group
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+ * sample rows of each component. (We require DCT_scaled_size values to be
+ * chosen such that these numbers are integers. In practice DCT_scaled_size
+ * values will likely be powers of two, so we actually have the stronger
+ * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
+ * Upsampling will typically produce max_v_samp_factor pixel rows from each
+ * row group (times any additional scale factor that the upsampler is
+ * applying).
+ *
+ * The coefficient controller will deliver data to us one iMCU row at a time;
+ * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
+ * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
+ * to one row of MCUs when the image is fully interleaved.) Note that the
+ * number of sample rows varies across components, but the number of row
+ * groups does not. Some garbage sample rows may be included in the last iMCU
+ * row at the bottom of the image.
+ *
+ * Depending on the vertical scaling algorithm used, the upsampler may need
+ * access to the sample row(s) above and below its current input row group.
+ * The upsampler is required to set need_context_rows TRUE at global selection
+ * time if so. When need_context_rows is FALSE, this controller can simply
+ * obtain one iMCU row at a time from the coefficient controller and dole it
+ * out as row groups to the postprocessor.
+ *
+ * When need_context_rows is TRUE, this controller guarantees that the buffer
+ * passed to postprocessing contains at least one row group's worth of samples
+ * above and below the row group(s) being processed. Note that the context
+ * rows "above" the first passed row group appear at negative row offsets in
+ * the passed buffer. At the top and bottom of the image, the required
+ * context rows are manufactured by duplicating the first or last real sample
+ * row; this avoids having special cases in the upsampling inner loops.
+ *
+ * The amount of context is fixed at one row group just because that's a
+ * convenient number for this controller to work with. The existing
+ * upsamplers really only need one sample row of context. An upsampler
+ * supporting arbitrary output rescaling might wish for more than one row
+ * group of context when shrinking the image; tough, we don't handle that.
+ * (This is justified by the assumption that downsizing will be handled mostly
+ * by adjusting the DCT_scaled_size values, so that the actual scale factor at
+ * the upsample step needn't be much less than one.)
+ *
+ * To provide the desired context, we have to retain the last two row groups
+ * of one iMCU row while reading in the next iMCU row. (The last row group
+ * can't be processed until we have another row group for its below-context,
+ * and so we have to save the next-to-last group too for its above-context.)
+ * We could do this most simply by copying data around in our buffer, but
+ * that'd be very slow. We can avoid copying any data by creating a rather
+ * strange pointer structure. Here's how it works. We allocate a workspace
+ * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
+ * of row groups per iMCU row). We create two sets of redundant pointers to
+ * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
+ * pointer lists look like this:
+ * M+1 M-1
+ * master pointer --> 0 master pointer --> 0
+ * 1 1
+ * ... ...
+ * M-3 M-3
+ * M-2 M
+ * M-1 M+1
+ * M M-2
+ * M+1 M-1
+ * 0 0
+ * We read alternate iMCU rows using each master pointer; thus the last two
+ * row groups of the previous iMCU row remain un-overwritten in the workspace.
+ * The pointer lists are set up so that the required context rows appear to
+ * be adjacent to the proper places when we pass the pointer lists to the
+ * upsampler.
+ *
+ * The above pictures describe the normal state of the pointer lists.
+ * At top and bottom of the image, we diddle the pointer lists to duplicate
+ * the first or last sample row as necessary (this is cheaper than copying
+ * sample rows around).
+ *
+ * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
+ * situation each iMCU row provides only one row group so the buffering logic
+ * must be different (eg, we must read two iMCU rows before we can emit the
+ * first row group). For now, we simply do not support providing context
+ * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
+ * be worth providing --- if someone wants a 1/8th-size preview, they probably
+ * want it quick and dirty, so a context-free upsampler is sufficient.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_main_controller pub; /* public fields */
+
+ /* Pointer to allocated workspace (M or M+2 row groups). */
+ JSAMPARRAY buffer[MAX_COMPONENTS];
+
+ boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
+ JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
+
+ /* Remaining fields are only used in the context case. */
+
+ /* These are the master pointers to the funny-order pointer lists. */
+ JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
+
+ int whichptr; /* indicates which pointer set is now in use */
+ int context_state; /* process_data state machine status */
+ JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
+ JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+/* context_state values: */
+#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
+#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
+#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
+
+
+/* Forward declarations */
+METHODDEF(void) process_data_simple_main
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+METHODDEF(void) process_data_context_main
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF(void) process_data_crank_post
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#endif
+
+
+LOCAL(void)
+alloc_funny_pointers (j_decompress_ptr cinfo)
+/* Allocate space for the funny pointer lists.
+ * This is done only once, not once per pass.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, rgroup;
+ int M = cinfo->min_DCT_v_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf;
+
+ /* Get top-level space for component array pointers.
+ * We alloc both arrays with one call to save a few cycles.
+ */
+ main->xbuffer[0] = (JSAMPIMAGE)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
+ main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ /* Get space for pointer lists --- M+4 row groups in each list.
+ * We alloc both pointer lists with one call to save a few cycles.
+ */
+ xbuf = (JSAMPARRAY)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
+ xbuf += rgroup; /* want one row group at negative offsets */
+ main->xbuffer[0][ci] = xbuf;
+ xbuf += rgroup * (M + 4);
+ main->xbuffer[1][ci] = xbuf;
+ }
+}
+
+
+LOCAL(void)
+make_funny_pointers (j_decompress_ptr cinfo)
+/* Create the funny pointer lists discussed in the comments above.
+ * The actual workspace is already allocated (in main->buffer),
+ * and the space for the pointer lists is allocated too.
+ * This routine just fills in the curiously ordered lists.
+ * This will be repeated at the beginning of each pass.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup;
+ int M = cinfo->min_DCT_v_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY buf, xbuf0, xbuf1;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ xbuf0 = main->xbuffer[0][ci];
+ xbuf1 = main->xbuffer[1][ci];
+ /* First copy the workspace pointers as-is */
+ buf = main->buffer[ci];
+ for (i = 0; i < rgroup * (M + 2); i++) {
+ xbuf0[i] = xbuf1[i] = buf[i];
+ }
+ /* In the second list, put the last four row groups in swapped order */
+ for (i = 0; i < rgroup * 2; i++) {
+ xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
+ xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
+ }
+ /* The wraparound pointers at top and bottom will be filled later
+ * (see set_wraparound_pointers, below). Initially we want the "above"
+ * pointers to duplicate the first actual data line. This only needs
+ * to happen in xbuffer[0].
+ */
+ for (i = 0; i < rgroup; i++) {
+ xbuf0[i - rgroup] = xbuf0[0];
+ }
+ }
+}
+
+
+LOCAL(void)
+set_wraparound_pointers (j_decompress_ptr cinfo)
+/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
+ * This changes the pointer list state from top-of-image to the normal state.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup;
+ int M = cinfo->min_DCT_v_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf0, xbuf1;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ xbuf0 = main->xbuffer[0][ci];
+ xbuf1 = main->xbuffer[1][ci];
+ for (i = 0; i < rgroup; i++) {
+ xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
+ xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
+ xbuf0[rgroup*(M+2) + i] = xbuf0[i];
+ xbuf1[rgroup*(M+2) + i] = xbuf1[i];
+ }
+ }
+}
+
+
+LOCAL(void)
+set_bottom_pointers (j_decompress_ptr cinfo)
+/* Change the pointer lists to duplicate the last sample row at the bottom
+ * of the image. whichptr indicates which xbuffer holds the final iMCU row.
+ * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup, iMCUheight, rows_left;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Count sample rows in one iMCU row and in one row group */
+ iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
+ rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
+ /* Count nondummy sample rows remaining for this component */
+ rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
+ if (rows_left == 0) rows_left = iMCUheight;
+ /* Count nondummy row groups. Should get same answer for each component,
+ * so we need only do it once.
+ */
+ if (ci == 0) {
+ main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
+ }
+ /* Duplicate the last real sample row rgroup*2 times; this pads out the
+ * last partial rowgroup and ensures at least one full rowgroup of context.
+ */
+ xbuf = main->xbuffer[main->whichptr][ci];
+ for (i = 0; i < rgroup * 2; i++) {
+ xbuf[rows_left + i] = xbuf[rows_left-1];
+ }
+ }
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (cinfo->upsample->need_context_rows) {
+ main->pub.process_data = process_data_context_main;
+ make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
+ main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
+ main->context_state = CTX_PREPARE_FOR_IMCU;
+ main->iMCU_row_ctr = 0;
+ } else {
+ /* Simple case with no context needed */
+ main->pub.process_data = process_data_simple_main;
+ }
+ main->buffer_full = FALSE; /* Mark buffer empty */
+ main->rowgroup_ctr = 0;
+ break;
+#ifdef QUANT_2PASS_SUPPORTED
+ case JBUF_CRANK_DEST:
+ /* For last pass of 2-pass quantization, just crank the postprocessor */
+ main->pub.process_data = process_data_crank_post;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This handles the simple case where no context is required.
+ */
+
+METHODDEF(void)
+process_data_simple_main (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ JDIMENSION rowgroups_avail;
+
+ /* Read input data if we haven't filled the main buffer yet */
+ if (! main->buffer_full) {
+ if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
+ return; /* suspension forced, can do nothing more */
+ main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
+ }
+
+ /* There are always min_DCT_scaled_size row groups in an iMCU row. */
+ rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
+ /* Note: at the bottom of the image, we may pass extra garbage row groups
+ * to the postprocessor. The postprocessor has to check for bottom
+ * of image anyway (at row resolution), so no point in us doing it too.
+ */
+
+ /* Feed the postprocessor */
+ (*cinfo->post->post_process_data) (cinfo, main->buffer,
+ &main->rowgroup_ctr, rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+
+ /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
+ if (main->rowgroup_ctr >= rowgroups_avail) {
+ main->buffer_full = FALSE;
+ main->rowgroup_ctr = 0;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This handles the case where context rows must be provided.
+ */
+
+METHODDEF(void)
+process_data_context_main (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ /* Read input data if we haven't filled the main buffer yet */
+ if (! main->buffer_full) {
+ if (! (*cinfo->coef->decompress_data) (cinfo,
+ main->xbuffer[main->whichptr]))
+ return; /* suspension forced, can do nothing more */
+ main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
+ main->iMCU_row_ctr++; /* count rows received */
+ }
+
+ /* Postprocessor typically will not swallow all the input data it is handed
+ * in one call (due to filling the output buffer first). Must be prepared
+ * to exit and restart. This switch lets us keep track of how far we got.
+ * Note that each case falls through to the next on successful completion.
+ */
+ switch (main->context_state) {
+ case CTX_POSTPONED_ROW:
+ /* Call postprocessor using previously set pointers for postponed row */
+ (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
+ &main->rowgroup_ctr, main->rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+ if (main->rowgroup_ctr < main->rowgroups_avail)
+ return; /* Need to suspend */
+ main->context_state = CTX_PREPARE_FOR_IMCU;
+ if (*out_row_ctr >= out_rows_avail)
+ return; /* Postprocessor exactly filled output buf */
+ /*FALLTHROUGH*/
+ case CTX_PREPARE_FOR_IMCU:
+ /* Prepare to process first M-1 row groups of this iMCU row */
+ main->rowgroup_ctr = 0;
+ main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
+ /* Check for bottom of image: if so, tweak pointers to "duplicate"
+ * the last sample row, and adjust rowgroups_avail to ignore padding rows.
+ */
+ if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
+ set_bottom_pointers(cinfo);
+ main->context_state = CTX_PROCESS_IMCU;
+ /*FALLTHROUGH*/
+ case CTX_PROCESS_IMCU:
+ /* Call postprocessor using previously set pointers */
+ (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
+ &main->rowgroup_ctr, main->rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+ if (main->rowgroup_ctr < main->rowgroups_avail)
+ return; /* Need to suspend */
+ /* After the first iMCU, change wraparound pointers to normal state */
+ if (main->iMCU_row_ctr == 1)
+ set_wraparound_pointers(cinfo);
+ /* Prepare to load new iMCU row using other xbuffer list */
+ main->whichptr ^= 1; /* 0=>1 or 1=>0 */
+ main->buffer_full = FALSE;
+ /* Still need to process last row group of this iMCU row, */
+ /* which is saved at index M+1 of the other xbuffer */
+ main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
+ main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
+ main->context_state = CTX_POSTPONED_ROW;
+ }
+}
+
+
+/*
+ * Process some data.
+ * Final pass of two-pass quantization: just call the postprocessor.
+ * Source data will be the postprocessor controller's internal buffer.
+ */
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+METHODDEF(void)
+process_data_crank_post (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
+ (JDIMENSION *) NULL, (JDIMENSION) 0,
+ output_buf, out_row_ctr, out_rows_avail);
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_main_ptr main;
+ int ci, rgroup, ngroups;
+ jpeg_component_info *compptr;
+
+ main = (my_main_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_main_controller));
+ cinfo->main = (struct jpeg_d_main_controller *) main;
+ main->pub.start_pass = start_pass_main;
+
+ if (need_full_buffer) /* shouldn't happen */
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ /* Allocate the workspace.
+ * ngroups is the number of row groups we need.
+ */
+ if (cinfo->upsample->need_context_rows) {
+ if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
+ ERREXIT(cinfo, JERR_NOTIMPL);
+ alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
+ ngroups = cinfo->min_DCT_v_scaled_size + 2;
+ } else {
+ ngroups = cinfo->min_DCT_v_scaled_size;
+ }
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
+ main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ compptr->width_in_blocks * compptr->DCT_h_scaled_size,
+ (JDIMENSION) (rgroup * ngroups));
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdmarker.c b/plugins/AdvaImg/src/LibJPEG/jdmarker.c
new file mode 100644
index 0000000000..f2a9cc4295
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdmarker.c
@@ -0,0 +1,1406 @@
+/*
+ * jdmarker.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to decode JPEG datastream markers.
+ * Most of the complexity arises from our desire to support input
+ * suspension: if not all of the data for a marker is available,
+ * we must exit back to the application. On resumption, we reprocess
+ * the marker.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+typedef enum { /* JPEG marker codes */
+ M_SOF0 = 0xc0,
+ M_SOF1 = 0xc1,
+ M_SOF2 = 0xc2,
+ M_SOF3 = 0xc3,
+
+ M_SOF5 = 0xc5,
+ M_SOF6 = 0xc6,
+ M_SOF7 = 0xc7,
+
+ M_JPG = 0xc8,
+ M_SOF9 = 0xc9,
+ M_SOF10 = 0xca,
+ M_SOF11 = 0xcb,
+
+ M_SOF13 = 0xcd,
+ M_SOF14 = 0xce,
+ M_SOF15 = 0xcf,
+
+ M_DHT = 0xc4,
+
+ M_DAC = 0xcc,
+
+ M_RST0 = 0xd0,
+ M_RST1 = 0xd1,
+ M_RST2 = 0xd2,
+ M_RST3 = 0xd3,
+ M_RST4 = 0xd4,
+ M_RST5 = 0xd5,
+ M_RST6 = 0xd6,
+ M_RST7 = 0xd7,
+
+ M_SOI = 0xd8,
+ M_EOI = 0xd9,
+ M_SOS = 0xda,
+ M_DQT = 0xdb,
+ M_DNL = 0xdc,
+ M_DRI = 0xdd,
+ M_DHP = 0xde,
+ M_EXP = 0xdf,
+
+ M_APP0 = 0xe0,
+ M_APP1 = 0xe1,
+ M_APP2 = 0xe2,
+ M_APP3 = 0xe3,
+ M_APP4 = 0xe4,
+ M_APP5 = 0xe5,
+ M_APP6 = 0xe6,
+ M_APP7 = 0xe7,
+ M_APP8 = 0xe8,
+ M_APP9 = 0xe9,
+ M_APP10 = 0xea,
+ M_APP11 = 0xeb,
+ M_APP12 = 0xec,
+ M_APP13 = 0xed,
+ M_APP14 = 0xee,
+ M_APP15 = 0xef,
+
+ M_JPG0 = 0xf0,
+ M_JPG13 = 0xfd,
+ M_COM = 0xfe,
+
+ M_TEM = 0x01,
+
+ M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_marker_reader pub; /* public fields */
+
+ /* Application-overridable marker processing methods */
+ jpeg_marker_parser_method process_COM;
+ jpeg_marker_parser_method process_APPn[16];
+
+ /* Limit on marker data length to save for each marker type */
+ unsigned int length_limit_COM;
+ unsigned int length_limit_APPn[16];
+
+ /* Status of COM/APPn marker saving */
+ jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */
+ unsigned int bytes_read; /* data bytes read so far in marker */
+ /* Note: cur_marker is not linked into marker_list until it's all read. */
+} my_marker_reader;
+
+typedef my_marker_reader * my_marker_ptr;
+
+
+/*
+ * Macros for fetching data from the data source module.
+ *
+ * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
+ * the current restart point; we update them only when we have reached a
+ * suitable place to restart if a suspension occurs.
+ */
+
+/* Declare and initialize local copies of input pointer/count */
+#define INPUT_VARS(cinfo) \
+ struct jpeg_source_mgr * datasrc = (cinfo)->src; \
+ const JOCTET * next_input_byte = datasrc->next_input_byte; \
+ size_t bytes_in_buffer = datasrc->bytes_in_buffer
+
+/* Unload the local copies --- do this only at a restart boundary */
+#define INPUT_SYNC(cinfo) \
+ ( datasrc->next_input_byte = next_input_byte, \
+ datasrc->bytes_in_buffer = bytes_in_buffer )
+
+/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */
+#define INPUT_RELOAD(cinfo) \
+ ( next_input_byte = datasrc->next_input_byte, \
+ bytes_in_buffer = datasrc->bytes_in_buffer )
+
+/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
+ * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
+ * but we must reload the local copies after a successful fill.
+ */
+#define MAKE_BYTE_AVAIL(cinfo,action) \
+ if (bytes_in_buffer == 0) { \
+ if (! (*datasrc->fill_input_buffer) (cinfo)) \
+ { action; } \
+ INPUT_RELOAD(cinfo); \
+ }
+
+/* Read a byte into variable V.
+ * If must suspend, take the specified action (typically "return FALSE").
+ */
+#define INPUT_BYTE(cinfo,V,action) \
+ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+ bytes_in_buffer--; \
+ V = GETJOCTET(*next_input_byte++); )
+
+/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
+ * V should be declared unsigned int or perhaps INT32.
+ */
+#define INPUT_2BYTES(cinfo,V,action) \
+ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+ bytes_in_buffer--; \
+ V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
+ MAKE_BYTE_AVAIL(cinfo,action); \
+ bytes_in_buffer--; \
+ V += GETJOCTET(*next_input_byte++); )
+
+
+/*
+ * Routines to process JPEG markers.
+ *
+ * Entry condition: JPEG marker itself has been read and its code saved
+ * in cinfo->unread_marker; input restart point is just after the marker.
+ *
+ * Exit: if return TRUE, have read and processed any parameters, and have
+ * updated the restart point to point after the parameters.
+ * If return FALSE, was forced to suspend before reaching end of
+ * marker parameters; restart point has not been moved. Same routine
+ * will be called again after application supplies more input data.
+ *
+ * This approach to suspension assumes that all of a marker's parameters
+ * can fit into a single input bufferload. This should hold for "normal"
+ * markers. Some COM/APPn markers might have large parameter segments
+ * that might not fit. If we are simply dropping such a marker, we use
+ * skip_input_data to get past it, and thereby put the problem on the
+ * source manager's shoulders. If we are saving the marker's contents
+ * into memory, we use a slightly different convention: when forced to
+ * suspend, the marker processor updates the restart point to the end of
+ * what it's consumed (ie, the end of the buffer) before returning FALSE.
+ * On resumption, cinfo->unread_marker still contains the marker code,
+ * but the data source will point to the next chunk of marker data.
+ * The marker processor must retain internal state to deal with this.
+ *
+ * Note that we don't bother to avoid duplicate trace messages if a
+ * suspension occurs within marker parameters. Other side effects
+ * require more care.
+ */
+
+
+LOCAL(boolean)
+get_soi (j_decompress_ptr cinfo)
+/* Process an SOI marker */
+{
+ int i;
+
+ TRACEMS(cinfo, 1, JTRC_SOI);
+
+ if (cinfo->marker->saw_SOI)
+ ERREXIT(cinfo, JERR_SOI_DUPLICATE);
+
+ /* Reset all parameters that are defined to be reset by SOI */
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ cinfo->arith_dc_L[i] = 0;
+ cinfo->arith_dc_U[i] = 1;
+ cinfo->arith_ac_K[i] = 5;
+ }
+ cinfo->restart_interval = 0;
+
+ /* Set initial assumptions for colorspace etc */
+
+ cinfo->jpeg_color_space = JCS_UNKNOWN;
+ cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
+
+ cinfo->saw_JFIF_marker = FALSE;
+ cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */
+ cinfo->JFIF_minor_version = 1;
+ cinfo->density_unit = 0;
+ cinfo->X_density = 1;
+ cinfo->Y_density = 1;
+ cinfo->saw_Adobe_marker = FALSE;
+ cinfo->Adobe_transform = 0;
+
+ cinfo->marker->saw_SOI = TRUE;
+
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_sof (j_decompress_ptr cinfo, boolean is_baseline, boolean is_prog,
+ boolean is_arith)
+/* Process a SOFn marker */
+{
+ INT32 length;
+ int c, ci;
+ jpeg_component_info * compptr;
+ INPUT_VARS(cinfo);
+
+ cinfo->is_baseline = is_baseline;
+ cinfo->progressive_mode = is_prog;
+ cinfo->arith_code = is_arith;
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
+ INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
+ INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
+ INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
+
+ length -= 8;
+
+ TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
+ (int) cinfo->image_width, (int) cinfo->image_height,
+ cinfo->num_components);
+
+ if (cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOF_DUPLICATE);
+
+ /* We don't support files in which the image height is initially specified */
+ /* as 0 and is later redefined by DNL. As long as we have to check that, */
+ /* might as well have a general sanity check. */
+ if (cinfo->image_height <= 0 || cinfo->image_width <= 0
+ || cinfo->num_components <= 0)
+ ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+ if (length != (cinfo->num_components * 3))
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ if (cinfo->comp_info == NULL) /* do only once, even if suspend */
+ cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components * SIZEOF(jpeg_component_info));
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->component_index = ci;
+ INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
+ INPUT_BYTE(cinfo, c, return FALSE);
+ compptr->h_samp_factor = (c >> 4) & 15;
+ compptr->v_samp_factor = (c ) & 15;
+ INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
+
+ TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
+ compptr->component_id, compptr->h_samp_factor,
+ compptr->v_samp_factor, compptr->quant_tbl_no);
+ }
+
+ cinfo->marker->saw_SOF = TRUE;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_sos (j_decompress_ptr cinfo)
+/* Process a SOS marker */
+{
+ INT32 length;
+ int i, ci, n, c, cc;
+ jpeg_component_info * compptr;
+ INPUT_VARS(cinfo);
+
+ if (! cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOS_NO_SOF);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
+
+ TRACEMS1(cinfo, 1, JTRC_SOS, n);
+
+ if (length != (n * 2 + 6) || n > MAX_COMPS_IN_SCAN ||
+ (n == 0 && !cinfo->progressive_mode))
+ /* pseudo SOS marker only allowed in progressive mode */
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ cinfo->comps_in_scan = n;
+
+ /* Collect the component-spec parameters */
+
+ for (i = 0; i < n; i++) {
+ INPUT_BYTE(cinfo, cc, return FALSE);
+ INPUT_BYTE(cinfo, c, return FALSE);
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (cc == compptr->component_id)
+ goto id_found;
+ }
+
+ ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
+
+ id_found:
+
+ cinfo->cur_comp_info[i] = compptr;
+ compptr->dc_tbl_no = (c >> 4) & 15;
+ compptr->ac_tbl_no = (c ) & 15;
+
+ TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
+ compptr->dc_tbl_no, compptr->ac_tbl_no);
+ }
+
+ /* Collect the additional scan parameters Ss, Se, Ah/Al. */
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Ss = c;
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Se = c;
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Ah = (c >> 4) & 15;
+ cinfo->Al = (c ) & 15;
+
+ TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
+ cinfo->Ah, cinfo->Al);
+
+ /* Prepare to scan data & restart markers */
+ cinfo->marker->next_restart_num = 0;
+
+ /* Count another (non-pseudo) SOS marker */
+ if (n) cinfo->input_scan_number++;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+#ifdef D_ARITH_CODING_SUPPORTED
+
+LOCAL(boolean)
+get_dac (j_decompress_ptr cinfo)
+/* Process a DAC marker */
+{
+ INT32 length;
+ int index, val;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ INPUT_BYTE(cinfo, index, return FALSE);
+ INPUT_BYTE(cinfo, val, return FALSE);
+
+ length -= 2;
+
+ TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
+
+ if (index < 0 || index >= (2*NUM_ARITH_TBLS))
+ ERREXIT1(cinfo, JERR_DAC_INDEX, index);
+
+ if (index >= NUM_ARITH_TBLS) { /* define AC table */
+ cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
+ } else { /* define DC table */
+ cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
+ cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
+ if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
+ ERREXIT1(cinfo, JERR_DAC_VALUE, val);
+ }
+ }
+
+ if (length != 0)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+#else /* ! D_ARITH_CODING_SUPPORTED */
+
+#define get_dac(cinfo) skip_variable(cinfo)
+
+#endif /* D_ARITH_CODING_SUPPORTED */
+
+
+LOCAL(boolean)
+get_dht (j_decompress_ptr cinfo)
+/* Process a DHT marker */
+{
+ INT32 length;
+ UINT8 bits[17];
+ UINT8 huffval[256];
+ int i, index, count;
+ JHUFF_TBL **htblptr;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 16) {
+ INPUT_BYTE(cinfo, index, return FALSE);
+
+ TRACEMS1(cinfo, 1, JTRC_DHT, index);
+
+ bits[0] = 0;
+ count = 0;
+ for (i = 1; i <= 16; i++) {
+ INPUT_BYTE(cinfo, bits[i], return FALSE);
+ count += bits[i];
+ }
+
+ length -= 1 + 16;
+
+ TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+ bits[1], bits[2], bits[3], bits[4],
+ bits[5], bits[6], bits[7], bits[8]);
+ TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+ bits[9], bits[10], bits[11], bits[12],
+ bits[13], bits[14], bits[15], bits[16]);
+
+ /* Here we just do minimal validation of the counts to avoid walking
+ * off the end of our table space. jdhuff.c will check more carefully.
+ */
+ if (count > 256 || ((INT32) count) > length)
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+
+ for (i = 0; i < count; i++)
+ INPUT_BYTE(cinfo, huffval[i], return FALSE);
+
+ length -= count;
+
+ if (index & 0x10) { /* AC table definition */
+ index -= 0x10;
+ htblptr = &cinfo->ac_huff_tbl_ptrs[index];
+ } else { /* DC table definition */
+ htblptr = &cinfo->dc_huff_tbl_ptrs[index];
+ }
+
+ if (index < 0 || index >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_DHT_INDEX, index);
+
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+
+ MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+ MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
+ }
+
+ if (length != 0)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_dqt (j_decompress_ptr cinfo)
+/* Process a DQT marker */
+{
+ INT32 length, count, i;
+ int n, prec;
+ unsigned int tmp;
+ JQUANT_TBL *quant_ptr;
+ const int *natural_order;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ length--;
+ INPUT_BYTE(cinfo, n, return FALSE);
+ prec = n >> 4;
+ n &= 0x0F;
+
+ TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
+
+ if (n >= NUM_QUANT_TBLS)
+ ERREXIT1(cinfo, JERR_DQT_INDEX, n);
+
+ if (cinfo->quant_tbl_ptrs[n] == NULL)
+ cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+ quant_ptr = cinfo->quant_tbl_ptrs[n];
+
+ if (prec) {
+ if (length < DCTSIZE2 * 2) {
+ /* Initialize full table for safety. */
+ for (i = 0; i < DCTSIZE2; i++) {
+ quant_ptr->quantval[i] = 1;
+ }
+ count = length >> 1;
+ } else
+ count = DCTSIZE2;
+ } else {
+ if (length < DCTSIZE2) {
+ /* Initialize full table for safety. */
+ for (i = 0; i < DCTSIZE2; i++) {
+ quant_ptr->quantval[i] = 1;
+ }
+ count = length;
+ } else
+ count = DCTSIZE2;
+ }
+
+ switch (count) {
+ case (2*2): natural_order = jpeg_natural_order2; break;
+ case (3*3): natural_order = jpeg_natural_order3; break;
+ case (4*4): natural_order = jpeg_natural_order4; break;
+ case (5*5): natural_order = jpeg_natural_order5; break;
+ case (6*6): natural_order = jpeg_natural_order6; break;
+ case (7*7): natural_order = jpeg_natural_order7; break;
+ default: natural_order = jpeg_natural_order; break;
+ }
+
+ for (i = 0; i < count; i++) {
+ if (prec)
+ INPUT_2BYTES(cinfo, tmp, return FALSE);
+ else
+ INPUT_BYTE(cinfo, tmp, return FALSE);
+ /* We convert the zigzag-order table to natural array order. */
+ quant_ptr->quantval[natural_order[i]] = (UINT16) tmp;
+ }
+
+ if (cinfo->err->trace_level >= 2) {
+ for (i = 0; i < DCTSIZE2; i += 8) {
+ TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
+ quant_ptr->quantval[i], quant_ptr->quantval[i+1],
+ quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
+ quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
+ quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
+ }
+ }
+
+ length -= count;
+ if (prec) length -= count;
+ }
+
+ if (length != 0)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+get_dri (j_decompress_ptr cinfo)
+/* Process a DRI marker */
+{
+ INT32 length;
+ unsigned int tmp;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ if (length != 4)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_2BYTES(cinfo, tmp, return FALSE);
+
+ TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
+
+ cinfo->restart_interval = tmp;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Routines for processing APPn and COM markers.
+ * These are either saved in memory or discarded, per application request.
+ * APP0 and APP14 are specially checked to see if they are
+ * JFIF and Adobe markers, respectively.
+ */
+
+#define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */
+#define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */
+#define APPN_DATA_LEN 14 /* Must be the largest of the above!! */
+
+
+LOCAL(void)
+examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
+ unsigned int datalen, INT32 remaining)
+/* Examine first few bytes from an APP0.
+ * Take appropriate action if it is a JFIF marker.
+ * datalen is # of bytes at data[], remaining is length of rest of marker data.
+ */
+{
+ INT32 totallen = (INT32) datalen + remaining;
+
+ if (datalen >= APP0_DATA_LEN &&
+ GETJOCTET(data[0]) == 0x4A &&
+ GETJOCTET(data[1]) == 0x46 &&
+ GETJOCTET(data[2]) == 0x49 &&
+ GETJOCTET(data[3]) == 0x46 &&
+ GETJOCTET(data[4]) == 0) {
+ /* Found JFIF APP0 marker: save info */
+ cinfo->saw_JFIF_marker = TRUE;
+ cinfo->JFIF_major_version = GETJOCTET(data[5]);
+ cinfo->JFIF_minor_version = GETJOCTET(data[6]);
+ cinfo->density_unit = GETJOCTET(data[7]);
+ cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
+ cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
+ /* Check version.
+ * Major version must be 1, anything else signals an incompatible change.
+ * (We used to treat this as an error, but now it's a nonfatal warning,
+ * because some bozo at Hijaak couldn't read the spec.)
+ * Minor version should be 0..2, but process anyway if newer.
+ */
+ if (cinfo->JFIF_major_version != 1)
+ WARNMS2(cinfo, JWRN_JFIF_MAJOR,
+ cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
+ /* Generate trace messages */
+ TRACEMS5(cinfo, 1, JTRC_JFIF,
+ cinfo->JFIF_major_version, cinfo->JFIF_minor_version,
+ cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
+ /* Validate thumbnail dimensions and issue appropriate messages */
+ if (GETJOCTET(data[12]) | GETJOCTET(data[13]))
+ TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL,
+ GETJOCTET(data[12]), GETJOCTET(data[13]));
+ totallen -= APP0_DATA_LEN;
+ if (totallen !=
+ ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3))
+ TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen);
+ } else if (datalen >= 6 &&
+ GETJOCTET(data[0]) == 0x4A &&
+ GETJOCTET(data[1]) == 0x46 &&
+ GETJOCTET(data[2]) == 0x58 &&
+ GETJOCTET(data[3]) == 0x58 &&
+ GETJOCTET(data[4]) == 0) {
+ /* Found JFIF "JFXX" extension APP0 marker */
+ /* The library doesn't actually do anything with these,
+ * but we try to produce a helpful trace message.
+ */
+ switch (GETJOCTET(data[5])) {
+ case 0x10:
+ TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen);
+ break;
+ case 0x11:
+ TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen);
+ break;
+ case 0x13:
+ TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen);
+ break;
+ default:
+ TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION,
+ GETJOCTET(data[5]), (int) totallen);
+ break;
+ }
+ } else {
+ /* Start of APP0 does not match "JFIF" or "JFXX", or too short */
+ TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen);
+ }
+}
+
+
+LOCAL(void)
+examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data,
+ unsigned int datalen, INT32 remaining)
+/* Examine first few bytes from an APP14.
+ * Take appropriate action if it is an Adobe marker.
+ * datalen is # of bytes at data[], remaining is length of rest of marker data.
+ */
+{
+ unsigned int version, flags0, flags1, transform;
+
+ if (datalen >= APP14_DATA_LEN &&
+ GETJOCTET(data[0]) == 0x41 &&
+ GETJOCTET(data[1]) == 0x64 &&
+ GETJOCTET(data[2]) == 0x6F &&
+ GETJOCTET(data[3]) == 0x62 &&
+ GETJOCTET(data[4]) == 0x65) {
+ /* Found Adobe APP14 marker */
+ version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]);
+ flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]);
+ flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]);
+ transform = GETJOCTET(data[11]);
+ TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
+ cinfo->saw_Adobe_marker = TRUE;
+ cinfo->Adobe_transform = (UINT8) transform;
+ } else {
+ /* Start of APP14 does not match "Adobe", or too short */
+ TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining));
+ }
+}
+
+
+METHODDEF(boolean)
+get_interesting_appn (j_decompress_ptr cinfo)
+/* Process an APP0 or APP14 marker without saving it */
+{
+ INT32 length;
+ JOCTET b[APPN_DATA_LEN];
+ unsigned int i, numtoread;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ /* get the interesting part of the marker data */
+ if (length >= APPN_DATA_LEN)
+ numtoread = APPN_DATA_LEN;
+ else if (length > 0)
+ numtoread = (unsigned int) length;
+ else
+ numtoread = 0;
+ for (i = 0; i < numtoread; i++)
+ INPUT_BYTE(cinfo, b[i], return FALSE);
+ length -= numtoread;
+
+ /* process it */
+ switch (cinfo->unread_marker) {
+ case M_APP0:
+ examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length);
+ break;
+ case M_APP14:
+ examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length);
+ break;
+ default:
+ /* can't get here unless jpeg_save_markers chooses wrong processor */
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+ break;
+ }
+
+ /* skip any remaining data -- could be lots */
+ INPUT_SYNC(cinfo);
+ if (length > 0)
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+
+#ifdef SAVE_MARKERS_SUPPORTED
+
+METHODDEF(boolean)
+save_marker (j_decompress_ptr cinfo)
+/* Save an APPn or COM marker into the marker list */
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+ jpeg_saved_marker_ptr cur_marker = marker->cur_marker;
+ unsigned int bytes_read, data_length;
+ JOCTET FAR * data;
+ INT32 length = 0;
+ INPUT_VARS(cinfo);
+
+ if (cur_marker == NULL) {
+ /* begin reading a marker */
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+ if (length >= 0) { /* watch out for bogus length word */
+ /* figure out how much we want to save */
+ unsigned int limit;
+ if (cinfo->unread_marker == (int) M_COM)
+ limit = marker->length_limit_COM;
+ else
+ limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0];
+ if ((unsigned int) length < limit)
+ limit = (unsigned int) length;
+ /* allocate and initialize the marker item */
+ cur_marker = (jpeg_saved_marker_ptr)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(struct jpeg_marker_struct) + limit);
+ cur_marker->next = NULL;
+ cur_marker->marker = (UINT8) cinfo->unread_marker;
+ cur_marker->original_length = (unsigned int) length;
+ cur_marker->data_length = limit;
+ /* data area is just beyond the jpeg_marker_struct */
+ data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1);
+ marker->cur_marker = cur_marker;
+ marker->bytes_read = 0;
+ bytes_read = 0;
+ data_length = limit;
+ } else {
+ /* deal with bogus length word */
+ bytes_read = data_length = 0;
+ data = NULL;
+ }
+ } else {
+ /* resume reading a marker */
+ bytes_read = marker->bytes_read;
+ data_length = cur_marker->data_length;
+ data = cur_marker->data + bytes_read;
+ }
+
+ while (bytes_read < data_length) {
+ INPUT_SYNC(cinfo); /* move the restart point to here */
+ marker->bytes_read = bytes_read;
+ /* If there's not at least one byte in buffer, suspend */
+ MAKE_BYTE_AVAIL(cinfo, return FALSE);
+ /* Copy bytes with reasonable rapidity */
+ while (bytes_read < data_length && bytes_in_buffer > 0) {
+ *data++ = *next_input_byte++;
+ bytes_in_buffer--;
+ bytes_read++;
+ }
+ }
+
+ /* Done reading what we want to read */
+ if (cur_marker != NULL) { /* will be NULL if bogus length word */
+ /* Add new marker to end of list */
+ if (cinfo->marker_list == NULL) {
+ cinfo->marker_list = cur_marker;
+ } else {
+ jpeg_saved_marker_ptr prev = cinfo->marker_list;
+ while (prev->next != NULL)
+ prev = prev->next;
+ prev->next = cur_marker;
+ }
+ /* Reset pointer & calc remaining data length */
+ data = cur_marker->data;
+ length = cur_marker->original_length - data_length;
+ }
+ /* Reset to initial state for next marker */
+ marker->cur_marker = NULL;
+
+ /* Process the marker if interesting; else just make a generic trace msg */
+ switch (cinfo->unread_marker) {
+ case M_APP0:
+ examine_app0(cinfo, data, data_length, length);
+ break;
+ case M_APP14:
+ examine_app14(cinfo, data, data_length, length);
+ break;
+ default:
+ TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker,
+ (int) (data_length + length));
+ break;
+ }
+
+ /* skip any remaining data -- could be lots */
+ INPUT_SYNC(cinfo); /* do before skip_input_data */
+ if (length > 0)
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+#endif /* SAVE_MARKERS_SUPPORTED */
+
+
+METHODDEF(boolean)
+skip_variable (j_decompress_ptr cinfo)
+/* Skip over an unknown or uninteresting variable-length marker */
+{
+ INT32 length;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
+
+ INPUT_SYNC(cinfo); /* do before skip_input_data */
+ if (length > 0)
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+
+/*
+ * Find the next JPEG marker, save it in cinfo->unread_marker.
+ * Returns FALSE if had to suspend before reaching a marker;
+ * in that case cinfo->unread_marker is unchanged.
+ *
+ * Note that the result might not be a valid marker code,
+ * but it will never be 0 or FF.
+ */
+
+LOCAL(boolean)
+next_marker (j_decompress_ptr cinfo)
+{
+ int c;
+ INPUT_VARS(cinfo);
+
+ for (;;) {
+ INPUT_BYTE(cinfo, c, return FALSE);
+ /* Skip any non-FF bytes.
+ * This may look a bit inefficient, but it will not occur in a valid file.
+ * We sync after each discarded byte so that a suspending data source
+ * can discard the byte from its buffer.
+ */
+ while (c != 0xFF) {
+ cinfo->marker->discarded_bytes++;
+ INPUT_SYNC(cinfo);
+ INPUT_BYTE(cinfo, c, return FALSE);
+ }
+ /* This loop swallows any duplicate FF bytes. Extra FFs are legal as
+ * pad bytes, so don't count them in discarded_bytes. We assume there
+ * will not be so many consecutive FF bytes as to overflow a suspending
+ * data source's input buffer.
+ */
+ do {
+ INPUT_BYTE(cinfo, c, return FALSE);
+ } while (c == 0xFF);
+ if (c != 0)
+ break; /* found a valid marker, exit loop */
+ /* Reach here if we found a stuffed-zero data sequence (FF/00).
+ * Discard it and loop back to try again.
+ */
+ cinfo->marker->discarded_bytes += 2;
+ INPUT_SYNC(cinfo);
+ }
+
+ if (cinfo->marker->discarded_bytes != 0) {
+ WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
+ cinfo->marker->discarded_bytes = 0;
+ }
+
+ cinfo->unread_marker = c;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL(boolean)
+first_marker (j_decompress_ptr cinfo)
+/* Like next_marker, but used to obtain the initial SOI marker. */
+/* For this marker, we do not allow preceding garbage or fill; otherwise,
+ * we might well scan an entire input file before realizing it ain't JPEG.
+ * If an application wants to process non-JFIF files, it must seek to the
+ * SOI before calling the JPEG library.
+ */
+{
+ int c, c2;
+ INPUT_VARS(cinfo);
+
+ INPUT_BYTE(cinfo, c, return FALSE);
+ INPUT_BYTE(cinfo, c2, return FALSE);
+ if (c != 0xFF || c2 != (int) M_SOI)
+ ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
+
+ cinfo->unread_marker = c2;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Read markers until SOS or EOI.
+ *
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ *
+ * Note: This function may return a pseudo SOS marker (with zero
+ * component number) for treat by input controller's consume_input.
+ * consume_input itself should filter out (skip) the pseudo marker
+ * after processing for the caller.
+ */
+
+METHODDEF(int)
+read_markers (j_decompress_ptr cinfo)
+{
+ /* Outer loop repeats once for each marker. */
+ for (;;) {
+ /* Collect the marker proper, unless we already did. */
+ /* NB: first_marker() enforces the requirement that SOI appear first. */
+ if (cinfo->unread_marker == 0) {
+ if (! cinfo->marker->saw_SOI) {
+ if (! first_marker(cinfo))
+ return JPEG_SUSPENDED;
+ } else {
+ if (! next_marker(cinfo))
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* At this point cinfo->unread_marker contains the marker code and the
+ * input point is just past the marker proper, but before any parameters.
+ * A suspension will cause us to return with this state still true.
+ */
+ switch (cinfo->unread_marker) {
+ case M_SOI:
+ if (! get_soi(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF0: /* Baseline */
+ if (! get_sof(cinfo, TRUE, FALSE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF1: /* Extended sequential, Huffman */
+ if (! get_sof(cinfo, FALSE, FALSE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF2: /* Progressive, Huffman */
+ if (! get_sof(cinfo, FALSE, TRUE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF9: /* Extended sequential, arithmetic */
+ if (! get_sof(cinfo, FALSE, FALSE, TRUE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF10: /* Progressive, arithmetic */
+ if (! get_sof(cinfo, FALSE, TRUE, TRUE))
+ return JPEG_SUSPENDED;
+ break;
+
+ /* Currently unsupported SOFn types */
+ case M_SOF3: /* Lossless, Huffman */
+ case M_SOF5: /* Differential sequential, Huffman */
+ case M_SOF6: /* Differential progressive, Huffman */
+ case M_SOF7: /* Differential lossless, Huffman */
+ case M_JPG: /* Reserved for JPEG extensions */
+ case M_SOF11: /* Lossless, arithmetic */
+ case M_SOF13: /* Differential sequential, arithmetic */
+ case M_SOF14: /* Differential progressive, arithmetic */
+ case M_SOF15: /* Differential lossless, arithmetic */
+ ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
+ break;
+
+ case M_SOS:
+ if (! get_sos(cinfo))
+ return JPEG_SUSPENDED;
+ cinfo->unread_marker = 0; /* processed the marker */
+ return JPEG_REACHED_SOS;
+
+ case M_EOI:
+ TRACEMS(cinfo, 1, JTRC_EOI);
+ cinfo->unread_marker = 0; /* processed the marker */
+ return JPEG_REACHED_EOI;
+
+ case M_DAC:
+ if (! get_dac(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DHT:
+ if (! get_dht(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DQT:
+ if (! get_dqt(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DRI:
+ if (! get_dri(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_APP0:
+ case M_APP1:
+ case M_APP2:
+ case M_APP3:
+ case M_APP4:
+ case M_APP5:
+ case M_APP6:
+ case M_APP7:
+ case M_APP8:
+ case M_APP9:
+ case M_APP10:
+ case M_APP11:
+ case M_APP12:
+ case M_APP13:
+ case M_APP14:
+ case M_APP15:
+ if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[
+ cinfo->unread_marker - (int) M_APP0]) (cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_COM:
+ if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_RST0: /* these are all parameterless */
+ case M_RST1:
+ case M_RST2:
+ case M_RST3:
+ case M_RST4:
+ case M_RST5:
+ case M_RST6:
+ case M_RST7:
+ case M_TEM:
+ TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
+ break;
+
+ case M_DNL: /* Ignore DNL ... perhaps the wrong thing */
+ if (! skip_variable(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ default: /* must be DHP, EXP, JPGn, or RESn */
+ /* For now, we treat the reserved markers as fatal errors since they are
+ * likely to be used to signal incompatible JPEG Part 3 extensions.
+ * Once the JPEG 3 version-number marker is well defined, this code
+ * ought to change!
+ */
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+ break;
+ }
+ /* Successfully processed marker, so reset state variable */
+ cinfo->unread_marker = 0;
+ } /* end loop */
+}
+
+
+/*
+ * Read a restart marker, which is expected to appear next in the datastream;
+ * if the marker is not there, take appropriate recovery action.
+ * Returns FALSE if suspension is required.
+ *
+ * This is called by the entropy decoder after it has read an appropriate
+ * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder
+ * has already read a marker from the data source. Under normal conditions
+ * cinfo->unread_marker will be reset to 0 before returning; if not reset,
+ * it holds a marker which the decoder will be unable to read past.
+ */
+
+METHODDEF(boolean)
+read_restart_marker (j_decompress_ptr cinfo)
+{
+ /* Obtain a marker unless we already did. */
+ /* Note that next_marker will complain if it skips any data. */
+ if (cinfo->unread_marker == 0) {
+ if (! next_marker(cinfo))
+ return FALSE;
+ }
+
+ if (cinfo->unread_marker ==
+ ((int) M_RST0 + cinfo->marker->next_restart_num)) {
+ /* Normal case --- swallow the marker and let entropy decoder continue */
+ TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num);
+ cinfo->unread_marker = 0;
+ } else {
+ /* Uh-oh, the restart markers have been messed up. */
+ /* Let the data source manager determine how to resync. */
+ if (! (*cinfo->src->resync_to_restart) (cinfo,
+ cinfo->marker->next_restart_num))
+ return FALSE;
+ }
+
+ /* Update next-restart state */
+ cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
+
+ return TRUE;
+}
+
+
+/*
+ * This is the default resync_to_restart method for data source managers
+ * to use if they don't have any better approach. Some data source managers
+ * may be able to back up, or may have additional knowledge about the data
+ * which permits a more intelligent recovery strategy; such managers would
+ * presumably supply their own resync method.
+ *
+ * read_restart_marker calls resync_to_restart if it finds a marker other than
+ * the restart marker it was expecting. (This code is *not* used unless
+ * a nonzero restart interval has been declared.) cinfo->unread_marker is
+ * the marker code actually found (might be anything, except 0 or FF).
+ * The desired restart marker number (0..7) is passed as a parameter.
+ * This routine is supposed to apply whatever error recovery strategy seems
+ * appropriate in order to position the input stream to the next data segment.
+ * Note that cinfo->unread_marker is treated as a marker appearing before
+ * the current data-source input point; usually it should be reset to zero
+ * before returning.
+ * Returns FALSE if suspension is required.
+ *
+ * This implementation is substantially constrained by wanting to treat the
+ * input as a data stream; this means we can't back up. Therefore, we have
+ * only the following actions to work with:
+ * 1. Simply discard the marker and let the entropy decoder resume at next
+ * byte of file.
+ * 2. Read forward until we find another marker, discarding intervening
+ * data. (In theory we could look ahead within the current bufferload,
+ * without having to discard data if we don't find the desired marker.
+ * This idea is not implemented here, in part because it makes behavior
+ * dependent on buffer size and chance buffer-boundary positions.)
+ * 3. Leave the marker unread (by failing to zero cinfo->unread_marker).
+ * This will cause the entropy decoder to process an empty data segment,
+ * inserting dummy zeroes, and then we will reprocess the marker.
+ *
+ * #2 is appropriate if we think the desired marker lies ahead, while #3 is
+ * appropriate if the found marker is a future restart marker (indicating
+ * that we have missed the desired restart marker, probably because it got
+ * corrupted).
+ * We apply #2 or #3 if the found marker is a restart marker no more than
+ * two counts behind or ahead of the expected one. We also apply #2 if the
+ * found marker is not a legal JPEG marker code (it's certainly bogus data).
+ * If the found marker is a restart marker more than 2 counts away, we do #1
+ * (too much risk that the marker is erroneous; with luck we will be able to
+ * resync at some future point).
+ * For any valid non-restart JPEG marker, we apply #3. This keeps us from
+ * overrunning the end of a scan. An implementation limited to single-scan
+ * files might find it better to apply #2 for markers other than EOI, since
+ * any other marker would have to be bogus data in that case.
+ */
+
+GLOBAL(boolean)
+jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
+{
+ int marker = cinfo->unread_marker;
+ int action = 1;
+
+ /* Always put up a warning. */
+ WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
+
+ /* Outer loop handles repeated decision after scanning forward. */
+ for (;;) {
+ if (marker < (int) M_SOF0)
+ action = 2; /* invalid marker */
+ else if (marker < (int) M_RST0 || marker > (int) M_RST7)
+ action = 3; /* valid non-restart marker */
+ else {
+ if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
+ marker == ((int) M_RST0 + ((desired+2) & 7)))
+ action = 3; /* one of the next two expected restarts */
+ else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
+ marker == ((int) M_RST0 + ((desired-2) & 7)))
+ action = 2; /* a prior restart, so advance */
+ else
+ action = 1; /* desired restart or too far away */
+ }
+ TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
+ switch (action) {
+ case 1:
+ /* Discard marker and let entropy decoder resume processing. */
+ cinfo->unread_marker = 0;
+ return TRUE;
+ case 2:
+ /* Scan to the next marker, and repeat the decision loop. */
+ if (! next_marker(cinfo))
+ return FALSE;
+ marker = cinfo->unread_marker;
+ break;
+ case 3:
+ /* Return without advancing past this marker. */
+ /* Entropy decoder will be forced to process an empty segment. */
+ return TRUE;
+ }
+ } /* end loop */
+}
+
+
+/*
+ * Reset marker processing state to begin a fresh datastream.
+ */
+
+METHODDEF(void)
+reset_marker_reader (j_decompress_ptr cinfo)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+ cinfo->comp_info = NULL; /* until allocated by get_sof */
+ cinfo->input_scan_number = 0; /* no SOS seen yet */
+ cinfo->unread_marker = 0; /* no pending marker */
+ marker->pub.saw_SOI = FALSE; /* set internal state too */
+ marker->pub.saw_SOF = FALSE;
+ marker->pub.discarded_bytes = 0;
+ marker->cur_marker = NULL;
+}
+
+
+/*
+ * Initialize the marker reader module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL(void)
+jinit_marker_reader (j_decompress_ptr cinfo)
+{
+ my_marker_ptr marker;
+ int i;
+
+ /* Create subobject in permanent pool */
+ marker = (my_marker_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_marker_reader));
+ cinfo->marker = (struct jpeg_marker_reader *) marker;
+ /* Initialize public method pointers */
+ marker->pub.reset_marker_reader = reset_marker_reader;
+ marker->pub.read_markers = read_markers;
+ marker->pub.read_restart_marker = read_restart_marker;
+ /* Initialize COM/APPn processing.
+ * By default, we examine and then discard APP0 and APP14,
+ * but simply discard COM and all other APPn.
+ */
+ marker->process_COM = skip_variable;
+ marker->length_limit_COM = 0;
+ for (i = 0; i < 16; i++) {
+ marker->process_APPn[i] = skip_variable;
+ marker->length_limit_APPn[i] = 0;
+ }
+ marker->process_APPn[0] = get_interesting_appn;
+ marker->process_APPn[14] = get_interesting_appn;
+ /* Reset marker processing state */
+ reset_marker_reader(cinfo);
+}
+
+
+/*
+ * Control saving of COM and APPn markers into marker_list.
+ */
+
+#ifdef SAVE_MARKERS_SUPPORTED
+
+GLOBAL(void)
+jpeg_save_markers (j_decompress_ptr cinfo, int marker_code,
+ unsigned int length_limit)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+ long maxlength;
+ jpeg_marker_parser_method processor;
+
+ /* Length limit mustn't be larger than what we can allocate
+ * (should only be a concern in a 16-bit environment).
+ */
+ maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct);
+ if (((long) length_limit) > maxlength)
+ length_limit = (unsigned int) maxlength;
+
+ /* Choose processor routine to use.
+ * APP0/APP14 have special requirements.
+ */
+ if (length_limit) {
+ processor = save_marker;
+ /* If saving APP0/APP14, save at least enough for our internal use. */
+ if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN)
+ length_limit = APP0_DATA_LEN;
+ else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN)
+ length_limit = APP14_DATA_LEN;
+ } else {
+ processor = skip_variable;
+ /* If discarding APP0/APP14, use our regular on-the-fly processor. */
+ if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14)
+ processor = get_interesting_appn;
+ }
+
+ if (marker_code == (int) M_COM) {
+ marker->process_COM = processor;
+ marker->length_limit_COM = length_limit;
+ } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) {
+ marker->process_APPn[marker_code - (int) M_APP0] = processor;
+ marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit;
+ } else
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}
+
+#endif /* SAVE_MARKERS_SUPPORTED */
+
+
+/*
+ * Install a special processing method for COM or APPn markers.
+ */
+
+GLOBAL(void)
+jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
+ jpeg_marker_parser_method routine)
+{
+ my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+ if (marker_code == (int) M_COM)
+ marker->process_COM = routine;
+ else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
+ marker->process_APPn[marker_code - (int) M_APP0] = routine;
+ else
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdmaster.c b/plugins/AdvaImg/src/LibJPEG/jdmaster.c
new file mode 100644
index 0000000000..fef72a21b4
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdmaster.c
@@ -0,0 +1,531 @@
+/*
+ * jdmaster.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2002-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG decompressor.
+ * These routines are concerned with selecting the modules to be executed
+ * and with determining the number of passes and the work to be done in each
+ * pass.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_decomp_master pub; /* public fields */
+
+ int pass_number; /* # of passes completed */
+
+ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
+
+ /* Saved references to initialized quantizer modules,
+ * in case we need to switch modes.
+ */
+ struct jpeg_color_quantizer * quantizer_1pass;
+ struct jpeg_color_quantizer * quantizer_2pass;
+} my_decomp_master;
+
+typedef my_decomp_master * my_master_ptr;
+
+
+/*
+ * Determine whether merged upsample/color conversion should be used.
+ * CRUCIAL: this must match the actual capabilities of jdmerge.c!
+ */
+
+LOCAL(boolean)
+use_merged_upsample (j_decompress_ptr cinfo)
+{
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+ /* Merging is the equivalent of plain box-filter upsampling */
+ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
+ return FALSE;
+ /* jdmerge.c only supports YCC=>RGB color conversion */
+ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
+ cinfo->out_color_space != JCS_RGB ||
+ cinfo->out_color_components != RGB_PIXELSIZE)
+ return FALSE;
+ /* and it only handles 2h1v or 2h2v sampling ratios */
+ if (cinfo->comp_info[0].h_samp_factor != 2 ||
+ cinfo->comp_info[1].h_samp_factor != 1 ||
+ cinfo->comp_info[2].h_samp_factor != 1 ||
+ cinfo->comp_info[0].v_samp_factor > 2 ||
+ cinfo->comp_info[1].v_samp_factor != 1 ||
+ cinfo->comp_info[2].v_samp_factor != 1)
+ return FALSE;
+ /* furthermore, it doesn't work if we've scaled the IDCTs differently */
+ if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
+ cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
+ cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
+ cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
+ cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
+ cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
+ return FALSE;
+ /* ??? also need to test for upsample-time rescaling, when & if supported */
+ return TRUE; /* by golly, it'll work... */
+#else
+ return FALSE;
+#endif
+}
+
+
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ * Also note that it may be called before the master module is initialized!
+ */
+
+GLOBAL(void)
+jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase.
+ * This function is used for full decompression.
+ */
+{
+#ifdef IDCT_SCALING_SUPPORTED
+ int ci;
+ jpeg_component_info *compptr;
+#endif
+
+ /* Prevent application from calling me at wrong times */
+ if (cinfo->global_state != DSTATE_READY)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ /* Compute core output image dimensions and DCT scaling choices. */
+ jpeg_core_output_dimensions(cinfo);
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+ /* In selecting the actual DCT scaling for each component, we try to
+ * scale up the chroma components via IDCT scaling rather than upsampling.
+ * This saves time if the upsampler gets to use 1:1 scaling.
+ * Note this code adapts subsampling ratios which are powers of 2.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ int ssize = 1;
+ while (cinfo->min_DCT_h_scaled_size * ssize <=
+ (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+ compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
+ ssize = 1;
+ while (cinfo->min_DCT_v_scaled_size * ssize <=
+ (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
+ (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
+ ssize = ssize * 2;
+ }
+ compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
+
+ /* We don't support IDCT ratios larger than 2. */
+ if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
+ compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
+ else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
+ compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
+ }
+
+ /* Recompute downsampled dimensions of components;
+ * application needs to know these if using raw downsampled data.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Size in samples, after IDCT scaling */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width *
+ (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
+ (long) (cinfo->max_h_samp_factor * cinfo->block_size));
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height *
+ (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
+ (long) (cinfo->max_v_samp_factor * cinfo->block_size));
+ }
+
+#endif /* IDCT_SCALING_SUPPORTED */
+
+ /* Report number of components in selected colorspace. */
+ /* Probably this should be in the color conversion module... */
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ cinfo->out_color_components = 1;
+ break;
+ case JCS_RGB:
+ cinfo->out_color_components = RGB_PIXELSIZE;
+ break;
+ case JCS_YCbCr:
+ cinfo->out_color_components = 3;
+ break;
+ case JCS_CMYK:
+ case JCS_YCCK:
+ cinfo->out_color_components = 4;
+ break;
+ default: /* else must be same colorspace as in file */
+ cinfo->out_color_components = cinfo->num_components;
+ break;
+ }
+ cinfo->output_components = (cinfo->quantize_colors ? 1 :
+ cinfo->out_color_components);
+
+ /* See if upsampler will want to emit more than one row at a time */
+ if (use_merged_upsample(cinfo))
+ cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
+ else
+ cinfo->rec_outbuf_height = 1;
+}
+
+
+/*
+ * Several decompression processes need to range-limit values to the range
+ * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
+ * due to noise introduced by quantization, roundoff error, etc. These
+ * processes are inner loops and need to be as fast as possible. On most
+ * machines, particularly CPUs with pipelines or instruction prefetch,
+ * a (subscript-check-less) C table lookup
+ * x = sample_range_limit[x];
+ * is faster than explicit tests
+ * if (x < 0) x = 0;
+ * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
+ * These processes all use a common table prepared by the routine below.
+ *
+ * For most steps we can mathematically guarantee that the initial value
+ * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
+ * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
+ * limiting step (just after the IDCT), a wildly out-of-range value is
+ * possible if the input data is corrupt. To avoid any chance of indexing
+ * off the end of memory and getting a bad-pointer trap, we perform the
+ * post-IDCT limiting thus:
+ * x = range_limit[x & MASK];
+ * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
+ * samples. Under normal circumstances this is more than enough range and
+ * a correct output will be generated; with bogus input data the mask will
+ * cause wraparound, and we will safely generate a bogus-but-in-range output.
+ * For the post-IDCT step, we want to convert the data from signed to unsigned
+ * representation by adding CENTERJSAMPLE at the same time that we limit it.
+ * So the post-IDCT limiting table ends up looking like this:
+ * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
+ * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ * 0,1,...,CENTERJSAMPLE-1
+ * Negative inputs select values from the upper half of the table after
+ * masking.
+ *
+ * We can save some space by overlapping the start of the post-IDCT table
+ * with the simpler range limiting table. The post-IDCT table begins at
+ * sample_range_limit + CENTERJSAMPLE.
+ *
+ * Note that the table is allocated in near data space on PCs; it's small
+ * enough and used often enough to justify this.
+ */
+
+LOCAL(void)
+prepare_range_limit_table (j_decompress_ptr cinfo)
+/* Allocate and fill in the sample_range_limit table */
+{
+ JSAMPLE * table;
+ int i;
+
+ table = (JSAMPLE *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+ table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
+ cinfo->sample_range_limit = table;
+ /* First segment of "simple" table: limit[x] = 0 for x < 0 */
+ MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
+ /* Main part of "simple" table: limit[x] = x */
+ for (i = 0; i <= MAXJSAMPLE; i++)
+ table[i] = (JSAMPLE) i;
+ table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
+ /* End of simple table, rest of first half of post-IDCT table */
+ for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
+ table[i] = MAXJSAMPLE;
+ /* Second half of post-IDCT table */
+ MEMZERO(table + (2 * (MAXJSAMPLE+1)),
+ (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+ MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
+ cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
+}
+
+
+/*
+ * Master selection of decompression modules.
+ * This is done once at jpeg_start_decompress time. We determine
+ * which modules will be used and give them appropriate initialization calls.
+ * We also initialize the decompressor input side to begin consuming data.
+ *
+ * Since jpeg_read_header has finished, we know what is in the SOF
+ * and (first) SOS markers. We also have all the application parameter
+ * settings.
+ */
+
+LOCAL(void)
+master_selection (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+ boolean use_c_buffer;
+ long samplesperrow;
+ JDIMENSION jd_samplesperrow;
+
+ /* Initialize dimensions and other stuff */
+ jpeg_calc_output_dimensions(cinfo);
+ prepare_range_limit_table(cinfo);
+
+ /* Width of an output scanline must be representable as JDIMENSION. */
+ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
+ jd_samplesperrow = (JDIMENSION) samplesperrow;
+ if ((long) jd_samplesperrow != samplesperrow)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+ /* Initialize my private state */
+ master->pass_number = 0;
+ master->using_merged_upsample = use_merged_upsample(cinfo);
+
+ /* Color quantizer selection */
+ master->quantizer_1pass = NULL;
+ master->quantizer_2pass = NULL;
+ /* No mode changes if not using buffered-image mode. */
+ if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
+ cinfo->enable_1pass_quant = FALSE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+ }
+ if (cinfo->quantize_colors) {
+ if (cinfo->raw_data_out)
+ ERREXIT(cinfo, JERR_NOTIMPL);
+ /* 2-pass quantizer only works in 3-component color space. */
+ if (cinfo->out_color_components != 3) {
+ cinfo->enable_1pass_quant = TRUE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+ cinfo->colormap = NULL;
+ } else if (cinfo->colormap != NULL) {
+ cinfo->enable_external_quant = TRUE;
+ } else if (cinfo->two_pass_quantize) {
+ cinfo->enable_2pass_quant = TRUE;
+ } else {
+ cinfo->enable_1pass_quant = TRUE;
+ }
+
+ if (cinfo->enable_1pass_quant) {
+#ifdef QUANT_1PASS_SUPPORTED
+ jinit_1pass_quantizer(cinfo);
+ master->quantizer_1pass = cinfo->cquantize;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+
+ /* We use the 2-pass code to map to external colormaps. */
+ if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
+#ifdef QUANT_2PASS_SUPPORTED
+ jinit_2pass_quantizer(cinfo);
+ master->quantizer_2pass = cinfo->cquantize;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+ /* If both quantizers are initialized, the 2-pass one is left active;
+ * this is necessary for starting with quantization to an external map.
+ */
+ }
+
+ /* Post-processing: in particular, color conversion first */
+ if (! cinfo->raw_data_out) {
+ if (master->using_merged_upsample) {
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+ jinit_merged_upsampler(cinfo); /* does color conversion too */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ jinit_color_deconverter(cinfo);
+ jinit_upsampler(cinfo);
+ }
+ jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
+ }
+ /* Inverse DCT */
+ jinit_inverse_dct(cinfo);
+ /* Entropy decoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_decoder(cinfo);
+ else {
+ jinit_huff_decoder(cinfo);
+ }
+
+ /* Initialize principal buffer controllers. */
+ use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
+ jinit_d_coef_controller(cinfo, use_c_buffer);
+
+ if (! cinfo->raw_data_out)
+ jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Initialize input side of decompressor to consume first scan. */
+ (*cinfo->inputctl->start_input_pass) (cinfo);
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* If jpeg_start_decompress will read the whole file, initialize
+ * progress monitoring appropriately. The input step is counted
+ * as one pass.
+ */
+ if (cinfo->progress != NULL && ! cinfo->buffered_image &&
+ cinfo->inputctl->has_multiple_scans) {
+ int nscans;
+ /* Estimate number of scans to set pass_limit. */
+ if (cinfo->progressive_mode) {
+ /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+ nscans = 2 + 3 * cinfo->num_components;
+ } else {
+ /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+ nscans = cinfo->num_components;
+ }
+ cinfo->progress->pass_counter = 0L;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+ cinfo->progress->completed_passes = 0;
+ cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
+ /* Count the input pass as done */
+ master->pass_number++;
+ }
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each output pass. We determine which
+ * modules will be active during this pass and give them appropriate
+ * start_pass calls. We also set is_dummy_pass to indicate whether this
+ * is a "real" output pass or a dummy pass for color quantization.
+ * (In the latter case, jdapistd.c will crank the pass to completion.)
+ */
+
+METHODDEF(void)
+prepare_for_output_pass (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ if (master->pub.is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+ /* Final pass of 2-pass quantization */
+ master->pub.is_dummy_pass = FALSE;
+ (*cinfo->cquantize->start_pass) (cinfo, FALSE);
+ (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
+ (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+ } else {
+ if (cinfo->quantize_colors && cinfo->colormap == NULL) {
+ /* Select new quantization method */
+ if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
+ cinfo->cquantize = master->quantizer_2pass;
+ master->pub.is_dummy_pass = TRUE;
+ } else if (cinfo->enable_1pass_quant) {
+ cinfo->cquantize = master->quantizer_1pass;
+ } else {
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+ }
+ }
+ (*cinfo->idct->start_pass) (cinfo);
+ (*cinfo->coef->start_output_pass) (cinfo);
+ if (! cinfo->raw_data_out) {
+ if (! master->using_merged_upsample)
+ (*cinfo->cconvert->start_pass) (cinfo);
+ (*cinfo->upsample->start_pass) (cinfo);
+ if (cinfo->quantize_colors)
+ (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
+ (*cinfo->post->start_pass) (cinfo,
+ (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+ (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+ }
+ }
+
+ /* Set up progress monitor's pass info if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->completed_passes = master->pass_number;
+ cinfo->progress->total_passes = master->pass_number +
+ (master->pub.is_dummy_pass ? 2 : 1);
+ /* In buffered-image mode, we assume one more output pass if EOI not
+ * yet reached, but no more passes if EOI has been reached.
+ */
+ if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
+ cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
+ }
+ }
+}
+
+
+/*
+ * Finish up at end of an output pass.
+ */
+
+METHODDEF(void)
+finish_output_pass (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ if (cinfo->quantize_colors)
+ (*cinfo->cquantize->finish_pass) (cinfo);
+ master->pass_number++;
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+GLOBAL(void)
+jpeg_new_colormap (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ /* Prevent application from calling me at wrong times */
+ if (cinfo->global_state != DSTATE_BUFIMAGE)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (cinfo->quantize_colors && cinfo->enable_external_quant &&
+ cinfo->colormap != NULL) {
+ /* Select 2-pass quantizer for external colormap use */
+ cinfo->cquantize = master->quantizer_2pass;
+ /* Notify quantizer of colormap change */
+ (*cinfo->cquantize->new_color_map) (cinfo);
+ master->pub.is_dummy_pass = FALSE; /* just in case */
+ } else
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+/*
+ * Initialize master decompression control and select active modules.
+ * This is performed at the start of jpeg_start_decompress.
+ */
+
+GLOBAL(void)
+jinit_master_decompress (j_decompress_ptr cinfo)
+{
+ my_master_ptr master;
+
+ master = (my_master_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_decomp_master));
+ cinfo->master = (struct jpeg_decomp_master *) master;
+ master->pub.prepare_for_output_pass = prepare_for_output_pass;
+ master->pub.finish_output_pass = finish_output_pass;
+
+ master->pub.is_dummy_pass = FALSE;
+
+ master_selection(cinfo);
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdmerge.c b/plugins/AdvaImg/src/LibJPEG/jdmerge.c
new file mode 100644
index 0000000000..37444468c2
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdmerge.c
@@ -0,0 +1,400 @@
+/*
+ * jdmerge.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains code for merged upsampling/color conversion.
+ *
+ * This file combines functions from jdsample.c and jdcolor.c;
+ * read those files first to understand what's going on.
+ *
+ * When the chroma components are to be upsampled by simple replication
+ * (ie, box filtering), we can save some work in color conversion by
+ * calculating all the output pixels corresponding to a pair of chroma
+ * samples at one time. In the conversion equations
+ * R = Y + K1 * Cr
+ * G = Y + K2 * Cb + K3 * Cr
+ * B = Y + K4 * Cb
+ * only the Y term varies among the group of pixels corresponding to a pair
+ * of chroma samples, so the rest of the terms can be calculated just once.
+ * At typical sampling ratios, this eliminates half or three-quarters of the
+ * multiplications needed for color conversion.
+ *
+ * This file currently provides implementations for the following cases:
+ * YCbCr => RGB color conversion only.
+ * Sampling ratios of 2h1v or 2h2v.
+ * No scaling needed at upsample time.
+ * Corner-aligned (non-CCIR601) sampling alignment.
+ * Other special cases could be added, but in most applications these are
+ * the only common cases. (For uncommon cases we fall back on the more
+ * general code in jdsample.c and jdcolor.c.)
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_upsampler pub; /* public fields */
+
+ /* Pointer to routine to do actual upsampling/conversion of one row group */
+ JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+ JSAMPARRAY output_buf));
+
+ /* Private state for YCC->RGB conversion */
+ int * Cr_r_tab; /* => table for Cr to R conversion */
+ int * Cb_b_tab; /* => table for Cb to B conversion */
+ INT32 * Cr_g_tab; /* => table for Cr to G conversion */
+ INT32 * Cb_g_tab; /* => table for Cb to G conversion */
+
+ /* For 2:1 vertical sampling, we produce two output rows at a time.
+ * We need a "spare" row buffer to hold the second output row if the
+ * application provides just a one-row buffer; we also use the spare
+ * to discard the dummy last row if the image height is odd.
+ */
+ JSAMPROW spare_row;
+ boolean spare_full; /* T if spare buffer is occupied */
+
+ JDIMENSION out_row_width; /* samples per output row */
+ JDIMENSION rows_to_go; /* counts rows remaining in image */
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ * This is taken directly from jdcolor.c; see that file for more info.
+ */
+
+LOCAL(void)
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ int i;
+ INT32 x;
+ SHIFT_TEMPS
+
+ upsample->Cr_r_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ upsample->Cb_b_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ upsample->Cr_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+ upsample->Cb_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+
+ for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+ /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+ /* Cr=>R value is nearest int to 1.40200 * x */
+ upsample->Cr_r_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+ /* Cb=>B value is nearest int to 1.77200 * x */
+ upsample->Cb_b_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+ /* Cr=>G value is scaled-up -0.71414 * x */
+ upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+ /* Cb=>G value is scaled-up -0.34414 * x */
+ /* We also add in ONE_HALF so that need not do it in inner loop */
+ upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+ }
+}
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_merged_upsample (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Mark the spare buffer empty */
+ upsample->spare_full = FALSE;
+ /* Initialize total-height counter for detecting bottom of image */
+ upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * The control routine just handles the row buffering considerations.
+ */
+
+METHODDEF(void)
+merged_2v_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+/* 2:1 vertical sampling case: may need a spare row. */
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ JSAMPROW work_ptrs[2];
+ JDIMENSION num_rows; /* number of rows returned to caller */
+
+ if (upsample->spare_full) {
+ /* If we have a spare row saved from a previous cycle, just return it. */
+ jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
+ 1, upsample->out_row_width);
+ num_rows = 1;
+ upsample->spare_full = FALSE;
+ } else {
+ /* Figure number of rows to return to caller. */
+ num_rows = 2;
+ /* Not more than the distance to the end of the image. */
+ if (num_rows > upsample->rows_to_go)
+ num_rows = upsample->rows_to_go;
+ /* And not more than what the client can accept: */
+ out_rows_avail -= *out_row_ctr;
+ if (num_rows > out_rows_avail)
+ num_rows = out_rows_avail;
+ /* Create output pointer array for upsampler. */
+ work_ptrs[0] = output_buf[*out_row_ctr];
+ if (num_rows > 1) {
+ work_ptrs[1] = output_buf[*out_row_ctr + 1];
+ } else {
+ work_ptrs[1] = upsample->spare_row;
+ upsample->spare_full = TRUE;
+ }
+ /* Now do the upsampling. */
+ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
+ }
+
+ /* Adjust counts */
+ *out_row_ctr += num_rows;
+ upsample->rows_to_go -= num_rows;
+ /* When the buffer is emptied, declare this input row group consumed */
+ if (! upsample->spare_full)
+ (*in_row_group_ctr)++;
+}
+
+
+METHODDEF(void)
+merged_1v_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+/* 1:1 vertical sampling case: much easier, never need a spare row. */
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Just do the upsampling. */
+ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
+ output_buf + *out_row_ctr);
+ /* Adjust counts */
+ (*out_row_ctr)++;
+ (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by the control routines to do
+ * the actual upsampling/conversion. One row group is processed per call.
+ *
+ * Note: since we may be writing directly into application-supplied buffers,
+ * we have to be honest about the output width; we can't assume the buffer
+ * has been rounded up to an even width.
+ */
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
+ */
+
+METHODDEF(void)
+h2v1_merged_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+ JSAMPARRAY output_buf)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ register int y, cred, cgreen, cblue;
+ int cb, cr;
+ register JSAMPROW outptr;
+ JSAMPROW inptr0, inptr1, inptr2;
+ JDIMENSION col;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ int * Crrtab = upsample->Cr_r_tab;
+ int * Cbbtab = upsample->Cb_b_tab;
+ INT32 * Crgtab = upsample->Cr_g_tab;
+ INT32 * Cbgtab = upsample->Cb_g_tab;
+ SHIFT_TEMPS
+
+ inptr0 = input_buf[0][in_row_group_ctr];
+ inptr1 = input_buf[1][in_row_group_ctr];
+ inptr2 = input_buf[2][in_row_group_ctr];
+ outptr = output_buf[0];
+ /* Loop for each pair of output pixels */
+ for (col = cinfo->output_width >> 1; col > 0; col--) {
+ /* Do the chroma part of the calculation */
+ cb = GETJSAMPLE(*inptr1++);
+ cr = GETJSAMPLE(*inptr2++);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ /* Fetch 2 Y values and emit 2 pixels */
+ y = GETJSAMPLE(*inptr0++);
+ outptr[RGB_RED] = range_limit[y + cred];
+ outptr[RGB_GREEN] = range_limit[y + cgreen];
+ outptr[RGB_BLUE] = range_limit[y + cblue];
+ outptr += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr0++);
+ outptr[RGB_RED] = range_limit[y + cred];
+ outptr[RGB_GREEN] = range_limit[y + cgreen];
+ outptr[RGB_BLUE] = range_limit[y + cblue];
+ outptr += RGB_PIXELSIZE;
+ }
+ /* If image width is odd, do the last output column separately */
+ if (cinfo->output_width & 1) {
+ cb = GETJSAMPLE(*inptr1);
+ cr = GETJSAMPLE(*inptr2);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ y = GETJSAMPLE(*inptr0);
+ outptr[RGB_RED] = range_limit[y + cred];
+ outptr[RGB_GREEN] = range_limit[y + cgreen];
+ outptr[RGB_BLUE] = range_limit[y + cblue];
+ }
+}
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
+ */
+
+METHODDEF(void)
+h2v2_merged_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+ JSAMPARRAY output_buf)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ register int y, cred, cgreen, cblue;
+ int cb, cr;
+ register JSAMPROW outptr0, outptr1;
+ JSAMPROW inptr00, inptr01, inptr1, inptr2;
+ JDIMENSION col;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ int * Crrtab = upsample->Cr_r_tab;
+ int * Cbbtab = upsample->Cb_b_tab;
+ INT32 * Crgtab = upsample->Cr_g_tab;
+ INT32 * Cbgtab = upsample->Cb_g_tab;
+ SHIFT_TEMPS
+
+ inptr00 = input_buf[0][in_row_group_ctr*2];
+ inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
+ inptr1 = input_buf[1][in_row_group_ctr];
+ inptr2 = input_buf[2][in_row_group_ctr];
+ outptr0 = output_buf[0];
+ outptr1 = output_buf[1];
+ /* Loop for each group of output pixels */
+ for (col = cinfo->output_width >> 1; col > 0; col--) {
+ /* Do the chroma part of the calculation */
+ cb = GETJSAMPLE(*inptr1++);
+ cr = GETJSAMPLE(*inptr2++);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ /* Fetch 4 Y values and emit 4 pixels */
+ y = GETJSAMPLE(*inptr00++);
+ outptr0[RGB_RED] = range_limit[y + cred];
+ outptr0[RGB_GREEN] = range_limit[y + cgreen];
+ outptr0[RGB_BLUE] = range_limit[y + cblue];
+ outptr0 += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr00++);
+ outptr0[RGB_RED] = range_limit[y + cred];
+ outptr0[RGB_GREEN] = range_limit[y + cgreen];
+ outptr0[RGB_BLUE] = range_limit[y + cblue];
+ outptr0 += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr01++);
+ outptr1[RGB_RED] = range_limit[y + cred];
+ outptr1[RGB_GREEN] = range_limit[y + cgreen];
+ outptr1[RGB_BLUE] = range_limit[y + cblue];
+ outptr1 += RGB_PIXELSIZE;
+ y = GETJSAMPLE(*inptr01++);
+ outptr1[RGB_RED] = range_limit[y + cred];
+ outptr1[RGB_GREEN] = range_limit[y + cgreen];
+ outptr1[RGB_BLUE] = range_limit[y + cblue];
+ outptr1 += RGB_PIXELSIZE;
+ }
+ /* If image width is odd, do the last output column separately */
+ if (cinfo->output_width & 1) {
+ cb = GETJSAMPLE(*inptr1);
+ cr = GETJSAMPLE(*inptr2);
+ cred = Crrtab[cr];
+ cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+ cblue = Cbbtab[cb];
+ y = GETJSAMPLE(*inptr00);
+ outptr0[RGB_RED] = range_limit[y + cred];
+ outptr0[RGB_GREEN] = range_limit[y + cgreen];
+ outptr0[RGB_BLUE] = range_limit[y + cblue];
+ y = GETJSAMPLE(*inptr01);
+ outptr1[RGB_RED] = range_limit[y + cred];
+ outptr1[RGB_GREEN] = range_limit[y + cgreen];
+ outptr1[RGB_BLUE] = range_limit[y + cblue];
+ }
+}
+
+
+/*
+ * Module initialization routine for merged upsampling/color conversion.
+ *
+ * NB: this is called under the conditions determined by use_merged_upsample()
+ * in jdmaster.c. That routine MUST correspond to the actual capabilities
+ * of this module; no safety checks are made here.
+ */
+
+GLOBAL(void)
+jinit_merged_upsampler (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample;
+
+ upsample = (my_upsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_upsampler));
+ cinfo->upsample = (struct jpeg_upsampler *) upsample;
+ upsample->pub.start_pass = start_pass_merged_upsample;
+ upsample->pub.need_context_rows = FALSE;
+
+ upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
+
+ if (cinfo->max_v_samp_factor == 2) {
+ upsample->pub.upsample = merged_2v_upsample;
+ upsample->upmethod = h2v2_merged_upsample;
+ /* Allocate a spare row buffer */
+ upsample->spare_row = (JSAMPROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
+ } else {
+ upsample->pub.upsample = merged_1v_upsample;
+ upsample->upmethod = h2v1_merged_upsample;
+ /* No spare row needed */
+ upsample->spare_row = NULL;
+ }
+
+ build_ycc_rgb_table(cinfo);
+}
+
+#endif /* UPSAMPLE_MERGING_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jdpostct.c b/plugins/AdvaImg/src/LibJPEG/jdpostct.c
new file mode 100644
index 0000000000..571563d728
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdpostct.c
@@ -0,0 +1,290 @@
+/*
+ * jdpostct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the decompression postprocessing controller.
+ * This controller manages the upsampling, color conversion, and color
+ * quantization/reduction steps; specifically, it controls the buffering
+ * between upsample/color conversion and color quantization/reduction.
+ *
+ * If no color quantization/reduction is required, then this module has no
+ * work to do, and it just hands off to the upsample/color conversion code.
+ * An integrated upsample/convert/quantize process would replace this module
+ * entirely.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_post_controller pub; /* public fields */
+
+ /* Color quantization source buffer: this holds output data from
+ * the upsample/color conversion step to be passed to the quantizer.
+ * For two-pass color quantization, we need a full-image buffer;
+ * for one-pass operation, a strip buffer is sufficient.
+ */
+ jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
+ JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
+ JDIMENSION strip_height; /* buffer size in rows */
+ /* for two-pass mode only: */
+ JDIMENSION starting_row; /* row # of first row in current strip */
+ JDIMENSION next_row; /* index of next row to fill/empty in strip */
+} my_post_controller;
+
+typedef my_post_controller * my_post_ptr;
+
+
+/* Forward declarations */
+METHODDEF(void) post_process_1pass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF(void) post_process_prepass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+METHODDEF(void) post_process_2pass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (cinfo->quantize_colors) {
+ /* Single-pass processing with color quantization. */
+ post->pub.post_process_data = post_process_1pass;
+ /* We could be doing buffered-image output before starting a 2-pass
+ * color quantization; in that case, jinit_d_post_controller did not
+ * allocate a strip buffer. Use the virtual-array buffer as workspace.
+ */
+ if (post->buffer == NULL) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ (JDIMENSION) 0, post->strip_height, TRUE);
+ }
+ } else {
+ /* For single-pass processing without color quantization,
+ * I have no work to do; just call the upsampler directly.
+ */
+ post->pub.post_process_data = cinfo->upsample->upsample;
+ }
+ break;
+#ifdef QUANT_2PASS_SUPPORTED
+ case JBUF_SAVE_AND_PASS:
+ /* First pass of 2-pass quantization */
+ if (post->whole_image == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ post->pub.post_process_data = post_process_prepass;
+ break;
+ case JBUF_CRANK_DEST:
+ /* Second pass of 2-pass quantization */
+ if (post->whole_image == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ post->pub.post_process_data = post_process_2pass;
+ break;
+#endif /* QUANT_2PASS_SUPPORTED */
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+ post->starting_row = post->next_row = 0;
+}
+
+
+/*
+ * Process some data in the one-pass (strip buffer) case.
+ * This is used for color precision reduction as well as one-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_1pass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION num_rows, max_rows;
+
+ /* Fill the buffer, but not more than what we can dump out in one go. */
+ /* Note we rely on the upsampler to detect bottom of image. */
+ max_rows = out_rows_avail - *out_row_ctr;
+ if (max_rows > post->strip_height)
+ max_rows = post->strip_height;
+ num_rows = 0;
+ (*cinfo->upsample->upsample) (cinfo,
+ input_buf, in_row_group_ctr, in_row_groups_avail,
+ post->buffer, &num_rows, max_rows);
+ /* Quantize and emit data. */
+ (*cinfo->cquantize->color_quantize) (cinfo,
+ post->buffer, output_buf + *out_row_ctr, (int) num_rows);
+ *out_row_ctr += num_rows;
+}
+
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+/*
+ * Process some data in the first pass of 2-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_prepass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION old_next_row, num_rows;
+
+ /* Reposition virtual buffer if at start of strip. */
+ if (post->next_row == 0) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ post->starting_row, post->strip_height, TRUE);
+ }
+
+ /* Upsample some data (up to a strip height's worth). */
+ old_next_row = post->next_row;
+ (*cinfo->upsample->upsample) (cinfo,
+ input_buf, in_row_group_ctr, in_row_groups_avail,
+ post->buffer, &post->next_row, post->strip_height);
+
+ /* Allow quantizer to scan new data. No data is emitted, */
+ /* but we advance out_row_ctr so outer loop can tell when we're done. */
+ if (post->next_row > old_next_row) {
+ num_rows = post->next_row - old_next_row;
+ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
+ (JSAMPARRAY) NULL, (int) num_rows);
+ *out_row_ctr += num_rows;
+ }
+
+ /* Advance if we filled the strip. */
+ if (post->next_row >= post->strip_height) {
+ post->starting_row += post->strip_height;
+ post->next_row = 0;
+ }
+}
+
+
+/*
+ * Process some data in the second pass of 2-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_2pass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION num_rows, max_rows;
+
+ /* Reposition virtual buffer if at start of strip. */
+ if (post->next_row == 0) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ post->starting_row, post->strip_height, FALSE);
+ }
+
+ /* Determine number of rows to emit. */
+ num_rows = post->strip_height - post->next_row; /* available in strip */
+ max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
+ if (num_rows > max_rows)
+ num_rows = max_rows;
+ /* We have to check bottom of image here, can't depend on upsampler. */
+ max_rows = cinfo->output_height - post->starting_row;
+ if (num_rows > max_rows)
+ num_rows = max_rows;
+
+ /* Quantize and emit data. */
+ (*cinfo->cquantize->color_quantize) (cinfo,
+ post->buffer + post->next_row, output_buf + *out_row_ctr,
+ (int) num_rows);
+ *out_row_ctr += num_rows;
+
+ /* Advance if we filled the strip. */
+ post->next_row += num_rows;
+ if (post->next_row >= post->strip_height) {
+ post->starting_row += post->strip_height;
+ post->next_row = 0;
+ }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize postprocessing controller.
+ */
+
+GLOBAL(void)
+jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_post_ptr post;
+
+ post = (my_post_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_post_controller));
+ cinfo->post = (struct jpeg_d_post_controller *) post;
+ post->pub.start_pass = start_pass_dpost;
+ post->whole_image = NULL; /* flag for no virtual arrays */
+ post->buffer = NULL; /* flag for no strip buffer */
+
+ /* Create the quantization buffer, if needed */
+ if (cinfo->quantize_colors) {
+ /* The buffer strip height is max_v_samp_factor, which is typically
+ * an efficient number of rows for upsampling to return.
+ * (In the presence of output rescaling, we might want to be smarter?)
+ */
+ post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
+ if (need_full_buffer) {
+ /* Two-pass color quantization: need full-image storage. */
+ /* We round up the number of rows to a multiple of the strip height. */
+#ifdef QUANT_2PASS_SUPPORTED
+ post->whole_image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ cinfo->output_width * cinfo->out_color_components,
+ (JDIMENSION) jround_up((long) cinfo->output_height,
+ (long) post->strip_height),
+ post->strip_height);
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif /* QUANT_2PASS_SUPPORTED */
+ } else {
+ /* One-pass color quantization: just make a strip buffer. */
+ post->buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->output_width * cinfo->out_color_components,
+ post->strip_height);
+ }
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdsample.c b/plugins/AdvaImg/src/LibJPEG/jdsample.c
new file mode 100644
index 0000000000..7bc8885b02
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdsample.c
@@ -0,0 +1,361 @@
+/*
+ * jdsample.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2002-2008 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains upsampling routines.
+ *
+ * Upsampling input data is counted in "row groups". A row group
+ * is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
+ * sample rows of each component. Upsampling will normally produce
+ * max_v_samp_factor pixel rows from each row group (but this could vary
+ * if the upsampler is applying a scale factor of its own).
+ *
+ * An excellent reference for image resampling is
+ * Digital Image Warping, George Wolberg, 1990.
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Pointer to routine to upsample a single component */
+typedef JMETHOD(void, upsample1_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_upsampler pub; /* public fields */
+
+ /* Color conversion buffer. When using separate upsampling and color
+ * conversion steps, this buffer holds one upsampled row group until it
+ * has been color converted and output.
+ * Note: we do not allocate any storage for component(s) which are full-size,
+ * ie do not need rescaling. The corresponding entry of color_buf[] is
+ * simply set to point to the input data array, thereby avoiding copying.
+ */
+ JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+ /* Per-component upsampling method pointers */
+ upsample1_ptr methods[MAX_COMPONENTS];
+
+ int next_row_out; /* counts rows emitted from color_buf */
+ JDIMENSION rows_to_go; /* counts rows remaining in image */
+
+ /* Height of an input row group for each component. */
+ int rowgroup_height[MAX_COMPONENTS];
+
+ /* These arrays save pixel expansion factors so that int_expand need not
+ * recompute them each time. They are unused for other upsampling methods.
+ */
+ UINT8 h_expand[MAX_COMPONENTS];
+ UINT8 v_expand[MAX_COMPONENTS];
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_upsample (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Mark the conversion buffer empty */
+ upsample->next_row_out = cinfo->max_v_samp_factor;
+ /* Initialize total-height counter for detecting bottom of image */
+ upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * In this version we upsample each component independently.
+ * We upsample one row group into the conversion buffer, then apply
+ * color conversion a row at a time.
+ */
+
+METHODDEF(void)
+sep_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ int ci;
+ jpeg_component_info * compptr;
+ JDIMENSION num_rows;
+
+ /* Fill the conversion buffer, if it's empty */
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Invoke per-component upsample method. Notice we pass a POINTER
+ * to color_buf[ci], so that fullsize_upsample can change it.
+ */
+ (*upsample->methods[ci]) (cinfo, compptr,
+ input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
+ upsample->color_buf + ci);
+ }
+ upsample->next_row_out = 0;
+ }
+
+ /* Color-convert and emit rows */
+
+ /* How many we have in the buffer: */
+ num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
+ /* Not more than the distance to the end of the image. Need this test
+ * in case the image height is not a multiple of max_v_samp_factor:
+ */
+ if (num_rows > upsample->rows_to_go)
+ num_rows = upsample->rows_to_go;
+ /* And not more than what the client can accept: */
+ out_rows_avail -= *out_row_ctr;
+ if (num_rows > out_rows_avail)
+ num_rows = out_rows_avail;
+
+ (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
+ (JDIMENSION) upsample->next_row_out,
+ output_buf + *out_row_ctr,
+ (int) num_rows);
+
+ /* Adjust counts */
+ *out_row_ctr += num_rows;
+ upsample->rows_to_go -= num_rows;
+ upsample->next_row_out += num_rows;
+ /* When the buffer is emptied, declare this input row group consumed */
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor)
+ (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by sep_upsample to upsample pixel values
+ * of a single component. One row group is processed per call.
+ */
+
+
+/*
+ * For full-size components, we just make color_buf[ci] point at the
+ * input buffer, and thus avoid copying any data. Note that this is
+ * safe only because sep_upsample doesn't declare the input row group
+ * "consumed" until we are done color converting and emitting it.
+ */
+
+METHODDEF(void)
+fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ *output_data_ptr = input_data;
+}
+
+
+/*
+ * This is a no-op version used for "uninteresting" components.
+ * These components will not be referenced by color conversion.
+ */
+
+METHODDEF(void)
+noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ *output_data_ptr = NULL; /* safety check */
+}
+
+
+/*
+ * This version handles any integral sampling ratios.
+ * This is not used for typical JPEG files, so it need not be fast.
+ * Nor, for that matter, is it particularly accurate: the algorithm is
+ * simple replication of the input pixel onto the corresponding output
+ * pixels. The hi-falutin sampling literature refers to this as a
+ * "box filter". A box filter tends to introduce visible artifacts,
+ * so if you are actually going to use 3:1 or 4:1 sampling ratios
+ * you would be well advised to improve this code.
+ */
+
+METHODDEF(void)
+int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ register int h;
+ JSAMPROW outend;
+ int h_expand, v_expand;
+ int inrow, outrow;
+
+ h_expand = upsample->h_expand[compptr->component_index];
+ v_expand = upsample->v_expand[compptr->component_index];
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ /* Generate one output row with proper horizontal expansion */
+ inptr = input_data[inrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ for (h = h_expand; h > 0; h--) {
+ *outptr++ = invalue;
+ }
+ }
+ /* Generate any additional output rows by duplicating the first one */
+ if (v_expand > 1) {
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+ v_expand-1, cinfo->output_width);
+ }
+ inrow++;
+ outrow += v_expand;
+ }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF(void)
+h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ JSAMPROW outend;
+ int outrow;
+
+ for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
+ inptr = input_data[outrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ *outptr++ = invalue;
+ *outptr++ = invalue;
+ }
+ }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF(void)
+h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ JSAMPROW outend;
+ int inrow, outrow;
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ inptr = input_data[inrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ *outptr++ = invalue;
+ *outptr++ = invalue;
+ }
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+ 1, cinfo->output_width);
+ inrow++;
+ outrow += 2;
+ }
+}
+
+
+/*
+ * Module initialization routine for upsampling.
+ */
+
+GLOBAL(void)
+jinit_upsampler (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample;
+ int ci;
+ jpeg_component_info * compptr;
+ boolean need_buffer;
+ int h_in_group, v_in_group, h_out_group, v_out_group;
+
+ upsample = (my_upsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_upsampler));
+ cinfo->upsample = (struct jpeg_upsampler *) upsample;
+ upsample->pub.start_pass = start_pass_upsample;
+ upsample->pub.upsample = sep_upsample;
+ upsample->pub.need_context_rows = FALSE; /* until we find out differently */
+
+ if (cinfo->CCIR601_sampling) /* this isn't supported */
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+ /* Verify we can handle the sampling factors, select per-component methods,
+ * and create storage as needed.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Compute size of an "input group" after IDCT scaling. This many samples
+ * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
+ */
+ h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
+ cinfo->min_DCT_h_scaled_size;
+ v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
+ cinfo->min_DCT_v_scaled_size;
+ h_out_group = cinfo->max_h_samp_factor;
+ v_out_group = cinfo->max_v_samp_factor;
+ upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
+ need_buffer = TRUE;
+ if (! compptr->component_needed) {
+ /* Don't bother to upsample an uninteresting component. */
+ upsample->methods[ci] = noop_upsample;
+ need_buffer = FALSE;
+ } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
+ /* Fullsize components can be processed without any work. */
+ upsample->methods[ci] = fullsize_upsample;
+ need_buffer = FALSE;
+ } else if (h_in_group * 2 == h_out_group &&
+ v_in_group == v_out_group) {
+ /* Special case for 2h1v upsampling */
+ upsample->methods[ci] = h2v1_upsample;
+ } else if (h_in_group * 2 == h_out_group &&
+ v_in_group * 2 == v_out_group) {
+ /* Special case for 2h2v upsampling */
+ upsample->methods[ci] = h2v2_upsample;
+ } else if ((h_out_group % h_in_group) == 0 &&
+ (v_out_group % v_in_group) == 0) {
+ /* Generic integral-factors upsampling method */
+ upsample->methods[ci] = int_upsample;
+ upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
+ upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
+ } else
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+ if (need_buffer) {
+ upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) jround_up((long) cinfo->output_width,
+ (long) cinfo->max_h_samp_factor),
+ (JDIMENSION) cinfo->max_v_samp_factor);
+ }
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jdtrans.c b/plugins/AdvaImg/src/LibJPEG/jdtrans.c
new file mode 100644
index 0000000000..22dd47fb5c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jdtrans.c
@@ -0,0 +1,140 @@
+/*
+ * jdtrans.c
+ *
+ * Copyright (C) 1995-1997, Thomas G. Lane.
+ * Modified 2000-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding decompression,
+ * that is, reading raw DCT coefficient arrays from an input JPEG file.
+ * The routines in jdapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Read the coefficient arrays from a JPEG file.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * The entire image is read into a set of virtual coefficient-block arrays,
+ * one per component. The return value is a pointer to the array of
+ * virtual-array descriptors. These can be manipulated directly via the
+ * JPEG memory manager, or handed off to jpeg_write_coefficients().
+ * To release the memory occupied by the virtual arrays, call
+ * jpeg_finish_decompress() when done with the data.
+ *
+ * An alternative usage is to simply obtain access to the coefficient arrays
+ * during a buffered-image-mode decompression operation. This is allowed
+ * after any jpeg_finish_output() call. The arrays can be accessed until
+ * jpeg_finish_decompress() is called. (Note that any call to the library
+ * may reposition the arrays, so don't rely on access_virt_barray() results
+ * to stay valid across library calls.)
+ *
+ * Returns NULL if suspended. This case need be checked only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(jvirt_barray_ptr *)
+jpeg_read_coefficients (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state == DSTATE_READY) {
+ /* First call: initialize active modules */
+ transdecode_master_selection(cinfo);
+ cinfo->global_state = DSTATE_RDCOEFS;
+ }
+ if (cinfo->global_state == DSTATE_RDCOEFS) {
+ /* Absorb whole file into the coef buffer */
+ for (;;) {
+ int retcode;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL)
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ /* Absorb some more input */
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_SUSPENDED)
+ return NULL;
+ if (retcode == JPEG_REACHED_EOI)
+ break;
+ /* Advance progress counter if appropriate */
+ if (cinfo->progress != NULL &&
+ (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+ if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+ /* startup underestimated number of scans; ratchet up one scan */
+ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+ }
+ }
+ }
+ /* Set state so that jpeg_finish_decompress does the right thing */
+ cinfo->global_state = DSTATE_STOPPING;
+ }
+ /* At this point we should be in state DSTATE_STOPPING if being used
+ * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
+ * to the coefficients during a full buffered-image-mode decompression.
+ */
+ if ((cinfo->global_state == DSTATE_STOPPING ||
+ cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
+ return cinfo->coef->coef_arrays;
+ }
+ /* Oops, improper usage */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return NULL; /* keep compiler happy */
+}
+
+
+/*
+ * Master selection of decompression modules for transcoding.
+ * This substitutes for jdmaster.c's initialization of the full decompressor.
+ */
+
+LOCAL(void)
+transdecode_master_selection (j_decompress_ptr cinfo)
+{
+ /* This is effectively a buffered-image operation. */
+ cinfo->buffered_image = TRUE;
+
+ /* Compute output image dimensions and related values. */
+ jpeg_core_output_dimensions(cinfo);
+
+ /* Entropy decoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code)
+ jinit_arith_decoder(cinfo);
+ else {
+ jinit_huff_decoder(cinfo);
+ }
+
+ /* Always get a full-image coefficient buffer. */
+ jinit_d_coef_controller(cinfo, TRUE);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Initialize input side of decompressor to consume first scan. */
+ (*cinfo->inputctl->start_input_pass) (cinfo);
+
+ /* Initialize progress monitoring. */
+ if (cinfo->progress != NULL) {
+ int nscans;
+ /* Estimate number of scans to set pass_limit. */
+ if (cinfo->progressive_mode) {
+ /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+ nscans = 2 + 3 * cinfo->num_components;
+ } else if (cinfo->inputctl->has_multiple_scans) {
+ /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+ nscans = cinfo->num_components;
+ } else {
+ nscans = 1;
+ }
+ cinfo->progress->pass_counter = 0L;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+ cinfo->progress->completed_passes = 0;
+ cinfo->progress->total_passes = 1;
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jerror.c b/plugins/AdvaImg/src/LibJPEG/jerror.c
new file mode 100644
index 0000000000..3da7be86a0
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jerror.c
@@ -0,0 +1,252 @@
+/*
+ * jerror.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains simple error-reporting and trace-message routines.
+ * These are suitable for Unix-like systems and others where writing to
+ * stderr is the right thing to do. Many applications will want to replace
+ * some or all of these routines.
+ *
+ * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
+ * you get a Windows-specific hack to display error messages in a dialog box.
+ * It ain't much, but it beats dropping error messages into the bit bucket,
+ * which is what happens to output to stderr under most Windows C compilers.
+ *
+ * These routines are used by both the compression and decompression code.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jversion.h"
+#include "jerror.h"
+
+#ifdef USE_WINDOWS_MESSAGEBOX
+#include <windows.h>
+#endif
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+
+
+/*
+ * Create the message string table.
+ * We do this from the master message list in jerror.h by re-reading
+ * jerror.h with a suitable definition for macro JMESSAGE.
+ * The message table is made an external symbol just in case any applications
+ * want to refer to it directly.
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_message_table jMsgTable
+#endif
+
+#define JMESSAGE(code,string) string ,
+
+const char * const jpeg_std_message_table[] = {
+#include "jerror.h"
+ NULL
+};
+
+
+/*
+ * Error exit handler: must not return to caller.
+ *
+ * Applications may override this if they want to get control back after
+ * an error. Typically one would longjmp somewhere instead of exiting.
+ * The setjmp buffer can be made a private field within an expanded error
+ * handler object. Note that the info needed to generate an error message
+ * is stored in the error object, so you can generate the message now or
+ * later, at your convenience.
+ * You should make sure that the JPEG object is cleaned up (with jpeg_abort
+ * or jpeg_destroy) at some point.
+ */
+
+METHODDEF(void)
+error_exit (j_common_ptr cinfo)
+{
+ /* Always display the message */
+ (*cinfo->err->output_message) (cinfo);
+
+ /* Let the memory manager delete any temp files before we die */
+ jpeg_destroy(cinfo);
+
+ exit(EXIT_FAILURE);
+}
+
+
+/*
+ * Actual output of an error or trace message.
+ * Applications may override this method to send JPEG messages somewhere
+ * other than stderr.
+ *
+ * On Windows, printing to stderr is generally completely useless,
+ * so we provide optional code to produce an error-dialog popup.
+ * Most Windows applications will still prefer to override this routine,
+ * but if they don't, it'll do something at least marginally useful.
+ *
+ * NOTE: to use the library in an environment that doesn't support the
+ * C stdio library, you may have to delete the call to fprintf() entirely,
+ * not just not use this routine.
+ */
+
+METHODDEF(void)
+output_message (j_common_ptr cinfo)
+{
+ char buffer[JMSG_LENGTH_MAX];
+
+ /* Create the message */
+ (*cinfo->err->format_message) (cinfo, buffer);
+
+#ifdef USE_WINDOWS_MESSAGEBOX
+ /* Display it in a message dialog box */
+ MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
+ MB_OK | MB_ICONERROR);
+#else
+ /* Send it to stderr, adding a newline */
+ fprintf(stderr, "%s\n", buffer);
+#endif
+}
+
+
+/*
+ * Decide whether to emit a trace or warning message.
+ * msg_level is one of:
+ * -1: recoverable corrupt-data warning, may want to abort.
+ * 0: important advisory messages (always display to user).
+ * 1: first level of tracing detail.
+ * 2,3,...: successively more detailed tracing messages.
+ * An application might override this method if it wanted to abort on warnings
+ * or change the policy about which messages to display.
+ */
+
+METHODDEF(void)
+emit_message (j_common_ptr cinfo, int msg_level)
+{
+ struct jpeg_error_mgr * err = cinfo->err;
+
+ if (msg_level < 0) {
+ /* It's a warning message. Since corrupt files may generate many warnings,
+ * the policy implemented here is to show only the first warning,
+ * unless trace_level >= 3.
+ */
+ if (err->num_warnings == 0 || err->trace_level >= 3)
+ (*err->output_message) (cinfo);
+ /* Always count warnings in num_warnings. */
+ err->num_warnings++;
+ } else {
+ /* It's a trace message. Show it if trace_level >= msg_level. */
+ if (err->trace_level >= msg_level)
+ (*err->output_message) (cinfo);
+ }
+}
+
+
+/*
+ * Format a message string for the most recent JPEG error or message.
+ * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
+ * characters. Note that no '\n' character is added to the string.
+ * Few applications should need to override this method.
+ */
+
+METHODDEF(void)
+format_message (j_common_ptr cinfo, char * buffer)
+{
+ struct jpeg_error_mgr * err = cinfo->err;
+ int msg_code = err->msg_code;
+ const char * msgtext = NULL;
+ const char * msgptr;
+ char ch;
+ boolean isstring;
+
+ /* Look up message string in proper table */
+ if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
+ msgtext = err->jpeg_message_table[msg_code];
+ } else if (err->addon_message_table != NULL &&
+ msg_code >= err->first_addon_message &&
+ msg_code <= err->last_addon_message) {
+ msgtext = err->addon_message_table[msg_code - err->first_addon_message];
+ }
+
+ /* Defend against bogus message number */
+ if (msgtext == NULL) {
+ err->msg_parm.i[0] = msg_code;
+ msgtext = err->jpeg_message_table[0];
+ }
+
+ /* Check for string parameter, as indicated by %s in the message text */
+ isstring = FALSE;
+ msgptr = msgtext;
+ while ((ch = *msgptr++) != '\0') {
+ if (ch == '%') {
+ if (*msgptr == 's') isstring = TRUE;
+ break;
+ }
+ }
+
+ /* Format the message into the passed buffer */
+ if (isstring)
+ sprintf(buffer, msgtext, err->msg_parm.s);
+ else
+ sprintf(buffer, msgtext,
+ err->msg_parm.i[0], err->msg_parm.i[1],
+ err->msg_parm.i[2], err->msg_parm.i[3],
+ err->msg_parm.i[4], err->msg_parm.i[5],
+ err->msg_parm.i[6], err->msg_parm.i[7]);
+}
+
+
+/*
+ * Reset error state variables at start of a new image.
+ * This is called during compression startup to reset trace/error
+ * processing to default state, without losing any application-specific
+ * method pointers. An application might possibly want to override
+ * this method if it has additional error processing state.
+ */
+
+METHODDEF(void)
+reset_error_mgr (j_common_ptr cinfo)
+{
+ cinfo->err->num_warnings = 0;
+ /* trace_level is not reset since it is an application-supplied parameter */
+ cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
+}
+
+
+/*
+ * Fill in the standard error-handling methods in a jpeg_error_mgr object.
+ * Typical call is:
+ * struct jpeg_compress_struct cinfo;
+ * struct jpeg_error_mgr err;
+ *
+ * cinfo.err = jpeg_std_error(&err);
+ * after which the application may override some of the methods.
+ */
+
+GLOBAL(struct jpeg_error_mgr *)
+jpeg_std_error (struct jpeg_error_mgr * err)
+{
+ err->error_exit = error_exit;
+ err->emit_message = emit_message;
+ err->output_message = output_message;
+ err->format_message = format_message;
+ err->reset_error_mgr = reset_error_mgr;
+
+ err->trace_level = 0; /* default = no tracing */
+ err->num_warnings = 0; /* no warnings emitted yet */
+ err->msg_code = 0; /* may be useful as a flag for "no error" */
+
+ /* Initialize message table pointers */
+ err->jpeg_message_table = jpeg_std_message_table;
+ err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
+
+ err->addon_message_table = NULL;
+ err->first_addon_message = 0; /* for safety */
+ err->last_addon_message = 0;
+
+ return err;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jerror.h b/plugins/AdvaImg/src/LibJPEG/jerror.h
new file mode 100644
index 0000000000..1cfb2b19d8
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jerror.h
@@ -0,0 +1,304 @@
+/*
+ * jerror.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the error and message codes for the JPEG library.
+ * Edit this file to add new codes, or to translate the message strings to
+ * some other language.
+ * A set of error-reporting macros are defined too. Some applications using
+ * the JPEG library may wish to include this file to get the error codes
+ * and/or the macros.
+ */
+
+/*
+ * To define the enum list of message codes, include this file without
+ * defining macro JMESSAGE. To create a message string table, include it
+ * again with a suitable JMESSAGE definition (see jerror.c for an example).
+ */
+#ifndef JMESSAGE
+#ifndef JERROR_H
+/* First time through, define the enum list */
+#define JMAKE_ENUM_LIST
+#else
+/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+#define JMESSAGE(code,string)
+#endif /* JERROR_H */
+#endif /* JMESSAGE */
+
+#ifdef JMAKE_ENUM_LIST
+
+typedef enum {
+
+#define JMESSAGE(code,string) code ,
+
+#endif /* JMAKE_ENUM_LIST */
+
+JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
+
+/* For maintenance convenience, list is alphabetical by message code name */
+JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
+JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
+JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
+JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
+JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
+JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
+JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
+JMESSAGE(JERR_BAD_DROP_SAMPLING,
+ "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
+JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
+JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
+JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
+JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
+JMESSAGE(JERR_BAD_LIB_VERSION,
+ "Wrong JPEG library version: library is %d, caller expects %d")
+JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
+JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
+JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
+JMESSAGE(JERR_BAD_PROGRESSION,
+ "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
+JMESSAGE(JERR_BAD_PROG_SCRIPT,
+ "Invalid progressive parameters at scan script entry %d")
+JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
+JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
+JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
+JMESSAGE(JERR_BAD_STRUCT_SIZE,
+ "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
+JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
+JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
+JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
+JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
+JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
+JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
+JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
+JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
+JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
+JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
+JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
+JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
+JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
+JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
+JMESSAGE(JERR_FILE_READ, "Input file read error")
+JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
+JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
+JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
+JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
+JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
+JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
+JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
+JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
+ "Cannot transcode due to multiple use of quantization table %d")
+JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
+JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
+JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
+JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
+JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
+JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
+JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
+JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
+JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
+JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
+JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
+JMESSAGE(JERR_QUANT_COMPONENTS,
+ "Cannot quantize more than %d color components")
+JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
+JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
+JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
+JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
+JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
+JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
+JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
+JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
+JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
+JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
+JMESSAGE(JERR_TFILE_WRITE,
+ "Write failed on temporary file --- out of disk space?")
+JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
+JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
+JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
+JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
+JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
+JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
+JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
+JMESSAGE(JMSG_VERSION, JVERSION)
+JMESSAGE(JTRC_16BIT_TABLES,
+ "Caution: quantization tables are too coarse for baseline JPEG")
+JMESSAGE(JTRC_ADOBE,
+ "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
+JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
+JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
+JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
+JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
+JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
+JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
+JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
+JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
+JMESSAGE(JTRC_EOI, "End Of Image")
+JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
+JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
+JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
+ "Warning: thumbnail image size does not match data length %u")
+JMESSAGE(JTRC_JFIF_EXTENSION,
+ "JFIF extension marker: type 0x%02x, length %u")
+JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
+JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
+JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
+JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
+JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
+JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
+JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
+JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
+JMESSAGE(JTRC_RST, "RST%d")
+JMESSAGE(JTRC_SMOOTH_NOTIMPL,
+ "Smoothing not supported with nonstandard sampling ratios")
+JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
+JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
+JMESSAGE(JTRC_SOI, "Start of Image")
+JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
+JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
+JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
+JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
+JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
+JMESSAGE(JTRC_THUMB_JPEG,
+ "JFIF extension marker: JPEG-compressed thumbnail image, length %u")
+JMESSAGE(JTRC_THUMB_PALETTE,
+ "JFIF extension marker: palette thumbnail image, length %u")
+JMESSAGE(JTRC_THUMB_RGB,
+ "JFIF extension marker: RGB thumbnail image, length %u")
+JMESSAGE(JTRC_UNKNOWN_IDS,
+ "Unrecognized component IDs %d %d %d, assuming YCbCr")
+JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
+JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
+JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
+JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
+JMESSAGE(JWRN_BOGUS_PROGRESSION,
+ "Inconsistent progression sequence for component %d coefficient %d")
+JMESSAGE(JWRN_EXTRANEOUS_DATA,
+ "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
+JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
+JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
+JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
+JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
+JMESSAGE(JWRN_MUST_RESYNC,
+ "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
+JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
+JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
+
+#ifdef JMAKE_ENUM_LIST
+
+ JMSG_LASTMSGCODE
+} J_MESSAGE_CODE;
+
+#undef JMAKE_ENUM_LIST
+#endif /* JMAKE_ENUM_LIST */
+
+/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+#undef JMESSAGE
+
+
+#ifndef JERROR_H
+#define JERROR_H
+
+/* Macros to simplify using the error and trace message stuff */
+/* The first parameter is either type of cinfo pointer */
+
+/* Fatal errors (print message and exit) */
+#define ERREXIT(cinfo,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT1(cinfo,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT2(cinfo,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT3(cinfo,code,p1,p2,p3) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (cinfo)->err->msg_parm.i[3] = (p4), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (cinfo)->err->msg_parm.i[3] = (p4), \
+ (cinfo)->err->msg_parm.i[4] = (p5), \
+ (cinfo)->err->msg_parm.i[5] = (p6), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXITS(cinfo,code,str) \
+ ((cinfo)->err->msg_code = (code), \
+ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+
+#define MAKESTMT(stuff) do { stuff } while (0)
+
+/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
+#define WARNMS(cinfo,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS1(cinfo,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS2(cinfo,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+
+/* Informational/debugging messages */
+#define TRACEMS(cinfo,lvl,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS1(cinfo,lvl,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS2(cinfo,lvl,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ _mp[4] = (p5); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMSS(cinfo,lvl,code,str) \
+ ((cinfo)->err->msg_code = (code), \
+ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+
+#endif /* JERROR_H */
diff --git a/plugins/AdvaImg/src/LibJPEG/jfdctflt.c b/plugins/AdvaImg/src/LibJPEG/jfdctflt.c
new file mode 100644
index 0000000000..74d0d862dc
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jfdctflt.c
@@ -0,0 +1,174 @@
+/*
+ * jfdctflt.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * This implementation should be more accurate than either of the integer
+ * DCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+ FAST_FLOAT *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+
+ /* Pass 1: process rows. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Load data into workspace */
+ tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
+ tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
+ tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
+ tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
+ tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
+ tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
+ tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
+ tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
+ dataptr[4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[2] = tmp13 + z1; /* phase 5 */
+ dataptr[6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[5] = z13 + z2; /* phase 6 */
+ dataptr[3] = z13 - z2;
+ dataptr[1] = z11 + z4;
+ dataptr[7] = z11 - z4;
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+ dataptr[DCTSIZE*6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+ dataptr[DCTSIZE*3] = z13 - z2;
+ dataptr[DCTSIZE*1] = z11 + z4;
+ dataptr[DCTSIZE*7] = z11 - z4;
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jfdctfst.c b/plugins/AdvaImg/src/LibJPEG/jfdctfst.c
new file mode 100644
index 0000000000..8cad5f2293
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jfdctfst.c
@@ -0,0 +1,230 @@
+/*
+ * jfdctfst.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a fast, not so accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with fixed-point math,
+ * accuracy is lost due to imprecise representation of the scaled
+ * quantization values. The smaller the quantization table entry, the less
+ * precise the scaled value, so this implementation does worse with high-
+ * quality-setting files than with low-quality ones.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_IFAST_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling decisions are generally the same as in the LL&M algorithm;
+ * see jfdctint.c for more details. However, we choose to descale
+ * (right shift) multiplication products as soon as they are formed,
+ * rather than carrying additional fractional bits into subsequent additions.
+ * This compromises accuracy slightly, but it lets us save a few shifts.
+ * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ * everywhere except in the multiplications proper; this saves a good deal
+ * of work on 16-bit-int machines.
+ *
+ * Again to save a few shifts, the intermediate results between pass 1 and
+ * pass 2 are not upscaled, but are represented only to integral precision.
+ *
+ * A final compromise is to represent the multiplicative constants to only
+ * 8 fractional bits, rather than 13. This saves some shifting work on some
+ * machines, and may also reduce the cost of multiplication (since there
+ * are fewer one-bits in the constants).
+ */
+
+#define CONST_BITS 8
+
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 8
+#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
+#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
+#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
+#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
+#else
+#define FIX_0_382683433 FIX(0.382683433)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_707106781 FIX(0.707106781)
+#define FIX_1_306562965 FIX(1.306562965)
+#endif
+
+
+/* We can gain a little more speed, with a further compromise in accuracy,
+ * by omitting the addition in a descaling shift. This yields an incorrectly
+ * rounded result half the time...
+ */
+
+#ifndef USE_ACCURATE_ROUNDING
+#undef DESCALE
+#define DESCALE(x,n) RIGHT_SHIFT(x, n)
+#endif
+
+
+/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+ * descale to yield a DCTELEM result.
+ */
+
+#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ DCTELEM tmp10, tmp11, tmp12, tmp13;
+ DCTELEM z1, z2, z3, z4, z5, z11, z13;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Load data into workspace */
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+ tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
+ dataptr[4] = tmp10 - tmp11;
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+ dataptr[2] = tmp13 + z1; /* phase 5 */
+ dataptr[6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[5] = z13 + z2; /* phase 6 */
+ dataptr[3] = z13 - z2;
+ dataptr[1] = z11 + z4;
+ dataptr[7] = z11 - z4;
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+ dataptr[DCTSIZE*6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+ dataptr[DCTSIZE*3] = z13 - z2;
+ dataptr[DCTSIZE*1] = z11 + z4;
+ dataptr[DCTSIZE*7] = z11 - z4;
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#endif /* DCT_IFAST_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jfdctint.c b/plugins/AdvaImg/src/LibJPEG/jfdctint.c
new file mode 100644
index 0000000000..1dde58c499
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jfdctint.c
@@ -0,0 +1,4348 @@
+/*
+ * jfdctint.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modification developed 2003-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ *
+ * We also provide FDCT routines with various input sample block sizes for
+ * direct resolution reduction or enlargement and for direct resolving the
+ * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
+ * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
+ *
+ * For N<8 we fill the remaining block coefficients with zero.
+ * For N>8 we apply a partial N-point FDCT on the input samples, computing
+ * just the lower 8 frequency coefficients and discarding the rest.
+ *
+ * We must scale the output coefficients of the N-point FDCT appropriately
+ * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling
+ * is folded into the constant multipliers (pass 2) and/or final/initial
+ * shifting.
+ *
+ * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
+ * since there would be too many additional constants to pre-calculate.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true DCT outputs. The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm. The advantage of
+ * this arrangement is that we save two multiplications per 1-D DCT,
+ * because the y0 and y4 outputs need not be divided by sqrt(N).
+ * In the IJG code, this factor of 8 is removed by the quantization step
+ * (in jcdctmgr.c), NOT in this module.
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic. We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants). After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output. This division can be done
+ * cheaply as a right shift of CONST_BITS bits. We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision. These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling. (For 12-bit sample data, the intermediate
+ * array is INT32 anyway.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
+#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
+#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
+#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
+#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
+#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
+#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
+#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
+#else
+#define FIX_0_298631336 FIX(0.298631336)
+#define FIX_0_390180644 FIX(0.390180644)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_175875602 FIX(1.175875602)
+#define FIX_1_501321110 FIX(1.501321110)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_1_961570560 FIX(1.961570560)
+#define FIX_2_053119869 FIX(2.053119869)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_072711026 FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const) ((var) * (const))
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#ifdef DCT_SCALING_SUPPORTED
+
+
+/*
+ * Perform the forward DCT on a 7x7 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* cK represents sqrt(2) * cos(K*pi/14). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 7; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
+ tmp3 = GETJSAMPLE(elemptr[3]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
+
+ z1 = tmp0 + tmp2;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
+ dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
+ dataptr[4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/7)**2 = 64/49, which we fold
+ * into the constant multipliers:
+ * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 7; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
+ tmp3 = dataptr[DCTSIZE*3];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
+ tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
+
+ z1 = tmp0 + tmp2;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
+ CONST_BITS+PASS1_BITS);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 6x6 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11, tmp12;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* cK represents sqrt(2) * cos(K*pi/12). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
+ tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
+ CONST_BITS-PASS1_BITS);
+
+ dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
+ dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
+ dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)**2 = 16/9, which we fold
+ * into the constant multipliers:
+ * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
+ tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 5x5 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/10). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 5; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
+ tmp2 = GETJSAMPLE(elemptr[2]);
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
+ dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);
+ dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/5)**2 = 64/25, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 5; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
+ tmp2 = dataptr[DCTSIZE*2];
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 4x4 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */
+ /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));
+ dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS-2);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS-2);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 3x3 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2**2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/6). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
+ CONST_BITS-PASS1_BITS-2);
+
+ /* Odd part */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
+ CONST_BITS-PASS1_BITS-2);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/3)**2 = 64/9, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
+ tmp1 = dataptr[DCTSIZE*1];
+
+ tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 2x2 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ JSAMPROW elemptr;
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+
+ /* Row 0 */
+ elemptr = sample_data[0] + start_col;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
+ tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
+
+ /* Row 1 */
+ elemptr = sample_data[1] + start_col;
+
+ tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
+ tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/2)**2 = 2**4.
+ */
+
+ /* Column 0 */
+ /* Apply unsigned->signed conversion */
+ data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4);
+ data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4);
+
+ /* Column 1 */
+ data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4);
+ data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4);
+}
+
+
+/*
+ * Perform the forward DCT on a 1x1 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* We leave the result scaled up by an overall factor of 8. */
+ /* We must also scale the output by (8/1)**2 = 2**6. */
+ /* Apply unsigned->signed conversion */
+ data[0] = (DCTELEM)
+ ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6);
+}
+
+
+/*
+ * Perform the forward DCT on a 9x9 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2;
+ DCTELEM workspace[8];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* we scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/18). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);
+ tmp4 = GETJSAMPLE(elemptr[4]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);
+
+ z1 = tmp0 + tmp2 + tmp3;
+ z2 = tmp1 + tmp4;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);
+ dataptr[6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */
+ CONST_BITS-1);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */
+ z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */
+ + z1 + z2, CONST_BITS-1);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */
+ + z1 - z2, CONST_BITS-1);
+
+ /* Odd part */
+
+ dataptr[3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */
+ CONST_BITS-1);
+
+ tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */
+ tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);
+
+ tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */
+
+ dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);
+ dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 9)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/9)**2 = 64/81, which we partially
+ * fold into the constant multipliers and final/initial shifting:
+ * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];
+ tmp4 = dataptr[DCTSIZE*4];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];
+ tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];
+ tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];
+
+ z1 = tmp0 + tmp2 + tmp3;
+ z2 = tmp1 + tmp4;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */
+ CONST_BITS+2);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */
+ z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */
+ + z1 + z2, CONST_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */
+ + z1 - z2, CONST_BITS+2);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */
+ CONST_BITS+2);
+
+ tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */
+ tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);
+
+ tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */
+
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 10x10 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ DCTELEM workspace[8*2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* we scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/20). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
+ tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);
+ tmp12 += tmp12;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
+ CONST_BITS-1);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
+ CONST_BITS-1);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
+ CONST_BITS-1);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);
+ tmp2 <<= CONST_BITS;
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
+ CONST_BITS-1);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
+ (tmp11 << (CONST_BITS - 1)) - tmp2;
+ dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);
+ dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 10)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/10)**2 = 16/25, which we partially
+ * fold into the constant multipliers and final/initial shifting:
+ * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
+ tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
+ CONST_BITS+2);
+ tmp12 += tmp12;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
+ CONST_BITS+2);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
+ CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+2);
+ tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
+ CONST_BITS+2);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
+ MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on an 11x11 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 z1, z2, z3;
+ DCTELEM workspace[8*3];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* we scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* cK represents sqrt(2) * cos(K*pi/22). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);
+ tmp5 = GETJSAMPLE(elemptr[5]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);
+ tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);
+ tmp5 += tmp5;
+ tmp0 -= tmp5;
+ tmp1 -= tmp5;
+ tmp2 -= tmp5;
+ tmp3 -= tmp5;
+ tmp4 -= tmp5;
+ z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */
+ MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */
+ z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */
+ z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */
+ - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */
+ CONST_BITS-1);
+ dataptr[4] = (DCTELEM)
+ DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */
+ - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */
+ + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */
+ CONST_BITS-1);
+ dataptr[6] = (DCTELEM)
+ DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */
+ - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */
+ CONST_BITS-1);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */
+ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */
+ + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */
+ tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */
+ tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */
+ - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */
+ tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */
+ tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */
+ + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */
+ tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */
+ - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 11)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/11)**2 = 64/121, which we partially
+ * fold into the constant multipliers and final/initial shifting:
+ * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];
+ tmp5 = dataptr[DCTSIZE*5];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];
+ tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];
+ tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];
+ tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];
+ tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,
+ FIX(1.057851240)), /* 128/121 */
+ CONST_BITS+2);
+ tmp5 += tmp5;
+ tmp0 -= tmp5;
+ tmp1 -= tmp5;
+ tmp2 -= tmp5;
+ tmp3 -= tmp5;
+ tmp4 -= tmp5;
+ z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */
+ MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */
+ z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */
+ z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */
+ - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */
+ - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */
+ + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */
+ CONST_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */
+ - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */
+ CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */
+ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */
+ + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */
+ tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */
+ tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */
+ - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */
+ tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */
+ tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */
+ + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */
+ tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */
+ - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 12x12 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ DCTELEM workspace[8*4];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/24). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);
+ dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
+ CONST_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
+ CONST_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 12)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/12)**2 = 4/9, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
+ MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
+ CONST_BITS+1);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 13x13 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 z1, z2;
+ DCTELEM workspace[8*5];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/26). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);
+ tmp6 = GETJSAMPLE(elemptr[6]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);
+ tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);
+ tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);
+ tmp6 += tmp6;
+ tmp0 -= tmp6;
+ tmp1 -= tmp6;
+ tmp2 -= tmp6;
+ tmp3 -= tmp6;
+ tmp4 -= tmp6;
+ tmp5 -= tmp6;
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */
+ MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */
+ MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */
+ MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */
+ MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */
+ MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */
+ CONST_BITS);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */
+ MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */
+ MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */
+ z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */
+ MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */
+ MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */
+
+ dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */
+ MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */
+ MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */
+ tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */
+ MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */
+ tmp1 += tmp4 + tmp5 +
+ MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */
+ MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */
+ tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */
+ tmp2 += tmp4 + tmp6 -
+ MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */
+ MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */
+ tmp3 += tmp5 + tmp6 +
+ MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */
+ MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 13)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/13)**2 = 64/169, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];
+ tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];
+ tmp6 = dataptr[DCTSIZE*6];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];
+ tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];
+ tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];
+ tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];
+ tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];
+ tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,
+ FIX(0.757396450)), /* 128/169 */
+ CONST_BITS+1);
+ tmp6 += tmp6;
+ tmp0 -= tmp6;
+ tmp1 -= tmp6;
+ tmp2 -= tmp6;
+ tmp3 -= tmp6;
+ tmp4 -= tmp6;
+ tmp5 -= tmp6;
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */
+ MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */
+ MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */
+ MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */
+ MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */
+ MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */
+ CONST_BITS+1);
+ z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */
+ MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */
+ MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */
+ z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */
+ MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */
+ MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */
+
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */
+ tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */
+ tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */
+ MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */
+ MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */
+ tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */
+ MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */
+ tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */
+ tmp1 += tmp4 + tmp5 +
+ MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */
+ MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */
+ tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */
+ tmp2 += tmp4 + tmp6 -
+ MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */
+ MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */
+ tmp3 += tmp5 + tmp6 +
+ MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */
+ MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 14x14 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ DCTELEM workspace[8*6];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/28). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
+ tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);
+ tmp13 += tmp13;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
+ CONST_BITS);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
+ CONST_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
+ CONST_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);
+ tmp3 <<= CONST_BITS;
+ tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
+ dataptr[5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
+ CONST_BITS);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
+ CONST_BITS);
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
+ MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
+ CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 14)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/14)**2 = 16/49, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
+ tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+1);
+ tmp13 += tmp13;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
+ CONST_BITS+1);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
+ CONST_BITS+1);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+1);
+ tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
+ tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
+ CONST_BITS+1);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
+ CONST_BITS+1);
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3
+ - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
+ - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
+ CONST_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 15x15 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 z1, z2, z3;
+ DCTELEM workspace[8*7];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* cK represents sqrt(2) * cos(K*pi/30). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);
+ tmp7 = GETJSAMPLE(elemptr[7]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);
+ tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);
+ tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);
+ tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);
+ tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);
+
+ z1 = tmp0 + tmp4 + tmp5;
+ z2 = tmp1 + tmp3 + tmp6;
+ z3 = tmp2 + tmp7;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);
+ z3 += z3;
+ dataptr[6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */
+ MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */
+ CONST_BITS);
+ tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
+ z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */
+ MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */
+ z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */
+ MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */
+ z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */
+ MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */
+ MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */
+
+ dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);
+ dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);
+
+ /* Odd part */
+
+ tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
+ FIX(1.224744871)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */
+ MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */
+ tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */
+ tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */
+ MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */
+ MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */
+ tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */
+ MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */
+ MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */
+ tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */
+ MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */
+ MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 15)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/15)**2 = 64/225, which we partially
+ * fold into the constant multipliers and final shifting:
+ * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];
+ tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];
+ tmp7 = dataptr[DCTSIZE*7];
+
+ tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];
+ tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];
+ tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];
+ tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];
+ tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];
+ tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];
+ tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];
+
+ z1 = tmp0 + tmp4 + tmp5;
+ z2 = tmp1 + tmp3 + tmp6;
+ z3 = tmp2 + tmp7;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */
+ CONST_BITS+2);
+ z3 += z3;
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */
+ MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */
+ CONST_BITS+2);
+ tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
+ z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */
+ MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */
+ z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */
+ MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */
+ z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */
+ MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */
+
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);
+
+ /* Odd part */
+
+ tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
+ FIX(1.393487498)); /* c5 */
+ tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */
+ MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */
+ tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */
+ tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */
+ MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */
+ MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */
+ tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */
+ MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */
+ MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */
+ tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */
+ MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */
+ MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 16x16 sample block.
+ */
+
+GLOBAL(void)
+jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
+ DCTELEM workspace[DCTSIZE2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* cK represents sqrt(2) * cos(K*pi/32). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS-PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == DCTSIZE * 2)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/16)**2 = 1/2**2.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS+PASS1_BITS+2);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */
+ CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS+PASS1_BITS+2);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 16x8 sample block.
+ *
+ * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */
+
+ dataptr = data;
+ ctr = 0;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
+ tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS-PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by 8/16 = 1/2.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12,
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13,
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12,
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13,
+ CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 14x7 sample block.
+ *
+ * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 z1, z2, z3;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero bottom row of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 7; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
+ tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
+ tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp13 += tmp13;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */
+ CONST_BITS-PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */
+
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);
+ tmp3 <<= CONST_BITS;
+ tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */
+ dataptr[5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */
+ CONST_BITS-PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
+ MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */
+ CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/14)*(8/7) = 32/49, which we
+ * partially fold into the constant multipliers and final shifting:
+ * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
+ tmp3 = dataptr[DCTSIZE*3];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
+ tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
+
+ z1 = tmp0 + tmp2;
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
+ CONST_BITS+PASS1_BITS+1);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 12x6 sample block.
+ *
+ * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero 2 bottom rows of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
+ tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/12)*(8/6) = 8/9, which we
+ * partially fold into the constant multipliers and final shifting:
+ * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
+ tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
+ CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 10x5 sample block.
+ *
+ * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero 3 bottom rows of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 5; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
+ tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
+ tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp12 += tmp12;
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */
+ CONST_BITS-PASS1_BITS);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */
+ dataptr[2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);
+ tmp2 <<= CONST_BITS;
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */
+ CONST_BITS-PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */
+ (tmp11 << (CONST_BITS - 1)) - tmp2;
+ dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/10)*(8/5) = 32/25, which we
+ * fold into the constant multipliers:
+ * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
+ tmp2 = dataptr[DCTSIZE*2];
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on an 8x4 sample block.
+ *
+ * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Zero 4 bottom rows of output coefficient block. */
+ MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by 8/4 = 2, which we add here. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-2);
+ dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-2);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1);
+ dataptr[5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1);
+ dataptr[7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 6x3 sample block.
+ *
+ * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11, tmp12;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
+ tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
+ CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part */
+
+ tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));
+ dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));
+ dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
+ tmp1 = dataptr[DCTSIZE*1];
+
+ tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 4x2 sample block.
+ *
+ * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */
+ /* 4-point FDCT kernel, */
+ /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 2; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3));
+ dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3));
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-4);
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS-3);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS-3);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1));
+ tmp1 = dataptr[DCTSIZE*1];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
+
+ /* Odd part */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 2x1 sample block.
+ *
+ * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ JSAMPROW elemptr;
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ elemptr = sample_data[0] + start_col;
+
+ tmp0 = GETJSAMPLE(elemptr[0]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ /* We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/2)*(8/1) = 2**5.
+ */
+
+ /* Even part */
+ /* Apply unsigned->signed conversion */
+ data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
+
+ /* Odd part */
+ data[1] = (DCTELEM) ((tmp0 - tmp1) << 5);
+}
+
+
+/*
+ * Perform the forward DCT on an 8x16 sample block.
+ *
+ * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
+ INT32 z1;
+ DCTELEM workspace[DCTSIZE2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
+
+ tmp10 = tmp0 + tmp3;
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
+ tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == DCTSIZE * 2)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by 8/16 = 1/2.
+ * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
+
+ tmp10 = tmp0 + tmp7;
+ tmp14 = tmp0 - tmp7;
+ tmp11 = tmp1 + tmp6;
+ tmp15 = tmp1 - tmp6;
+ tmp12 = tmp2 + tmp5;
+ tmp16 = tmp2 - tmp5;
+ tmp13 = tmp3 + tmp4;
+ tmp17 = tmp3 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
+ tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
+ tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
+ MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */
+ CONST_BITS+PASS1_BITS+1);
+
+ tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */
+ MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */
+ + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */
+ CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */
+ - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */
+ CONST_BITS+PASS1_BITS+1);
+
+ /* Odd part */
+
+ tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */
+ MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */
+ MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */
+ MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */
+ tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */
+ MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */
+ tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */
+ MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */
+ tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */
+ MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */
+ MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */
+ tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
+ - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */
+ tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
+ + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */
+ tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
+ + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 7x14 sample block.
+ *
+ * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 z1, z2, z3;
+ DCTELEM workspace[8*6];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
+ tmp3 = GETJSAMPLE(elemptr[3]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
+ tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
+
+ z1 = tmp0 + tmp2;
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp3 += tmp3;
+ z1 -= tmp3;
+ z1 -= tmp3;
+ z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */
+ z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */
+ dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
+ z1 -= z2;
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */
+ dataptr[4] = (DCTELEM)
+ DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */
+ tmp0 += tmp3;
+ tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */
+
+ dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 14)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/7)*(8/14) = 32/49, which we
+ * fold into the constant multipliers:
+ * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
+ tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
+
+ tmp10 = tmp0 + tmp6;
+ tmp14 = tmp0 - tmp6;
+ tmp11 = tmp1 + tmp5;
+ tmp15 = tmp1 - tmp5;
+ tmp12 = tmp2 + tmp4;
+ tmp16 = tmp2 - tmp4;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
+ tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
+ tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
+ tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+PASS1_BITS);
+ tmp13 += tmp13;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
+ MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
+ MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */
+ CONST_BITS+PASS1_BITS);
+
+ tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */
+
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */
+ + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */
+ - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp1 + tmp2;
+ tmp11 = tmp5 - tmp4;
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
+ FIX(0.653061224)), /* 32/49 */
+ CONST_BITS+PASS1_BITS);
+ tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */
+ tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */
+ tmp10 += tmp11 - tmp3;
+ tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */
+ MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
+ + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */
+ CONST_BITS+PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */
+ MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
+ - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp11 + tmp12 + tmp3
+ - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */
+ - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 6x12 sample block.
+ *
+ * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ DCTELEM workspace[8*4];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
+ tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
+ tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */
+ CONST_BITS-PASS1_BITS);
+
+ dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
+ dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
+ dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 12)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)*(8/12) = 8/9, which we
+ * fold into the constant multipliers:
+ * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
+
+ tmp10 = tmp0 + tmp5;
+ tmp13 = tmp0 - tmp5;
+ tmp11 = tmp1 + tmp4;
+ tmp14 = tmp1 - tmp4;
+ tmp12 = tmp2 + tmp3;
+ tmp15 = tmp2 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
+ tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
+ tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
+ tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */
+ MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */
+ tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */
+ tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */
+ tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */
+ tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */
+ tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
+ + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */
+ tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
+ tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
+ + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */
+ tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
+ - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */
+ tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
+ - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 5x10 sample block.
+ *
+ * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ DCTELEM workspace[8*2];
+ DCTELEM *dataptr;
+ DCTELEM *wsptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */
+
+ dataptr = data;
+ ctr = 0;
+ for (;;) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
+ tmp2 = GETJSAMPLE(elemptr[2]);
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+
+ tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
+ tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);
+ tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */
+ tmp10 -= tmp2 << 2;
+ tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */
+ dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
+ CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
+ CONST_BITS-PASS1_BITS);
+
+ ctr++;
+
+ if (ctr != DCTSIZE) {
+ if (ctr == 10)
+ break; /* Done. */
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ } else
+ dataptr = workspace; /* switch pointer to extended workspace */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/5)*(8/10) = 32/25, which we
+ * fold into the constant multipliers:
+ * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.
+ */
+
+ dataptr = data;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
+ tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
+
+ tmp10 = tmp0 + tmp4;
+ tmp13 = tmp0 - tmp4;
+ tmp11 = tmp1 + tmp3;
+ tmp14 = tmp1 - tmp3;
+
+ tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
+ tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
+ tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp12 += tmp12;
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
+ MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */
+ CONST_BITS+PASS1_BITS);
+ tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = tmp0 + tmp4;
+ tmp11 = tmp1 - tmp3;
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */
+ CONST_BITS+PASS1_BITS);
+ tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */
+ MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */
+ MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */
+ MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */
+ CONST_BITS+PASS1_BITS);
+ tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */
+ MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */
+ tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */
+ MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ wsptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 4x8 sample block.
+ *
+ * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We must also scale the output by 8/4 = 2, which we add here. */
+ /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
+ tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
+
+ tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
+ tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);
+
+ dataptr[1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS-1);
+ dataptr[3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
+ tmp12 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp13 = tmp1 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM)
+ RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ * i0..i3 in the paper are tmp0..tmp3 here.
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp1 + tmp3;
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS+PASS1_BITS-1);
+
+ tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
+ tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
+ tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
+ tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
+ tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
+ tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
+ tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
+ tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
+
+ tmp12 += z1;
+ tmp13 += z1;
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*7] = (DCTELEM)
+ RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 3x6 sample block.
+ *
+ * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1, tmp2;
+ INT32 tmp10, tmp11, tmp12;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+ /* We scale the results further by 2 as part of output adaption */
+ /* scaling for different DCT size. */
+ /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 6; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM)
+ ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));
+ dataptr[2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
+ CONST_BITS-PASS1_BITS-1);
+
+ /* Odd part */
+
+ dataptr[1] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */
+ CONST_BITS-PASS1_BITS-1);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
+ * fold into the constant multipliers (other part was done in pass 1):
+ * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 3; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
+ tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
+ tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
+ tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
+
+ dataptr[DCTSIZE*0] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*2] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part */
+
+ tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM)
+ DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 2x4 sample block.
+ *
+ * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+ INT32 tmp10, tmp11;
+ DCTELEM *dataptr;
+ JSAMPROW elemptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT. */
+ /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 4; ctr++) {
+ elemptr = sample_data[ctr] + start_col;
+
+ /* Even part */
+
+ tmp0 = GETJSAMPLE(elemptr[0]);
+ tmp1 = GETJSAMPLE(elemptr[1]);
+
+ /* Apply unsigned->signed conversion */
+ dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3);
+
+ /* Odd part */
+
+ dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We leave the results scaled up by an overall factor of 8.
+ * 4-point FDCT kernel,
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
+ */
+
+ dataptr = data;
+ for (ctr = 0; ctr < 2; ctr++) {
+ /* Even part */
+
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
+
+ tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
+ tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
+
+ dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1);
+ dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-1);
+
+ dataptr[DCTSIZE*1] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM)
+ RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+
+/*
+ * Perform the forward DCT on a 1x2 sample block.
+ *
+ * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
+ */
+
+GLOBAL(void)
+jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
+{
+ INT32 tmp0, tmp1;
+
+ /* Pre-zero output coefficient block. */
+ MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
+
+ tmp0 = GETJSAMPLE(sample_data[0][start_col]);
+ tmp1 = GETJSAMPLE(sample_data[1][start_col]);
+
+ /* We leave the results scaled up by an overall factor of 8.
+ * We must also scale the output by (8/1)*(8/2) = 2**5.
+ */
+
+ /* Even part */
+ /* Apply unsigned->signed conversion */
+ data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
+
+ /* Odd part */
+ data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5);
+}
+
+#endif /* DCT_SCALING_SUPPORTED */
+#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jidctflt.c b/plugins/AdvaImg/src/LibJPEG/jidctflt.c
new file mode 100644
index 0000000000..23ae9d333b
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jidctflt.c
@@ -0,0 +1,235 @@
+/*
+ * jidctflt.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * Modified 2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * This implementation should be more accurate than either of the integer
+ * IDCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a float result.
+ */
+
+#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z5, z10, z11, z12, z13;
+ JCOEFPTR inptr;
+ FLOAT_MULT_TYPE * quantptr;
+ FAST_FLOAT * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = cinfo->sample_range_limit;
+ int ctr;
+ FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = tmp0 + tmp2; /* phase 3 */
+ tmp11 = tmp0 - tmp2;
+
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */
+ tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+
+ tmp0 = tmp10 + tmp13; /* phase 2 */
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z13 = tmp6 + tmp5; /* phase 6 */
+ z10 = tmp6 - tmp5;
+ z11 = tmp4 + tmp7;
+ z12 = tmp4 - tmp7;
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+
+ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+ tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
+ tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 - tmp5;
+
+ wsptr[DCTSIZE*0] = tmp0 + tmp7;
+ wsptr[DCTSIZE*7] = tmp0 - tmp7;
+ wsptr[DCTSIZE*1] = tmp1 + tmp6;
+ wsptr[DCTSIZE*6] = tmp1 - tmp6;
+ wsptr[DCTSIZE*2] = tmp2 + tmp5;
+ wsptr[DCTSIZE*5] = tmp2 - tmp5;
+ wsptr[DCTSIZE*3] = tmp3 + tmp4;
+ wsptr[DCTSIZE*4] = tmp3 - tmp4;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * And testing floats for zero is relatively expensive, so we don't bother.
+ */
+
+ /* Even part */
+
+ /* Apply signed->unsigned and prepare float->int conversion */
+ z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
+ tmp10 = z5 + wsptr[4];
+ tmp11 = z5 - wsptr[4];
+
+ tmp13 = wsptr[2] + wsptr[6];
+ tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
+
+ tmp0 = tmp10 + tmp13;
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z13 = wsptr[5] + wsptr[3];
+ z10 = wsptr[5] - wsptr[3];
+ z11 = wsptr[1] + wsptr[7];
+ z12 = wsptr[1] - wsptr[7];
+
+ tmp7 = z11 + z13;
+ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
+
+ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+ tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
+ tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7;
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 - tmp5;
+
+ /* Final output stage: float->int conversion and range-limit */
+
+ outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
+ outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
+ outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
+ outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
+ outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
+ outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
+ outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
+ outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jidctfst.c b/plugins/AdvaImg/src/LibJPEG/jidctfst.c
new file mode 100644
index 0000000000..dba4216fb9
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jidctfst.c
@@ -0,0 +1,368 @@
+/*
+ * jidctfst.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a fast, not so accurate integer implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with fixed-point math,
+ * accuracy is lost due to imprecise representation of the scaled
+ * quantization values. The smaller the quantization table entry, the less
+ * precise the scaled value, so this implementation does worse with high-
+ * quality-setting files than with low-quality ones.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_IFAST_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling decisions are generally the same as in the LL&M algorithm;
+ * see jidctint.c for more details. However, we choose to descale
+ * (right shift) multiplication products as soon as they are formed,
+ * rather than carrying additional fractional bits into subsequent additions.
+ * This compromises accuracy slightly, but it lets us save a few shifts.
+ * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ * everywhere except in the multiplications proper; this saves a good deal
+ * of work on 16-bit-int machines.
+ *
+ * The dequantized coefficients are not integers because the AA&N scaling
+ * factors have been incorporated. We represent them scaled up by PASS1_BITS,
+ * so that the first and second IDCT rounds have the same input scaling.
+ * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
+ * avoid a descaling shift; this compromises accuracy rather drastically
+ * for small quantization table entries, but it saves a lot of shifts.
+ * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
+ * so we use a much larger scaling factor to preserve accuracy.
+ *
+ * A final compromise is to represent the multiplicative constants to only
+ * 8 fractional bits, rather than 13. This saves some shifting work on some
+ * machines, and may also reduce the cost of multiplication (since there
+ * are fewer one-bits in the constants).
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 8
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 8
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 8
+#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
+#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
+#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
+#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
+#else
+#define FIX_1_082392200 FIX(1.082392200)
+#define FIX_1_414213562 FIX(1.414213562)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_2_613125930 FIX(2.613125930)
+#endif
+
+
+/* We can gain a little more speed, with a further compromise in accuracy,
+ * by omitting the addition in a descaling shift. This yields an incorrectly
+ * rounded result half the time...
+ */
+
+#ifndef USE_ACCURATE_ROUNDING
+#undef DESCALE
+#define DESCALE(x,n) RIGHT_SHIFT(x, n)
+#endif
+
+
+/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+ * descale to yield a DCTELEM result.
+ */
+
+#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
+ * multiplication will do. For 12-bit data, the multiplier table is
+ * declared INT32, so a 32-bit multiply will be used.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
+#else
+#define DEQUANTIZE(coef,quantval) \
+ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
+#endif
+
+
+/* Like DESCALE, but applies to a DCTELEM and produces an int.
+ * We assume that int right shift is unsigned if INT32 right shift is.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS DCTELEM ishift_temp;
+#if BITS_IN_JSAMPLE == 8
+#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
+#else
+#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
+#endif
+#define IRIGHT_SHIFT(x,shft) \
+ ((ishift_temp = (x)) < 0 ? \
+ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
+ (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+#ifdef USE_ACCURATE_ROUNDING
+#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
+#else
+#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
+#endif
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ DCTELEM tmp10, tmp11, tmp12, tmp13;
+ DCTELEM z5, z10, z11, z12, z13;
+ JCOEFPTR inptr;
+ IFAST_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS /* for DESCALE */
+ ISHIFT_TEMPS /* for IDESCALE */
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = tmp0 + tmp2; /* phase 3 */
+ tmp11 = tmp0 - tmp2;
+
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */
+ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
+
+ tmp0 = tmp10 + tmp13; /* phase 2 */
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z13 = tmp6 + tmp5; /* phase 6 */
+ z10 = tmp6 - tmp5;
+ z11 = tmp4 + tmp7;
+ z12 = tmp4 - tmp7;
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+
+ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
+ wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
+ wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
+ wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
+ wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
+ wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
+ wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
+ wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * On machines with very fast multiplication, it's possible that the
+ * test takes more time than it's worth. In that case this section
+ * may be commented out.
+ */
+
+#ifndef NO_ZERO_ROW_TEST
+ if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
+ & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+ outptr[2] = dcval;
+ outptr[3] = dcval;
+ outptr[4] = dcval;
+ outptr[5] = dcval;
+ outptr[6] = dcval;
+ outptr[7] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part */
+
+ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
+ tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
+
+ tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
+ tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
+ - tmp13;
+
+ tmp0 = tmp10 + tmp13;
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
+ z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
+ z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
+ z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+
+ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ /* Final output stage: scale down by a factor of 8 and range-limit */
+
+ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#endif /* DCT_IFAST_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jidctint.c b/plugins/AdvaImg/src/LibJPEG/jidctint.c
new file mode 100644
index 0000000000..dcdf7ce454
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jidctint.c
@@ -0,0 +1,5137 @@
+/*
+ * jidctint.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modification developed 2002-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ *
+ * We also provide IDCT routines with various output sample block sizes for
+ * direct resolution reduction or enlargement and for direct resolving the
+ * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
+ * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block.
+ *
+ * For N<8 we simply take the corresponding low-frequency coefficients of
+ * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
+ * to yield the downscaled outputs.
+ * This can be seen as direct low-pass downsampling from the DCT domain
+ * point of view rather than the usual spatial domain point of view,
+ * yielding significant computational savings and results at least
+ * as good as common bilinear (averaging) spatial downsampling.
+ *
+ * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
+ * lower frequencies and higher frequencies assumed to be zero.
+ * It turns out that the computational effort is similar to the 8x8 IDCT
+ * regarding the output size.
+ * Furthermore, the scaling and descaling is the same for all IDCT sizes.
+ *
+ * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
+ * since there would be too many additional constants to pre-calculate.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true IDCT outputs. The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm. The advantage of
+ * this arrangement is that we save two multiplications per 1-D IDCT,
+ * because the y0 and y4 inputs need not be divided by sqrt(N).
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic. We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants). After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output. This division can be done
+ * cheaply as a right shift of CONST_BITS bits. We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision. These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling. (To scale up 12-bit sample data further, an
+ * intermediate INT32 array would be needed.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
+#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
+#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
+#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
+#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
+#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
+#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
+#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
+#else
+#define FIX_0_298631336 FIX(0.298631336)
+#define FIX_0_390180644 FIX(0.390180644)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_175875602 FIX(1.175875602)
+#define FIX_1_501321110 FIX(1.501321110)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_1_961570560 FIX(1.961570560)
+#define FIX_2_053119869 FIX(2.053119869)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_072711026 FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const) ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result. In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 <<= CONST_BITS;
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z2 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = z2 + z3;
+ tmp1 = z2 - z3;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * On machines with very fast multiplication, it's possible that the
+ * test takes more time than it's worth. In that case this section
+ * may be commented out.
+ */
+
+#ifndef NO_ZERO_ROW_TEST
+ if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+ & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+ outptr[2] = dcval;
+ outptr[3] = dcval;
+ outptr[4] = dcval;
+ outptr[5] = dcval;
+ outptr[6] = dcval;
+ outptr[7] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ /* Add fudge factor here for final descale. */
+ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 = (INT32) wsptr[4];
+
+ tmp0 = (z2 + z3) << CONST_BITS;
+ tmp1 = (z2 - z3) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = (INT32) wsptr[7];
+ tmp1 = (INT32) wsptr[5];
+ tmp2 = (INT32) wsptr[3];
+ tmp3 = (INT32) wsptr[1];
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 7x7 output block.
+ *
+ * Optimized algorithm with 12 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/14).
+ */
+
+GLOBAL(void)
+jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[7*7]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp13 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp0 = z1 + z3;
+ z2 -= tmp0;
+ tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
+ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp0 += z2;
+ tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 7 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp13 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp0 = z1 + z3;
+ z2 -= tmp0;
+ tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
+ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp0 = tmp1 - tmp2;
+ tmp1 += tmp2;
+ tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp1 += tmp2;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp0 += z2;
+ tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 7; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 6x6 output block.
+ *
+ * Optimized algorithm with 3 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/12).
+ */
+
+GLOBAL(void)
+jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[6*6]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*1] = (int) (tmp11 + tmp1);
+ wsptr[6*4] = (int) (tmp11 - tmp1);
+ wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 6 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[4];
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = tmp0 - tmp10 - tmp10;
+ tmp10 = (INT32) wsptr[2];
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << CONST_BITS;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 6; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 5x5 output block.
+ *
+ * Optimized algorithm with 5 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/10).
+ */
+
+GLOBAL(void)
+jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[5*5]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp12 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 5 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp12 <<= CONST_BITS;
+ tmp0 = (INT32) wsptr[2];
+ tmp1 = (INT32) wsptr[4];
+ z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 5; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 4x4 output block.
+ *
+ * Optimized algorithm with 3 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
+ */
+
+GLOBAL(void)
+jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[4*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+
+ tmp10 = (tmp0 + tmp2) << PASS1_BITS;
+ tmp12 = (tmp0 - tmp2) << PASS1_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS);
+ tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Final output stage */
+
+ wsptr[4*0] = (int) (tmp10 + tmp0);
+ wsptr[4*3] = (int) (tmp10 - tmp0);
+ wsptr[4*1] = (int) (tmp12 + tmp2);
+ wsptr[4*2] = (int) (tmp12 - tmp2);
+ }
+
+ /* Pass 2: process 4 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp2 = (INT32) wsptr[2];
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 4; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 3x3 output block.
+ *
+ * Optimized algorithm with 2 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/6).
+ */
+
+GLOBAL(void)
+jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[3*3]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 3 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[2];
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = (INT32) wsptr[1];
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 3; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 2x2 output block.
+ *
+ * Multiplication-less algorithm.
+ */
+
+GLOBAL(void)
+jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input. */
+
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+
+ /* Column 0 */
+ tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ /* Add fudge factor here for final descale. */
+ tmp4 += ONE << 2;
+
+ tmp0 = tmp4 + tmp5;
+ tmp2 = tmp4 - tmp5;
+
+ /* Column 1 */
+ tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]);
+ tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]);
+
+ tmp1 = tmp4 + tmp5;
+ tmp3 = tmp4 - tmp5;
+
+ /* Pass 2: process 2 rows, store into output array. */
+
+ /* Row 0 */
+ outptr = output_buf[0] + output_col;
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
+
+ /* Row 1 */
+ outptr = output_buf[1] + output_col;
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK];
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 1x1 output block.
+ *
+ * We hardly need an inverse DCT routine for this: just take the
+ * average pixel value, which is one-eighth of the DC coefficient.
+ */
+
+GLOBAL(void)
+jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ int dcval;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* 1x1 is trivial: just take the DC coefficient divided by 8. */
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+ dcval = (int) DESCALE((INT32) dcval, 3);
+
+ output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 9x9 output block.
+ *
+ * Optimized algorithm with 10 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/18).
+ */
+
+GLOBAL(void)
+jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*9]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
+ tmp1 = tmp0 + tmp3;
+ tmp2 = tmp0 - tmp3 - tmp3;
+
+ tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
+ tmp11 = tmp2 + tmp0;
+ tmp14 = tmp2 - tmp0 - tmp0;
+
+ tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
+ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
+ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
+
+ tmp10 = tmp1 + tmp0 - tmp3;
+ tmp12 = tmp1 - tmp0 + tmp2;
+ tmp13 = tmp1 - tmp2 + tmp3;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
+
+ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
+ tmp0 = tmp2 + tmp3 - z2;
+ tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
+ tmp2 += z2 - tmp1;
+ tmp3 += z2 + tmp1;
+ tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 9 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 9; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
+ tmp1 = tmp0 + tmp3;
+ tmp2 = tmp0 - tmp3 - tmp3;
+
+ tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
+ tmp11 = tmp2 + tmp0;
+ tmp14 = tmp2 - tmp0 - tmp0;
+
+ tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
+ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
+ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
+
+ tmp10 = tmp1 + tmp0 - tmp3;
+ tmp12 = tmp1 - tmp0 + tmp2;
+ tmp13 = tmp1 - tmp2 + tmp3;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
+
+ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
+ tmp0 = tmp2 + tmp3 - z2;
+ tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
+ tmp2 += z2 - tmp1;
+ tmp3 += z2 + tmp1;
+ tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 10x10 output block.
+ *
+ * Optimized algorithm with 12 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/20).
+ */
+
+GLOBAL(void)
+jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
+ INT32 z1, z2, z3, z4, z5;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*10]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+ z5 = z3 << CONST_BITS;
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z5 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) (tmp22 + tmp12);
+ wsptr[8*7] = (int) (tmp22 - tmp12);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 10 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 10; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z3 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 11x11 output block.
+ *
+ * Optimized algorithm with 24 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/22).
+ */
+
+GLOBAL(void)
+jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*11]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp10 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
+ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
+ z4 = z1 + z3;
+ tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
+ z4 -= z2;
+ tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
+ tmp21 = tmp20 + tmp23 + tmp25 -
+ MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
+ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
+ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
+ tmp24 += tmp25;
+ tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
+ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
+ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
+ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z1 + z2;
+ tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
+ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
+ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
+ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
+ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
+ z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
+ tmp11 += z1;
+ tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
+ tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
+ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
+ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 11 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 11; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp10 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
+ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
+ z4 = z1 + z3;
+ tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
+ z4 -= z2;
+ tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
+ tmp21 = tmp20 + tmp23 + tmp25 -
+ MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
+ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
+ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
+ tmp24 += tmp25;
+ tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
+ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
+ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
+ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z1 + z2;
+ tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
+ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
+ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
+ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
+ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
+ z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
+ tmp11 += z1;
+ tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
+ tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
+ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
+ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 12x12 output block.
+ *
+ * Optimized algorithm with 15 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/24).
+ */
+
+GLOBAL(void)
+jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*12]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 12 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 12; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+
+ z4 = (INT32) wsptr[4];
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = (INT32) wsptr[2];
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = (INT32) wsptr[6];
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 13x13 output block.
+ *
+ * Optimized algorithm with 29 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/26).
+ */
+
+GLOBAL(void)
+jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*13]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
+
+ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
+ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
+
+ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
+ tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
+
+ tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
+ tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
+
+ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
+ tmp15 = z1 + z4;
+ tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
+ tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
+ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
+ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
+ tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
+ tmp11 += tmp14;
+ tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
+ tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
+ tmp12 += tmp14;
+ tmp13 += tmp14;
+ tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
+ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
+ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
+ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
+ tmp14 += z1;
+ tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
+ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 13 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 13; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[4];
+ z4 = (INT32) wsptr[6];
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
+
+ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
+ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
+
+ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
+ tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
+
+ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
+ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
+
+ tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
+ tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
+
+ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
+ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
+ tmp15 = z1 + z4;
+ tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
+ tmp10 = tmp11 + tmp12 + tmp13 -
+ MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
+ tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
+ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
+ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
+ tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
+ tmp11 += tmp14;
+ tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
+ tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
+ tmp12 += tmp14;
+ tmp13 += tmp14;
+ tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
+ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
+ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
+ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
+ tmp14 += z1;
+ tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
+ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 14x14 output block.
+ *
+ * Optimized algorithm with 20 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/28).
+ */
+
+GLOBAL(void)
+jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*14]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp13 = z4 << CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
+ tmp16 += tmp15;
+ z1 += z4;
+ z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
+ tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = (z1 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) (tmp23 + tmp13);
+ wsptr[8*10] = (int) (tmp23 - tmp13);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 14 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 14; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+ z4 <<= CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
+ tmp16 += tmp15;
+ tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
+ tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = ((z1 - z3) << CONST_BITS) + z4;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 15x15 output block.
+ *
+ * Optimized algorithm with 22 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/30).
+ */
+
+GLOBAL(void)
+jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*15]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
+ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
+
+ tmp12 = z1 - tmp10;
+ tmp13 = z1 + tmp11;
+ z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
+
+ z4 = z2 - z3;
+ z3 += z2;
+ tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
+ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
+
+ tmp20 = tmp13 + tmp10 + tmp11;
+ tmp23 = tmp12 - tmp10 + tmp11 + z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
+
+ tmp25 = tmp13 - tmp10 - tmp11;
+ tmp26 = tmp12 + tmp10 - tmp11 - z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
+
+ tmp21 = tmp12 + tmp10 + tmp11;
+ tmp24 = tmp13 - tmp10 + tmp11;
+ tmp11 += tmp11;
+ tmp22 = z1 + tmp11; /* c10 = c6-c12 */
+ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp13 = z2 - z4;
+ tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
+ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
+ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
+
+ tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
+ tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
+ z2 = z1 - z4;
+ tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
+
+ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
+ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
+ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
+ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
+ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
+ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 15 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 15; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[4];
+ z4 = (INT32) wsptr[6];
+
+ tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
+ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
+
+ tmp12 = z1 - tmp10;
+ tmp13 = z1 + tmp11;
+ z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
+
+ z4 = z2 - z3;
+ z3 += z2;
+ tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
+ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
+
+ tmp20 = tmp13 + tmp10 + tmp11;
+ tmp23 = tmp12 - tmp10 + tmp11 + z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
+
+ tmp25 = tmp13 - tmp10 - tmp11;
+ tmp26 = tmp12 + tmp10 - tmp11 - z2;
+
+ tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
+ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
+
+ tmp21 = tmp12 + tmp10 + tmp11;
+ tmp24 = tmp13 - tmp10 + tmp11;
+ tmp11 += tmp11;
+ tmp22 = z1 + tmp11; /* c10 = c6-c12 */
+ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z4 = (INT32) wsptr[5];
+ z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
+ z4 = (INT32) wsptr[7];
+
+ tmp13 = z2 - z4;
+ tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
+ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
+ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
+
+ tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
+ tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
+ z2 = z1 - z4;
+ tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
+
+ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
+ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
+ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
+ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
+ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
+ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 16x16 output block.
+ *
+ * Optimized algorithm with 28 multiplications in the 1-D kernel.
+ * cK represents sqrt(2) * cos(K*pi/32).
+ */
+
+GLOBAL(void)
+jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*16]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 16 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 16; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[4];
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 16x8 output block.
+ *
+ * 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*8]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 <<= CONST_BITS;
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z2 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = z2 + z3;
+ tmp1 = z2 - z3;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process 8 rows from work array, store into output array.
+ * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[4];
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 14x7 output block.
+ *
+ * 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*7]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp23 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp23 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp10 = z1 + z3;
+ z2 -= tmp10;
+ tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
+ tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp10 = tmp11 - tmp12;
+ tmp11 += tmp12;
+ tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp11 += tmp12;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp10 += z2;
+ tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 7 rows from work array, store into output array.
+ * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z1 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[6];
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+ z4 <<= CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
+ tmp16 += tmp15;
+ tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
+ tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = ((z1 - z3) << CONST_BITS) + z4;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 12x6 output block.
+ *
+ * 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*6]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp10 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
+ tmp11 = tmp10 + tmp20;
+ tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS);
+ tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
+ tmp20 = tmp11 + tmp10;
+ tmp22 = tmp11 - tmp10;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
+ tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
+ tmp11 = (z1 - z2 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) (tmp21 + tmp11);
+ wsptr[8*4] = (int) (tmp21 - tmp11);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 6 rows from work array, store into output array.
+ * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+
+ z4 = (INT32) wsptr[4];
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = (INT32) wsptr[2];
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = (INT32) wsptr[6];
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 10x5 output block.
+ *
+ * 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*5]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp12 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 5 rows from work array, store into output array.
+ * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[4];
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ z3 <<= CONST_BITS;
+ z4 = (INT32) wsptr[7];
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z3 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 8; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 8x4 output block.
+ *
+ * 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+
+ tmp10 = (tmp0 + tmp2) << PASS1_BITS;
+ tmp12 = (tmp0 - tmp2) << PASS1_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
+ CONST_BITS-PASS1_BITS);
+ tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
+ CONST_BITS-PASS1_BITS);
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) (tmp10 + tmp0);
+ wsptr[8*3] = (int) (tmp10 - tmp0);
+ wsptr[8*1] = (int) (tmp12 + tmp2);
+ wsptr[8*2] = (int) (tmp12 - tmp2);
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ /* Add fudge factor here for final descale. */
+ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 = (INT32) wsptr[4];
+
+ tmp0 = (z2 + z3) << CONST_BITS;
+ tmp1 = (z2 - z3) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = (INT32) wsptr[7];
+ tmp1 = (INT32) wsptr[5];
+ tmp2 = (INT32) wsptr[3];
+ tmp3 = (INT32) wsptr[1];
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 6x3 output block.
+ *
+ * 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[6*3]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 3 rows from work array, store into output array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[4];
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = tmp0 - tmp10 - tmp10;
+ tmp10 = (INT32) wsptr[2];
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << CONST_BITS;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 6; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 4x2 output block.
+ *
+ * 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ INT32 * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ INT32 workspace[4*2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ /* Odd part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ /* Final output stage */
+
+ wsptr[4*0] = tmp10 + tmp0;
+ wsptr[4*1] = tmp10 - tmp0;
+ }
+
+ /* Pass 2: process 2 rows from work array, store into output array.
+ * 4-point IDCT kernel,
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 2; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = wsptr[0] + (ONE << 2);
+ tmp2 = wsptr[2];
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = wsptr[1];
+ z3 = wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 4; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 2x1 output block.
+ *
+ * 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp10;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* Pass 1: empty. */
+
+ /* Pass 2: process 1 row from input, store into output array. */
+
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ outptr = output_buf[0] + output_col;
+
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]);
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << 2;
+
+ /* Odd part */
+
+ tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]);
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK];
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 8x16 output block.
+ *
+ * 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[8*16]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
+ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
+
+ tmp10 = tmp0 + tmp1;
+ tmp11 = tmp0 - tmp1;
+ tmp12 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z3 = z1 - z2;
+ z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
+ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
+
+ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
+ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
+ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
+ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
+
+ tmp20 = tmp10 + tmp0;
+ tmp27 = tmp10 - tmp0;
+ tmp21 = tmp12 + tmp1;
+ tmp26 = tmp12 - tmp1;
+ tmp22 = tmp13 + tmp2;
+ tmp25 = tmp13 - tmp2;
+ tmp23 = tmp11 + tmp3;
+ tmp24 = tmp11 - tmp3;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z1 + z3;
+
+ tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
+ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
+ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
+ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
+ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
+ tmp0 = tmp1 + tmp2 + tmp3 -
+ MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
+ tmp13 = tmp10 + tmp11 + tmp12 -
+ MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
+ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
+ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
+ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
+ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
+ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
+ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
+ z2 += z4;
+ z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
+ tmp1 += z1;
+ tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
+ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
+ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
+ tmp12 += z2;
+ z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
+ tmp2 += z2;
+ tmp3 += z2;
+ z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
+ tmp10 += z2;
+ tmp11 += z2;
+
+ /* Final output stage */
+
+ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 16; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = (INT32) wsptr[2];
+ z3 = (INT32) wsptr[6];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ /* Add fudge factor here for final descale. */
+ z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ z3 = (INT32) wsptr[4];
+
+ tmp0 = (z2 + z3) << CONST_BITS;
+ tmp1 = (z2 - z3) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = (INT32) wsptr[7];
+ tmp1 = (INT32) wsptr[5];
+ tmp2 = (INT32) wsptr[3];
+ tmp3 = (INT32) wsptr[1];
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 7x14 output block.
+ *
+ * 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[7*14]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z1 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z1 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
+ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
+ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
+
+ tmp10 = z1 + z2;
+ tmp11 = z1 + z3;
+ tmp12 = z1 - z4;
+
+ tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
+
+ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
+ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
+ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
+ MULTIPLY(z2, FIX(1.378756276)); /* c2 */
+
+ tmp20 = tmp10 + tmp13;
+ tmp26 = tmp10 - tmp13;
+ tmp21 = tmp11 + tmp14;
+ tmp25 = tmp11 - tmp14;
+ tmp22 = tmp12 + tmp15;
+ tmp24 = tmp12 - tmp15;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp13 = z4 << CONST_BITS;
+
+ tmp14 = z1 + z3;
+ tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
+ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
+ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
+ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
+ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
+ z1 -= z2;
+ tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
+ tmp16 += tmp15;
+ z1 += z4;
+ z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
+ tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
+ tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
+ z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
+ tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
+ tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
+
+ tmp13 = (z1 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[7*3] = (int) (tmp23 + tmp13);
+ wsptr[7*10] = (int) (tmp23 - tmp13);
+ wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
+ wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 14 rows from work array, store into output array.
+ * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 14; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp23 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp23 <<= CONST_BITS;
+
+ z1 = (INT32) wsptr[2];
+ z2 = (INT32) wsptr[4];
+ z3 = (INT32) wsptr[6];
+
+ tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
+ tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
+ tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
+ tmp10 = z1 + z3;
+ z2 -= tmp10;
+ tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
+ tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
+ tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
+ tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+
+ tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
+ tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
+ tmp10 = tmp11 - tmp12;
+ tmp11 += tmp12;
+ tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
+ tmp11 += tmp12;
+ z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
+ tmp10 += z2;
+ tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 7; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 6x12 output block.
+ *
+ * 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
+ INT32 z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[6*12]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
+
+ tmp10 = z3 + z4;
+ tmp11 = z3 - z4;
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
+ z1 <<= CONST_BITS;
+ z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+ z2 <<= CONST_BITS;
+
+ tmp12 = z1 - z2;
+
+ tmp21 = z3 + tmp12;
+ tmp24 = z3 - tmp12;
+
+ tmp12 = z4 + z2;
+
+ tmp20 = tmp10 + tmp12;
+ tmp25 = tmp10 - tmp12;
+
+ tmp12 = z4 - z1 - z2;
+
+ tmp22 = tmp11 + tmp12;
+ tmp23 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
+ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
+
+ tmp10 = z1 + z3;
+ tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
+ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
+ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
+ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
+ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
+ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
+ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
+ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
+
+ z1 -= z4;
+ z2 -= z3;
+ z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
+ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
+ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
+
+ /* Final output stage */
+
+ wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
+ wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
+ wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 12 rows from work array, store into output array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 12; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp10 <<= CONST_BITS;
+ tmp12 = (INT32) wsptr[4];
+ tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
+ tmp11 = tmp10 + tmp20;
+ tmp21 = tmp10 - tmp20 - tmp20;
+ tmp20 = (INT32) wsptr[2];
+ tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
+ tmp20 = tmp11 + tmp10;
+ tmp22 = tmp11 - tmp10;
+
+ /* Odd part */
+
+ z1 = (INT32) wsptr[1];
+ z2 = (INT32) wsptr[3];
+ z3 = (INT32) wsptr[5];
+ tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
+ tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
+ tmp11 = (z1 - z2 - z3) << CONST_BITS;
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 6; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 5x10 output block.
+ *
+ * 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
+ INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
+ INT32 z1, z2, z3, z4, z5;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[5*10]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z3 += ONE << (CONST_BITS-PASS1_BITS-1);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
+ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z2;
+
+ tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
+ CONST_BITS-PASS1_BITS);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
+ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
+ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
+
+ tmp20 = tmp10 + tmp12;
+ tmp24 = tmp10 - tmp12;
+ tmp21 = tmp11 + tmp13;
+ tmp23 = tmp11 - tmp13;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ tmp11 = z2 + z4;
+ tmp13 = z2 - z4;
+
+ tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
+ z5 = z3 << CONST_BITS;
+
+ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
+ z4 = z5 + tmp12;
+
+ tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
+ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
+
+ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
+ z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
+
+ tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
+
+ tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
+ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
+
+ /* Final output stage */
+
+ wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
+ wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
+ wsptr[5*2] = (int) (tmp22 + tmp12);
+ wsptr[5*7] = (int) (tmp22 - tmp12);
+ wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
+ wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
+ wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 10 rows from work array, store into output array.
+ * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 10; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp12 <<= CONST_BITS;
+ tmp13 = (INT32) wsptr[2];
+ tmp14 = (INT32) wsptr[4];
+ z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
+ z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
+ z3 = tmp12 + z2;
+ tmp10 = z3 + z1;
+ tmp11 = z3 - z1;
+ tmp12 -= z2 << 2;
+
+ /* Odd part */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
+ tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
+ tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 5; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 4x8 output block.
+ *
+ * 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[4*8]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 4; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
+ /* AC terms all zero */
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+
+ wsptr[4*0] = dcval;
+ wsptr[4*1] = dcval;
+ wsptr[4*2] = dcval;
+ wsptr[4*3] = dcval;
+ wsptr[4*4] = dcval;
+ wsptr[4*5] = dcval;
+ wsptr[4*6] = dcval;
+ wsptr[4*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
+ tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ z2 <<= CONST_BITS;
+ z3 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ z2 += ONE << (CONST_BITS-PASS1_BITS-1);
+
+ tmp0 = z2 + z3;
+ tmp1 = z2 - z3;
+
+ tmp10 = tmp0 + tmp2;
+ tmp13 = tmp0 - tmp2;
+ tmp11 = tmp1 + tmp3;
+ tmp12 = tmp1 - tmp3;
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ z2 = tmp0 + tmp2;
+ z3 = tmp1 + tmp3;
+
+ z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
+ z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+ z2 += z1;
+ z3 += z1;
+
+ z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ tmp0 += z1 + z2;
+ tmp3 += z1 + z3;
+
+ z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp1 += z1 + z3;
+ tmp2 += z1 + z2;
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process 8 rows from work array, store into output array.
+ * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 8; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp2 = (INT32) wsptr[2];
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = (INT32) wsptr[1];
+ z3 = (INT32) wsptr[3];
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 4; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 3x6 output block.
+ *
+ * 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ int * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[3*6]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp0 <<= CONST_BITS;
+ /* Add fudge factor here for final descale. */
+ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
+ tmp1 = tmp0 + tmp10;
+ tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
+ tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
+ tmp10 = tmp1 + tmp0;
+ tmp12 = tmp1 - tmp0;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
+ tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
+ tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
+ tmp1 = (z1 - z2 - z3) << PASS1_BITS;
+
+ /* Final output stage */
+
+ wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
+ wsptr[3*1] = (int) (tmp11 + tmp1);
+ wsptr[3*4] = (int) (tmp11 - tmp1);
+ wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
+ wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
+ }
+
+ /* Pass 2: process 6 rows from work array, store into output array.
+ * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
+ */
+ wsptr = workspace;
+ for (ctr = 0; ctr < 6; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
+ tmp0 <<= CONST_BITS;
+ tmp2 = (INT32) wsptr[2];
+ tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
+ tmp10 = tmp0 + tmp12;
+ tmp2 = tmp0 - tmp12 - tmp12;
+
+ /* Odd part */
+
+ tmp12 = (INT32) wsptr[1];
+ tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
+ CONST_BITS+PASS1_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 3; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 2x4 output block.
+ *
+ * 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp2, tmp10, tmp12;
+ INT32 z1, z2, z3;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE * quantptr;
+ INT32 * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ INT32 workspace[2*4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array.
+ * 4-point IDCT kernel,
+ * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
+ */
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) {
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+
+ tmp10 = (tmp0 + tmp2) << CONST_BITS;
+ tmp12 = (tmp0 - tmp2) << CONST_BITS;
+
+ /* Odd part */
+ /* Same rotation as in the even part of the 8x8 LL&M IDCT */
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+
+ z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
+ tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
+ tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
+
+ /* Final output stage */
+
+ wsptr[2*0] = tmp10 + tmp0;
+ wsptr[2*3] = tmp10 - tmp0;
+ wsptr[2*1] = tmp12 + tmp2;
+ wsptr[2*2] = tmp12 - tmp2;
+ }
+
+ /* Pass 2: process 4 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+
+ /* Even part */
+
+ /* Add fudge factor here for final descale. */
+ tmp10 = wsptr[0] + (ONE << (CONST_BITS+2));
+
+ /* Odd part */
+
+ tmp0 = wsptr[1];
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3)
+ & RANGE_MASK];
+
+ wsptr += 2; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a 1x2 output block.
+ *
+ * 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows).
+ */
+
+GLOBAL(void)
+jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ INT32 tmp0, tmp10;
+ ISLOW_MULT_TYPE * quantptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* Process 1 column from input, store into output array. */
+
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+
+ /* Even part */
+
+ tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ /* Add fudge factor here for final descale. */
+ tmp10 += ONE << 2;
+
+ /* Odd part */
+
+ tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
+
+ /* Final output stage */
+
+ output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3)
+ & RANGE_MASK];
+ output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3)
+ & RANGE_MASK];
+}
+
+#endif /* IDCT_SCALING_SUPPORTED */
+#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jinclude.h b/plugins/AdvaImg/src/LibJPEG/jinclude.h
new file mode 100644
index 0000000000..0a4f15146a
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jinclude.h
@@ -0,0 +1,91 @@
+/*
+ * jinclude.h
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file exists to provide a single place to fix any problems with
+ * including the wrong system include files. (Common problems are taken
+ * care of by the standard jconfig symbols, but on really weird systems
+ * you may have to edit this file.)
+ *
+ * NOTE: this file is NOT intended to be included by applications using the
+ * JPEG library. Most applications need only include jpeglib.h.
+ */
+
+
+/* Include auto-config file to find out which system include files we need. */
+
+#include "jconfig.h" /* auto configuration options */
+#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
+
+/*
+ * We need the NULL macro and size_t typedef.
+ * On an ANSI-conforming system it is sufficient to include <stddef.h>.
+ * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
+ * pull in <sys/types.h> as well.
+ * Note that the core JPEG library does not require <stdio.h>;
+ * only the default error handler and data source/destination modules do.
+ * But we must pull it in because of the references to FILE in jpeglib.h.
+ * You can remove those references if you want to compile without <stdio.h>.
+ */
+
+#ifdef HAVE_STDDEF_H
+#include <stddef.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#include <stdio.h>
+
+/*
+ * We need memory copying and zeroing functions, plus strncpy().
+ * ANSI and System V implementations declare these in <string.h>.
+ * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
+ * Some systems may declare memset and memcpy in <memory.h>.
+ *
+ * NOTE: we assume the size parameters to these functions are of type size_t.
+ * Change the casts in these macros if not!
+ */
+
+#ifdef NEED_BSD_STRINGS
+
+#include <strings.h>
+#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
+#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
+
+#else /* not BSD, assume ANSI/SysV string lib */
+
+#include <string.h>
+#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
+#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
+
+#endif
+
+/*
+ * In ANSI C, and indeed any rational implementation, size_t is also the
+ * type returned by sizeof(). However, it seems there are some irrational
+ * implementations out there, in which sizeof() returns an int even though
+ * size_t is defined as long or unsigned long. To ensure consistent results
+ * we always use this SIZEOF() macro in place of using sizeof() directly.
+ */
+
+#define SIZEOF(object) ((size_t) sizeof(object))
+
+/*
+ * The modules that use fread() and fwrite() always invoke them through
+ * these macros. On some systems you may need to twiddle the argument casts.
+ * CAUTION: argument order is different from underlying functions!
+ */
+
+#define JFREAD(file,buf,sizeofbuf) \
+ ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+#define JFWRITE(file,buf,sizeofbuf) \
+ ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemansi.c b/plugins/AdvaImg/src/LibJPEG/jmemansi.c
new file mode 100644
index 0000000000..b5da4743fb
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemansi.c
@@ -0,0 +1,167 @@
+/*
+ * jmemansi.c
+ *
+ * Copyright (C) 1992-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a simple generic implementation of the system-
+ * dependent portion of the JPEG memory manager. This implementation
+ * assumes that you have the ANSI-standard library routine tmpfile().
+ * Also, the problem of determining the amount of memory available
+ * is shoved onto the user.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
+#define SEEK_SET 0 /* if not, assume 0 is correct */
+#endif
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * It's impossible to do this in a portable way; our current solution is
+ * to make the user tell us (with a default value set at compile time).
+ * If you can actually get the available space, it's a good idea to subtract
+ * a slop factor of 5% or so.
+ */
+
+#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
+#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
+#endif
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return cinfo->mem->max_memory_to_use - already_allocated;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+
+METHODDEF(void)
+read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFREAD(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFWRITE(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ fclose(info->temp_file);
+ /* Since this implementation uses tmpfile() to create the file,
+ * no explicit file deletion is needed.
+ */
+}
+
+
+/*
+ * Initial opening of a backing-store object.
+ *
+ * This version uses tmpfile(), which constructs a suitable file name
+ * behind the scenes. We don't have to use info->temp_name[] at all;
+ * indeed, we can't even find out the actual name of the temp file.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ if ((info->temp_file = tmpfile()) == NULL)
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "");
+ info->read_backing_store = read_backing_store;
+ info->write_backing_store = write_backing_store;
+ info->close_backing_store = close_backing_store;
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemdos.c b/plugins/AdvaImg/src/LibJPEG/jmemdos.c
new file mode 100644
index 0000000000..0955047ecc
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemdos.c
@@ -0,0 +1,638 @@
+/*
+ * jmemdos.c
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides an MS-DOS-compatible implementation of the system-
+ * dependent portion of the JPEG memory manager. Temporary data can be
+ * stored in extended or expanded memory as well as in regular DOS files.
+ *
+ * If you use this file, you must be sure that NEED_FAR_POINTERS is defined
+ * if you compile in a small-data memory model; it should NOT be defined if
+ * you use a large-data memory model. This file is not recommended if you
+ * are using a flat-memory-space 386 environment such as DJGCC or Watcom C.
+ * Also, this code will NOT work if struct fields are aligned on greater than
+ * 2-byte boundaries.
+ *
+ * Based on code contributed by Ge' Weijers.
+ */
+
+/*
+ * If you have both extended and expanded memory, you may want to change the
+ * order in which they are tried in jopen_backing_store. On a 286 machine
+ * expanded memory is usually faster, since extended memory access involves
+ * an expensive protected-mode-and-back switch. On 386 and better, extended
+ * memory is usually faster. As distributed, the code tries extended memory
+ * first (what? not everyone has a 386? :-).
+ *
+ * You can disable use of extended/expanded memory entirely by altering these
+ * definitions or overriding them from the Makefile (eg, -DEMS_SUPPORTED=0).
+ */
+
+#ifndef XMS_SUPPORTED
+#define XMS_SUPPORTED 1
+#endif
+#ifndef EMS_SUPPORTED
+#define EMS_SUPPORTED 1
+#endif
+
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare these */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+extern char * getenv JPP((const char * name));
+#endif
+
+#ifdef NEED_FAR_POINTERS
+
+#ifdef __TURBOC__
+/* These definitions work for Borland C (Turbo C) */
+#include <alloc.h> /* need farmalloc(), farfree() */
+#define far_malloc(x) farmalloc(x)
+#define far_free(x) farfree(x)
+#else
+/* These definitions work for Microsoft C and compatible compilers */
+#include <malloc.h> /* need _fmalloc(), _ffree() */
+#define far_malloc(x) _fmalloc(x)
+#define far_free(x) _ffree(x)
+#endif
+
+#else /* not NEED_FAR_POINTERS */
+
+#define far_malloc(x) malloc(x)
+#define far_free(x) free(x)
+
+#endif /* NEED_FAR_POINTERS */
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#else
+#define READ_BINARY "rb"
+#endif
+
+#ifndef USE_MSDOS_MEMMGR /* make sure user got configuration right */
+ You forgot to define USE_MSDOS_MEMMGR in jconfig.h. /* deliberate syntax error */
+#endif
+
+#if MAX_ALLOC_CHUNK >= 65535L /* make sure jconfig.h got this right */
+ MAX_ALLOC_CHUNK should be less than 64K. /* deliberate syntax error */
+#endif
+
+
+/*
+ * Declarations for assembly-language support routines (see jmemdosa.asm).
+ *
+ * The functions are declared "far" as are all their pointer arguments;
+ * this ensures the assembly source code will work regardless of the
+ * compiler memory model. We assume "short" is 16 bits, "long" is 32.
+ */
+
+typedef void far * XMSDRIVER; /* actually a pointer to code */
+typedef struct { /* registers for calling XMS driver */
+ unsigned short ax, dx, bx;
+ void far * ds_si;
+ } XMScontext;
+typedef struct { /* registers for calling EMS driver */
+ unsigned short ax, dx, bx;
+ void far * ds_si;
+ } EMScontext;
+
+extern short far jdos_open JPP((short far * handle, char far * filename));
+extern short far jdos_close JPP((short handle));
+extern short far jdos_seek JPP((short handle, long offset));
+extern short far jdos_read JPP((short handle, void far * buffer,
+ unsigned short count));
+extern short far jdos_write JPP((short handle, void far * buffer,
+ unsigned short count));
+extern void far jxms_getdriver JPP((XMSDRIVER far *));
+extern void far jxms_calldriver JPP((XMSDRIVER, XMScontext far *));
+extern short far jems_available JPP((void));
+extern void far jems_calldriver JPP((EMScontext far *));
+
+
+/*
+ * Selection of a file name for a temporary file.
+ * This is highly system-dependent, and you may want to customize it.
+ */
+
+static int next_file_num; /* to distinguish among several temp files */
+
+LOCAL(void)
+select_file_name (char * fname)
+{
+ const char * env;
+ char * ptr;
+ FILE * tfile;
+
+ /* Keep generating file names till we find one that's not in use */
+ for (;;) {
+ /* Get temp directory name from environment TMP or TEMP variable;
+ * if none, use "."
+ */
+ if ((env = (const char *) getenv("TMP")) == NULL)
+ if ((env = (const char *) getenv("TEMP")) == NULL)
+ env = ".";
+ if (*env == '\0') /* null string means "." */
+ env = ".";
+ ptr = fname; /* copy name to fname */
+ while (*env != '\0')
+ *ptr++ = *env++;
+ if (ptr[-1] != '\\' && ptr[-1] != '/')
+ *ptr++ = '\\'; /* append backslash if not in env variable */
+ /* Append a suitable file name */
+ next_file_num++; /* advance counter */
+ sprintf(ptr, "JPG%03d.TMP", next_file_num);
+ /* Probe to see if file name is already in use */
+ if ((tfile = fopen(fname, READ_BINARY)) == NULL)
+ break;
+ fclose(tfile); /* oops, it's there; close tfile & try again */
+ }
+}
+
+
+/*
+ * Near-memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are allocated in far memory, if possible
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) far_malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ far_free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * It's impossible to do this in a portable way; our current solution is
+ * to make the user tell us (with a default value set at compile time).
+ * If you can actually get the available space, it's a good idea to subtract
+ * a slop factor of 5% or so.
+ */
+
+#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
+#define DEFAULT_MAX_MEM 300000L /* for total usage about 450K */
+#endif
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return cinfo->mem->max_memory_to_use - already_allocated;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+/*
+ * For MS-DOS we support three types of backing storage:
+ * 1. Conventional DOS files. We access these by direct DOS calls rather
+ * than via the stdio package. This provides a bit better performance,
+ * but the real reason is that the buffers to be read or written are FAR.
+ * The stdio library for small-data memory models can't cope with that.
+ * 2. Extended memory, accessed per the XMS V2.0 specification.
+ * 3. Expanded memory, accessed per the LIM/EMS 4.0 specification.
+ * You'll need copies of those specs to make sense of the related code.
+ * The specs are available by Internet FTP from the SIMTEL archives
+ * (oak.oakland.edu and its various mirror sites). See files
+ * pub/msdos/microsoft/xms20.arc and pub/msdos/info/limems41.zip.
+ */
+
+
+/*
+ * Access methods for a DOS file.
+ */
+
+
+METHODDEF(void)
+read_file_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (jdos_seek(info->handle.file_handle, file_offset))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
+ if (byte_count > 65535L) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+ if (jdos_read(info->handle.file_handle, buffer_address,
+ (unsigned short) byte_count))
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_file_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (jdos_seek(info->handle.file_handle, file_offset))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
+ if (byte_count > 65535L) /* safety check */
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+ if (jdos_write(info->handle.file_handle, buffer_address,
+ (unsigned short) byte_count))
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_file_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ jdos_close(info->handle.file_handle); /* close the file */
+ remove(info->temp_name); /* delete the file */
+/* If your system doesn't have remove(), try unlink() instead.
+ * remove() is the ANSI-standard name for this function, but
+ * unlink() was more common in pre-ANSI systems.
+ */
+ TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
+}
+
+
+LOCAL(boolean)
+open_file_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ short handle;
+
+ select_file_name(info->temp_name);
+ if (jdos_open((short far *) & handle, (char far *) info->temp_name)) {
+ /* might as well exit since jpeg_open_backing_store will fail anyway */
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+ return FALSE;
+ }
+ info->handle.file_handle = handle;
+ info->read_backing_store = read_file_store;
+ info->write_backing_store = write_file_store;
+ info->close_backing_store = close_file_store;
+ TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
+ return TRUE; /* succeeded */
+}
+
+
+/*
+ * Access methods for extended memory.
+ */
+
+#if XMS_SUPPORTED
+
+static XMSDRIVER xms_driver; /* saved address of XMS driver */
+
+typedef union { /* either long offset or real-mode pointer */
+ long offset;
+ void far * ptr;
+ } XMSPTR;
+
+typedef struct { /* XMS move specification structure */
+ long length;
+ XMSH src_handle;
+ XMSPTR src;
+ XMSH dst_handle;
+ XMSPTR dst;
+ } XMSspec;
+
+#define ODD(X) (((X) & 1L) != 0)
+
+
+METHODDEF(void)
+read_xms_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ XMScontext ctx;
+ XMSspec spec;
+ char endbuffer[2];
+
+ /* The XMS driver can't cope with an odd length, so handle the last byte
+ * specially if byte_count is odd. We don't expect this to be common.
+ */
+
+ spec.length = byte_count & (~ 1L);
+ spec.src_handle = info->handle.xms_handle;
+ spec.src.offset = file_offset;
+ spec.dst_handle = 0;
+ spec.dst.ptr = buffer_address;
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x0b00; /* EMB move */
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax != 1)
+ ERREXIT(cinfo, JERR_XMS_READ);
+
+ if (ODD(byte_count)) {
+ read_xms_store(cinfo, info, (void FAR *) endbuffer,
+ file_offset + byte_count - 1L, 2L);
+ ((char FAR *) buffer_address)[byte_count - 1L] = endbuffer[0];
+ }
+}
+
+
+METHODDEF(void)
+write_xms_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ XMScontext ctx;
+ XMSspec spec;
+ char endbuffer[2];
+
+ /* The XMS driver can't cope with an odd length, so handle the last byte
+ * specially if byte_count is odd. We don't expect this to be common.
+ */
+
+ spec.length = byte_count & (~ 1L);
+ spec.src_handle = 0;
+ spec.src.ptr = buffer_address;
+ spec.dst_handle = info->handle.xms_handle;
+ spec.dst.offset = file_offset;
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x0b00; /* EMB move */
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax != 1)
+ ERREXIT(cinfo, JERR_XMS_WRITE);
+
+ if (ODD(byte_count)) {
+ read_xms_store(cinfo, info, (void FAR *) endbuffer,
+ file_offset + byte_count - 1L, 2L);
+ endbuffer[0] = ((char FAR *) buffer_address)[byte_count - 1L];
+ write_xms_store(cinfo, info, (void FAR *) endbuffer,
+ file_offset + byte_count - 1L, 2L);
+ }
+}
+
+
+METHODDEF(void)
+close_xms_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ XMScontext ctx;
+
+ ctx.dx = info->handle.xms_handle;
+ ctx.ax = 0x0a00;
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ TRACEMS1(cinfo, 1, JTRC_XMS_CLOSE, info->handle.xms_handle);
+ /* we ignore any error return from the driver */
+}
+
+
+LOCAL(boolean)
+open_xms_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ XMScontext ctx;
+
+ /* Get address of XMS driver */
+ jxms_getdriver((XMSDRIVER far *) & xms_driver);
+ if (xms_driver == NULL)
+ return FALSE; /* no driver to be had */
+
+ /* Get version number, must be >= 2.00 */
+ ctx.ax = 0x0000;
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax < (unsigned short) 0x0200)
+ return FALSE;
+
+ /* Try to get space (expressed in kilobytes) */
+ ctx.dx = (unsigned short) ((total_bytes_needed + 1023L) >> 10);
+ ctx.ax = 0x0900;
+ jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
+ if (ctx.ax != 1)
+ return FALSE;
+
+ /* Succeeded, save the handle and away we go */
+ info->handle.xms_handle = ctx.dx;
+ info->read_backing_store = read_xms_store;
+ info->write_backing_store = write_xms_store;
+ info->close_backing_store = close_xms_store;
+ TRACEMS1(cinfo, 1, JTRC_XMS_OPEN, ctx.dx);
+ return TRUE; /* succeeded */
+}
+
+#endif /* XMS_SUPPORTED */
+
+
+/*
+ * Access methods for expanded memory.
+ */
+
+#if EMS_SUPPORTED
+
+/* The EMS move specification structure requires word and long fields aligned
+ * at odd byte boundaries. Some compilers will align struct fields at even
+ * byte boundaries. While it's usually possible to force byte alignment,
+ * that causes an overall performance penalty and may pose problems in merging
+ * JPEG into a larger application. Instead we accept some rather dirty code
+ * here. Note this code would fail if the hardware did not allow odd-byte
+ * word & long accesses, but all 80x86 CPUs do.
+ */
+
+typedef void far * EMSPTR;
+
+typedef union { /* EMS move specification structure */
+ long length; /* It's easy to access first 4 bytes */
+ char bytes[18]; /* Misaligned fields in here! */
+ } EMSspec;
+
+/* Macros for accessing misaligned fields */
+#define FIELD_AT(spec,offset,type) (*((type *) &(spec.bytes[offset])))
+#define SRC_TYPE(spec) FIELD_AT(spec,4,char)
+#define SRC_HANDLE(spec) FIELD_AT(spec,5,EMSH)
+#define SRC_OFFSET(spec) FIELD_AT(spec,7,unsigned short)
+#define SRC_PAGE(spec) FIELD_AT(spec,9,unsigned short)
+#define SRC_PTR(spec) FIELD_AT(spec,7,EMSPTR)
+#define DST_TYPE(spec) FIELD_AT(spec,11,char)
+#define DST_HANDLE(spec) FIELD_AT(spec,12,EMSH)
+#define DST_OFFSET(spec) FIELD_AT(spec,14,unsigned short)
+#define DST_PAGE(spec) FIELD_AT(spec,16,unsigned short)
+#define DST_PTR(spec) FIELD_AT(spec,14,EMSPTR)
+
+#define EMSPAGESIZE 16384L /* gospel, see the EMS specs */
+
+#define HIBYTE(W) (((W) >> 8) & 0xFF)
+#define LOBYTE(W) ((W) & 0xFF)
+
+
+METHODDEF(void)
+read_ems_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ EMScontext ctx;
+ EMSspec spec;
+
+ spec.length = byte_count;
+ SRC_TYPE(spec) = 1;
+ SRC_HANDLE(spec) = info->handle.ems_handle;
+ SRC_PAGE(spec) = (unsigned short) (file_offset / EMSPAGESIZE);
+ SRC_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
+ DST_TYPE(spec) = 0;
+ DST_HANDLE(spec) = 0;
+ DST_PTR(spec) = buffer_address;
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x5700; /* move memory region */
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ ERREXIT(cinfo, JERR_EMS_READ);
+}
+
+
+METHODDEF(void)
+write_ems_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ EMScontext ctx;
+ EMSspec spec;
+
+ spec.length = byte_count;
+ SRC_TYPE(spec) = 0;
+ SRC_HANDLE(spec) = 0;
+ SRC_PTR(spec) = buffer_address;
+ DST_TYPE(spec) = 1;
+ DST_HANDLE(spec) = info->handle.ems_handle;
+ DST_PAGE(spec) = (unsigned short) (file_offset / EMSPAGESIZE);
+ DST_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
+
+ ctx.ds_si = (void far *) & spec;
+ ctx.ax = 0x5700; /* move memory region */
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ ERREXIT(cinfo, JERR_EMS_WRITE);
+}
+
+
+METHODDEF(void)
+close_ems_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ EMScontext ctx;
+
+ ctx.ax = 0x4500;
+ ctx.dx = info->handle.ems_handle;
+ jems_calldriver((EMScontext far *) & ctx);
+ TRACEMS1(cinfo, 1, JTRC_EMS_CLOSE, info->handle.ems_handle);
+ /* we ignore any error return from the driver */
+}
+
+
+LOCAL(boolean)
+open_ems_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ EMScontext ctx;
+
+ /* Is EMS driver there? */
+ if (! jems_available())
+ return FALSE;
+
+ /* Get status, make sure EMS is OK */
+ ctx.ax = 0x4000;
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ return FALSE;
+
+ /* Get version, must be >= 4.0 */
+ ctx.ax = 0x4600;
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0 || LOBYTE(ctx.ax) < 0x40)
+ return FALSE;
+
+ /* Try to allocate requested space */
+ ctx.ax = 0x4300;
+ ctx.bx = (unsigned short) ((total_bytes_needed + EMSPAGESIZE-1L) / EMSPAGESIZE);
+ jems_calldriver((EMScontext far *) & ctx);
+ if (HIBYTE(ctx.ax) != 0)
+ return FALSE;
+
+ /* Succeeded, save the handle and away we go */
+ info->handle.ems_handle = ctx.dx;
+ info->read_backing_store = read_ems_store;
+ info->write_backing_store = write_ems_store;
+ info->close_backing_store = close_ems_store;
+ TRACEMS1(cinfo, 1, JTRC_EMS_OPEN, ctx.dx);
+ return TRUE; /* succeeded */
+}
+
+#endif /* EMS_SUPPORTED */
+
+
+/*
+ * Initial opening of a backing-store object.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ /* Try extended memory, then expanded memory, then regular file. */
+#if XMS_SUPPORTED
+ if (open_xms_store(cinfo, info, total_bytes_needed))
+ return;
+#endif
+#if EMS_SUPPORTED
+ if (open_ems_store(cinfo, info, total_bytes_needed))
+ return;
+#endif
+ if (open_file_store(cinfo, info, total_bytes_needed))
+ return;
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "");
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ next_file_num = 0; /* initialize temp file name generator */
+ return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* Microsoft C, at least in v6.00A, will not successfully reclaim freed
+ * blocks of size > 32Kbytes unless we give it a kick in the rear, like so:
+ */
+#ifdef NEED_FHEAPMIN
+ _fheapmin();
+#endif
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemdosa.asm b/plugins/AdvaImg/src/LibJPEG/jmemdosa.asm
new file mode 100644
index 0000000000..c6ec48b346
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemdosa.asm
@@ -0,0 +1,379 @@
+;
+; jmemdosa.asm
+;
+; Copyright (C) 1992, Thomas G. Lane.
+; This file is part of the Independent JPEG Group's software.
+; For conditions of distribution and use, see the accompanying README file.
+;
+; This file contains low-level interface routines to support the MS-DOS
+; backing store manager (jmemdos.c). Routines are provided to access disk
+; files through direct DOS calls, and to access XMS and EMS drivers.
+;
+; This file should assemble with Microsoft's MASM or any compatible
+; assembler (including Borland's Turbo Assembler). If you haven't got
+; a compatible assembler, better fall back to jmemansi.c or jmemname.c.
+;
+; To minimize dependence on the C compiler's register usage conventions,
+; we save and restore all 8086 registers, even though most compilers only
+; require SI,DI,DS to be preserved. Also, we use only 16-bit-wide return
+; values, which everybody returns in AX.
+;
+; Based on code contributed by Ge' Weijers.
+;
+
+JMEMDOSA_TXT segment byte public 'CODE'
+
+ assume cs:JMEMDOSA_TXT
+
+ public _jdos_open
+ public _jdos_close
+ public _jdos_seek
+ public _jdos_read
+ public _jdos_write
+ public _jxms_getdriver
+ public _jxms_calldriver
+ public _jems_available
+ public _jems_calldriver
+
+;
+; short far jdos_open (short far * handle, char far * filename)
+;
+; Create and open a temporary file
+;
+_jdos_open proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov cx,0 ; normal file attributes
+ lds dx,dword ptr [bp+10] ; get filename pointer
+ mov ah,3ch ; create file
+ int 21h
+ jc open_err ; if failed, return error code
+ lds bx,dword ptr [bp+6] ; get handle pointer
+ mov word ptr [bx],ax ; save the handle
+ xor ax,ax ; return zero for OK
+open_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_open endp
+
+
+;
+; short far jdos_close (short handle)
+;
+; Close the file handle
+;
+_jdos_close proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ mov ah,3eh ; close file
+ int 21h
+ jc close_err ; if failed, return error code
+ xor ax,ax ; return zero for OK
+close_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_close endp
+
+
+;
+; short far jdos_seek (short handle, long offset)
+;
+; Set file position
+;
+_jdos_seek proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ mov dx,word ptr [bp+8] ; LS offset
+ mov cx,word ptr [bp+10] ; MS offset
+ mov ax,4200h ; absolute seek
+ int 21h
+ jc seek_err ; if failed, return error code
+ xor ax,ax ; return zero for OK
+seek_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_seek endp
+
+
+;
+; short far jdos_read (short handle, void far * buffer, unsigned short count)
+;
+; Read from file
+;
+_jdos_read proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ lds dx,dword ptr [bp+8] ; buffer address
+ mov cx,word ptr [bp+12] ; number of bytes
+ mov ah,3fh ; read file
+ int 21h
+ jc read_err ; if failed, return error code
+ cmp ax,word ptr [bp+12] ; make sure all bytes were read
+ je read_ok
+ mov ax,1 ; else return 1 for not OK
+ jmp short read_err
+read_ok: xor ax,ax ; return zero for OK
+read_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_read endp
+
+
+;
+; short far jdos_write (short handle, void far * buffer, unsigned short count)
+;
+; Write to file
+;
+_jdos_write proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov bx,word ptr [bp+6] ; file handle
+ lds dx,dword ptr [bp+8] ; buffer address
+ mov cx,word ptr [bp+12] ; number of bytes
+ mov ah,40h ; write file
+ int 21h
+ jc write_err ; if failed, return error code
+ cmp ax,word ptr [bp+12] ; make sure all bytes written
+ je write_ok
+ mov ax,1 ; else return 1 for not OK
+ jmp short write_err
+write_ok: xor ax,ax ; return zero for OK
+write_err: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jdos_write endp
+
+
+;
+; void far jxms_getdriver (XMSDRIVER far *)
+;
+; Get the address of the XMS driver, or NULL if not available
+;
+_jxms_getdriver proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov ax,4300h ; call multiplex interrupt with
+ int 2fh ; a magic cookie, hex 4300
+ cmp al,80h ; AL should contain hex 80
+ je xmsavail
+ xor dx,dx ; no XMS driver available
+ xor ax,ax ; return a nil pointer
+ jmp short xmsavail_done
+xmsavail: mov ax,4310h ; fetch driver address with
+ int 2fh ; another magic cookie
+ mov dx,es ; copy address to dx:ax
+ mov ax,bx
+xmsavail_done: les bx,dword ptr [bp+6] ; get pointer to return value
+ mov word ptr es:[bx],ax
+ mov word ptr es:[bx+2],dx
+ pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jxms_getdriver endp
+
+
+;
+; void far jxms_calldriver (XMSDRIVER, XMScontext far *)
+;
+; The XMScontext structure contains values for the AX,DX,BX,SI,DS registers.
+; These are loaded, the XMS call is performed, and the new values of the
+; AX,DX,BX registers are written back to the context structure.
+;
+_jxms_calldriver proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ les bx,dword ptr [bp+10] ; get XMScontext pointer
+ mov ax,word ptr es:[bx] ; load registers
+ mov dx,word ptr es:[bx+2]
+ mov si,word ptr es:[bx+6]
+ mov ds,word ptr es:[bx+8]
+ mov bx,word ptr es:[bx+4]
+ call dword ptr [bp+6] ; call the driver
+ mov cx,bx ; save returned BX for a sec
+ les bx,dword ptr [bp+10] ; get XMScontext pointer
+ mov word ptr es:[bx],ax ; put back ax,dx,bx
+ mov word ptr es:[bx+2],dx
+ mov word ptr es:[bx+4],cx
+ pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jxms_calldriver endp
+
+
+;
+; short far jems_available (void)
+;
+; Have we got an EMS driver? (this comes straight from the EMS 4.0 specs)
+;
+_jems_available proc far
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ mov ax,3567h ; get interrupt vector 67h
+ int 21h
+ push cs
+ pop ds
+ mov di,000ah ; check offs 10 in returned seg
+ lea si,ASCII_device_name ; against literal string
+ mov cx,8
+ cld
+ repe cmpsb
+ jne no_ems
+ mov ax,1 ; match, it's there
+ jmp short avail_done
+no_ems: xor ax,ax ; it's not there
+avail_done: pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ ret
+
+ASCII_device_name db "EMMXXXX0"
+
+_jems_available endp
+
+
+;
+; void far jems_calldriver (EMScontext far *)
+;
+; The EMScontext structure contains values for the AX,DX,BX,SI,DS registers.
+; These are loaded, the EMS trap is performed, and the new values of the
+; AX,DX,BX registers are written back to the context structure.
+;
+_jems_calldriver proc far
+ push bp ; linkage
+ mov bp,sp
+ push si ; save all registers for safety
+ push di
+ push bx
+ push cx
+ push dx
+ push es
+ push ds
+ les bx,dword ptr [bp+6] ; get EMScontext pointer
+ mov ax,word ptr es:[bx] ; load registers
+ mov dx,word ptr es:[bx+2]
+ mov si,word ptr es:[bx+6]
+ mov ds,word ptr es:[bx+8]
+ mov bx,word ptr es:[bx+4]
+ int 67h ; call the EMS driver
+ mov cx,bx ; save returned BX for a sec
+ les bx,dword ptr [bp+6] ; get EMScontext pointer
+ mov word ptr es:[bx],ax ; put back ax,dx,bx
+ mov word ptr es:[bx+2],dx
+ mov word ptr es:[bx+4],cx
+ pop ds ; restore registers and exit
+ pop es
+ pop dx
+ pop cx
+ pop bx
+ pop di
+ pop si
+ pop bp
+ ret
+_jems_calldriver endp
+
+JMEMDOSA_TXT ends
+
+ end
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemmac.c b/plugins/AdvaImg/src/LibJPEG/jmemmac.c
new file mode 100644
index 0000000000..a6f043ed46
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemmac.c
@@ -0,0 +1,289 @@
+/*
+ * jmemmac.c
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * jmemmac.c provides an Apple Macintosh implementation of the system-
+ * dependent portion of the JPEG memory manager.
+ *
+ * If you use jmemmac.c, then you must define USE_MAC_MEMMGR in the
+ * JPEG_INTERNALS part of jconfig.h.
+ *
+ * jmemmac.c uses the Macintosh toolbox routines NewPtr and DisposePtr
+ * instead of malloc and free. It accurately determines the amount of
+ * memory available by using CompactMem. Notice that if left to its
+ * own devices, this code can chew up all available space in the
+ * application's zone, with the exception of the rather small "slop"
+ * factor computed in jpeg_mem_available(). The application can ensure
+ * that more space is left over by reducing max_memory_to_use.
+ *
+ * Large images are swapped to disk using temporary files and System 7.0+'s
+ * temporary folder functionality.
+ *
+ * Note that jmemmac.c depends on two features of MacOS that were first
+ * introduced in System 7: FindFolder and the FSSpec-based calls.
+ * If your application uses jmemmac.c and is run under System 6 or earlier,
+ * and the jpeg library decides it needs a temporary file, it will abort,
+ * printing error messages about requiring System 7. (If no temporary files
+ * are created, it will run fine.)
+ *
+ * If you want to use jmemmac.c in an application that might be used with
+ * System 6 or earlier, then you should remove dependencies on FindFolder
+ * and the FSSpec calls. You will need to replace FindFolder with some
+ * other mechanism for finding a place to put temporary files, and you
+ * should replace the FSSpec calls with their HFS equivalents:
+ *
+ * FSpDelete -> HDelete
+ * FSpGetFInfo -> HGetFInfo
+ * FSpCreate -> HCreate
+ * FSpOpenDF -> HOpen *** Note: not HOpenDF ***
+ * FSMakeFSSpec -> (fill in spec by hand.)
+ *
+ * (Use HOpen instead of HOpenDF. HOpen is just a glue-interface to PBHOpen,
+ * which is on all HFS macs. HOpenDF is a System 7 addition which avoids the
+ * ages-old problem of names starting with a period.)
+ *
+ * Contributed by Sam Bushell (jsam@iagu.on.net) and
+ * Dan Gildor (gyld@in-touch.com).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef USE_MAC_MEMMGR /* make sure user got configuration right */
+ You forgot to define USE_MAC_MEMMGR in jconfig.h. /* deliberate syntax error */
+#endif
+
+#include <Memory.h> /* we use the MacOS memory manager */
+#include <Files.h> /* we use the MacOS File stuff */
+#include <Folders.h> /* we use the MacOS HFS stuff */
+#include <Script.h> /* for smSystemScript */
+#include <Gestalt.h> /* we use Gestalt to test for specific functionality */
+
+#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
+#define TEMP_FILE_NAME "JPG%03d.TMP"
+#endif
+
+static int next_file_num; /* to distinguish among several temp files */
+
+
+/*
+ * Memory allocation and freeing are controlled by the MacOS library
+ * routines NewPtr() and DisposePtr(), which allocate fixed-address
+ * storage. Unfortunately, the IJG library isn't smart enough to cope
+ * with relocatable storage.
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) NewPtr(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ DisposePtr((Ptr) object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: we include FAR keywords in the routine declarations simply for
+ * consistency with the rest of the IJG code; FAR should expand to empty
+ * on rational architectures like the Mac.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) NewPtr(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ DisposePtr((Ptr) object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ */
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ long limit = cinfo->mem->max_memory_to_use - already_allocated;
+ long slop, mem;
+
+ /* Don't ask for more than what application has told us we may use */
+ if (max_bytes_needed > limit && limit > 0)
+ max_bytes_needed = limit;
+ /* Find whether there's a big enough free block in the heap.
+ * CompactMem tries to create a contiguous block of the requested size,
+ * and then returns the size of the largest free block (which could be
+ * much more or much less than we asked for).
+ * We add some slop to ensure we don't use up all available memory.
+ */
+ slop = max_bytes_needed / 16 + 32768L;
+ mem = CompactMem(max_bytes_needed + slop) - slop;
+ if (mem < 0)
+ mem = 0; /* sigh, couldn't even get the slop */
+ /* Don't take more than the application says we can have */
+ if (mem > limit && limit > 0)
+ mem = limit;
+ return mem;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+
+METHODDEF(void)
+read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ long bytes = byte_count;
+ long retVal;
+
+ if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+
+ retVal = FSRead ( info->temp_file, &bytes,
+ (unsigned char *) buffer_address );
+ if ( retVal != noErr || bytes != byte_count )
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ long bytes = byte_count;
+ long retVal;
+
+ if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+
+ retVal = FSWrite ( info->temp_file, &bytes,
+ (unsigned char *) buffer_address );
+ if ( retVal != noErr || bytes != byte_count )
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ FSClose ( info->temp_file );
+ FSpDelete ( &(info->tempSpec) );
+}
+
+
+/*
+ * Initial opening of a backing-store object.
+ *
+ * This version uses FindFolder to find the Temporary Items folder,
+ * and puts the temporary file in there.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ short tmpRef, vRefNum;
+ long dirID;
+ FInfo finderInfo;
+ FSSpec theSpec;
+ Str255 fName;
+ OSErr osErr;
+ long gestaltResponse = 0;
+
+ /* Check that FSSpec calls are available. */
+ osErr = Gestalt( gestaltFSAttr, &gestaltResponse );
+ if ( ( osErr != noErr )
+ || !( gestaltResponse & (1<<gestaltHasFSSpecCalls) ) )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required");
+ /* TO DO: add a proper error message to jerror.h. */
+
+ /* Check that FindFolder is available. */
+ osErr = Gestalt( gestaltFindFolderAttr, &gestaltResponse );
+ if ( ( osErr != noErr )
+ || !( gestaltResponse & (1<<gestaltFindFolderPresent) ) )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required.");
+ /* TO DO: add a proper error message to jerror.h. */
+
+ osErr = FindFolder ( kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
+ &vRefNum, &dirID );
+ if ( osErr != noErr )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, "- temporary items folder unavailable");
+ /* TO DO: Try putting the temp files somewhere else. */
+
+ /* Keep generating file names till we find one that's not in use */
+ for (;;) {
+ next_file_num++; /* advance counter */
+
+ sprintf(info->temp_name, TEMP_FILE_NAME, next_file_num);
+ strcpy ( (Ptr)fName+1, info->temp_name );
+ *fName = strlen (info->temp_name);
+ osErr = FSMakeFSSpec ( vRefNum, dirID, fName, &theSpec );
+
+ if ( (osErr = FSpGetFInfo ( &theSpec, &finderInfo ) ) != noErr )
+ break;
+ }
+
+ osErr = FSpCreate ( &theSpec, '????', '????', smSystemScript );
+ if ( osErr != noErr )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+
+ osErr = FSpOpenDF ( &theSpec, fsRdWrPerm, &(info->temp_file) );
+ if ( osErr != noErr )
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+
+ info->tempSpec = theSpec;
+
+ info->read_backing_store = read_backing_store;
+ info->write_backing_store = write_backing_store;
+ info->close_backing_store = close_backing_store;
+ TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ next_file_num = 0;
+
+ /* max_memory_to_use will be initialized to FreeMem()'s result;
+ * the calling application might later reduce it, for example
+ * to leave room to invoke multiple JPEG objects.
+ * Note that FreeMem returns the total number of free bytes;
+ * it may not be possible to allocate a single block of this size.
+ */
+ return FreeMem();
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemmgr.c b/plugins/AdvaImg/src/LibJPEG/jmemmgr.c
new file mode 100644
index 0000000000..f0e83fb950
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemmgr.c
@@ -0,0 +1,1119 @@
+/*
+ * jmemmgr.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the JPEG system-independent memory management
+ * routines. This code is usable across a wide variety of machines; most
+ * of the system dependencies have been isolated in a separate file.
+ * The major functions provided here are:
+ * * pool-based allocation and freeing of memory;
+ * * policy decisions about how to divide available memory among the
+ * virtual arrays;
+ * * control logic for swapping virtual arrays between main memory and
+ * backing storage.
+ * The separate system-dependent file provides the actual backing-storage
+ * access code, and it contains the policy decision about how much total
+ * main memory to use.
+ * This file is system-dependent in the sense that some of its functions
+ * are unnecessary in some systems. For example, if there is enough virtual
+ * memory so that backing storage will never be used, much of the virtual
+ * array control logic could be removed. (Of course, if you have that much
+ * memory then you shouldn't care about a little bit of unused code...)
+ */
+
+#define JPEG_INTERNALS
+#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef NO_GETENV
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
+extern char * getenv JPP((const char * name));
+#endif
+#endif
+
+
+/*
+ * Some important notes:
+ * The allocation routines provided here must never return NULL.
+ * They should exit to error_exit if unsuccessful.
+ *
+ * It's not a good idea to try to merge the sarray and barray routines,
+ * even though they are textually almost the same, because samples are
+ * usually stored as bytes while coefficients are shorts or ints. Thus,
+ * in machines where byte pointers have a different representation from
+ * word pointers, the resulting machine code could not be the same.
+ */
+
+
+/*
+ * Many machines require storage alignment: longs must start on 4-byte
+ * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
+ * always returns pointers that are multiples of the worst-case alignment
+ * requirement, and we had better do so too.
+ * There isn't any really portable way to determine the worst-case alignment
+ * requirement. This module assumes that the alignment requirement is
+ * multiples of sizeof(ALIGN_TYPE).
+ * By default, we define ALIGN_TYPE as double. This is necessary on some
+ * workstations (where doubles really do need 8-byte alignment) and will work
+ * fine on nearly everything. If your machine has lesser alignment needs,
+ * you can save a few bytes by making ALIGN_TYPE smaller.
+ * The only place I know of where this will NOT work is certain Macintosh
+ * 680x0 compilers that define double as a 10-byte IEEE extended float.
+ * Doing 10-byte alignment is counterproductive because longwords won't be
+ * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
+ * such a compiler.
+ */
+
+#ifndef ALIGN_TYPE /* so can override from jconfig.h */
+#define ALIGN_TYPE double
+#endif
+
+
+/*
+ * We allocate objects from "pools", where each pool is gotten with a single
+ * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
+ * overhead within a pool, except for alignment padding. Each pool has a
+ * header with a link to the next pool of the same class.
+ * Small and large pool headers are identical except that the latter's
+ * link pointer must be FAR on 80x86 machines.
+ * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
+ * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
+ * of the alignment requirement of ALIGN_TYPE.
+ */
+
+typedef union small_pool_struct * small_pool_ptr;
+
+typedef union small_pool_struct {
+ struct {
+ small_pool_ptr next; /* next in list of pools */
+ size_t bytes_used; /* how many bytes already used within pool */
+ size_t bytes_left; /* bytes still available in this pool */
+ } hdr;
+ ALIGN_TYPE dummy; /* included in union to ensure alignment */
+} small_pool_hdr;
+
+typedef union large_pool_struct FAR * large_pool_ptr;
+
+typedef union large_pool_struct {
+ struct {
+ large_pool_ptr next; /* next in list of pools */
+ size_t bytes_used; /* how many bytes already used within pool */
+ size_t bytes_left; /* bytes still available in this pool */
+ } hdr;
+ ALIGN_TYPE dummy; /* included in union to ensure alignment */
+} large_pool_hdr;
+
+
+/*
+ * Here is the full definition of a memory manager object.
+ */
+
+typedef struct {
+ struct jpeg_memory_mgr pub; /* public fields */
+
+ /* Each pool identifier (lifetime class) names a linked list of pools. */
+ small_pool_ptr small_list[JPOOL_NUMPOOLS];
+ large_pool_ptr large_list[JPOOL_NUMPOOLS];
+
+ /* Since we only have one lifetime class of virtual arrays, only one
+ * linked list is necessary (for each datatype). Note that the virtual
+ * array control blocks being linked together are actually stored somewhere
+ * in the small-pool list.
+ */
+ jvirt_sarray_ptr virt_sarray_list;
+ jvirt_barray_ptr virt_barray_list;
+
+ /* This counts total space obtained from jpeg_get_small/large */
+ long total_space_allocated;
+
+ /* alloc_sarray and alloc_barray set this value for use by virtual
+ * array routines.
+ */
+ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
+} my_memory_mgr;
+
+typedef my_memory_mgr * my_mem_ptr;
+
+
+/*
+ * The control blocks for virtual arrays.
+ * Note that these blocks are allocated in the "small" pool area.
+ * System-dependent info for the associated backing store (if any) is hidden
+ * inside the backing_store_info struct.
+ */
+
+struct jvirt_sarray_control {
+ JSAMPARRAY mem_buffer; /* => the in-memory buffer */
+ JDIMENSION rows_in_array; /* total virtual array height */
+ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
+ JDIMENSION rows_in_mem; /* height of memory buffer */
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */
+ boolean pre_zero; /* pre-zero mode requested? */
+ boolean dirty; /* do current buffer contents need written? */
+ boolean b_s_open; /* is backing-store data valid? */
+ jvirt_sarray_ptr next; /* link to next virtual sarray control block */
+ backing_store_info b_s_info; /* System-dependent control info */
+};
+
+struct jvirt_barray_control {
+ JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
+ JDIMENSION rows_in_array; /* total virtual array height */
+ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
+ JDIMENSION rows_in_mem; /* height of memory buffer */
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */
+ boolean pre_zero; /* pre-zero mode requested? */
+ boolean dirty; /* do current buffer contents need written? */
+ boolean b_s_open; /* is backing-store data valid? */
+ jvirt_barray_ptr next; /* link to next virtual barray control block */
+ backing_store_info b_s_info; /* System-dependent control info */
+};
+
+
+#ifdef MEM_STATS /* optional extra stuff for statistics */
+
+LOCAL(void)
+print_mem_stats (j_common_ptr cinfo, int pool_id)
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr shdr_ptr;
+ large_pool_ptr lhdr_ptr;
+
+ /* Since this is only a debugging stub, we can cheat a little by using
+ * fprintf directly rather than going through the trace message code.
+ * This is helpful because message parm array can't handle longs.
+ */
+ fprintf(stderr, "Freeing pool %d, total space = %ld\n",
+ pool_id, mem->total_space_allocated);
+
+ for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
+ lhdr_ptr = lhdr_ptr->hdr.next) {
+ fprintf(stderr, " Large chunk used %ld\n",
+ (long) lhdr_ptr->hdr.bytes_used);
+ }
+
+ for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
+ shdr_ptr = shdr_ptr->hdr.next) {
+ fprintf(stderr, " Small chunk used %ld free %ld\n",
+ (long) shdr_ptr->hdr.bytes_used,
+ (long) shdr_ptr->hdr.bytes_left);
+ }
+}
+
+#endif /* MEM_STATS */
+
+
+LOCAL(void)
+out_of_memory (j_common_ptr cinfo, int which)
+/* Report an out-of-memory error and stop execution */
+/* If we compiled MEM_STATS support, report alloc requests before dying */
+{
+#ifdef MEM_STATS
+ cinfo->err->trace_level = 2; /* force self_destruct to report stats */
+#endif
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
+}
+
+
+/*
+ * Allocation of "small" objects.
+ *
+ * For these, we use pooled storage. When a new pool must be created,
+ * we try to get enough space for the current request plus a "slop" factor,
+ * where the slop will be the amount of leftover space in the new pool.
+ * The speed vs. space tradeoff is largely determined by the slop values.
+ * A different slop value is provided for each pool class (lifetime),
+ * and we also distinguish the first pool of a class from later ones.
+ * NOTE: the values given work fairly well on both 16- and 32-bit-int
+ * machines, but may be too small if longs are 64 bits or more.
+ */
+
+static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
+{
+ 1600, /* first PERMANENT pool */
+ 16000 /* first IMAGE pool */
+};
+
+static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
+{
+ 0, /* additional PERMANENT pools */
+ 5000 /* additional IMAGE pools */
+};
+
+#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
+
+
+METHODDEF(void *)
+alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "small" object */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr hdr_ptr, prev_hdr_ptr;
+ char * data_ptr;
+ size_t odd_bytes, min_request, slop;
+
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */
+ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
+ out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
+
+ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+ if (odd_bytes > 0)
+ sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+ /* See if space is available in any existing pool */
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+ prev_hdr_ptr = NULL;
+ hdr_ptr = mem->small_list[pool_id];
+ while (hdr_ptr != NULL) {
+ if (hdr_ptr->hdr.bytes_left >= sizeofobject)
+ break; /* found pool with enough space */
+ prev_hdr_ptr = hdr_ptr;
+ hdr_ptr = hdr_ptr->hdr.next;
+ }
+
+ /* Time to make a new pool? */
+ if (hdr_ptr == NULL) {
+ /* min_request is what we need now, slop is what will be leftover */
+ min_request = sizeofobject + SIZEOF(small_pool_hdr);
+ if (prev_hdr_ptr == NULL) /* first pool in class? */
+ slop = first_pool_slop[pool_id];
+ else
+ slop = extra_pool_slop[pool_id];
+ /* Don't ask for more than MAX_ALLOC_CHUNK */
+ if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
+ slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
+ /* Try to get space, if fail reduce slop and try again */
+ for (;;) {
+ hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
+ if (hdr_ptr != NULL)
+ break;
+ slop /= 2;
+ if (slop < MIN_SLOP) /* give up when it gets real small */
+ out_of_memory(cinfo, 2); /* jpeg_get_small failed */
+ }
+ mem->total_space_allocated += min_request + slop;
+ /* Success, initialize the new pool header and add to end of list */
+ hdr_ptr->hdr.next = NULL;
+ hdr_ptr->hdr.bytes_used = 0;
+ hdr_ptr->hdr.bytes_left = sizeofobject + slop;
+ if (prev_hdr_ptr == NULL) /* first pool in class? */
+ mem->small_list[pool_id] = hdr_ptr;
+ else
+ prev_hdr_ptr->hdr.next = hdr_ptr;
+ }
+
+ /* OK, allocate the object from the current pool */
+ data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
+ data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
+ hdr_ptr->hdr.bytes_used += sizeofobject;
+ hdr_ptr->hdr.bytes_left -= sizeofobject;
+
+ return (void *) data_ptr;
+}
+
+
+/*
+ * Allocation of "large" objects.
+ *
+ * The external semantics of these are the same as "small" objects,
+ * except that FAR pointers are used on 80x86. However the pool
+ * management heuristics are quite different. We assume that each
+ * request is large enough that it may as well be passed directly to
+ * jpeg_get_large; the pool management just links everything together
+ * so that we can free it all on demand.
+ * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
+ * structures. The routines that create these structures (see below)
+ * deliberately bunch rows together to ensure a large request size.
+ */
+
+METHODDEF(void FAR *)
+alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "large" object */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ large_pool_ptr hdr_ptr;
+ size_t odd_bytes;
+
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */
+ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
+ out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
+
+ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+ if (odd_bytes > 0)
+ sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+ /* Always make a new pool */
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
+ SIZEOF(large_pool_hdr));
+ if (hdr_ptr == NULL)
+ out_of_memory(cinfo, 4); /* jpeg_get_large failed */
+ mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
+
+ /* Success, initialize the new pool header and add to list */
+ hdr_ptr->hdr.next = mem->large_list[pool_id];
+ /* We maintain space counts in each pool header for statistical purposes,
+ * even though they are not needed for allocation.
+ */
+ hdr_ptr->hdr.bytes_used = sizeofobject;
+ hdr_ptr->hdr.bytes_left = 0;
+ mem->large_list[pool_id] = hdr_ptr;
+
+ return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
+}
+
+
+/*
+ * Creation of 2-D sample arrays.
+ * The pointers are in near heap, the samples themselves in FAR heap.
+ *
+ * To minimize allocation overhead and to allow I/O of large contiguous
+ * blocks, we allocate the sample rows in groups of as many rows as possible
+ * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
+ * NB: the virtual array control routines, later in this file, know about
+ * this chunking of rows. The rowsperchunk value is left in the mem manager
+ * object so that it can be saved away if this sarray is the workspace for
+ * a virtual array.
+ */
+
+METHODDEF(JSAMPARRAY)
+alloc_sarray (j_common_ptr cinfo, int pool_id,
+ JDIMENSION samplesperrow, JDIMENSION numrows)
+/* Allocate a 2-D sample array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ JSAMPARRAY result;
+ JSAMPROW workspace;
+ JDIMENSION rowsperchunk, currow, i;
+ long ltemp;
+
+ /* Calculate max # of rows allowed in one allocation chunk */
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+ ((long) samplesperrow * SIZEOF(JSAMPLE));
+ if (ltemp <= 0)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+ if (ltemp < (long) numrows)
+ rowsperchunk = (JDIMENSION) ltemp;
+ else
+ rowsperchunk = numrows;
+ mem->last_rowsperchunk = rowsperchunk;
+
+ /* Get space for row pointers (small object) */
+ result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
+ (size_t) (numrows * SIZEOF(JSAMPROW)));
+
+ /* Get the rows themselves (large objects) */
+ currow = 0;
+ while (currow < numrows) {
+ rowsperchunk = MIN(rowsperchunk, numrows - currow);
+ workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
+ (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
+ * SIZEOF(JSAMPLE)));
+ for (i = rowsperchunk; i > 0; i--) {
+ result[currow++] = workspace;
+ workspace += samplesperrow;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * Creation of 2-D coefficient-block arrays.
+ * This is essentially the same as the code for sample arrays, above.
+ */
+
+METHODDEF(JBLOCKARRAY)
+alloc_barray (j_common_ptr cinfo, int pool_id,
+ JDIMENSION blocksperrow, JDIMENSION numrows)
+/* Allocate a 2-D coefficient-block array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ JBLOCKARRAY result;
+ JBLOCKROW workspace;
+ JDIMENSION rowsperchunk, currow, i;
+ long ltemp;
+
+ /* Calculate max # of rows allowed in one allocation chunk */
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+ ((long) blocksperrow * SIZEOF(JBLOCK));
+ if (ltemp <= 0)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+ if (ltemp < (long) numrows)
+ rowsperchunk = (JDIMENSION) ltemp;
+ else
+ rowsperchunk = numrows;
+ mem->last_rowsperchunk = rowsperchunk;
+
+ /* Get space for row pointers (small object) */
+ result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
+ (size_t) (numrows * SIZEOF(JBLOCKROW)));
+
+ /* Get the rows themselves (large objects) */
+ currow = 0;
+ while (currow < numrows) {
+ rowsperchunk = MIN(rowsperchunk, numrows - currow);
+ workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
+ (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
+ * SIZEOF(JBLOCK)));
+ for (i = rowsperchunk; i > 0; i--) {
+ result[currow++] = workspace;
+ workspace += blocksperrow;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * About virtual array management:
+ *
+ * The above "normal" array routines are only used to allocate strip buffers
+ * (as wide as the image, but just a few rows high). Full-image-sized buffers
+ * are handled as "virtual" arrays. The array is still accessed a strip at a
+ * time, but the memory manager must save the whole array for repeated
+ * accesses. The intended implementation is that there is a strip buffer in
+ * memory (as high as is possible given the desired memory limit), plus a
+ * backing file that holds the rest of the array.
+ *
+ * The request_virt_array routines are told the total size of the image and
+ * the maximum number of rows that will be accessed at once. The in-memory
+ * buffer must be at least as large as the maxaccess value.
+ *
+ * The request routines create control blocks but not the in-memory buffers.
+ * That is postponed until realize_virt_arrays is called. At that time the
+ * total amount of space needed is known (approximately, anyway), so free
+ * memory can be divided up fairly.
+ *
+ * The access_virt_array routines are responsible for making a specific strip
+ * area accessible (after reading or writing the backing file, if necessary).
+ * Note that the access routines are told whether the caller intends to modify
+ * the accessed strip; during a read-only pass this saves having to rewrite
+ * data to disk. The access routines are also responsible for pre-zeroing
+ * any newly accessed rows, if pre-zeroing was requested.
+ *
+ * In current usage, the access requests are usually for nonoverlapping
+ * strips; that is, successive access start_row numbers differ by exactly
+ * num_rows = maxaccess. This means we can get good performance with simple
+ * buffer dump/reload logic, by making the in-memory buffer be a multiple
+ * of the access height; then there will never be accesses across bufferload
+ * boundaries. The code will still work with overlapping access requests,
+ * but it doesn't handle bufferload overlaps very efficiently.
+ */
+
+
+METHODDEF(jvirt_sarray_ptr)
+request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+ JDIMENSION samplesperrow, JDIMENSION numrows,
+ JDIMENSION maxaccess)
+/* Request a virtual 2-D sample array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ jvirt_sarray_ptr result;
+
+ /* Only IMAGE-lifetime virtual arrays are currently supported */
+ if (pool_id != JPOOL_IMAGE)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ /* get control block */
+ result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
+ SIZEOF(struct jvirt_sarray_control));
+
+ result->mem_buffer = NULL; /* marks array not yet realized */
+ result->rows_in_array = numrows;
+ result->samplesperrow = samplesperrow;
+ result->maxaccess = maxaccess;
+ result->pre_zero = pre_zero;
+ result->b_s_open = FALSE; /* no associated backing-store object */
+ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
+ mem->virt_sarray_list = result;
+
+ return result;
+}
+
+
+METHODDEF(jvirt_barray_ptr)
+request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+ JDIMENSION blocksperrow, JDIMENSION numrows,
+ JDIMENSION maxaccess)
+/* Request a virtual 2-D coefficient-block array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ jvirt_barray_ptr result;
+
+ /* Only IMAGE-lifetime virtual arrays are currently supported */
+ if (pool_id != JPOOL_IMAGE)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ /* get control block */
+ result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
+ SIZEOF(struct jvirt_barray_control));
+
+ result->mem_buffer = NULL; /* marks array not yet realized */
+ result->rows_in_array = numrows;
+ result->blocksperrow = blocksperrow;
+ result->maxaccess = maxaccess;
+ result->pre_zero = pre_zero;
+ result->b_s_open = FALSE; /* no associated backing-store object */
+ result->next = mem->virt_barray_list; /* add to list of virtual arrays */
+ mem->virt_barray_list = result;
+
+ return result;
+}
+
+
+METHODDEF(void)
+realize_virt_arrays (j_common_ptr cinfo)
+/* Allocate the in-memory buffers for any unrealized virtual arrays */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ long space_per_minheight, maximum_space, avail_mem;
+ long minheights, max_minheights;
+ jvirt_sarray_ptr sptr;
+ jvirt_barray_ptr bptr;
+
+ /* Compute the minimum space needed (maxaccess rows in each buffer)
+ * and the maximum space needed (full image height in each buffer).
+ * These may be of use to the system-dependent jpeg_mem_available routine.
+ */
+ space_per_minheight = 0;
+ maximum_space = 0;
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */
+ space_per_minheight += (long) sptr->maxaccess *
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+ maximum_space += (long) sptr->rows_in_array *
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+ }
+ }
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */
+ space_per_minheight += (long) bptr->maxaccess *
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+ maximum_space += (long) bptr->rows_in_array *
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+ }
+ }
+
+ if (space_per_minheight <= 0)
+ return; /* no unrealized arrays, no work */
+
+ /* Determine amount of memory to actually use; this is system-dependent. */
+ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
+ mem->total_space_allocated);
+
+ /* If the maximum space needed is available, make all the buffers full
+ * height; otherwise parcel it out with the same number of minheights
+ * in each buffer.
+ */
+ if (avail_mem >= maximum_space)
+ max_minheights = 1000000000L;
+ else {
+ max_minheights = avail_mem / space_per_minheight;
+ /* If there doesn't seem to be enough space, try to get the minimum
+ * anyway. This allows a "stub" implementation of jpeg_mem_available().
+ */
+ if (max_minheights <= 0)
+ max_minheights = 1;
+ }
+
+ /* Allocate the in-memory buffers and initialize backing store as needed. */
+
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */
+ minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
+ if (minheights <= max_minheights) {
+ /* This buffer fits in memory */
+ sptr->rows_in_mem = sptr->rows_in_array;
+ } else {
+ /* It doesn't fit in memory, create backing store. */
+ sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
+ jpeg_open_backing_store(cinfo, & sptr->b_s_info,
+ (long) sptr->rows_in_array *
+ (long) sptr->samplesperrow *
+ (long) SIZEOF(JSAMPLE));
+ sptr->b_s_open = TRUE;
+ }
+ sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
+ sptr->samplesperrow, sptr->rows_in_mem);
+ sptr->rowsperchunk = mem->last_rowsperchunk;
+ sptr->cur_start_row = 0;
+ sptr->first_undef_row = 0;
+ sptr->dirty = FALSE;
+ }
+ }
+
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */
+ minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
+ if (minheights <= max_minheights) {
+ /* This buffer fits in memory */
+ bptr->rows_in_mem = bptr->rows_in_array;
+ } else {
+ /* It doesn't fit in memory, create backing store. */
+ bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
+ jpeg_open_backing_store(cinfo, & bptr->b_s_info,
+ (long) bptr->rows_in_array *
+ (long) bptr->blocksperrow *
+ (long) SIZEOF(JBLOCK));
+ bptr->b_s_open = TRUE;
+ }
+ bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
+ bptr->blocksperrow, bptr->rows_in_mem);
+ bptr->rowsperchunk = mem->last_rowsperchunk;
+ bptr->cur_start_row = 0;
+ bptr->first_undef_row = 0;
+ bptr->dirty = FALSE;
+ }
+ }
+}
+
+
+LOCAL(void)
+do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual sample array */
+{
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+ bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
+ file_offset = ptr->cur_start_row * bytesperrow;
+ /* Loop to read or write each allocation chunk in mem_buffer */
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+ /* One chunk, but check for short chunk at end of buffer */
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+ /* Transfer no more than is currently defined */
+ thisrow = (long) ptr->cur_start_row + i;
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+ /* Transfer no more than fits in file */
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+ if (rows <= 0) /* this chunk might be past end of file! */
+ break;
+ byte_count = rows * bytesperrow;
+ if (writing)
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ else
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ file_offset += byte_count;
+ }
+}
+
+
+LOCAL(void)
+do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual coefficient-block array */
+{
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+ bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
+ file_offset = ptr->cur_start_row * bytesperrow;
+ /* Loop to read or write each allocation chunk in mem_buffer */
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+ /* One chunk, but check for short chunk at end of buffer */
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+ /* Transfer no more than is currently defined */
+ thisrow = (long) ptr->cur_start_row + i;
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+ /* Transfer no more than fits in file */
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+ if (rows <= 0) /* this chunk might be past end of file! */
+ break;
+ byte_count = rows * bytesperrow;
+ if (writing)
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ else
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ file_offset += byte_count;
+ }
+}
+
+
+METHODDEF(JSAMPARRAY)
+access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
+ JDIMENSION start_row, JDIMENSION num_rows,
+ boolean writable)
+/* Access the part of a virtual sample array starting at start_row */
+/* and extending for num_rows rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ JDIMENSION end_row = start_row + num_rows;
+ JDIMENSION undef_row;
+
+ /* debugging check */
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+ /* Make the desired part of the virtual array accessible */
+ if (start_row < ptr->cur_start_row ||
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+ if (! ptr->b_s_open)
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+ /* Flush old buffer contents if necessary */
+ if (ptr->dirty) {
+ do_sarray_io(cinfo, ptr, TRUE);
+ ptr->dirty = FALSE;
+ }
+ /* Decide what part of virtual array to access.
+ * Algorithm: if target address > current window, assume forward scan,
+ * load starting at target address. If target address < current window,
+ * assume backward scan, load so that target area is top of window.
+ * Note that when switching from forward write to forward read, will have
+ * start_row = 0, so the limiting case applies and we load from 0 anyway.
+ */
+ if (start_row > ptr->cur_start_row) {
+ ptr->cur_start_row = start_row;
+ } else {
+ /* use long arithmetic here to avoid overflow & unsigned problems */
+ long ltemp;
+
+ ltemp = (long) end_row - (long) ptr->rows_in_mem;
+ if (ltemp < 0)
+ ltemp = 0; /* don't fall off front end of file */
+ ptr->cur_start_row = (JDIMENSION) ltemp;
+ }
+ /* Read in the selected part of the array.
+ * During the initial write pass, we will do no actual read
+ * because the selected part is all undefined.
+ */
+ do_sarray_io(cinfo, ptr, FALSE);
+ }
+ /* Ensure the accessed part of the array is defined; prezero if needed.
+ * To improve locality of access, we only prezero the part of the array
+ * that the caller is about to access, not the entire in-memory array.
+ */
+ if (ptr->first_undef_row < end_row) {
+ if (ptr->first_undef_row < start_row) {
+ if (writable) /* writer skipped over a section of array */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ undef_row = start_row; /* but reader is allowed to read ahead */
+ } else {
+ undef_row = ptr->first_undef_row;
+ }
+ if (writable)
+ ptr->first_undef_row = end_row;
+ if (ptr->pre_zero) {
+ size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+ end_row -= ptr->cur_start_row;
+ while (undef_row < end_row) {
+ FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+ undef_row++;
+ }
+ } else {
+ if (! writable) /* reader looking at undefined data */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ }
+ }
+ /* Flag the buffer dirty if caller will write in it */
+ if (writable)
+ ptr->dirty = TRUE;
+ /* Return address of proper part of the buffer */
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+METHODDEF(JBLOCKARRAY)
+access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
+ JDIMENSION start_row, JDIMENSION num_rows,
+ boolean writable)
+/* Access the part of a virtual block array starting at start_row */
+/* and extending for num_rows rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ JDIMENSION end_row = start_row + num_rows;
+ JDIMENSION undef_row;
+
+ /* debugging check */
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+ /* Make the desired part of the virtual array accessible */
+ if (start_row < ptr->cur_start_row ||
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+ if (! ptr->b_s_open)
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+ /* Flush old buffer contents if necessary */
+ if (ptr->dirty) {
+ do_barray_io(cinfo, ptr, TRUE);
+ ptr->dirty = FALSE;
+ }
+ /* Decide what part of virtual array to access.
+ * Algorithm: if target address > current window, assume forward scan,
+ * load starting at target address. If target address < current window,
+ * assume backward scan, load so that target area is top of window.
+ * Note that when switching from forward write to forward read, will have
+ * start_row = 0, so the limiting case applies and we load from 0 anyway.
+ */
+ if (start_row > ptr->cur_start_row) {
+ ptr->cur_start_row = start_row;
+ } else {
+ /* use long arithmetic here to avoid overflow & unsigned problems */
+ long ltemp;
+
+ ltemp = (long) end_row - (long) ptr->rows_in_mem;
+ if (ltemp < 0)
+ ltemp = 0; /* don't fall off front end of file */
+ ptr->cur_start_row = (JDIMENSION) ltemp;
+ }
+ /* Read in the selected part of the array.
+ * During the initial write pass, we will do no actual read
+ * because the selected part is all undefined.
+ */
+ do_barray_io(cinfo, ptr, FALSE);
+ }
+ /* Ensure the accessed part of the array is defined; prezero if needed.
+ * To improve locality of access, we only prezero the part of the array
+ * that the caller is about to access, not the entire in-memory array.
+ */
+ if (ptr->first_undef_row < end_row) {
+ if (ptr->first_undef_row < start_row) {
+ if (writable) /* writer skipped over a section of array */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ undef_row = start_row; /* but reader is allowed to read ahead */
+ } else {
+ undef_row = ptr->first_undef_row;
+ }
+ if (writable)
+ ptr->first_undef_row = end_row;
+ if (ptr->pre_zero) {
+ size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+ end_row -= ptr->cur_start_row;
+ while (undef_row < end_row) {
+ FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+ undef_row++;
+ }
+ } else {
+ if (! writable) /* reader looking at undefined data */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ }
+ }
+ /* Flag the buffer dirty if caller will write in it */
+ if (writable)
+ ptr->dirty = TRUE;
+ /* Return address of proper part of the buffer */
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+/*
+ * Release all objects belonging to a specified pool.
+ */
+
+METHODDEF(void)
+free_pool (j_common_ptr cinfo, int pool_id)
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr shdr_ptr;
+ large_pool_ptr lhdr_ptr;
+ size_t space_freed;
+
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+#ifdef MEM_STATS
+ if (cinfo->err->trace_level > 1)
+ print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
+#endif
+
+ /* If freeing IMAGE pool, close any virtual arrays first */
+ if (pool_id == JPOOL_IMAGE) {
+ jvirt_sarray_ptr sptr;
+ jvirt_barray_ptr bptr;
+
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->b_s_open) { /* there may be no backing store */
+ sptr->b_s_open = FALSE; /* prevent recursive close if error */
+ (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
+ }
+ }
+ mem->virt_sarray_list = NULL;
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->b_s_open) { /* there may be no backing store */
+ bptr->b_s_open = FALSE; /* prevent recursive close if error */
+ (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
+ }
+ }
+ mem->virt_barray_list = NULL;
+ }
+
+ /* Release large objects */
+ lhdr_ptr = mem->large_list[pool_id];
+ mem->large_list[pool_id] = NULL;
+
+ while (lhdr_ptr != NULL) {
+ large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
+ space_freed = lhdr_ptr->hdr.bytes_used +
+ lhdr_ptr->hdr.bytes_left +
+ SIZEOF(large_pool_hdr);
+ jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
+ mem->total_space_allocated -= space_freed;
+ lhdr_ptr = next_lhdr_ptr;
+ }
+
+ /* Release small objects */
+ shdr_ptr = mem->small_list[pool_id];
+ mem->small_list[pool_id] = NULL;
+
+ while (shdr_ptr != NULL) {
+ small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
+ space_freed = shdr_ptr->hdr.bytes_used +
+ shdr_ptr->hdr.bytes_left +
+ SIZEOF(small_pool_hdr);
+ jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
+ mem->total_space_allocated -= space_freed;
+ shdr_ptr = next_shdr_ptr;
+ }
+}
+
+
+/*
+ * Close up shop entirely.
+ * Note that this cannot be called unless cinfo->mem is non-NULL.
+ */
+
+METHODDEF(void)
+self_destruct (j_common_ptr cinfo)
+{
+ int pool;
+
+ /* Close all backing store, release all memory.
+ * Releasing pools in reverse order might help avoid fragmentation
+ * with some (brain-damaged) malloc libraries.
+ */
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+ free_pool(cinfo, pool);
+ }
+
+ /* Release the memory manager control block too. */
+ jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
+ cinfo->mem = NULL; /* ensures I will be called only once */
+
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */
+}
+
+
+/*
+ * Memory manager initialization.
+ * When this is called, only the error manager pointer is valid in cinfo!
+ */
+
+GLOBAL(void)
+jinit_memory_mgr (j_common_ptr cinfo)
+{
+ my_mem_ptr mem;
+ long max_to_use;
+ int pool;
+ size_t test_mac;
+
+ cinfo->mem = NULL; /* for safety if init fails */
+
+ /* Check for configuration errors.
+ * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
+ * doesn't reflect any real hardware alignment requirement.
+ * The test is a little tricky: for X>0, X and X-1 have no one-bits
+ * in common if and only if X is a power of 2, ie has only one one-bit.
+ * Some compilers may give an "unreachable code" warning here; ignore it.
+ */
+ if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
+ ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
+ /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
+ * a multiple of SIZEOF(ALIGN_TYPE).
+ * Again, an "unreachable code" warning may be ignored here.
+ * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
+ */
+ test_mac = (size_t) MAX_ALLOC_CHUNK;
+ if ((long) test_mac != MAX_ALLOC_CHUNK ||
+ (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+
+ max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
+
+ /* Attempt to allocate memory manager's control block */
+ mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
+
+ if (mem == NULL) {
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
+ }
+
+ /* OK, fill in the method pointers */
+ mem->pub.alloc_small = alloc_small;
+ mem->pub.alloc_large = alloc_large;
+ mem->pub.alloc_sarray = alloc_sarray;
+ mem->pub.alloc_barray = alloc_barray;
+ mem->pub.request_virt_sarray = request_virt_sarray;
+ mem->pub.request_virt_barray = request_virt_barray;
+ mem->pub.realize_virt_arrays = realize_virt_arrays;
+ mem->pub.access_virt_sarray = access_virt_sarray;
+ mem->pub.access_virt_barray = access_virt_barray;
+ mem->pub.free_pool = free_pool;
+ mem->pub.self_destruct = self_destruct;
+
+ /* Make MAX_ALLOC_CHUNK accessible to other modules */
+ mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
+
+ /* Initialize working state */
+ mem->pub.max_memory_to_use = max_to_use;
+
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+ mem->small_list[pool] = NULL;
+ mem->large_list[pool] = NULL;
+ }
+ mem->virt_sarray_list = NULL;
+ mem->virt_barray_list = NULL;
+
+ mem->total_space_allocated = SIZEOF(my_memory_mgr);
+
+ /* Declare ourselves open for business */
+ cinfo->mem = & mem->pub;
+
+ /* Check for an environment variable JPEGMEM; if found, override the
+ * default max_memory setting from jpeg_mem_init. Note that the
+ * surrounding application may again override this value.
+ * If your system doesn't support getenv(), define NO_GETENV to disable
+ * this feature.
+ */
+#ifndef NO_GETENV
+ { char * memenv;
+
+ if ((memenv = getenv("JPEGMEM")) != NULL) {
+ char ch = 'x';
+
+ if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
+ if (ch == 'm' || ch == 'M')
+ max_to_use *= 1000L;
+ mem->pub.max_memory_to_use = max_to_use * 1000L;
+ }
+ }
+ }
+#endif
+
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemname.c b/plugins/AdvaImg/src/LibJPEG/jmemname.c
new file mode 100644
index 0000000000..e28b212f48
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemname.c
@@ -0,0 +1,276 @@
+/*
+ * jmemname.c
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a generic implementation of the system-dependent
+ * portion of the JPEG memory manager. This implementation assumes that
+ * you must explicitly construct a name for each temp file.
+ * Also, the problem of determining the amount of memory available
+ * is shoved onto the user.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
+#define SEEK_SET 0 /* if not, assume 0 is correct */
+#endif
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#define RW_BINARY "w+"
+#else
+#ifdef VMS /* VMS is very nonstandard */
+#define READ_BINARY "rb", "ctx=stm"
+#define RW_BINARY "w+b", "ctx=stm"
+#else /* standard ANSI-compliant case */
+#define READ_BINARY "rb"
+#define RW_BINARY "w+b"
+#endif
+#endif
+
+
+/*
+ * Selection of a file name for a temporary file.
+ * This is system-dependent!
+ *
+ * The code as given is suitable for most Unix systems, and it is easily
+ * modified for most non-Unix systems. Some notes:
+ * 1. The temp file is created in the directory named by TEMP_DIRECTORY.
+ * The default value is /usr/tmp, which is the conventional place for
+ * creating large temp files on Unix. On other systems you'll probably
+ * want to change the file location. You can do this by editing the
+ * #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h.
+ *
+ * 2. If you need to change the file name as well as its location,
+ * you can override the TEMP_FILE_NAME macro. (Note that this is
+ * actually a printf format string; it must contain %s and %d.)
+ * Few people should need to do this.
+ *
+ * 3. mktemp() is used to ensure that multiple processes running
+ * simultaneously won't select the same file names. If your system
+ * doesn't have mktemp(), define NO_MKTEMP to do it the hard way.
+ * (If you don't have <errno.h>, also define NO_ERRNO_H.)
+ *
+ * 4. You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c
+ * will cause the temp files to be removed if you stop the program early.
+ */
+
+#ifndef TEMP_DIRECTORY /* can override from jconfig.h or Makefile */
+#define TEMP_DIRECTORY "/usr/tmp/" /* recommended setting for Unix */
+#endif
+
+static int next_file_num; /* to distinguish among several temp files */
+
+#ifdef NO_MKTEMP
+
+#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
+#define TEMP_FILE_NAME "%sJPG%03d.TMP"
+#endif
+
+#ifndef NO_ERRNO_H
+#include <errno.h> /* to define ENOENT */
+#endif
+
+/* ANSI C specifies that errno is a macro, but on older systems it's more
+ * likely to be a plain int variable. And not all versions of errno.h
+ * bother to declare it, so we have to in order to be most portable. Thus:
+ */
+#ifndef errno
+extern int errno;
+#endif
+
+
+LOCAL(void)
+select_file_name (char * fname)
+{
+ FILE * tfile;
+
+ /* Keep generating file names till we find one that's not in use */
+ for (;;) {
+ next_file_num++; /* advance counter */
+ sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
+ if ((tfile = fopen(fname, READ_BINARY)) == NULL) {
+ /* fopen could have failed for a reason other than the file not
+ * being there; for example, file there but unreadable.
+ * If <errno.h> isn't available, then we cannot test the cause.
+ */
+#ifdef ENOENT
+ if (errno != ENOENT)
+ continue;
+#endif
+ break;
+ }
+ fclose(tfile); /* oops, it's there; close tfile & try again */
+ }
+}
+
+#else /* ! NO_MKTEMP */
+
+/* Note that mktemp() requires the initial filename to end in six X's */
+#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
+#define TEMP_FILE_NAME "%sJPG%dXXXXXX"
+#endif
+
+LOCAL(void)
+select_file_name (char * fname)
+{
+ next_file_num++; /* advance counter */
+ sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
+ mktemp(fname); /* make sure file name is unique */
+ /* mktemp replaces the trailing XXXXXX with a unique string of characters */
+}
+
+#endif /* NO_MKTEMP */
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * It's impossible to do this in a portable way; our current solution is
+ * to make the user tell us (with a default value set at compile time).
+ * If you can actually get the available space, it's a good idea to subtract
+ * a slop factor of 5% or so.
+ */
+
+#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
+#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
+#endif
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return cinfo->mem->max_memory_to_use - already_allocated;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Backing store objects are only used when the value returned by
+ * jpeg_mem_available is less than the total space needed. You can dispense
+ * with these routines if you have plenty of virtual memory; see jmemnobs.c.
+ */
+
+
+METHODDEF(void)
+read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFREAD(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_READ);
+}
+
+
+METHODDEF(void)
+write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count)
+{
+ if (fseek(info->temp_file, file_offset, SEEK_SET))
+ ERREXIT(cinfo, JERR_TFILE_SEEK);
+ if (JFWRITE(info->temp_file, buffer_address, byte_count)
+ != (size_t) byte_count)
+ ERREXIT(cinfo, JERR_TFILE_WRITE);
+}
+
+
+METHODDEF(void)
+close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
+{
+ fclose(info->temp_file); /* close the file */
+ unlink(info->temp_name); /* delete the file */
+/* If your system doesn't have unlink(), use remove() instead.
+ * remove() is the ANSI-standard name for this function, but if
+ * your system was ANSI you'd be using jmemansi.c, right?
+ */
+ TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
+}
+
+
+/*
+ * Initial opening of a backing-store object.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ select_file_name(info->temp_name);
+ if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL)
+ ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
+ info->read_backing_store = read_backing_store;
+ info->write_backing_store = write_backing_store;
+ info->close_backing_store = close_backing_store;
+ TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ next_file_num = 0; /* initialize temp file name generator */
+ return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemnobs.c b/plugins/AdvaImg/src/LibJPEG/jmemnobs.c
new file mode 100644
index 0000000000..eb8c337725
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemnobs.c
@@ -0,0 +1,109 @@
+/*
+ * jmemnobs.c
+ *
+ * Copyright (C) 1992-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a really simple implementation of the system-
+ * dependent portion of the JPEG memory manager. This implementation
+ * assumes that no backing-store files are needed: all required space
+ * can be obtained from malloc().
+ * This is very portable in the sense that it'll compile on almost anything,
+ * but you'd better have lots of main memory (or virtual memory) if you want
+ * to process big images.
+ * Note that the max_memory_to_use option is ignored by this implementation.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * Here we always say, "we got all you want bud!"
+ */
+
+GLOBAL(long)
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return max_bytes_needed;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Since jpeg_mem_available always promised the moon,
+ * this should never be called and we can just error out.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ ERREXIT(cinfo, JERR_NO_BACKING_STORE);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required. Here, there isn't any.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ return 0; /* just set max_memory_to_use to 0 */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jmemsys.h b/plugins/AdvaImg/src/LibJPEG/jmemsys.h
new file mode 100644
index 0000000000..6c3c6d348f
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmemsys.h
@@ -0,0 +1,198 @@
+/*
+ * jmemsys.h
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file defines the interface between the system-independent
+ * and system-dependent portions of the JPEG memory manager. No other
+ * modules need include it. (The system-independent portion is jmemmgr.c;
+ * there are several different versions of the system-dependent portion.)
+ *
+ * This file works as-is for the system-dependent memory managers supplied
+ * in the IJG distribution. You may need to modify it if you write a
+ * custom memory manager. If system-dependent changes are needed in
+ * this file, the best method is to #ifdef them based on a configuration
+ * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
+ * and USE_MAC_MEMMGR.
+ */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_get_small jGetSmall
+#define jpeg_free_small jFreeSmall
+#define jpeg_get_large jGetLarge
+#define jpeg_free_large jFreeLarge
+#define jpeg_mem_available jMemAvail
+#define jpeg_open_backing_store jOpenBackStore
+#define jpeg_mem_init jMemInit
+#define jpeg_mem_term jMemTerm
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * These two functions are used to allocate and release small chunks of
+ * memory. (Typically the total amount requested through jpeg_get_small is
+ * no more than 20K or so; this will be requested in chunks of a few K each.)
+ * Behavior should be the same as for the standard library functions malloc
+ * and free; in particular, jpeg_get_small must return NULL on failure.
+ * On most systems, these ARE malloc and free. jpeg_free_small is passed the
+ * size of the object being freed, just in case it's needed.
+ * On an 80x86 machine using small-data memory model, these manage near heap.
+ */
+
+EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
+EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
+ size_t sizeofobject));
+
+/*
+ * These two functions are used to allocate and release large chunks of
+ * memory (up to the total free space designated by jpeg_mem_available).
+ * The interface is the same as above, except that on an 80x86 machine,
+ * far pointers are used. On most other machines these are identical to
+ * the jpeg_get/free_small routines; but we keep them separate anyway,
+ * in case a different allocation strategy is desirable for large chunks.
+ */
+
+EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
+ size_t sizeofobject));
+EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
+ size_t sizeofobject));
+
+/*
+ * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
+ * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
+ * matter, but that case should never come into play). This macro is needed
+ * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
+ * On those machines, we expect that jconfig.h will provide a proper value.
+ * On machines with 32-bit flat address spaces, any large constant may be used.
+ *
+ * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
+ * size_t and will be a multiple of sizeof(align_type).
+ */
+
+#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
+#define MAX_ALLOC_CHUNK 1000000000L
+#endif
+
+/*
+ * This routine computes the total space still available for allocation by
+ * jpeg_get_large. If more space than this is needed, backing store will be
+ * used. NOTE: any memory already allocated must not be counted.
+ *
+ * There is a minimum space requirement, corresponding to the minimum
+ * feasible buffer sizes; jmemmgr.c will request that much space even if
+ * jpeg_mem_available returns zero. The maximum space needed, enough to hold
+ * all working storage in memory, is also passed in case it is useful.
+ * Finally, the total space already allocated is passed. If no better
+ * method is available, cinfo->mem->max_memory_to_use - already_allocated
+ * is often a suitable calculation.
+ *
+ * It is OK for jpeg_mem_available to underestimate the space available
+ * (that'll just lead to more backing-store access than is really necessary).
+ * However, an overestimate will lead to failure. Hence it's wise to subtract
+ * a slop factor from the true available space. 5% should be enough.
+ *
+ * On machines with lots of virtual memory, any large constant may be returned.
+ * Conversely, zero may be returned to always use the minimum amount of memory.
+ */
+
+EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
+ long min_bytes_needed,
+ long max_bytes_needed,
+ long already_allocated));
+
+
+/*
+ * This structure holds whatever state is needed to access a single
+ * backing-store object. The read/write/close method pointers are called
+ * by jmemmgr.c to manipulate the backing-store object; all other fields
+ * are private to the system-dependent backing store routines.
+ */
+
+#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
+
+
+#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
+
+typedef unsigned short XMSH; /* type of extended-memory handles */
+typedef unsigned short EMSH; /* type of expanded-memory handles */
+
+typedef union {
+ short file_handle; /* DOS file handle if it's a temp file */
+ XMSH xms_handle; /* handle if it's a chunk of XMS */
+ EMSH ems_handle; /* handle if it's a chunk of EMS */
+} handle_union;
+
+#endif /* USE_MSDOS_MEMMGR */
+
+#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
+#include <Files.h>
+#endif /* USE_MAC_MEMMGR */
+
+
+typedef struct backing_store_struct * backing_store_ptr;
+
+typedef struct backing_store_struct {
+ /* Methods for reading/writing/closing this backing-store object */
+ JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count));
+ JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count));
+ JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info));
+
+ /* Private fields for system-dependent backing-store management */
+#ifdef USE_MSDOS_MEMMGR
+ /* For the MS-DOS manager (jmemdos.c), we need: */
+ handle_union handle; /* reference to backing-store storage object */
+ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+#ifdef USE_MAC_MEMMGR
+ /* For the Mac manager (jmemmac.c), we need: */
+ short temp_file; /* file reference number to temp file */
+ FSSpec tempSpec; /* the FSSpec for the temp file */
+ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+ /* For a typical implementation with temp files, we need: */
+ FILE * temp_file; /* stdio reference to temp file */
+ char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
+#endif
+#endif
+} backing_store_info;
+
+
+/*
+ * Initial opening of a backing-store object. This must fill in the
+ * read/write/close pointers in the object. The read/write routines
+ * may take an error exit if the specified maximum file size is exceeded.
+ * (If jpeg_mem_available always returns a large value, this routine can
+ * just take an error exit.)
+ */
+
+EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
+ backing_store_ptr info,
+ long total_bytes_needed));
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required. jpeg_mem_init will be called before anything is
+ * allocated (and, therefore, nothing in cinfo is of use except the error
+ * manager pointer). It should return a suitable default value for
+ * max_memory_to_use; this may subsequently be overridden by the surrounding
+ * application. (Note that max_memory_to_use is only important if
+ * jpeg_mem_available chooses to consult it ... no one else will.)
+ * jpeg_mem_term may assume that all requested memory has been freed and that
+ * all opened backing-store objects have been closed.
+ */
+
+EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
diff --git a/plugins/AdvaImg/src/LibJPEG/jmorecfg.h b/plugins/AdvaImg/src/LibJPEG/jmorecfg.h
new file mode 100644
index 0000000000..6c085c36a6
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jmorecfg.h
@@ -0,0 +1,369 @@
+/*
+ * jmorecfg.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 1997-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains additional configuration options that customize the
+ * JPEG software for special applications or support machine-dependent
+ * optimizations. Most users will not need to touch this file.
+ */
+
+
+/*
+ * Define BITS_IN_JSAMPLE as either
+ * 8 for 8-bit sample values (the usual setting)
+ * 12 for 12-bit sample values
+ * Only 8 and 12 are legal data precisions for lossy JPEG according to the
+ * JPEG standard, and the IJG code does not support anything else!
+ * We do not support run-time selection of data precision, sorry.
+ */
+
+#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
+
+
+/*
+ * Maximum number of components (color channels) allowed in JPEG image.
+ * To meet the letter of the JPEG spec, set this to 255. However, darn
+ * few applications need more than 4 channels (maybe 5 for CMYK + alpha
+ * mask). We recommend 10 as a reasonable compromise; use 4 if you are
+ * really short on memory. (Each allowed component costs a hundred or so
+ * bytes of storage, whether actually used in an image or not.)
+ */
+
+#define MAX_COMPONENTS 10 /* maximum number of image components */
+
+
+/*
+ * Basic data types.
+ * You may need to change these if you have a machine with unusual data
+ * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
+ * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
+ * but it had better be at least 16.
+ */
+
+/* Representation of a single sample (pixel element value).
+ * We frequently allocate large arrays of these, so it's important to keep
+ * them small. But if you have memory to burn and access to char or short
+ * arrays is very slow on your hardware, you might want to change these.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+/* JSAMPLE should be the smallest type that will hold the values 0..255.
+ * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JSAMPLE;
+#define GETJSAMPLE(value) ((int) (value))
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JSAMPLE;
+#ifdef CHAR_IS_UNSIGNED
+#define GETJSAMPLE(value) ((int) (value))
+#else
+#define GETJSAMPLE(value) ((int) (value) & 0xFF)
+#endif /* CHAR_IS_UNSIGNED */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+#define MAXJSAMPLE 255
+#define CENTERJSAMPLE 128
+
+#endif /* BITS_IN_JSAMPLE == 8 */
+
+
+#if BITS_IN_JSAMPLE == 12
+/* JSAMPLE should be the smallest type that will hold the values 0..4095.
+ * On nearly all machines "short" will do nicely.
+ */
+
+typedef short JSAMPLE;
+#define GETJSAMPLE(value) ((int) (value))
+
+#define MAXJSAMPLE 4095
+#define CENTERJSAMPLE 2048
+
+#endif /* BITS_IN_JSAMPLE == 12 */
+
+
+/* Representation of a DCT frequency coefficient.
+ * This should be a signed value of at least 16 bits; "short" is usually OK.
+ * Again, we allocate large arrays of these, but you can change to int
+ * if you have memory to burn and "short" is really slow.
+ */
+
+typedef short JCOEF;
+
+
+/* Compressed datastreams are represented as arrays of JOCTET.
+ * These must be EXACTLY 8 bits wide, at least once they are written to
+ * external storage. Note that when using the stdio data source/destination
+ * managers, this is also the data type passed to fread/fwrite.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JOCTET;
+#define GETJOCTET(value) (value)
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JOCTET;
+#ifdef CHAR_IS_UNSIGNED
+#define GETJOCTET(value) (value)
+#else
+#define GETJOCTET(value) ((value) & 0xFF)
+#endif /* CHAR_IS_UNSIGNED */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+/* These typedefs are used for various table entries and so forth.
+ * They must be at least as wide as specified; but making them too big
+ * won't cost a huge amount of memory, so we don't provide special
+ * extraction code like we did for JSAMPLE. (In other words, these
+ * typedefs live at a different point on the speed/space tradeoff curve.)
+ */
+
+/* UINT8 must hold at least the values 0..255. */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char UINT8;
+#else /* not HAVE_UNSIGNED_CHAR */
+#ifdef CHAR_IS_UNSIGNED
+typedef char UINT8;
+#else /* not CHAR_IS_UNSIGNED */
+typedef short UINT8;
+#endif /* CHAR_IS_UNSIGNED */
+#endif /* HAVE_UNSIGNED_CHAR */
+
+/* UINT16 must hold at least the values 0..65535. */
+
+#ifdef HAVE_UNSIGNED_SHORT
+typedef unsigned short UINT16;
+#else /* not HAVE_UNSIGNED_SHORT */
+typedef unsigned int UINT16;
+#endif /* HAVE_UNSIGNED_SHORT */
+
+/* INT16 must hold at least the values -32768..32767. */
+
+#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
+typedef short INT16;
+#endif
+
+/* INT32 must hold at least signed 32-bit values. */
+
+#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
+#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
+#ifndef _BASETSD_H /* MinGW is slightly different */
+#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
+typedef long INT32;
+#endif
+#endif
+#endif
+#endif
+
+/* Datatype used for image dimensions. The JPEG standard only supports
+ * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
+ * "unsigned int" is sufficient on all machines. However, if you need to
+ * handle larger images and you don't mind deviating from the spec, you
+ * can change this datatype.
+ */
+
+typedef unsigned int JDIMENSION;
+
+#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
+
+
+/* These macros are used in all function definitions and extern declarations.
+ * You could modify them if you need to change function linkage conventions;
+ * in particular, you'll need to do that to make the library a Windows DLL.
+ * Another application is to make all functions global for use with debuggers
+ * or code profilers that require it.
+ */
+
+/* a function called through method pointers: */
+#define METHODDEF(type) static type
+/* a function used only in its module: */
+#define LOCAL(type) static type
+/* a function referenced thru EXTERNs: */
+#define GLOBAL(type) type
+/* a reference to a GLOBAL function: */
+#define EXTERN(type) extern type
+
+
+/* This macro is used to declare a "method", that is, a function pointer.
+ * We want to supply prototype parameters if the compiler can cope.
+ * Note that the arglist parameter must be parenthesized!
+ * Again, you can customize this if you need special linkage keywords.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
+#else
+#define JMETHOD(type,methodname,arglist) type (*methodname) ()
+#endif
+
+
+/* Here is the pseudo-keyword for declaring pointers that must be "far"
+ * on 80x86 machines. Most of the specialized coding for 80x86 is handled
+ * by just saying "FAR *" where such a pointer is needed. In a few places
+ * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
+ */
+
+#ifndef FAR
+#ifdef NEED_FAR_POINTERS
+#define FAR far
+#else
+#define FAR
+#endif
+#endif
+
+
+/*
+ * On a few systems, type boolean and/or its values FALSE, TRUE may appear
+ * in standard header files. Or you may have conflicts with application-
+ * specific header files that you want to include together with these files.
+ * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
+ */
+
+#ifndef HAVE_BOOLEAN
+typedef int boolean;
+#endif
+#ifndef FALSE /* in case these macros already exist */
+#define FALSE 0 /* values of boolean */
+#endif
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+
+/*
+ * The remaining options affect code selection within the JPEG library,
+ * but they don't need to be visible to most applications using the library.
+ * To minimize application namespace pollution, the symbols won't be
+ * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
+ */
+
+#ifdef JPEG_INTERNALS
+#define JPEG_INTERNAL_OPTIONS
+#endif
+
+#ifdef JPEG_INTERNAL_OPTIONS
+
+
+/*
+ * These defines indicate whether to include various optional functions.
+ * Undefining some of these symbols will produce a smaller but less capable
+ * library. Note that you can leave certain source files out of the
+ * compilation/linking process if you've #undef'd the corresponding symbols.
+ * (You may HAVE to do that if your compiler doesn't like null source files.)
+ */
+
+/* Capability options common to encoder and decoder: */
+
+#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
+#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
+#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
+
+/* Encoder capability options: */
+
+#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
+#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/
+#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
+/* Note: if you selected 12-bit data precision, it is dangerous to turn off
+ * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
+ * precision, so jchuff.c normally uses entropy optimization to compute
+ * usable tables for higher precision. If you don't want to do optimization,
+ * you'll have to supply different default Huffman tables.
+ * The exact same statements apply for progressive JPEG: the default tables
+ * don't work for progressive mode. (This may get fixed, however.)
+ */
+#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
+
+/* Decoder capability options: */
+
+#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
+#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
+#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
+#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
+#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
+#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
+#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
+#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
+
+/* more capability options later, no doubt */
+
+
+/*
+ * Ordering of RGB data in scanlines passed to or from the application.
+ * If your application wants to deal with data in the order B,G,R, just
+ * change these macros. You can also deal with formats such as R,G,B,X
+ * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
+ * the offsets will also change the order in which colormap data is organized.
+ * RESTRICTIONS:
+ * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
+ * 2. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
+ * is not 3 (they don't understand about dummy color components!). So you
+ * can't use color quantization if you change that value.
+ */
+
+#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
+#define RGB_GREEN 1 /* Offset of Green */
+#define RGB_BLUE 2 /* Offset of Blue */
+#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
+
+
+/* Definitions for speed-related optimizations. */
+
+
+/* If your compiler supports inline functions, define INLINE
+ * as the inline keyword; otherwise define it as empty.
+ */
+
+#ifndef INLINE
+#ifdef __GNUC__ /* for instance, GNU C knows about inline */
+#define INLINE __inline__
+#endif
+#ifndef INLINE
+#define INLINE /* default is to define it as empty */
+#endif
+#endif
+
+
+/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
+ * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
+ * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
+ */
+
+#ifndef MULTIPLIER
+#define MULTIPLIER int /* type for fastest integer multiply */
+#endif
+
+
+/* FAST_FLOAT should be either float or double, whichever is done faster
+ * by your compiler. (Note that this type is only used in the floating point
+ * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
+ * Typically, float is faster in ANSI C compilers, while double is faster in
+ * pre-ANSI compilers (because they insist on converting to double anyway).
+ * The code below therefore chooses float if we have ANSI-style prototypes.
+ */
+
+#ifndef FAST_FLOAT
+#ifdef HAVE_PROTOTYPES
+#define FAST_FLOAT float
+#else
+#define FAST_FLOAT double
+#endif
+#endif
+
+#endif /* JPEG_INTERNAL_OPTIONS */
diff --git a/plugins/AdvaImg/src/LibJPEG/jpegint.h b/plugins/AdvaImg/src/LibJPEG/jpegint.h
new file mode 100644
index 0000000000..c0d5c14202
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jpegint.h
@@ -0,0 +1,426 @@
+/*
+ * jpegint.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 1997-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides common declarations for the various JPEG modules.
+ * These declarations are considered internal to the JPEG library; most
+ * applications using the library shouldn't need to include this file.
+ */
+
+
+/* Declarations for both compression & decompression */
+
+typedef enum { /* Operating modes for buffer controllers */
+ JBUF_PASS_THRU, /* Plain stripwise operation */
+ /* Remaining modes require a full-image buffer to have been created */
+ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
+ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
+ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
+} J_BUF_MODE;
+
+/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
+#define CSTATE_START 100 /* after create_compress */
+#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
+#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
+#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
+#define DSTATE_START 200 /* after create_decompress */
+#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
+#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
+#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
+#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
+#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
+#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
+#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
+#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
+#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
+#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
+
+
+/* Declarations for compression modules */
+
+/* Master control module */
+struct jpeg_comp_master {
+ JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean call_pass_startup; /* True if pass_startup must be called */
+ boolean is_last_pass; /* True during last pass */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_c_main_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail));
+};
+
+/* Compression preprocessing (downsampling input buffer control) */
+struct jpeg_c_prep_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf,
+ JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_c_coef_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf));
+};
+
+/* Colorspace conversion */
+struct jpeg_color_converter {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows));
+};
+
+/* Downsampling */
+struct jpeg_downsampler {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, downsample, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+ JSAMPIMAGE output_buf,
+ JDIMENSION out_row_group_index));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Forward DCT (also controls coefficient quantization) */
+typedef JMETHOD(void, forward_DCT_ptr,
+ (j_compress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks));
+
+struct jpeg_forward_dct {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ /* It is useful to allow each component to have a separate FDCT method. */
+ forward_DCT_ptr forward_DCT[MAX_COMPONENTS];
+};
+
+/* Entropy encoding */
+struct jpeg_entropy_encoder {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
+ JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+};
+
+/* Marker writing */
+struct jpeg_marker_writer {
+ JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
+ JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
+ /* These routines are exported to allow insertion of extra markers */
+ /* Probably only COM and APPn markers should be written this way */
+ JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
+ unsigned int datalen));
+ JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
+};
+
+
+/* Declarations for decompression modules */
+
+/* Master control module */
+struct jpeg_decomp_master {
+ JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
+};
+
+/* Input control module */
+struct jpeg_input_controller {
+ JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
+ JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean has_multiple_scans; /* True if file has multiple scans */
+ boolean eoi_reached; /* True when EOI has been consumed */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_d_main_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_d_coef_controller {
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf));
+ /* Pointer to array of coefficient virtual arrays, or NULL if none */
+ jvirt_barray_ptr *coef_arrays;
+};
+
+/* Decompression postprocessing (color quantization buffer control) */
+struct jpeg_d_post_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Marker reading & parsing */
+struct jpeg_marker_reader {
+ JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
+ /* Read markers until SOS or EOI.
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ */
+ JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
+ /* Read a restart marker --- exported for use by entropy decoder only */
+ jpeg_marker_parser_method read_restart_marker;
+
+ /* State of marker reader --- nominally internal, but applications
+ * supplying COM or APPn handlers might like to know the state.
+ */
+ boolean saw_SOI; /* found SOI? */
+ boolean saw_SOF; /* found SOF? */
+ int next_restart_num; /* next restart number expected (0-7) */
+ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
+};
+
+/* Entropy decoding */
+struct jpeg_entropy_decoder {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
+ JBLOCKROW *MCU_data));
+};
+
+/* Inverse DCT (also performs dequantization) */
+typedef JMETHOD(void, inverse_DCT_method_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col));
+
+struct jpeg_inverse_dct {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ /* It is useful to allow each component to have a separate IDCT method. */
+ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
+};
+
+/* Upsampling (note that upsampler must also call color converter) */
+struct jpeg_upsampler {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, upsample, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Colorspace conversion */
+struct jpeg_color_deconverter {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows));
+};
+
+/* Color quantization or color precision reduction */
+struct jpeg_color_quantizer {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
+ JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf,
+ int num_rows));
+ JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
+};
+
+
+/* Miscellaneous useful macros */
+
+#undef MAX
+#define MAX(a,b) ((a) > (b) ? (a) : (b))
+#undef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+
+
+/* We assume that right shift corresponds to signed division by 2 with
+ * rounding towards minus infinity. This is correct for typical "arithmetic
+ * shift" instructions that shift in copies of the sign bit. But some
+ * C compilers implement >> with an unsigned shift. For these machines you
+ * must define RIGHT_SHIFT_IS_UNSIGNED.
+ * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
+ * It is only applied with constant shift counts. SHIFT_TEMPS must be
+ * included in the variables of any routine using RIGHT_SHIFT.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define SHIFT_TEMPS INT32 shift_temp;
+#define RIGHT_SHIFT(x,shft) \
+ ((shift_temp = (x)) < 0 ? \
+ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
+ (shift_temp >> (shft)))
+#else
+#define SHIFT_TEMPS
+#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_compress_master jICompress
+#define jinit_c_master_control jICMaster
+#define jinit_c_main_controller jICMainC
+#define jinit_c_prep_controller jICPrepC
+#define jinit_c_coef_controller jICCoefC
+#define jinit_color_converter jICColor
+#define jinit_downsampler jIDownsampler
+#define jinit_forward_dct jIFDCT
+#define jinit_huff_encoder jIHEncoder
+#define jinit_arith_encoder jIAEncoder
+#define jinit_marker_writer jIMWriter
+#define jinit_master_decompress jIDMaster
+#define jinit_d_main_controller jIDMainC
+#define jinit_d_coef_controller jIDCoefC
+#define jinit_d_post_controller jIDPostC
+#define jinit_input_controller jIInCtlr
+#define jinit_marker_reader jIMReader
+#define jinit_huff_decoder jIHDecoder
+#define jinit_arith_decoder jIADecoder
+#define jinit_inverse_dct jIIDCT
+#define jinit_upsampler jIUpsampler
+#define jinit_color_deconverter jIDColor
+#define jinit_1pass_quantizer jI1Quant
+#define jinit_2pass_quantizer jI2Quant
+#define jinit_merged_upsampler jIMUpsampler
+#define jinit_memory_mgr jIMemMgr
+#define jdiv_round_up jDivRound
+#define jround_up jRound
+#define jzero_far jZeroFar
+#define jcopy_sample_rows jCopySamples
+#define jcopy_block_row jCopyBlocks
+#define jpeg_zigzag_order jZIGTable
+#define jpeg_natural_order jZAGTable
+#define jpeg_natural_order7 jZAG7Table
+#define jpeg_natural_order6 jZAG6Table
+#define jpeg_natural_order5 jZAG5Table
+#define jpeg_natural_order4 jZAG4Table
+#define jpeg_natural_order3 jZAG3Table
+#define jpeg_natural_order2 jZAG2Table
+#define jpeg_aritab jAriTab
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
+ * and coefficient-block arrays. This won't work on 80x86 because the arrays
+ * are FAR and we're assuming a small-pointer memory model. However, some
+ * DOS compilers provide far-pointer versions of memcpy() and memset() even
+ * in the small-model libraries. These will be used if USE_FMEM is defined.
+ * Otherwise, the routines in jutils.c do it the hard way.
+ */
+
+#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */
+#define FMEMZERO(target,size) MEMZERO(target,size)
+#else /* 80x86 case */
+#ifdef USE_FMEM
+#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
+#else
+EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
+#define FMEMZERO(target,size) jzero_far(target, size)
+#endif
+#endif
+
+
+/* Compression module initialization routines */
+EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
+ boolean transcode_only));
+EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
+/* Decompression module initialization routines */
+EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
+/* Memory manager initialization */
+EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
+
+/* Utility routines in jutils.c */
+EXTERN(long) jdiv_round_up JPP((long a, long b));
+EXTERN(long) jround_up JPP((long a, long b));
+EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols));
+EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks));
+/* Constant tables in jutils.c */
+#if 0 /* This table is not actually needed in v6a */
+extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
+#endif
+extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
+extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */
+extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */
+extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */
+extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */
+extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */
+extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */
+
+/* Arithmetic coding probability estimation tables in jaricom.c */
+extern const INT32 jpeg_aritab[];
+
+/* Suppress undefined-structure complaints if necessary. */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+#endif
+#endif /* INCOMPLETE_TYPES_BROKEN */
diff --git a/plugins/AdvaImg/src/LibJPEG/jpeglib.h b/plugins/AdvaImg/src/LibJPEG/jpeglib.h
new file mode 100644
index 0000000000..1327cffa96
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jpeglib.h
@@ -0,0 +1,1160 @@
+/*
+ * jpeglib.h
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2002-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the application interface for the JPEG library.
+ * Most applications using the library need only include this file,
+ * and perhaps jerror.h if they want to know the exact error codes.
+ */
+
+#ifndef JPEGLIB_H
+#define JPEGLIB_H
+
+/*
+ * First we include the configuration files that record how this
+ * installation of the JPEG library is set up. jconfig.h can be
+ * generated automatically for many systems. jmorecfg.h contains
+ * manual configuration options that most people need not worry about.
+ */
+
+#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
+#include "jconfig.h" /* widely used configuration options */
+#endif
+#include "jmorecfg.h" /* seldom changed options */
+
+
+#ifdef __cplusplus
+#ifndef DONT_USE_EXTERN_C
+extern "C" {
+#endif
+#endif
+
+/* Version IDs for the JPEG library.
+ * Might be useful for tests like "#if JPEG_LIB_VERSION >= 80".
+ */
+
+#define JPEG_LIB_VERSION 80 /* Compatibility version 8.0 */
+#define JPEG_LIB_VERSION_MAJOR 8
+#define JPEG_LIB_VERSION_MINOR 4
+
+
+/* Various constants determining the sizes of things.
+ * All of these are specified by the JPEG standard, so don't change them
+ * if you want to be compatible.
+ */
+
+#define DCTSIZE 8 /* The basic DCT block is 8x8 coefficients */
+#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
+#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
+#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
+#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
+#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
+#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
+/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
+ * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
+ * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
+ * to handle it. We even let you do this from the jconfig.h file. However,
+ * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
+ * sometimes emits noncompliant files doesn't mean you should too.
+ */
+#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
+#ifndef D_MAX_BLOCKS_IN_MCU
+#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
+#endif
+
+
+/* Data structures for images (arrays of samples and of DCT coefficients).
+ * On 80x86 machines, the image arrays are too big for near pointers,
+ * but the pointer arrays can fit in near memory.
+ */
+
+typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
+typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
+typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
+
+typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
+typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
+typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
+typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
+
+typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
+
+
+/* Types for JPEG compression parameters and working tables. */
+
+
+/* DCT coefficient quantization tables. */
+
+typedef struct {
+ /* This array gives the coefficient quantizers in natural array order
+ * (not the zigzag order in which they are stored in a JPEG DQT marker).
+ * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
+ */
+ UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
+ /* This field is used only during compression. It's initialized FALSE when
+ * the table is created, and set TRUE when it's been output to the file.
+ * You could suppress output of a table by setting this to TRUE.
+ * (See jpeg_suppress_tables for an example.)
+ */
+ boolean sent_table; /* TRUE when table has been output */
+} JQUANT_TBL;
+
+
+/* Huffman coding tables. */
+
+typedef struct {
+ /* These two fields directly represent the contents of a JPEG DHT marker */
+ UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
+ /* length k bits; bits[0] is unused */
+ UINT8 huffval[256]; /* The symbols, in order of incr code length */
+ /* This field is used only during compression. It's initialized FALSE when
+ * the table is created, and set TRUE when it's been output to the file.
+ * You could suppress output of a table by setting this to TRUE.
+ * (See jpeg_suppress_tables for an example.)
+ */
+ boolean sent_table; /* TRUE when table has been output */
+} JHUFF_TBL;
+
+
+/* Basic info about one component (color channel). */
+
+typedef struct {
+ /* These values are fixed over the whole image. */
+ /* For compression, they must be supplied by parameter setup; */
+ /* for decompression, they are read from the SOF marker. */
+ int component_id; /* identifier for this component (0..255) */
+ int component_index; /* its index in SOF or cinfo->comp_info[] */
+ int h_samp_factor; /* horizontal sampling factor (1..4) */
+ int v_samp_factor; /* vertical sampling factor (1..4) */
+ int quant_tbl_no; /* quantization table selector (0..3) */
+ /* These values may vary between scans. */
+ /* For compression, they must be supplied by parameter setup; */
+ /* for decompression, they are read from the SOS marker. */
+ /* The decompressor output side may not use these variables. */
+ int dc_tbl_no; /* DC entropy table selector (0..3) */
+ int ac_tbl_no; /* AC entropy table selector (0..3) */
+
+ /* Remaining fields should be treated as private by applications. */
+
+ /* These values are computed during compression or decompression startup: */
+ /* Component's size in DCT blocks.
+ * Any dummy blocks added to complete an MCU are not counted; therefore
+ * these values do not depend on whether a scan is interleaved or not.
+ */
+ JDIMENSION width_in_blocks;
+ JDIMENSION height_in_blocks;
+ /* Size of a DCT block in samples,
+ * reflecting any scaling we choose to apply during the DCT step.
+ * Values from 1 to 16 are supported.
+ * Note that different components may receive different DCT scalings.
+ */
+ int DCT_h_scaled_size;
+ int DCT_v_scaled_size;
+ /* The downsampled dimensions are the component's actual, unpadded number
+ * of samples at the main buffer (preprocessing/compression interface);
+ * DCT scaling is included, so
+ * downsampled_width = ceil(image_width * Hi/Hmax * DCT_h_scaled_size/DCTSIZE)
+ * and similarly for height.
+ */
+ JDIMENSION downsampled_width; /* actual width in samples */
+ JDIMENSION downsampled_height; /* actual height in samples */
+ /* This flag is used only for decompression. In cases where some of the
+ * components will be ignored (eg grayscale output from YCbCr image),
+ * we can skip most computations for the unused components.
+ */
+ boolean component_needed; /* do we need the value of this component? */
+
+ /* These values are computed before starting a scan of the component. */
+ /* The decompressor output side may not use these variables. */
+ int MCU_width; /* number of blocks per MCU, horizontally */
+ int MCU_height; /* number of blocks per MCU, vertically */
+ int MCU_blocks; /* MCU_width * MCU_height */
+ int MCU_sample_width; /* MCU width in samples: MCU_width * DCT_h_scaled_size */
+ int last_col_width; /* # of non-dummy blocks across in last MCU */
+ int last_row_height; /* # of non-dummy blocks down in last MCU */
+
+ /* Saved quantization table for component; NULL if none yet saved.
+ * See jdinput.c comments about the need for this information.
+ * This field is currently used only for decompression.
+ */
+ JQUANT_TBL * quant_table;
+
+ /* Private per-component storage for DCT or IDCT subsystem. */
+ void * dct_table;
+} jpeg_component_info;
+
+
+/* The script for encoding a multiple-scan file is an array of these: */
+
+typedef struct {
+ int comps_in_scan; /* number of components encoded in this scan */
+ int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
+ int Ss, Se; /* progressive JPEG spectral selection parms */
+ int Ah, Al; /* progressive JPEG successive approx. parms */
+} jpeg_scan_info;
+
+/* The decompressor can save APPn and COM markers in a list of these: */
+
+typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
+
+struct jpeg_marker_struct {
+ jpeg_saved_marker_ptr next; /* next in list, or NULL */
+ UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
+ unsigned int original_length; /* # bytes of data in the file */
+ unsigned int data_length; /* # bytes of data saved at data[] */
+ JOCTET FAR * data; /* the data contained in the marker */
+ /* the marker length word is not counted in data_length or original_length */
+};
+
+/* Known color spaces. */
+
+typedef enum {
+ JCS_UNKNOWN, /* error/unspecified */
+ JCS_GRAYSCALE, /* monochrome */
+ JCS_RGB, /* red/green/blue */
+ JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
+ JCS_CMYK, /* C/M/Y/K */
+ JCS_YCCK /* Y/Cb/Cr/K */
+} J_COLOR_SPACE;
+
+/* DCT/IDCT algorithm options. */
+
+typedef enum {
+ JDCT_ISLOW, /* slow but accurate integer algorithm */
+ JDCT_IFAST, /* faster, less accurate integer method */
+ JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
+} J_DCT_METHOD;
+
+#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
+#define JDCT_DEFAULT JDCT_ISLOW
+#endif
+#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
+#define JDCT_FASTEST JDCT_IFAST
+#endif
+
+/* Dithering options for decompression. */
+
+typedef enum {
+ JDITHER_NONE, /* no dithering */
+ JDITHER_ORDERED, /* simple ordered dither */
+ JDITHER_FS /* Floyd-Steinberg error diffusion dither */
+} J_DITHER_MODE;
+
+
+/* Common fields between JPEG compression and decompression master structs. */
+
+#define jpeg_common_fields \
+ struct jpeg_error_mgr * err; /* Error handler module */\
+ struct jpeg_memory_mgr * mem; /* Memory manager module */\
+ struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
+ void * client_data; /* Available for use by application */\
+ boolean is_decompressor; /* So common code can tell which is which */\
+ int global_state /* For checking call sequence validity */
+
+/* Routines that are to be used by both halves of the library are declared
+ * to receive a pointer to this structure. There are no actual instances of
+ * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
+ */
+struct jpeg_common_struct {
+ jpeg_common_fields; /* Fields common to both master struct types */
+ /* Additional fields follow in an actual jpeg_compress_struct or
+ * jpeg_decompress_struct. All three structs must agree on these
+ * initial fields! (This would be a lot cleaner in C++.)
+ */
+};
+
+typedef struct jpeg_common_struct * j_common_ptr;
+typedef struct jpeg_compress_struct * j_compress_ptr;
+typedef struct jpeg_decompress_struct * j_decompress_ptr;
+
+
+/* Master record for a compression instance */
+
+struct jpeg_compress_struct {
+ jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
+
+ /* Destination for compressed data */
+ struct jpeg_destination_mgr * dest;
+
+ /* Description of source image --- these fields must be filled in by
+ * outer application before starting compression. in_color_space must
+ * be correct before you can even call jpeg_set_defaults().
+ */
+
+ JDIMENSION image_width; /* input image width */
+ JDIMENSION image_height; /* input image height */
+ int input_components; /* # of color components in input image */
+ J_COLOR_SPACE in_color_space; /* colorspace of input image */
+
+ double input_gamma; /* image gamma of input image */
+
+ /* Compression parameters --- these fields must be set before calling
+ * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
+ * initialize everything to reasonable defaults, then changing anything
+ * the application specifically wants to change. That way you won't get
+ * burnt when new parameters are added. Also note that there are several
+ * helper routines to simplify changing parameters.
+ */
+
+ unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+ JDIMENSION jpeg_width; /* scaled JPEG image width */
+ JDIMENSION jpeg_height; /* scaled JPEG image height */
+ /* Dimensions of actual JPEG image that will be written to file,
+ * derived from input dimensions by scaling factors above.
+ * These fields are computed by jpeg_start_compress().
+ * You can also use jpeg_calc_jpeg_dimensions() to determine these values
+ * in advance of calling jpeg_start_compress().
+ */
+
+ int data_precision; /* bits of precision in image data */
+
+ int num_components; /* # of color components in JPEG image */
+ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+ jpeg_component_info * comp_info;
+ /* comp_info[i] describes component that appears i'th in SOF */
+
+ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+ int q_scale_factor[NUM_QUANT_TBLS];
+ /* ptrs to coefficient quantization tables, or NULL if not defined,
+ * and corresponding scale factors (percentage, initialized 100).
+ */
+
+ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ /* ptrs to Huffman coding tables, or NULL if not defined */
+
+ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+ int num_scans; /* # of entries in scan_info array */
+ const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
+ /* The default value of scan_info is NULL, which causes a single-scan
+ * sequential JPEG file to be emitted. To create a multi-scan file,
+ * set num_scans and scan_info to point to an array of scan definitions.
+ */
+
+ boolean raw_data_in; /* TRUE=caller supplies downsampled data */
+ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
+ boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
+ boolean CCIR601_sampling; /* TRUE=first samples are cosited */
+ boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */
+ int smoothing_factor; /* 1..100, or 0 for no input smoothing */
+ J_DCT_METHOD dct_method; /* DCT algorithm selector */
+
+ /* The restart interval can be specified in absolute MCUs by setting
+ * restart_interval, or in MCU rows by setting restart_in_rows
+ * (in which case the correct restart_interval will be figured
+ * for each scan).
+ */
+ unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
+ int restart_in_rows; /* if > 0, MCU rows per restart interval */
+
+ /* Parameters controlling emission of special markers. */
+
+ boolean write_JFIF_header; /* should a JFIF marker be written? */
+ UINT8 JFIF_major_version; /* What to write for the JFIF version number */
+ UINT8 JFIF_minor_version;
+ /* These three values are not used by the JPEG code, merely copied */
+ /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
+ /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
+ /* ratio is defined by X_density/Y_density even when density_unit=0. */
+ UINT8 density_unit; /* JFIF code for pixel size units */
+ UINT16 X_density; /* Horizontal pixel density */
+ UINT16 Y_density; /* Vertical pixel density */
+ boolean write_Adobe_marker; /* should an Adobe marker be written? */
+
+ /* State variable: index of next scanline to be written to
+ * jpeg_write_scanlines(). Application may use this to control its
+ * processing loop, e.g., "while (next_scanline < image_height)".
+ */
+
+ JDIMENSION next_scanline; /* 0 .. image_height-1 */
+
+ /* Remaining fields are known throughout compressor, but generally
+ * should not be touched by a surrounding application.
+ */
+
+ /*
+ * These fields are computed during compression startup
+ */
+ boolean progressive_mode; /* TRUE if scan script uses progressive mode */
+ int max_h_samp_factor; /* largest h_samp_factor */
+ int max_v_samp_factor; /* largest v_samp_factor */
+
+ int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */
+ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */
+
+ JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
+ /* The coefficient controller receives data in units of MCU rows as defined
+ * for fully interleaved scans (whether the JPEG file is interleaved or not).
+ * There are v_samp_factor * DCTSIZE sample rows of each component in an
+ * "iMCU" (interleaved MCU) row.
+ */
+
+ /*
+ * These fields are valid during any one scan.
+ * They describe the components and MCUs actually appearing in the scan.
+ */
+ int comps_in_scan; /* # of JPEG components in this scan */
+ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+ /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+ JDIMENSION MCUs_per_row; /* # of MCUs across the image */
+ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
+
+ int blocks_in_MCU; /* # of DCT blocks per MCU */
+ int MCU_membership[C_MAX_BLOCKS_IN_MCU];
+ /* MCU_membership[i] is index in cur_comp_info of component owning */
+ /* i'th block in an MCU */
+
+ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
+
+ int block_size; /* the basic DCT block size: 1..16 */
+ const int * natural_order; /* natural-order position array */
+ int lim_Se; /* min( Se, DCTSIZE2-1 ) */
+
+ /*
+ * Links to compression subobjects (methods and private variables of modules)
+ */
+ struct jpeg_comp_master * master;
+ struct jpeg_c_main_controller * main;
+ struct jpeg_c_prep_controller * prep;
+ struct jpeg_c_coef_controller * coef;
+ struct jpeg_marker_writer * marker;
+ struct jpeg_color_converter * cconvert;
+ struct jpeg_downsampler * downsample;
+ struct jpeg_forward_dct * fdct;
+ struct jpeg_entropy_encoder * entropy;
+ jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
+ int script_space_size;
+};
+
+
+/* Master record for a decompression instance */
+
+struct jpeg_decompress_struct {
+ jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
+
+ /* Source of compressed data */
+ struct jpeg_source_mgr * src;
+
+ /* Basic description of image --- filled in by jpeg_read_header(). */
+ /* Application may inspect these values to decide how to process image. */
+
+ JDIMENSION image_width; /* nominal image width (from SOF marker) */
+ JDIMENSION image_height; /* nominal image height */
+ int num_components; /* # of color components in JPEG image */
+ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+ /* Decompression processing parameters --- these fields must be set before
+ * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
+ * them to default values.
+ */
+
+ J_COLOR_SPACE out_color_space; /* colorspace for output */
+
+ unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+ double output_gamma; /* image gamma wanted in output */
+
+ boolean buffered_image; /* TRUE=multiple output passes */
+ boolean raw_data_out; /* TRUE=downsampled data wanted */
+
+ J_DCT_METHOD dct_method; /* IDCT algorithm selector */
+ boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
+ boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
+
+ boolean quantize_colors; /* TRUE=colormapped output wanted */
+ /* the following are ignored if not quantize_colors: */
+ J_DITHER_MODE dither_mode; /* type of color dithering to use */
+ boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
+ int desired_number_of_colors; /* max # colors to use in created colormap */
+ /* these are significant only in buffered-image mode: */
+ boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */
+ boolean enable_external_quant;/* enable future use of external colormap */
+ boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */
+
+ /* Description of actual output image that will be returned to application.
+ * These fields are computed by jpeg_start_decompress().
+ * You can also use jpeg_calc_output_dimensions() to determine these values
+ * in advance of calling jpeg_start_decompress().
+ */
+
+ JDIMENSION output_width; /* scaled image width */
+ JDIMENSION output_height; /* scaled image height */
+ int out_color_components; /* # of color components in out_color_space */
+ int output_components; /* # of color components returned */
+ /* output_components is 1 (a colormap index) when quantizing colors;
+ * otherwise it equals out_color_components.
+ */
+ int rec_outbuf_height; /* min recommended height of scanline buffer */
+ /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
+ * high, space and time will be wasted due to unnecessary data copying.
+ * Usually rec_outbuf_height will be 1 or 2, at most 4.
+ */
+
+ /* When quantizing colors, the output colormap is described by these fields.
+ * The application can supply a colormap by setting colormap non-NULL before
+ * calling jpeg_start_decompress; otherwise a colormap is created during
+ * jpeg_start_decompress or jpeg_start_output.
+ * The map has out_color_components rows and actual_number_of_colors columns.
+ */
+ int actual_number_of_colors; /* number of entries in use */
+ JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
+
+ /* State variables: these variables indicate the progress of decompression.
+ * The application may examine these but must not modify them.
+ */
+
+ /* Row index of next scanline to be read from jpeg_read_scanlines().
+ * Application may use this to control its processing loop, e.g.,
+ * "while (output_scanline < output_height)".
+ */
+ JDIMENSION output_scanline; /* 0 .. output_height-1 */
+
+ /* Current input scan number and number of iMCU rows completed in scan.
+ * These indicate the progress of the decompressor input side.
+ */
+ int input_scan_number; /* Number of SOS markers seen so far */
+ JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
+
+ /* The "output scan number" is the notional scan being displayed by the
+ * output side. The decompressor will not allow output scan/row number
+ * to get ahead of input scan/row, but it can fall arbitrarily far behind.
+ */
+ int output_scan_number; /* Nominal scan number being displayed */
+ JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
+
+ /* Current progression status. coef_bits[c][i] indicates the precision
+ * with which component c's DCT coefficient i (in zigzag order) is known.
+ * It is -1 when no data has yet been received, otherwise it is the point
+ * transform (shift) value for the most recent scan of the coefficient
+ * (thus, 0 at completion of the progression).
+ * This pointer is NULL when reading a non-progressive file.
+ */
+ int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
+
+ /* Internal JPEG parameters --- the application usually need not look at
+ * these fields. Note that the decompressor output side may not use
+ * any parameters that can change between scans.
+ */
+
+ /* Quantization and Huffman tables are carried forward across input
+ * datastreams when processing abbreviated JPEG datastreams.
+ */
+
+ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+ /* ptrs to coefficient quantization tables, or NULL if not defined */
+
+ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+ /* ptrs to Huffman coding tables, or NULL if not defined */
+
+ /* These parameters are never carried across datastreams, since they
+ * are given in SOF/SOS markers or defined to be reset by SOI.
+ */
+
+ int data_precision; /* bits of precision in image data */
+
+ jpeg_component_info * comp_info;
+ /* comp_info[i] describes component that appears i'th in SOF */
+
+ boolean is_baseline; /* TRUE if Baseline SOF0 encountered */
+ boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
+ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
+
+ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+ unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
+
+ /* These fields record data obtained from optional markers recognized by
+ * the JPEG library.
+ */
+ boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
+ /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
+ UINT8 JFIF_major_version; /* JFIF version number */
+ UINT8 JFIF_minor_version;
+ UINT8 density_unit; /* JFIF code for pixel size units */
+ UINT16 X_density; /* Horizontal pixel density */
+ UINT16 Y_density; /* Vertical pixel density */
+ boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
+ UINT8 Adobe_transform; /* Color transform code from Adobe marker */
+
+ boolean CCIR601_sampling; /* TRUE=first samples are cosited */
+
+ /* Aside from the specific data retained from APPn markers known to the
+ * library, the uninterpreted contents of any or all APPn and COM markers
+ * can be saved in a list for examination by the application.
+ */
+ jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
+
+ /* Remaining fields are known throughout decompressor, but generally
+ * should not be touched by a surrounding application.
+ */
+
+ /*
+ * These fields are computed during decompression startup
+ */
+ int max_h_samp_factor; /* largest h_samp_factor */
+ int max_v_samp_factor; /* largest v_samp_factor */
+
+ int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */
+ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */
+
+ JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
+ /* The coefficient controller's input and output progress is measured in
+ * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
+ * in fully interleaved JPEG scans, but are used whether the scan is
+ * interleaved or not. We define an iMCU row as v_samp_factor DCT block
+ * rows of each component. Therefore, the IDCT output contains
+ * v_samp_factor*DCT_v_scaled_size sample rows of a component per iMCU row.
+ */
+
+ JSAMPLE * sample_range_limit; /* table for fast range-limiting */
+
+ /*
+ * These fields are valid during any one scan.
+ * They describe the components and MCUs actually appearing in the scan.
+ * Note that the decompressor output side must not use these fields.
+ */
+ int comps_in_scan; /* # of JPEG components in this scan */
+ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+ /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+ JDIMENSION MCUs_per_row; /* # of MCUs across the image */
+ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
+
+ int blocks_in_MCU; /* # of DCT blocks per MCU */
+ int MCU_membership[D_MAX_BLOCKS_IN_MCU];
+ /* MCU_membership[i] is index in cur_comp_info of component owning */
+ /* i'th block in an MCU */
+
+ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
+
+ /* These fields are derived from Se of first SOS marker.
+ */
+ int block_size; /* the basic DCT block size: 1..16 */
+ const int * natural_order; /* natural-order position array for entropy decode */
+ int lim_Se; /* min( Se, DCTSIZE2-1 ) for entropy decode */
+
+ /* This field is shared between entropy decoder and marker parser.
+ * It is either zero or the code of a JPEG marker that has been
+ * read from the data source, but has not yet been processed.
+ */
+ int unread_marker;
+
+ /*
+ * Links to decompression subobjects (methods, private variables of modules)
+ */
+ struct jpeg_decomp_master * master;
+ struct jpeg_d_main_controller * main;
+ struct jpeg_d_coef_controller * coef;
+ struct jpeg_d_post_controller * post;
+ struct jpeg_input_controller * inputctl;
+ struct jpeg_marker_reader * marker;
+ struct jpeg_entropy_decoder * entropy;
+ struct jpeg_inverse_dct * idct;
+ struct jpeg_upsampler * upsample;
+ struct jpeg_color_deconverter * cconvert;
+ struct jpeg_color_quantizer * cquantize;
+};
+
+
+/* "Object" declarations for JPEG modules that may be supplied or called
+ * directly by the surrounding application.
+ * As with all objects in the JPEG library, these structs only define the
+ * publicly visible methods and state variables of a module. Additional
+ * private fields may exist after the public ones.
+ */
+
+
+/* Error handler object */
+
+struct jpeg_error_mgr {
+ /* Error exit handler: does not return to caller */
+ JMETHOD(void, error_exit, (j_common_ptr cinfo));
+ /* Conditionally emit a trace or warning message */
+ JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
+ /* Routine that actually outputs a trace or error message */
+ JMETHOD(void, output_message, (j_common_ptr cinfo));
+ /* Format a message string for the most recent JPEG error or message */
+ JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
+#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
+ /* Reset error state variables at start of a new image */
+ JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
+
+ /* The message ID code and any parameters are saved here.
+ * A message can have one string parameter or up to 8 int parameters.
+ */
+ int msg_code;
+#define JMSG_STR_PARM_MAX 80
+ union {
+ int i[8];
+ char s[JMSG_STR_PARM_MAX];
+ } msg_parm;
+
+ /* Standard state variables for error facility */
+
+ int trace_level; /* max msg_level that will be displayed */
+
+ /* For recoverable corrupt-data errors, we emit a warning message,
+ * but keep going unless emit_message chooses to abort. emit_message
+ * should count warnings in num_warnings. The surrounding application
+ * can check for bad data by seeing if num_warnings is nonzero at the
+ * end of processing.
+ */
+ long num_warnings; /* number of corrupt-data warnings */
+
+ /* These fields point to the table(s) of error message strings.
+ * An application can change the table pointer to switch to a different
+ * message list (typically, to change the language in which errors are
+ * reported). Some applications may wish to add additional error codes
+ * that will be handled by the JPEG library error mechanism; the second
+ * table pointer is used for this purpose.
+ *
+ * First table includes all errors generated by JPEG library itself.
+ * Error code 0 is reserved for a "no such error string" message.
+ */
+ const char * const * jpeg_message_table; /* Library errors */
+ int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
+ /* Second table can be added by application (see cjpeg/djpeg for example).
+ * It contains strings numbered first_addon_message..last_addon_message.
+ */
+ const char * const * addon_message_table; /* Non-library errors */
+ int first_addon_message; /* code for first string in addon table */
+ int last_addon_message; /* code for last string in addon table */
+};
+
+
+/* Progress monitor object */
+
+struct jpeg_progress_mgr {
+ JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
+
+ long pass_counter; /* work units completed in this pass */
+ long pass_limit; /* total number of work units in this pass */
+ int completed_passes; /* passes completed so far */
+ int total_passes; /* total number of passes expected */
+};
+
+
+/* Data destination object for compression */
+
+struct jpeg_destination_mgr {
+ JOCTET * next_output_byte; /* => next byte to write in buffer */
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */
+
+ JMETHOD(void, init_destination, (j_compress_ptr cinfo));
+ JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
+ JMETHOD(void, term_destination, (j_compress_ptr cinfo));
+};
+
+
+/* Data source object for decompression */
+
+struct jpeg_source_mgr {
+ const JOCTET * next_input_byte; /* => next byte to read from buffer */
+ size_t bytes_in_buffer; /* # of bytes remaining in buffer */
+
+ JMETHOD(void, init_source, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
+ JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
+ JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
+ JMETHOD(void, term_source, (j_decompress_ptr cinfo));
+};
+
+
+/* Memory manager object.
+ * Allocates "small" objects (a few K total), "large" objects (tens of K),
+ * and "really big" objects (virtual arrays with backing store if needed).
+ * The memory manager does not allow individual objects to be freed; rather,
+ * each created object is assigned to a pool, and whole pools can be freed
+ * at once. This is faster and more convenient than remembering exactly what
+ * to free, especially where malloc()/free() are not too speedy.
+ * NB: alloc routines never return NULL. They exit to error_exit if not
+ * successful.
+ */
+
+#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
+#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
+#define JPOOL_NUMPOOLS 2
+
+typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
+typedef struct jvirt_barray_control * jvirt_barray_ptr;
+
+
+struct jpeg_memory_mgr {
+ /* Method pointers */
+ JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
+ size_t sizeofobject));
+ JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
+ size_t sizeofobject));
+ JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
+ JDIMENSION samplesperrow,
+ JDIMENSION numrows));
+ JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
+ JDIMENSION blocksperrow,
+ JDIMENSION numrows));
+ JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
+ int pool_id,
+ boolean pre_zero,
+ JDIMENSION samplesperrow,
+ JDIMENSION numrows,
+ JDIMENSION maxaccess));
+ JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
+ int pool_id,
+ boolean pre_zero,
+ JDIMENSION blocksperrow,
+ JDIMENSION numrows,
+ JDIMENSION maxaccess));
+ JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
+ JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
+ jvirt_sarray_ptr ptr,
+ JDIMENSION start_row,
+ JDIMENSION num_rows,
+ boolean writable));
+ JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
+ jvirt_barray_ptr ptr,
+ JDIMENSION start_row,
+ JDIMENSION num_rows,
+ boolean writable));
+ JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
+ JMETHOD(void, self_destruct, (j_common_ptr cinfo));
+
+ /* Limit on memory allocation for this JPEG object. (Note that this is
+ * merely advisory, not a guaranteed maximum; it only affects the space
+ * used for virtual-array buffers.) May be changed by outer application
+ * after creating the JPEG object.
+ */
+ long max_memory_to_use;
+
+ /* Maximum allocation request accepted by alloc_large. */
+ long max_alloc_chunk;
+};
+
+
+/* Routine signature for application-supplied marker processing methods.
+ * Need not pass marker code since it is stored in cinfo->unread_marker.
+ */
+typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
+
+
+/* Declarations for routines called by application.
+ * The JPP macro hides prototype parameters from compilers that can't cope.
+ * Note JPP requires double parentheses.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JPP(arglist) arglist
+#else
+#define JPP(arglist) ()
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers.
+ * We shorten external names to be unique in the first six letters, which
+ * is good enough for all known systems.
+ * (If your compiler itself needs names to be unique in less than 15
+ * characters, you are out of luck. Get a better compiler.)
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_error jStdError
+#define jpeg_CreateCompress jCreaCompress
+#define jpeg_CreateDecompress jCreaDecompress
+#define jpeg_destroy_compress jDestCompress
+#define jpeg_destroy_decompress jDestDecompress
+#define jpeg_stdio_dest jStdDest
+#define jpeg_stdio_src jStdSrc
+#define jpeg_mem_dest jMemDest
+#define jpeg_mem_src jMemSrc
+#define jpeg_set_defaults jSetDefaults
+#define jpeg_set_colorspace jSetColorspace
+#define jpeg_default_colorspace jDefColorspace
+#define jpeg_set_quality jSetQuality
+#define jpeg_set_linear_quality jSetLQuality
+#define jpeg_default_qtables jDefQTables
+#define jpeg_add_quant_table jAddQuantTable
+#define jpeg_quality_scaling jQualityScaling
+#define jpeg_simple_progression jSimProgress
+#define jpeg_suppress_tables jSuppressTables
+#define jpeg_alloc_quant_table jAlcQTable
+#define jpeg_alloc_huff_table jAlcHTable
+#define jpeg_start_compress jStrtCompress
+#define jpeg_write_scanlines jWrtScanlines
+#define jpeg_finish_compress jFinCompress
+#define jpeg_calc_jpeg_dimensions jCjpegDimensions
+#define jpeg_write_raw_data jWrtRawData
+#define jpeg_write_marker jWrtMarker
+#define jpeg_write_m_header jWrtMHeader
+#define jpeg_write_m_byte jWrtMByte
+#define jpeg_write_tables jWrtTables
+#define jpeg_read_header jReadHeader
+#define jpeg_start_decompress jStrtDecompress
+#define jpeg_read_scanlines jReadScanlines
+#define jpeg_finish_decompress jFinDecompress
+#define jpeg_read_raw_data jReadRawData
+#define jpeg_has_multiple_scans jHasMultScn
+#define jpeg_start_output jStrtOutput
+#define jpeg_finish_output jFinOutput
+#define jpeg_input_complete jInComplete
+#define jpeg_new_colormap jNewCMap
+#define jpeg_consume_input jConsumeInput
+#define jpeg_core_output_dimensions jCoreDimensions
+#define jpeg_calc_output_dimensions jCalcDimensions
+#define jpeg_save_markers jSaveMarkers
+#define jpeg_set_marker_processor jSetMarker
+#define jpeg_read_coefficients jReadCoefs
+#define jpeg_write_coefficients jWrtCoefs
+#define jpeg_copy_critical_parameters jCopyCrit
+#define jpeg_abort_compress jAbrtCompress
+#define jpeg_abort_decompress jAbrtDecompress
+#define jpeg_abort jAbort
+#define jpeg_destroy jDestroy
+#define jpeg_resync_to_restart jResyncRestart
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Default error-management setup */
+EXTERN(struct jpeg_error_mgr *) jpeg_std_error
+ JPP((struct jpeg_error_mgr * err));
+
+/* Initialization of JPEG compression objects.
+ * jpeg_create_compress() and jpeg_create_decompress() are the exported
+ * names that applications should call. These expand to calls on
+ * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
+ * passed for version mismatch checking.
+ * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
+ */
+#define jpeg_create_compress(cinfo) \
+ jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
+ (size_t) sizeof(struct jpeg_compress_struct))
+#define jpeg_create_decompress(cinfo) \
+ jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
+ (size_t) sizeof(struct jpeg_decompress_struct))
+EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
+ int version, size_t structsize));
+EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
+ int version, size_t structsize));
+/* Destruction of JPEG compression objects */
+EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
+
+/* Standard data source and destination managers: stdio streams. */
+/* Caller is responsible for opening the file before and closing after. */
+EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
+EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
+
+/* Data source and destination managers: memory buffers. */
+EXTERN(void) jpeg_mem_dest JPP((j_compress_ptr cinfo,
+ unsigned char ** outbuffer,
+ unsigned long * outsize));
+EXTERN(void) jpeg_mem_src JPP((j_decompress_ptr cinfo,
+ unsigned char * inbuffer,
+ unsigned long insize));
+
+/* Default parameter setup for compression */
+EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
+/* Compression parameter setup aids */
+EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
+ J_COLOR_SPACE colorspace));
+EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
+ boolean force_baseline));
+EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
+ int scale_factor,
+ boolean force_baseline));
+EXTERN(void) jpeg_default_qtables JPP((j_compress_ptr cinfo,
+ boolean force_baseline));
+EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
+ const unsigned int *basic_table,
+ int scale_factor,
+ boolean force_baseline));
+EXTERN(int) jpeg_quality_scaling JPP((int quality));
+EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
+ boolean suppress));
+EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
+EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
+
+/* Main entry points for compression */
+EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
+ boolean write_all_tables));
+EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
+ JSAMPARRAY scanlines,
+ JDIMENSION num_lines));
+EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
+
+/* Precalculate JPEG dimensions for current compression parameters. */
+EXTERN(void) jpeg_calc_jpeg_dimensions JPP((j_compress_ptr cinfo));
+
+/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
+ JSAMPIMAGE data,
+ JDIMENSION num_lines));
+
+/* Write a special marker. See libjpeg.txt concerning safe usage. */
+EXTERN(void) jpeg_write_marker
+ JPP((j_compress_ptr cinfo, int marker,
+ const JOCTET * dataptr, unsigned int datalen));
+/* Same, but piecemeal. */
+EXTERN(void) jpeg_write_m_header
+ JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
+EXTERN(void) jpeg_write_m_byte
+ JPP((j_compress_ptr cinfo, int val));
+
+/* Alternate compression function: just write an abbreviated table file */
+EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
+
+/* Decompression startup: read start of JPEG datastream to see what's there */
+EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
+ boolean require_image));
+/* Return value is one of: */
+#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
+#define JPEG_HEADER_OK 1 /* Found valid image datastream */
+#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
+/* If you pass require_image = TRUE (normal case), you need not check for
+ * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
+ * JPEG_SUSPENDED is only possible if you use a data source module that can
+ * give a suspension return (the stdio source module doesn't).
+ */
+
+/* Main entry points for decompression */
+EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
+ JSAMPARRAY scanlines,
+ JDIMENSION max_lines));
+EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
+
+/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE data,
+ JDIMENSION max_lines));
+
+/* Additional entry points for buffered-image mode. */
+EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
+ int scan_number));
+EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
+EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
+/* Return value is one of: */
+/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
+#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
+#define JPEG_REACHED_EOI 2 /* Reached end of image */
+#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
+#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
+
+/* Precalculate output dimensions for current decompression parameters. */
+EXTERN(void) jpeg_core_output_dimensions JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
+
+/* Control saving of COM and APPn markers into marker_list. */
+EXTERN(void) jpeg_save_markers
+ JPP((j_decompress_ptr cinfo, int marker_code,
+ unsigned int length_limit));
+
+/* Install a special processing method for COM or APPn markers. */
+EXTERN(void) jpeg_set_marker_processor
+ JPP((j_decompress_ptr cinfo, int marker_code,
+ jpeg_marker_parser_method routine));
+
+/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
+EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
+ jvirt_barray_ptr * coef_arrays));
+EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo));
+
+/* If you choose to abort compression or decompression before completing
+ * jpeg_finish_(de)compress, then you need to clean up to release memory,
+ * temporary files, etc. You can just call jpeg_destroy_(de)compress
+ * if you're done with the JPEG object, but if you want to clean it up and
+ * reuse it, call this:
+ */
+EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
+
+/* Generic versions of jpeg_abort and jpeg_destroy that work on either
+ * flavor of JPEG object. These may be more convenient in some places.
+ */
+EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
+
+/* Default restart-marker-resync procedure for use by data source modules */
+EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
+ int desired));
+
+
+/* These marker codes are exported since applications and data source modules
+ * are likely to want to use them.
+ */
+
+#define JPEG_RST0 0xD0 /* RST0 marker code */
+#define JPEG_EOI 0xD9 /* EOI marker code */
+#define JPEG_APP0 0xE0 /* APP0 marker code */
+#define JPEG_COM 0xFE /* COM marker code */
+
+
+/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
+ * for structure definitions that are never filled in, keep it quiet by
+ * supplying dummy definitions for the various substructures.
+ */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+struct jpeg_comp_master { long dummy; };
+struct jpeg_c_main_controller { long dummy; };
+struct jpeg_c_prep_controller { long dummy; };
+struct jpeg_c_coef_controller { long dummy; };
+struct jpeg_marker_writer { long dummy; };
+struct jpeg_color_converter { long dummy; };
+struct jpeg_downsampler { long dummy; };
+struct jpeg_forward_dct { long dummy; };
+struct jpeg_entropy_encoder { long dummy; };
+struct jpeg_decomp_master { long dummy; };
+struct jpeg_d_main_controller { long dummy; };
+struct jpeg_d_coef_controller { long dummy; };
+struct jpeg_d_post_controller { long dummy; };
+struct jpeg_input_controller { long dummy; };
+struct jpeg_marker_reader { long dummy; };
+struct jpeg_entropy_decoder { long dummy; };
+struct jpeg_inverse_dct { long dummy; };
+struct jpeg_upsampler { long dummy; };
+struct jpeg_color_deconverter { long dummy; };
+struct jpeg_color_quantizer { long dummy; };
+#endif /* JPEG_INTERNALS */
+#endif /* INCOMPLETE_TYPES_BROKEN */
+
+
+/*
+ * The JPEG library modules define JPEG_INTERNALS before including this file.
+ * The internal structure declarations are read only when that is true.
+ * Applications using the library should not include jpegint.h, but may wish
+ * to include jerror.h.
+ */
+
+#ifdef JPEG_INTERNALS
+#include "jpegint.h" /* fetch private declarations */
+#include "jerror.h" /* fetch error codes too */
+#endif
+
+#ifdef __cplusplus
+#ifndef DONT_USE_EXTERN_C
+}
+#endif
+#endif
+
+#endif /* JPEGLIB_H */
diff --git a/plugins/AdvaImg/src/LibJPEG/jpegtran.c b/plugins/AdvaImg/src/LibJPEG/jpegtran.c
new file mode 100644
index 0000000000..2193ffe377
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jpegtran.c
@@ -0,0 +1,560 @@
+/*
+ * jpegtran.c
+ *
+ * Copyright (C) 1995-2011, Thomas G. Lane, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a command-line user interface for JPEG transcoding.
+ * It is very similar to cjpeg.c, and partly to djpeg.c, but provides
+ * lossless transcoding between different JPEG file formats. It also
+ * provides some lossless and sort-of-lossless transformations of JPEG data.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+#include "transupp.h" /* Support routines for jpegtran */
+#include "jversion.h" /* for version message */
+
+#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
+#ifdef __MWERKS__
+#include <SIOUX.h> /* Metrowerks needs this */
+#include <console.h> /* ... and this */
+#endif
+#ifdef THINK_C
+#include <console.h> /* Think declares it here */
+#endif
+#endif
+
+
+/*
+ * Argument-parsing code.
+ * The switch parser is designed to be useful with DOS-style command line
+ * syntax, ie, intermixed switches and file names, where only the switches
+ * to the left of a given file name affect processing of that file.
+ * The main program in this file doesn't actually use this capability...
+ */
+
+
+static const char * progname; /* program name for error messages */
+static char * outfilename; /* for -outfile switch */
+static char * scaleoption; /* -scale switch */
+static JCOPY_OPTION copyoption; /* -copy switch */
+static jpeg_transform_info transformoption; /* image transformation options */
+
+
+LOCAL(void)
+usage (void)
+/* complain about bad command line */
+{
+ fprintf(stderr, "usage: %s [switches] ", progname);
+#ifdef TWO_FILE_COMMANDLINE
+ fprintf(stderr, "inputfile outputfile\n");
+#else
+ fprintf(stderr, "[inputfile]\n");
+#endif
+
+ fprintf(stderr, "Switches (names may be abbreviated):\n");
+ fprintf(stderr, " -copy none Copy no extra markers from source file\n");
+ fprintf(stderr, " -copy comments Copy only comment markers (default)\n");
+ fprintf(stderr, " -copy all Copy all extra markers\n");
+#ifdef ENTROPY_OPT_SUPPORTED
+ fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n");
+#endif
+#ifdef C_PROGRESSIVE_SUPPORTED
+ fprintf(stderr, " -progressive Create progressive JPEG file\n");
+#endif
+ fprintf(stderr, "Switches for modifying the image:\n");
+#if TRANSFORMS_SUPPORTED
+ fprintf(stderr, " -crop WxH+X+Y Crop to a rectangular subarea\n");
+ fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n");
+ fprintf(stderr, " -flip [horizontal|vertical] Mirror image (left-right or top-bottom)\n");
+ fprintf(stderr, " -perfect Fail if there is non-transformable edge blocks\n");
+ fprintf(stderr, " -rotate [90|180|270] Rotate image (degrees clockwise)\n");
+#endif
+ fprintf(stderr, " -scale M/N Scale output image by fraction M/N, eg, 1/8\n");
+#if TRANSFORMS_SUPPORTED
+ fprintf(stderr, " -transpose Transpose image\n");
+ fprintf(stderr, " -transverse Transverse transpose image\n");
+ fprintf(stderr, " -trim Drop non-transformable edge blocks\n");
+#endif
+ fprintf(stderr, "Switches for advanced users:\n");
+#ifdef C_ARITH_CODING_SUPPORTED
+ fprintf(stderr, " -arithmetic Use arithmetic coding\n");
+#endif
+ fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n");
+ fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n");
+ fprintf(stderr, " -outfile name Specify name for output file\n");
+ fprintf(stderr, " -verbose or -debug Emit debug output\n");
+ fprintf(stderr, "Switches for wizards:\n");
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ fprintf(stderr, " -scans file Create multi-scan JPEG per script file\n");
+#endif
+ exit(EXIT_FAILURE);
+}
+
+
+LOCAL(void)
+select_transform (JXFORM_CODE transform)
+/* Silly little routine to detect multiple transform options,
+ * which we can't handle.
+ */
+{
+#if TRANSFORMS_SUPPORTED
+ if (transformoption.transform == JXFORM_NONE ||
+ transformoption.transform == transform) {
+ transformoption.transform = transform;
+ } else {
+ fprintf(stderr, "%s: can only do one image transformation at a time\n",
+ progname);
+ usage();
+ }
+#else
+ fprintf(stderr, "%s: sorry, image transformation was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+}
+
+
+LOCAL(int)
+parse_switches (j_compress_ptr cinfo, int argc, char **argv,
+ int last_file_arg_seen, boolean for_real)
+/* Parse optional switches.
+ * Returns argv[] index of first file-name argument (== argc if none).
+ * Any file names with indexes <= last_file_arg_seen are ignored;
+ * they have presumably been processed in a previous iteration.
+ * (Pass 0 for last_file_arg_seen on the first or only iteration.)
+ * for_real is FALSE on the first (dummy) pass; we may skip any expensive
+ * processing.
+ */
+{
+ int argn;
+ char * arg;
+ boolean simple_progressive;
+ char * scansarg = NULL; /* saves -scans parm if any */
+
+ /* Set up default JPEG parameters. */
+ simple_progressive = FALSE;
+ outfilename = NULL;
+ scaleoption = NULL;
+ copyoption = JCOPYOPT_DEFAULT;
+ transformoption.transform = JXFORM_NONE;
+ transformoption.perfect = FALSE;
+ transformoption.trim = FALSE;
+ transformoption.force_grayscale = FALSE;
+ transformoption.crop = FALSE;
+ cinfo->err->trace_level = 0;
+
+ /* Scan command line options, adjust parameters */
+
+ for (argn = 1; argn < argc; argn++) {
+ arg = argv[argn];
+ if (*arg != '-') {
+ /* Not a switch, must be a file name argument */
+ if (argn <= last_file_arg_seen) {
+ outfilename = NULL; /* -outfile applies to just one input file */
+ continue; /* ignore this name if previously processed */
+ }
+ break; /* else done parsing switches */
+ }
+ arg++; /* advance past switch marker character */
+
+ if (keymatch(arg, "arithmetic", 1)) {
+ /* Use arithmetic coding. */
+#ifdef C_ARITH_CODING_SUPPORTED
+ cinfo->arith_code = TRUE;
+#else
+ fprintf(stderr, "%s: sorry, arithmetic coding not supported\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "copy", 2)) {
+ /* Select which extra markers to copy. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (keymatch(argv[argn], "none", 1)) {
+ copyoption = JCOPYOPT_NONE;
+ } else if (keymatch(argv[argn], "comments", 1)) {
+ copyoption = JCOPYOPT_COMMENTS;
+ } else if (keymatch(argv[argn], "all", 1)) {
+ copyoption = JCOPYOPT_ALL;
+ } else
+ usage();
+
+ } else if (keymatch(arg, "crop", 2)) {
+ /* Perform lossless cropping. */
+#if TRANSFORMS_SUPPORTED
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (! jtransform_parse_crop_spec(&transformoption, argv[argn])) {
+ fprintf(stderr, "%s: bogus -crop argument '%s'\n",
+ progname, argv[argn]);
+ exit(EXIT_FAILURE);
+ }
+#else
+ select_transform(JXFORM_NONE); /* force an error */
+#endif
+
+ } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
+ /* Enable debug printouts. */
+ /* On first -d, print version identification */
+ static boolean printed_version = FALSE;
+
+ if (! printed_version) {
+ fprintf(stderr, "Independent JPEG Group's JPEGTRAN, version %s\n%s\n",
+ JVERSION, JCOPYRIGHT);
+ printed_version = TRUE;
+ }
+ cinfo->err->trace_level++;
+
+ } else if (keymatch(arg, "flip", 1)) {
+ /* Mirror left-right or top-bottom. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (keymatch(argv[argn], "horizontal", 1))
+ select_transform(JXFORM_FLIP_H);
+ else if (keymatch(argv[argn], "vertical", 1))
+ select_transform(JXFORM_FLIP_V);
+ else
+ usage();
+
+ } else if (keymatch(arg, "grayscale", 1) || keymatch(arg, "greyscale",1)) {
+ /* Force to grayscale. */
+#if TRANSFORMS_SUPPORTED
+ transformoption.force_grayscale = TRUE;
+#else
+ select_transform(JXFORM_NONE); /* force an error */
+#endif
+
+ } else if (keymatch(arg, "maxmemory", 3)) {
+ /* Maximum memory in Kb (or Mb with 'm'). */
+ long lval;
+ char ch = 'x';
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
+ usage();
+ if (ch == 'm' || ch == 'M')
+ lval *= 1000L;
+ cinfo->mem->max_memory_to_use = lval * 1000L;
+
+ } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) {
+ /* Enable entropy parm optimization. */
+#ifdef ENTROPY_OPT_SUPPORTED
+ cinfo->optimize_coding = TRUE;
+#else
+ fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "outfile", 4)) {
+ /* Set output file name. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ outfilename = argv[argn]; /* save it away for later use */
+
+ } else if (keymatch(arg, "perfect", 2)) {
+ /* Fail if there is any partial edge MCUs that the transform can't
+ * handle. */
+ transformoption.perfect = TRUE;
+
+ } else if (keymatch(arg, "progressive", 2)) {
+ /* Select simple progressive mode. */
+#ifdef C_PROGRESSIVE_SUPPORTED
+ simple_progressive = TRUE;
+ /* We must postpone execution until num_components is known. */
+#else
+ fprintf(stderr, "%s: sorry, progressive output was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "restart", 1)) {
+ /* Restart interval in MCU rows (or in MCUs with 'b'). */
+ long lval;
+ char ch = 'x';
+
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
+ usage();
+ if (lval < 0 || lval > 65535L)
+ usage();
+ if (ch == 'b' || ch == 'B') {
+ cinfo->restart_interval = (unsigned int) lval;
+ cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */
+ } else {
+ cinfo->restart_in_rows = (int) lval;
+ /* restart_interval will be computed during startup */
+ }
+
+ } else if (keymatch(arg, "rotate", 2)) {
+ /* Rotate 90, 180, or 270 degrees (measured clockwise). */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ if (keymatch(argv[argn], "90", 2))
+ select_transform(JXFORM_ROT_90);
+ else if (keymatch(argv[argn], "180", 3))
+ select_transform(JXFORM_ROT_180);
+ else if (keymatch(argv[argn], "270", 3))
+ select_transform(JXFORM_ROT_270);
+ else
+ usage();
+
+ } else if (keymatch(arg, "scale", 4)) {
+ /* Scale the output image by a fraction M/N. */
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ scaleoption = argv[argn];
+ /* We must postpone processing until decompression startup. */
+
+ } else if (keymatch(arg, "scans", 1)) {
+ /* Set scan script. */
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ if (++argn >= argc) /* advance to next argument */
+ usage();
+ scansarg = argv[argn];
+ /* We must postpone reading the file in case -progressive appears. */
+#else
+ fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n",
+ progname);
+ exit(EXIT_FAILURE);
+#endif
+
+ } else if (keymatch(arg, "transpose", 1)) {
+ /* Transpose (across UL-to-LR axis). */
+ select_transform(JXFORM_TRANSPOSE);
+
+ } else if (keymatch(arg, "transverse", 6)) {
+ /* Transverse transpose (across UR-to-LL axis). */
+ select_transform(JXFORM_TRANSVERSE);
+
+ } else if (keymatch(arg, "trim", 3)) {
+ /* Trim off any partial edge MCUs that the transform can't handle. */
+ transformoption.trim = TRUE;
+
+ } else {
+ usage(); /* bogus switch */
+ }
+ }
+
+ /* Post-switch-scanning cleanup */
+
+ if (for_real) {
+
+#ifdef C_PROGRESSIVE_SUPPORTED
+ if (simple_progressive) /* process -progressive; -scans can override */
+ jpeg_simple_progression(cinfo);
+#endif
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+ if (scansarg != NULL) /* process -scans if it was present */
+ if (! read_scan_script(cinfo, scansarg))
+ usage();
+#endif
+ }
+
+ return argn; /* return index of next arg (file name) */
+}
+
+
+/*
+ * The main program.
+ */
+
+int
+main (int argc, char **argv)
+{
+ struct jpeg_decompress_struct srcinfo;
+ struct jpeg_compress_struct dstinfo;
+ struct jpeg_error_mgr jsrcerr, jdsterr;
+#ifdef PROGRESS_REPORT
+ struct cdjpeg_progress_mgr progress;
+#endif
+ jvirt_barray_ptr * src_coef_arrays;
+ jvirt_barray_ptr * dst_coef_arrays;
+ int file_index;
+ /* We assume all-in-memory processing and can therefore use only a
+ * single file pointer for sequential input and output operation.
+ */
+ FILE * fp;
+
+ /* On Mac, fetch a command line. */
+#ifdef USE_CCOMMAND
+ argc = ccommand(&argv);
+#endif
+
+ progname = argv[0];
+ if (progname == NULL || progname[0] == 0)
+ progname = "jpegtran"; /* in case C library doesn't provide it */
+
+ /* Initialize the JPEG decompression object with default error handling. */
+ srcinfo.err = jpeg_std_error(&jsrcerr);
+ jpeg_create_decompress(&srcinfo);
+ /* Initialize the JPEG compression object with default error handling. */
+ dstinfo.err = jpeg_std_error(&jdsterr);
+ jpeg_create_compress(&dstinfo);
+
+ /* Now safe to enable signal catcher.
+ * Note: we assume only the decompression object will have virtual arrays.
+ */
+#ifdef NEED_SIGNAL_CATCHER
+ enable_signal_catcher((j_common_ptr) &srcinfo);
+#endif
+
+ /* Scan command line to find file names.
+ * It is convenient to use just one switch-parsing routine, but the switch
+ * values read here are mostly ignored; we will rescan the switches after
+ * opening the input file. Also note that most of the switches affect the
+ * destination JPEG object, so we parse into that and then copy over what
+ * needs to affects the source too.
+ */
+
+ file_index = parse_switches(&dstinfo, argc, argv, 0, FALSE);
+ jsrcerr.trace_level = jdsterr.trace_level;
+ srcinfo.mem->max_memory_to_use = dstinfo.mem->max_memory_to_use;
+
+#ifdef TWO_FILE_COMMANDLINE
+ /* Must have either -outfile switch or explicit output file name */
+ if (outfilename == NULL) {
+ if (file_index != argc-2) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ outfilename = argv[file_index+1];
+ } else {
+ if (file_index != argc-1) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ }
+#else
+ /* Unix style: expect zero or one file name */
+ if (file_index < argc-1) {
+ fprintf(stderr, "%s: only one input file\n", progname);
+ usage();
+ }
+#endif /* TWO_FILE_COMMANDLINE */
+
+ /* Open the input file. */
+ if (file_index < argc) {
+ if ((fp = fopen(argv[file_index], READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s for reading\n", progname, argv[file_index]);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default input file is stdin */
+ fp = read_stdin();
+ }
+
+#ifdef PROGRESS_REPORT
+ start_progress_monitor((j_common_ptr) &dstinfo, &progress);
+#endif
+
+ /* Specify data source for decompression */
+ jpeg_stdio_src(&srcinfo, fp);
+
+ /* Enable saving of extra markers that we want to copy */
+ jcopy_markers_setup(&srcinfo, copyoption);
+
+ /* Read file header */
+ (void) jpeg_read_header(&srcinfo, TRUE);
+
+ /* Adjust default decompression parameters */
+ if (scaleoption != NULL)
+ if (sscanf(scaleoption, "%d/%d",
+ &srcinfo.scale_num, &srcinfo.scale_denom) < 1)
+ usage();
+
+ /* Any space needed by a transform option must be requested before
+ * jpeg_read_coefficients so that memory allocation will be done right.
+ */
+#if TRANSFORMS_SUPPORTED
+ /* Fail right away if -perfect is given and transformation is not perfect.
+ */
+ if (!jtransform_request_workspace(&srcinfo, &transformoption)) {
+ fprintf(stderr, "%s: transformation is not perfect\n", progname);
+ exit(EXIT_FAILURE);
+ }
+#endif
+
+ /* Read source file as DCT coefficients */
+ src_coef_arrays = jpeg_read_coefficients(&srcinfo);
+
+ /* Initialize destination compression parameters from source values */
+ jpeg_copy_critical_parameters(&srcinfo, &dstinfo);
+
+ /* Adjust destination parameters if required by transform options;
+ * also find out which set of coefficient arrays will hold the output.
+ */
+#if TRANSFORMS_SUPPORTED
+ dst_coef_arrays = jtransform_adjust_parameters(&srcinfo, &dstinfo,
+ src_coef_arrays,
+ &transformoption);
+#else
+ dst_coef_arrays = src_coef_arrays;
+#endif
+
+ /* Close input file, if we opened it.
+ * Note: we assume that jpeg_read_coefficients consumed all input
+ * until JPEG_REACHED_EOI, and that jpeg_finish_decompress will
+ * only consume more while (! cinfo->inputctl->eoi_reached).
+ * We cannot call jpeg_finish_decompress here since we still need the
+ * virtual arrays allocated from the source object for processing.
+ */
+ if (fp != stdin)
+ fclose(fp);
+
+ /* Open the output file. */
+ if (outfilename != NULL) {
+ if ((fp = fopen(outfilename, WRITE_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s for writing\n", progname, outfilename);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default output file is stdout */
+ fp = write_stdout();
+ }
+
+ /* Adjust default compression parameters by re-parsing the options */
+ file_index = parse_switches(&dstinfo, argc, argv, 0, TRUE);
+
+ /* Specify data destination for compression */
+ jpeg_stdio_dest(&dstinfo, fp);
+
+ /* Start compressor (note no image data is actually written here) */
+ jpeg_write_coefficients(&dstinfo, dst_coef_arrays);
+
+ /* Copy to the output file any extra markers that we want to preserve */
+ jcopy_markers_execute(&srcinfo, &dstinfo, copyoption);
+
+ /* Execute image transformation, if any */
+#if TRANSFORMS_SUPPORTED
+ jtransform_execute_transformation(&srcinfo, &dstinfo,
+ src_coef_arrays,
+ &transformoption);
+#endif
+
+ /* Finish compression and release memory */
+ jpeg_finish_compress(&dstinfo);
+ jpeg_destroy_compress(&dstinfo);
+ (void) jpeg_finish_decompress(&srcinfo);
+ jpeg_destroy_decompress(&srcinfo);
+
+ /* Close output file, if we opened it */
+ if (fp != stdout)
+ fclose(fp);
+
+#ifdef PROGRESS_REPORT
+ end_progress_monitor((j_common_ptr) &dstinfo);
+#endif
+
+ /* All done. */
+ exit(jsrcerr.num_warnings + jdsterr.num_warnings ?EXIT_WARNING:EXIT_SUCCESS);
+ return 0; /* suppress no-return-value warnings */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jquant1.c b/plugins/AdvaImg/src/LibJPEG/jquant1.c
new file mode 100644
index 0000000000..9d11f70669
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jquant1.c
@@ -0,0 +1,857 @@
+/*
+ * jquant1.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains 1-pass color quantization (color mapping) routines.
+ * These routines provide mapping to a fixed color map using equally spaced
+ * color values. Optional Floyd-Steinberg or ordered dithering is available.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef QUANT_1PASS_SUPPORTED
+
+
+/*
+ * The main purpose of 1-pass quantization is to provide a fast, if not very
+ * high quality, colormapped output capability. A 2-pass quantizer usually
+ * gives better visual quality; however, for quantized grayscale output this
+ * quantizer is perfectly adequate. Dithering is highly recommended with this
+ * quantizer, though you can turn it off if you really want to.
+ *
+ * In 1-pass quantization the colormap must be chosen in advance of seeing the
+ * image. We use a map consisting of all combinations of Ncolors[i] color
+ * values for the i'th component. The Ncolors[] values are chosen so that
+ * their product, the total number of colors, is no more than that requested.
+ * (In most cases, the product will be somewhat less.)
+ *
+ * Since the colormap is orthogonal, the representative value for each color
+ * component can be determined without considering the other components;
+ * then these indexes can be combined into a colormap index by a standard
+ * N-dimensional-array-subscript calculation. Most of the arithmetic involved
+ * can be precalculated and stored in the lookup table colorindex[].
+ * colorindex[i][j] maps pixel value j in component i to the nearest
+ * representative value (grid plane) for that component; this index is
+ * multiplied by the array stride for component i, so that the
+ * index of the colormap entry closest to a given pixel value is just
+ * sum( colorindex[component-number][pixel-component-value] )
+ * Aside from being fast, this scheme allows for variable spacing between
+ * representative values with no additional lookup cost.
+ *
+ * If gamma correction has been applied in color conversion, it might be wise
+ * to adjust the color grid spacing so that the representative colors are
+ * equidistant in linear space. At this writing, gamma correction is not
+ * implemented by jdcolor, so nothing is done here.
+ */
+
+
+/* Declarations for ordered dithering.
+ *
+ * We use a standard 16x16 ordered dither array. The basic concept of ordered
+ * dithering is described in many references, for instance Dale Schumacher's
+ * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
+ * In place of Schumacher's comparisons against a "threshold" value, we add a
+ * "dither" value to the input pixel and then round the result to the nearest
+ * output value. The dither value is equivalent to (0.5 - threshold) times
+ * the distance between output values. For ordered dithering, we assume that
+ * the output colors are equally spaced; if not, results will probably be
+ * worse, since the dither may be too much or too little at a given point.
+ *
+ * The normal calculation would be to form pixel value + dither, range-limit
+ * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
+ * We can skip the separate range-limiting step by extending the colorindex
+ * table in both directions.
+ */
+
+#define ODITHER_SIZE 16 /* dimension of dither matrix */
+/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
+#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
+#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
+
+typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
+typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
+
+static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
+ /* Bayer's order-4 dither array. Generated by the code given in
+ * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
+ * The values in this array must range from 0 to ODITHER_CELLS-1.
+ */
+ { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
+ { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
+ { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
+ { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
+ { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
+ { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
+ { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
+ { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
+ { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
+ { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
+ { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
+ { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
+ { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
+ { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
+ { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
+ { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
+};
+
+
+/* Declarations for Floyd-Steinberg dithering.
+ *
+ * Errors are accumulated into the array fserrors[], at a resolution of
+ * 1/16th of a pixel count. The error at a given pixel is propagated
+ * to its not-yet-processed neighbors using the standard F-S fractions,
+ * ... (here) 7/16
+ * 3/16 5/16 1/16
+ * We work left-to-right on even rows, right-to-left on odd rows.
+ *
+ * We can get away with a single array (holding one row's worth of errors)
+ * by using it to store the current row's errors at pixel columns not yet
+ * processed, but the next row's errors at columns already processed. We
+ * need only a few extra variables to hold the errors immediately around the
+ * current column. (If we are lucky, those variables are in registers, but
+ * even if not, they're probably cheaper to access than array elements are.)
+ *
+ * The fserrors[] array is indexed [component#][position].
+ * We provide (#columns + 2) entries per component; the extra entry at each
+ * end saves us from special-casing the first and last pixels.
+ *
+ * Note: on a wide image, we might not have enough room in a PC's near data
+ * segment to hold the error array; so it is allocated with alloc_large.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef INT16 FSERROR; /* 16 bits should be enough */
+typedef int LOCFSERROR; /* use 'int' for calculation temps */
+#else
+typedef INT32 FSERROR; /* may need more than 16 bits */
+typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
+#endif
+
+typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
+
+
+/* Private subobject */
+
+#define MAX_Q_COMPS 4 /* max components I can handle */
+
+typedef struct {
+ struct jpeg_color_quantizer pub; /* public fields */
+
+ /* Initially allocated colormap is saved here */
+ JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
+ int sv_actual; /* number of entries in use */
+
+ JSAMPARRAY colorindex; /* Precomputed mapping for speed */
+ /* colorindex[i][j] = index of color closest to pixel value j in component i,
+ * premultiplied as described above. Since colormap indexes must fit into
+ * JSAMPLEs, the entries of this array will too.
+ */
+ boolean is_padded; /* is the colorindex padded for odither? */
+
+ int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
+
+ /* Variables for ordered dithering */
+ int row_index; /* cur row's vertical index in dither matrix */
+ ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
+
+ /* Variables for Floyd-Steinberg dithering */
+ FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
+ boolean on_odd_row; /* flag to remember which row we are on */
+} my_cquantizer;
+
+typedef my_cquantizer * my_cquantize_ptr;
+
+
+/*
+ * Policy-making subroutines for create_colormap and create_colorindex.
+ * These routines determine the colormap to be used. The rest of the module
+ * only assumes that the colormap is orthogonal.
+ *
+ * * select_ncolors decides how to divvy up the available colors
+ * among the components.
+ * * output_value defines the set of representative values for a component.
+ * * largest_input_value defines the mapping from input values to
+ * representative values for a component.
+ * Note that the latter two routines may impose different policies for
+ * different components, though this is not currently done.
+ */
+
+
+LOCAL(int)
+select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
+/* Determine allocation of desired colors to components, */
+/* and fill in Ncolors[] array to indicate choice. */
+/* Return value is total number of colors (product of Ncolors[] values). */
+{
+ int nc = cinfo->out_color_components; /* number of color components */
+ int max_colors = cinfo->desired_number_of_colors;
+ int total_colors, iroot, i, j;
+ boolean changed;
+ long temp;
+ static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
+
+ /* We can allocate at least the nc'th root of max_colors per component. */
+ /* Compute floor(nc'th root of max_colors). */
+ iroot = 1;
+ do {
+ iroot++;
+ temp = iroot; /* set temp = iroot ** nc */
+ for (i = 1; i < nc; i++)
+ temp *= iroot;
+ } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
+ iroot--; /* now iroot = floor(root) */
+
+ /* Must have at least 2 color values per component */
+ if (iroot < 2)
+ ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
+
+ /* Initialize to iroot color values for each component */
+ total_colors = 1;
+ for (i = 0; i < nc; i++) {
+ Ncolors[i] = iroot;
+ total_colors *= iroot;
+ }
+ /* We may be able to increment the count for one or more components without
+ * exceeding max_colors, though we know not all can be incremented.
+ * Sometimes, the first component can be incremented more than once!
+ * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
+ * In RGB colorspace, try to increment G first, then R, then B.
+ */
+ do {
+ changed = FALSE;
+ for (i = 0; i < nc; i++) {
+ j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
+ /* calculate new total_colors if Ncolors[j] is incremented */
+ temp = total_colors / Ncolors[j];
+ temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
+ if (temp > (long) max_colors)
+ break; /* won't fit, done with this pass */
+ Ncolors[j]++; /* OK, apply the increment */
+ total_colors = (int) temp;
+ changed = TRUE;
+ }
+ } while (changed);
+
+ return total_colors;
+}
+
+
+LOCAL(int)
+output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+/* Return j'th output value, where j will range from 0 to maxj */
+/* The output values must fall in 0..MAXJSAMPLE in increasing order */
+{
+ /* We always provide values 0 and MAXJSAMPLE for each component;
+ * any additional values are equally spaced between these limits.
+ * (Forcing the upper and lower values to the limits ensures that
+ * dithering can't produce a color outside the selected gamut.)
+ */
+ return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
+}
+
+
+LOCAL(int)
+largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+/* Return largest input value that should map to j'th output value */
+/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
+{
+ /* Breakpoints are halfway between values returned by output_value */
+ return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
+}
+
+
+/*
+ * Create the colormap.
+ */
+
+LOCAL(void)
+create_colormap (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ JSAMPARRAY colormap; /* Created colormap */
+ int total_colors; /* Number of distinct output colors */
+ int i,j,k, nci, blksize, blkdist, ptr, val;
+
+ /* Select number of colors for each component */
+ total_colors = select_ncolors(cinfo, cquantize->Ncolors);
+
+ /* Report selected color counts */
+ if (cinfo->out_color_components == 3)
+ TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
+ total_colors, cquantize->Ncolors[0],
+ cquantize->Ncolors[1], cquantize->Ncolors[2]);
+ else
+ TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
+
+ /* Allocate and fill in the colormap. */
+ /* The colors are ordered in the map in standard row-major order, */
+ /* i.e. rightmost (highest-indexed) color changes most rapidly. */
+
+ colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
+
+ /* blksize is number of adjacent repeated entries for a component */
+ /* blkdist is distance between groups of identical entries for a component */
+ blkdist = total_colors;
+
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ /* fill in colormap entries for i'th color component */
+ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+ blksize = blkdist / nci;
+ for (j = 0; j < nci; j++) {
+ /* Compute j'th output value (out of nci) for component */
+ val = output_value(cinfo, i, j, nci-1);
+ /* Fill in all colormap entries that have this value of this component */
+ for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
+ /* fill in blksize entries beginning at ptr */
+ for (k = 0; k < blksize; k++)
+ colormap[i][ptr+k] = (JSAMPLE) val;
+ }
+ }
+ blkdist = blksize; /* blksize of this color is blkdist of next */
+ }
+
+ /* Save the colormap in private storage,
+ * where it will survive color quantization mode changes.
+ */
+ cquantize->sv_colormap = colormap;
+ cquantize->sv_actual = total_colors;
+}
+
+
+/*
+ * Create the color index table.
+ */
+
+LOCAL(void)
+create_colorindex (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ JSAMPROW indexptr;
+ int i,j,k, nci, blksize, val, pad;
+
+ /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
+ * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
+ * This is not necessary in the other dithering modes. However, we
+ * flag whether it was done in case user changes dithering mode.
+ */
+ if (cinfo->dither_mode == JDITHER_ORDERED) {
+ pad = MAXJSAMPLE*2;
+ cquantize->is_padded = TRUE;
+ } else {
+ pad = 0;
+ cquantize->is_padded = FALSE;
+ }
+
+ cquantize->colorindex = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (MAXJSAMPLE+1 + pad),
+ (JDIMENSION) cinfo->out_color_components);
+
+ /* blksize is number of adjacent repeated entries for a component */
+ blksize = cquantize->sv_actual;
+
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ /* fill in colorindex entries for i'th color component */
+ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+ blksize = blksize / nci;
+
+ /* adjust colorindex pointers to provide padding at negative indexes. */
+ if (pad)
+ cquantize->colorindex[i] += MAXJSAMPLE;
+
+ /* in loop, val = index of current output value, */
+ /* and k = largest j that maps to current val */
+ indexptr = cquantize->colorindex[i];
+ val = 0;
+ k = largest_input_value(cinfo, i, 0, nci-1);
+ for (j = 0; j <= MAXJSAMPLE; j++) {
+ while (j > k) /* advance val if past boundary */
+ k = largest_input_value(cinfo, i, ++val, nci-1);
+ /* premultiply so that no multiplication needed in main processing */
+ indexptr[j] = (JSAMPLE) (val * blksize);
+ }
+ /* Pad at both ends if necessary */
+ if (pad)
+ for (j = 1; j <= MAXJSAMPLE; j++) {
+ indexptr[-j] = indexptr[0];
+ indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
+ }
+ }
+}
+
+
+/*
+ * Create an ordered-dither array for a component having ncolors
+ * distinct output values.
+ */
+
+LOCAL(ODITHER_MATRIX_PTR)
+make_odither_array (j_decompress_ptr cinfo, int ncolors)
+{
+ ODITHER_MATRIX_PTR odither;
+ int j,k;
+ INT32 num,den;
+
+ odither = (ODITHER_MATRIX_PTR)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(ODITHER_MATRIX));
+ /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
+ * Hence the dither value for the matrix cell with fill order f
+ * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
+ * On 16-bit-int machine, be careful to avoid overflow.
+ */
+ den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
+ for (j = 0; j < ODITHER_SIZE; j++) {
+ for (k = 0; k < ODITHER_SIZE; k++) {
+ num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
+ * MAXJSAMPLE;
+ /* Ensure round towards zero despite C's lack of consistency
+ * about rounding negative values in integer division...
+ */
+ odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
+ }
+ }
+ return odither;
+}
+
+
+/*
+ * Create the ordered-dither tables.
+ * Components having the same number of representative colors may
+ * share a dither table.
+ */
+
+LOCAL(void)
+create_odither_tables (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ ODITHER_MATRIX_PTR odither;
+ int i, j, nci;
+
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+ odither = NULL; /* search for matching prior component */
+ for (j = 0; j < i; j++) {
+ if (nci == cquantize->Ncolors[j]) {
+ odither = cquantize->odither[j];
+ break;
+ }
+ }
+ if (odither == NULL) /* need a new table? */
+ odither = make_odither_array(cinfo, nci);
+ cquantize->odither[i] = odither;
+ }
+}
+
+
+/*
+ * Map some rows of pixels to the output colormapped representation.
+ */
+
+METHODDEF(void)
+color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* General case, no dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ JSAMPARRAY colorindex = cquantize->colorindex;
+ register int pixcode, ci;
+ register JSAMPROW ptrin, ptrout;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+ register int nc = cinfo->out_color_components;
+
+ for (row = 0; row < num_rows; row++) {
+ ptrin = input_buf[row];
+ ptrout = output_buf[row];
+ for (col = width; col > 0; col--) {
+ pixcode = 0;
+ for (ci = 0; ci < nc; ci++) {
+ pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
+ }
+ *ptrout++ = (JSAMPLE) pixcode;
+ }
+ }
+}
+
+
+METHODDEF(void)
+color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* Fast path for out_color_components==3, no dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register int pixcode;
+ register JSAMPROW ptrin, ptrout;
+ JSAMPROW colorindex0 = cquantize->colorindex[0];
+ JSAMPROW colorindex1 = cquantize->colorindex[1];
+ JSAMPROW colorindex2 = cquantize->colorindex[2];
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ ptrin = input_buf[row];
+ ptrout = output_buf[row];
+ for (col = width; col > 0; col--) {
+ pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
+ pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
+ pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
+ *ptrout++ = (JSAMPLE) pixcode;
+ }
+ }
+}
+
+
+METHODDEF(void)
+quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* General case, with ordered dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register JSAMPROW input_ptr;
+ register JSAMPROW output_ptr;
+ JSAMPROW colorindex_ci;
+ int * dither; /* points to active row of dither matrix */
+ int row_index, col_index; /* current indexes into dither matrix */
+ int nc = cinfo->out_color_components;
+ int ci;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ /* Initialize output values to 0 so can process components separately */
+ FMEMZERO((void FAR *) output_buf[row],
+ (size_t) (width * SIZEOF(JSAMPLE)));
+ row_index = cquantize->row_index;
+ for (ci = 0; ci < nc; ci++) {
+ input_ptr = input_buf[row] + ci;
+ output_ptr = output_buf[row];
+ colorindex_ci = cquantize->colorindex[ci];
+ dither = cquantize->odither[ci][row_index];
+ col_index = 0;
+
+ for (col = width; col > 0; col--) {
+ /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
+ * select output value, accumulate into output code for this pixel.
+ * Range-limiting need not be done explicitly, as we have extended
+ * the colorindex table to produce the right answers for out-of-range
+ * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
+ * required amount of padding.
+ */
+ *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
+ input_ptr += nc;
+ output_ptr++;
+ col_index = (col_index + 1) & ODITHER_MASK;
+ }
+ }
+ /* Advance row index for next row */
+ row_index = (row_index + 1) & ODITHER_MASK;
+ cquantize->row_index = row_index;
+ }
+}
+
+
+METHODDEF(void)
+quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* Fast path for out_color_components==3, with ordered dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register int pixcode;
+ register JSAMPROW input_ptr;
+ register JSAMPROW output_ptr;
+ JSAMPROW colorindex0 = cquantize->colorindex[0];
+ JSAMPROW colorindex1 = cquantize->colorindex[1];
+ JSAMPROW colorindex2 = cquantize->colorindex[2];
+ int * dither0; /* points to active row of dither matrix */
+ int * dither1;
+ int * dither2;
+ int row_index, col_index; /* current indexes into dither matrix */
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ row_index = cquantize->row_index;
+ input_ptr = input_buf[row];
+ output_ptr = output_buf[row];
+ dither0 = cquantize->odither[0][row_index];
+ dither1 = cquantize->odither[1][row_index];
+ dither2 = cquantize->odither[2][row_index];
+ col_index = 0;
+
+ for (col = width; col > 0; col--) {
+ pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
+ dither0[col_index]]);
+ pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
+ dither1[col_index]]);
+ pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
+ dither2[col_index]]);
+ *output_ptr++ = (JSAMPLE) pixcode;
+ col_index = (col_index + 1) & ODITHER_MASK;
+ }
+ row_index = (row_index + 1) & ODITHER_MASK;
+ cquantize->row_index = row_index;
+ }
+}
+
+
+METHODDEF(void)
+quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+/* General case, with Floyd-Steinberg dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register LOCFSERROR cur; /* current error or pixel value */
+ LOCFSERROR belowerr; /* error for pixel below cur */
+ LOCFSERROR bpreverr; /* error for below/prev col */
+ LOCFSERROR bnexterr; /* error for below/next col */
+ LOCFSERROR delta;
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */
+ register JSAMPROW input_ptr;
+ register JSAMPROW output_ptr;
+ JSAMPROW colorindex_ci;
+ JSAMPROW colormap_ci;
+ int pixcode;
+ int nc = cinfo->out_color_components;
+ int dir; /* 1 for left-to-right, -1 for right-to-left */
+ int dirnc; /* dir * nc */
+ int ci;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+ JSAMPLE *range_limit = cinfo->sample_range_limit;
+ SHIFT_TEMPS
+
+ for (row = 0; row < num_rows; row++) {
+ /* Initialize output values to 0 so can process components separately */
+ FMEMZERO((void FAR *) output_buf[row],
+ (size_t) (width * SIZEOF(JSAMPLE)));
+ for (ci = 0; ci < nc; ci++) {
+ input_ptr = input_buf[row] + ci;
+ output_ptr = output_buf[row];
+ if (cquantize->on_odd_row) {
+ /* work right to left in this row */
+ input_ptr += (width-1) * nc; /* so point to rightmost pixel */
+ output_ptr += width-1;
+ dir = -1;
+ dirnc = -nc;
+ errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
+ } else {
+ /* work left to right in this row */
+ dir = 1;
+ dirnc = nc;
+ errorptr = cquantize->fserrors[ci]; /* => entry before first column */
+ }
+ colorindex_ci = cquantize->colorindex[ci];
+ colormap_ci = cquantize->sv_colormap[ci];
+ /* Preset error values: no error propagated to first pixel from left */
+ cur = 0;
+ /* and no error propagated to row below yet */
+ belowerr = bpreverr = 0;
+
+ for (col = width; col > 0; col--) {
+ /* cur holds the error propagated from the previous pixel on the
+ * current line. Add the error propagated from the previous line
+ * to form the complete error correction term for this pixel, and
+ * round the error term (which is expressed * 16) to an integer.
+ * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+ * for either sign of the error value.
+ * Note: errorptr points to *previous* column's array entry.
+ */
+ cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
+ /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+ * The maximum error is +- MAXJSAMPLE; this sets the required size
+ * of the range_limit array.
+ */
+ cur += GETJSAMPLE(*input_ptr);
+ cur = GETJSAMPLE(range_limit[cur]);
+ /* Select output value, accumulate into output code for this pixel */
+ pixcode = GETJSAMPLE(colorindex_ci[cur]);
+ *output_ptr += (JSAMPLE) pixcode;
+ /* Compute actual representation error at this pixel */
+ /* Note: we can do this even though we don't have the final */
+ /* pixel code, because the colormap is orthogonal. */
+ cur -= GETJSAMPLE(colormap_ci[pixcode]);
+ /* Compute error fractions to be propagated to adjacent pixels.
+ * Add these into the running sums, and simultaneously shift the
+ * next-line error sums left by 1 column.
+ */
+ bnexterr = cur;
+ delta = cur * 2;
+ cur += delta; /* form error * 3 */
+ errorptr[0] = (FSERROR) (bpreverr + cur);
+ cur += delta; /* form error * 5 */
+ bpreverr = belowerr + cur;
+ belowerr = bnexterr;
+ cur += delta; /* form error * 7 */
+ /* At this point cur contains the 7/16 error value to be propagated
+ * to the next pixel on the current line, and all the errors for the
+ * next line have been shifted over. We are therefore ready to move on.
+ */
+ input_ptr += dirnc; /* advance input ptr to next column */
+ output_ptr += dir; /* advance output ptr to next column */
+ errorptr += dir; /* advance errorptr to current column */
+ }
+ /* Post-loop cleanup: we must unload the final error value into the
+ * final fserrors[] entry. Note we need not unload belowerr because
+ * it is for the dummy column before or after the actual array.
+ */
+ errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
+ }
+ cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
+ }
+}
+
+
+/*
+ * Allocate workspace for Floyd-Steinberg errors.
+ */
+
+LOCAL(void)
+alloc_fs_workspace (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ size_t arraysize;
+ int i;
+
+ arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+ for (i = 0; i < cinfo->out_color_components; i++) {
+ cquantize->fserrors[i] = (FSERRPTR)
+ (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+ }
+}
+
+
+/*
+ * Initialize for one-pass color quantization.
+ */
+
+METHODDEF(void)
+start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ size_t arraysize;
+ int i;
+
+ /* Install my colormap. */
+ cinfo->colormap = cquantize->sv_colormap;
+ cinfo->actual_number_of_colors = cquantize->sv_actual;
+
+ /* Initialize for desired dithering mode. */
+ switch (cinfo->dither_mode) {
+ case JDITHER_NONE:
+ if (cinfo->out_color_components == 3)
+ cquantize->pub.color_quantize = color_quantize3;
+ else
+ cquantize->pub.color_quantize = color_quantize;
+ break;
+ case JDITHER_ORDERED:
+ if (cinfo->out_color_components == 3)
+ cquantize->pub.color_quantize = quantize3_ord_dither;
+ else
+ cquantize->pub.color_quantize = quantize_ord_dither;
+ cquantize->row_index = 0; /* initialize state for ordered dither */
+ /* If user changed to ordered dither from another mode,
+ * we must recreate the color index table with padding.
+ * This will cost extra space, but probably isn't very likely.
+ */
+ if (! cquantize->is_padded)
+ create_colorindex(cinfo);
+ /* Create ordered-dither tables if we didn't already. */
+ if (cquantize->odither[0] == NULL)
+ create_odither_tables(cinfo);
+ break;
+ case JDITHER_FS:
+ cquantize->pub.color_quantize = quantize_fs_dither;
+ cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
+ /* Allocate Floyd-Steinberg workspace if didn't already. */
+ if (cquantize->fserrors[0] == NULL)
+ alloc_fs_workspace(cinfo);
+ /* Initialize the propagated errors to zero. */
+ arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+ for (i = 0; i < cinfo->out_color_components; i++)
+ FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+}
+
+
+/*
+ * Finish up at the end of the pass.
+ */
+
+METHODDEF(void)
+finish_pass_1_quant (j_decompress_ptr cinfo)
+{
+ /* no work in 1-pass case */
+}
+
+
+/*
+ * Switch to a new external colormap between output passes.
+ * Shouldn't get to this module!
+ */
+
+METHODDEF(void)
+new_color_map_1_quant (j_decompress_ptr cinfo)
+{
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+
+/*
+ * Module initialization routine for 1-pass color quantization.
+ */
+
+GLOBAL(void)
+jinit_1pass_quantizer (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize;
+
+ cquantize = (my_cquantize_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_cquantizer));
+ cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+ cquantize->pub.start_pass = start_pass_1_quant;
+ cquantize->pub.finish_pass = finish_pass_1_quant;
+ cquantize->pub.new_color_map = new_color_map_1_quant;
+ cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
+ cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
+
+ /* Make sure my internal arrays won't overflow */
+ if (cinfo->out_color_components > MAX_Q_COMPS)
+ ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
+ /* Make sure colormap indexes can be represented by JSAMPLEs */
+ if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
+
+ /* Create the colormap and color index table. */
+ create_colormap(cinfo);
+ create_colorindex(cinfo);
+
+ /* Allocate Floyd-Steinberg workspace now if requested.
+ * We do this now since it is FAR storage and may affect the memory
+ * manager's space calculations. If the user changes to FS dither
+ * mode in a later pass, we will allocate the space then, and will
+ * possibly overrun the max_memory_to_use setting.
+ */
+ if (cinfo->dither_mode == JDITHER_FS)
+ alloc_fs_workspace(cinfo);
+}
+
+#endif /* QUANT_1PASS_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jquant2.c b/plugins/AdvaImg/src/LibJPEG/jquant2.c
new file mode 100644
index 0000000000..38fc2af7a5
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jquant2.c
@@ -0,0 +1,1311 @@
+/*
+ * jquant2.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains 2-pass color quantization (color mapping) routines.
+ * These routines provide selection of a custom color map for an image,
+ * followed by mapping of the image to that color map, with optional
+ * Floyd-Steinberg dithering.
+ * It is also possible to use just the second pass to map to an arbitrary
+ * externally-given color map.
+ *
+ * Note: ordered dithering is not supported, since there isn't any fast
+ * way to compute intercolor distances; it's unclear that ordered dither's
+ * fundamental assumptions even hold with an irregularly spaced color map.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+
+/*
+ * This module implements the well-known Heckbert paradigm for color
+ * quantization. Most of the ideas used here can be traced back to
+ * Heckbert's seminal paper
+ * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
+ * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
+ *
+ * In the first pass over the image, we accumulate a histogram showing the
+ * usage count of each possible color. To keep the histogram to a reasonable
+ * size, we reduce the precision of the input; typical practice is to retain
+ * 5 or 6 bits per color, so that 8 or 4 different input values are counted
+ * in the same histogram cell.
+ *
+ * Next, the color-selection step begins with a box representing the whole
+ * color space, and repeatedly splits the "largest" remaining box until we
+ * have as many boxes as desired colors. Then the mean color in each
+ * remaining box becomes one of the possible output colors.
+ *
+ * The second pass over the image maps each input pixel to the closest output
+ * color (optionally after applying a Floyd-Steinberg dithering correction).
+ * This mapping is logically trivial, but making it go fast enough requires
+ * considerable care.
+ *
+ * Heckbert-style quantizers vary a good deal in their policies for choosing
+ * the "largest" box and deciding where to cut it. The particular policies
+ * used here have proved out well in experimental comparisons, but better ones
+ * may yet be found.
+ *
+ * In earlier versions of the IJG code, this module quantized in YCbCr color
+ * space, processing the raw upsampled data without a color conversion step.
+ * This allowed the color conversion math to be done only once per colormap
+ * entry, not once per pixel. However, that optimization precluded other
+ * useful optimizations (such as merging color conversion with upsampling)
+ * and it also interfered with desired capabilities such as quantizing to an
+ * externally-supplied colormap. We have therefore abandoned that approach.
+ * The present code works in the post-conversion color space, typically RGB.
+ *
+ * To improve the visual quality of the results, we actually work in scaled
+ * RGB space, giving G distances more weight than R, and R in turn more than
+ * B. To do everything in integer math, we must use integer scale factors.
+ * The 2/3/1 scale factors used here correspond loosely to the relative
+ * weights of the colors in the NTSC grayscale equation.
+ * If you want to use this code to quantize a non-RGB color space, you'll
+ * probably need to change these scale factors.
+ */
+
+#define R_SCALE 2 /* scale R distances by this much */
+#define G_SCALE 3 /* scale G distances by this much */
+#define B_SCALE 1 /* and B by this much */
+
+/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
+ * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
+ * and B,G,R orders. If you define some other weird order in jmorecfg.h,
+ * you'll get compile errors until you extend this logic. In that case
+ * you'll probably want to tweak the histogram sizes too.
+ */
+
+#if RGB_RED == 0
+#define C0_SCALE R_SCALE
+#endif
+#if RGB_BLUE == 0
+#define C0_SCALE B_SCALE
+#endif
+#if RGB_GREEN == 1
+#define C1_SCALE G_SCALE
+#endif
+#if RGB_RED == 2
+#define C2_SCALE R_SCALE
+#endif
+#if RGB_BLUE == 2
+#define C2_SCALE B_SCALE
+#endif
+
+
+/*
+ * First we have the histogram data structure and routines for creating it.
+ *
+ * The number of bits of precision can be adjusted by changing these symbols.
+ * We recommend keeping 6 bits for G and 5 each for R and B.
+ * If you have plenty of memory and cycles, 6 bits all around gives marginally
+ * better results; if you are short of memory, 5 bits all around will save
+ * some space but degrade the results.
+ * To maintain a fully accurate histogram, we'd need to allocate a "long"
+ * (preferably unsigned long) for each cell. In practice this is overkill;
+ * we can get by with 16 bits per cell. Few of the cell counts will overflow,
+ * and clamping those that do overflow to the maximum value will give close-
+ * enough results. This reduces the recommended histogram size from 256Kb
+ * to 128Kb, which is a useful savings on PC-class machines.
+ * (In the second pass the histogram space is re-used for pixel mapping data;
+ * in that capacity, each cell must be able to store zero to the number of
+ * desired colors. 16 bits/cell is plenty for that too.)
+ * Since the JPEG code is intended to run in small memory model on 80x86
+ * machines, we can't just allocate the histogram in one chunk. Instead
+ * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
+ * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
+ * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
+ * on 80x86 machines, the pointer row is in near memory but the actual
+ * arrays are in far memory (same arrangement as we use for image arrays).
+ */
+
+#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
+
+/* These will do the right thing for either R,G,B or B,G,R color order,
+ * but you may not like the results for other color orders.
+ */
+#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
+#define HIST_C1_BITS 6 /* bits of precision in G histogram */
+#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
+
+/* Number of elements along histogram axes. */
+#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
+#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
+#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
+
+/* These are the amounts to shift an input value to get a histogram index. */
+#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
+#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
+#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
+
+
+typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
+
+typedef histcell FAR * histptr; /* for pointers to histogram cells */
+
+typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
+typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
+typedef hist2d * hist3d; /* type for top-level pointer */
+
+
+/* Declarations for Floyd-Steinberg dithering.
+ *
+ * Errors are accumulated into the array fserrors[], at a resolution of
+ * 1/16th of a pixel count. The error at a given pixel is propagated
+ * to its not-yet-processed neighbors using the standard F-S fractions,
+ * ... (here) 7/16
+ * 3/16 5/16 1/16
+ * We work left-to-right on even rows, right-to-left on odd rows.
+ *
+ * We can get away with a single array (holding one row's worth of errors)
+ * by using it to store the current row's errors at pixel columns not yet
+ * processed, but the next row's errors at columns already processed. We
+ * need only a few extra variables to hold the errors immediately around the
+ * current column. (If we are lucky, those variables are in registers, but
+ * even if not, they're probably cheaper to access than array elements are.)
+ *
+ * The fserrors[] array has (#columns + 2) entries; the extra entry at
+ * each end saves us from special-casing the first and last pixels.
+ * Each entry is three values long, one value for each color component.
+ *
+ * Note: on a wide image, we might not have enough room in a PC's near data
+ * segment to hold the error array; so it is allocated with alloc_large.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef INT16 FSERROR; /* 16 bits should be enough */
+typedef int LOCFSERROR; /* use 'int' for calculation temps */
+#else
+typedef INT32 FSERROR; /* may need more than 16 bits */
+typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
+#endif
+
+typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_quantizer pub; /* public fields */
+
+ /* Space for the eventually created colormap is stashed here */
+ JSAMPARRAY sv_colormap; /* colormap allocated at init time */
+ int desired; /* desired # of colors = size of colormap */
+
+ /* Variables for accumulating image statistics */
+ hist3d histogram; /* pointer to the histogram */
+
+ boolean needs_zeroed; /* TRUE if next pass must zero histogram */
+
+ /* Variables for Floyd-Steinberg dithering */
+ FSERRPTR fserrors; /* accumulated errors */
+ boolean on_odd_row; /* flag to remember which row we are on */
+ int * error_limiter; /* table for clamping the applied error */
+} my_cquantizer;
+
+typedef my_cquantizer * my_cquantize_ptr;
+
+
+/*
+ * Prescan some rows of pixels.
+ * In this module the prescan simply updates the histogram, which has been
+ * initialized to zeroes by start_pass.
+ * An output_buf parameter is required by the method signature, but no data
+ * is actually output (in fact the buffer controller is probably passing a
+ * NULL pointer).
+ */
+
+METHODDEF(void)
+prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ register JSAMPROW ptr;
+ register histptr histp;
+ register hist3d histogram = cquantize->histogram;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ ptr = input_buf[row];
+ for (col = width; col > 0; col--) {
+ /* get pixel value and index into the histogram */
+ histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
+ [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
+ [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
+ /* increment, check for overflow and undo increment if so. */
+ if (++(*histp) <= 0)
+ (*histp)--;
+ ptr += 3;
+ }
+ }
+}
+
+
+/*
+ * Next we have the really interesting routines: selection of a colormap
+ * given the completed histogram.
+ * These routines work with a list of "boxes", each representing a rectangular
+ * subset of the input color space (to histogram precision).
+ */
+
+typedef struct {
+ /* The bounds of the box (inclusive); expressed as histogram indexes */
+ int c0min, c0max;
+ int c1min, c1max;
+ int c2min, c2max;
+ /* The volume (actually 2-norm) of the box */
+ INT32 volume;
+ /* The number of nonzero histogram cells within this box */
+ long colorcount;
+} box;
+
+typedef box * boxptr;
+
+
+LOCAL(boxptr)
+find_biggest_color_pop (boxptr boxlist, int numboxes)
+/* Find the splittable box with the largest color population */
+/* Returns NULL if no splittable boxes remain */
+{
+ register boxptr boxp;
+ register int i;
+ register long maxc = 0;
+ boxptr which = NULL;
+
+ for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+ if (boxp->colorcount > maxc && boxp->volume > 0) {
+ which = boxp;
+ maxc = boxp->colorcount;
+ }
+ }
+ return which;
+}
+
+
+LOCAL(boxptr)
+find_biggest_volume (boxptr boxlist, int numboxes)
+/* Find the splittable box with the largest (scaled) volume */
+/* Returns NULL if no splittable boxes remain */
+{
+ register boxptr boxp;
+ register int i;
+ register INT32 maxv = 0;
+ boxptr which = NULL;
+
+ for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+ if (boxp->volume > maxv) {
+ which = boxp;
+ maxv = boxp->volume;
+ }
+ }
+ return which;
+}
+
+
+LOCAL(void)
+update_box (j_decompress_ptr cinfo, boxptr boxp)
+/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
+/* and recompute its volume and population */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ histptr histp;
+ int c0,c1,c2;
+ int c0min,c0max,c1min,c1max,c2min,c2max;
+ INT32 dist0,dist1,dist2;
+ long ccount;
+
+ c0min = boxp->c0min; c0max = boxp->c0max;
+ c1min = boxp->c1min; c1max = boxp->c1max;
+ c2min = boxp->c2min; c2max = boxp->c2max;
+
+ if (c0max > c0min)
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0min = c0min = c0;
+ goto have_c0min;
+ }
+ }
+ have_c0min:
+ if (c0max > c0min)
+ for (c0 = c0max; c0 >= c0min; c0--)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c0max = c0max = c0;
+ goto have_c0max;
+ }
+ }
+ have_c0max:
+ if (c1max > c1min)
+ for (c1 = c1min; c1 <= c1max; c1++)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1min = c1min = c1;
+ goto have_c1min;
+ }
+ }
+ have_c1min:
+ if (c1max > c1min)
+ for (c1 = c1max; c1 >= c1min; c1--)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++)
+ if (*histp++ != 0) {
+ boxp->c1max = c1max = c1;
+ goto have_c1max;
+ }
+ }
+ have_c1max:
+ if (c2max > c2min)
+ for (c2 = c2min; c2 <= c2max; c2++)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2min = c2min = c2;
+ goto have_c2min;
+ }
+ }
+ have_c2min:
+ if (c2max > c2min)
+ for (c2 = c2max; c2 >= c2min; c2--)
+ for (c0 = c0min; c0 <= c0max; c0++) {
+ histp = & histogram[c0][c1min][c2];
+ for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+ if (*histp != 0) {
+ boxp->c2max = c2max = c2;
+ goto have_c2max;
+ }
+ }
+ have_c2max:
+
+ /* Update box volume.
+ * We use 2-norm rather than real volume here; this biases the method
+ * against making long narrow boxes, and it has the side benefit that
+ * a box is splittable iff norm > 0.
+ * Since the differences are expressed in histogram-cell units,
+ * we have to shift back to JSAMPLE units to get consistent distances;
+ * after which, we scale according to the selected distance scale factors.
+ */
+ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
+ dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
+ dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
+ boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
+
+ /* Now scan remaining volume of box and compute population */
+ ccount = 0;
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++, histp++)
+ if (*histp != 0) {
+ ccount++;
+ }
+ }
+ boxp->colorcount = ccount;
+}
+
+
+LOCAL(int)
+median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
+ int desired_colors)
+/* Repeatedly select and split the largest box until we have enough boxes */
+{
+ int n,lb;
+ int c0,c1,c2,cmax;
+ register boxptr b1,b2;
+
+ while (numboxes < desired_colors) {
+ /* Select box to split.
+ * Current algorithm: by population for first half, then by volume.
+ */
+ if (numboxes*2 <= desired_colors) {
+ b1 = find_biggest_color_pop(boxlist, numboxes);
+ } else {
+ b1 = find_biggest_volume(boxlist, numboxes);
+ }
+ if (b1 == NULL) /* no splittable boxes left! */
+ break;
+ b2 = &boxlist[numboxes]; /* where new box will go */
+ /* Copy the color bounds to the new box. */
+ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
+ b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
+ /* Choose which axis to split the box on.
+ * Current algorithm: longest scaled axis.
+ * See notes in update_box about scaling distances.
+ */
+ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
+ c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
+ c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
+ /* We want to break any ties in favor of green, then red, blue last.
+ * This code does the right thing for R,G,B or B,G,R color orders only.
+ */
+#if RGB_RED == 0
+ cmax = c1; n = 1;
+ if (c0 > cmax) { cmax = c0; n = 0; }
+ if (c2 > cmax) { n = 2; }
+#else
+ cmax = c1; n = 1;
+ if (c2 > cmax) { cmax = c2; n = 2; }
+ if (c0 > cmax) { n = 0; }
+#endif
+ /* Choose split point along selected axis, and update box bounds.
+ * Current algorithm: split at halfway point.
+ * (Since the box has been shrunk to minimum volume,
+ * any split will produce two nonempty subboxes.)
+ * Note that lb value is max for lower box, so must be < old max.
+ */
+ switch (n) {
+ case 0:
+ lb = (b1->c0max + b1->c0min) / 2;
+ b1->c0max = lb;
+ b2->c0min = lb+1;
+ break;
+ case 1:
+ lb = (b1->c1max + b1->c1min) / 2;
+ b1->c1max = lb;
+ b2->c1min = lb+1;
+ break;
+ case 2:
+ lb = (b1->c2max + b1->c2min) / 2;
+ b1->c2max = lb;
+ b2->c2min = lb+1;
+ break;
+ }
+ /* Update stats for boxes */
+ update_box(cinfo, b1);
+ update_box(cinfo, b2);
+ numboxes++;
+ }
+ return numboxes;
+}
+
+
+LOCAL(void)
+compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
+/* Compute representative color for a box, put it in colormap[icolor] */
+{
+ /* Current algorithm: mean weighted by pixels (not colors) */
+ /* Note it is important to get the rounding correct! */
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ histptr histp;
+ int c0,c1,c2;
+ int c0min,c0max,c1min,c1max,c2min,c2max;
+ long count;
+ long total = 0;
+ long c0total = 0;
+ long c1total = 0;
+ long c2total = 0;
+
+ c0min = boxp->c0min; c0max = boxp->c0max;
+ c1min = boxp->c1min; c1max = boxp->c1max;
+ c2min = boxp->c2min; c2max = boxp->c2max;
+
+ for (c0 = c0min; c0 <= c0max; c0++)
+ for (c1 = c1min; c1 <= c1max; c1++) {
+ histp = & histogram[c0][c1][c2min];
+ for (c2 = c2min; c2 <= c2max; c2++) {
+ if ((count = *histp++) != 0) {
+ total += count;
+ c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
+ c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
+ c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
+ }
+ }
+ }
+
+ cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
+ cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
+ cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
+}
+
+
+LOCAL(void)
+select_colors (j_decompress_ptr cinfo, int desired_colors)
+/* Master routine for color selection */
+{
+ boxptr boxlist;
+ int numboxes;
+ int i;
+
+ /* Allocate workspace for box list */
+ boxlist = (boxptr) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
+ /* Initialize one box containing whole space */
+ numboxes = 1;
+ boxlist[0].c0min = 0;
+ boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
+ boxlist[0].c1min = 0;
+ boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
+ boxlist[0].c2min = 0;
+ boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
+ /* Shrink it to actually-used volume and set its statistics */
+ update_box(cinfo, & boxlist[0]);
+ /* Perform median-cut to produce final box list */
+ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
+ /* Compute the representative color for each box, fill colormap */
+ for (i = 0; i < numboxes; i++)
+ compute_color(cinfo, & boxlist[i], i);
+ cinfo->actual_number_of_colors = numboxes;
+ TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
+}
+
+
+/*
+ * These routines are concerned with the time-critical task of mapping input
+ * colors to the nearest color in the selected colormap.
+ *
+ * We re-use the histogram space as an "inverse color map", essentially a
+ * cache for the results of nearest-color searches. All colors within a
+ * histogram cell will be mapped to the same colormap entry, namely the one
+ * closest to the cell's center. This may not be quite the closest entry to
+ * the actual input color, but it's almost as good. A zero in the cache
+ * indicates we haven't found the nearest color for that cell yet; the array
+ * is cleared to zeroes before starting the mapping pass. When we find the
+ * nearest color for a cell, its colormap index plus one is recorded in the
+ * cache for future use. The pass2 scanning routines call fill_inverse_cmap
+ * when they need to use an unfilled entry in the cache.
+ *
+ * Our method of efficiently finding nearest colors is based on the "locally
+ * sorted search" idea described by Heckbert and on the incremental distance
+ * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
+ * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
+ * the distances from a given colormap entry to each cell of the histogram can
+ * be computed quickly using an incremental method: the differences between
+ * distances to adjacent cells themselves differ by a constant. This allows a
+ * fairly fast implementation of the "brute force" approach of computing the
+ * distance from every colormap entry to every histogram cell. Unfortunately,
+ * it needs a work array to hold the best-distance-so-far for each histogram
+ * cell (because the inner loop has to be over cells, not colormap entries).
+ * The work array elements have to be INT32s, so the work array would need
+ * 256Kb at our recommended precision. This is not feasible in DOS machines.
+ *
+ * To get around these problems, we apply Thomas' method to compute the
+ * nearest colors for only the cells within a small subbox of the histogram.
+ * The work array need be only as big as the subbox, so the memory usage
+ * problem is solved. Furthermore, we need not fill subboxes that are never
+ * referenced in pass2; many images use only part of the color gamut, so a
+ * fair amount of work is saved. An additional advantage of this
+ * approach is that we can apply Heckbert's locality criterion to quickly
+ * eliminate colormap entries that are far away from the subbox; typically
+ * three-fourths of the colormap entries are rejected by Heckbert's criterion,
+ * and we need not compute their distances to individual cells in the subbox.
+ * The speed of this approach is heavily influenced by the subbox size: too
+ * small means too much overhead, too big loses because Heckbert's criterion
+ * can't eliminate as many colormap entries. Empirically the best subbox
+ * size seems to be about 1/512th of the histogram (1/8th in each direction).
+ *
+ * Thomas' article also describes a refined method which is asymptotically
+ * faster than the brute-force method, but it is also far more complex and
+ * cannot efficiently be applied to small subboxes. It is therefore not
+ * useful for programs intended to be portable to DOS machines. On machines
+ * with plenty of memory, filling the whole histogram in one shot with Thomas'
+ * refined method might be faster than the present code --- but then again,
+ * it might not be any faster, and it's certainly more complicated.
+ */
+
+
+/* log2(histogram cells in update box) for each axis; this can be adjusted */
+#define BOX_C0_LOG (HIST_C0_BITS-3)
+#define BOX_C1_LOG (HIST_C1_BITS-3)
+#define BOX_C2_LOG (HIST_C2_BITS-3)
+
+#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
+#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
+#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
+
+#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
+#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
+#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
+
+
+/*
+ * The next three routines implement inverse colormap filling. They could
+ * all be folded into one big routine, but splitting them up this way saves
+ * some stack space (the mindist[] and bestdist[] arrays need not coexist)
+ * and may allow some compilers to produce better code by registerizing more
+ * inner-loop variables.
+ */
+
+LOCAL(int)
+find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+ JSAMPLE colorlist[])
+/* Locate the colormap entries close enough to an update box to be candidates
+ * for the nearest entry to some cell(s) in the update box. The update box
+ * is specified by the center coordinates of its first cell. The number of
+ * candidate colormap entries is returned, and their colormap indexes are
+ * placed in colorlist[].
+ * This routine uses Heckbert's "locally sorted search" criterion to select
+ * the colors that need further consideration.
+ */
+{
+ int numcolors = cinfo->actual_number_of_colors;
+ int maxc0, maxc1, maxc2;
+ int centerc0, centerc1, centerc2;
+ int i, x, ncolors;
+ INT32 minmaxdist, min_dist, max_dist, tdist;
+ INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
+
+ /* Compute true coordinates of update box's upper corner and center.
+ * Actually we compute the coordinates of the center of the upper-corner
+ * histogram cell, which are the upper bounds of the volume we care about.
+ * Note that since ">>" rounds down, the "center" values may be closer to
+ * min than to max; hence comparisons to them must be "<=", not "<".
+ */
+ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
+ centerc0 = (minc0 + maxc0) >> 1;
+ maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
+ centerc1 = (minc1 + maxc1) >> 1;
+ maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
+ centerc2 = (minc2 + maxc2) >> 1;
+
+ /* For each color in colormap, find:
+ * 1. its minimum squared-distance to any point in the update box
+ * (zero if color is within update box);
+ * 2. its maximum squared-distance to any point in the update box.
+ * Both of these can be found by considering only the corners of the box.
+ * We save the minimum distance for each color in mindist[];
+ * only the smallest maximum distance is of interest.
+ */
+ minmaxdist = 0x7FFFFFFFL;
+
+ for (i = 0; i < numcolors; i++) {
+ /* We compute the squared-c0-distance term, then add in the other two. */
+ x = GETJSAMPLE(cinfo->colormap[0][i]);
+ if (x < minc0) {
+ tdist = (x - minc0) * C0_SCALE;
+ min_dist = tdist*tdist;
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ } else if (x > maxc0) {
+ tdist = (x - maxc0) * C0_SCALE;
+ min_dist = tdist*tdist;
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ min_dist = 0;
+ if (x <= centerc0) {
+ tdist = (x - maxc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ } else {
+ tdist = (x - minc0) * C0_SCALE;
+ max_dist = tdist*tdist;
+ }
+ }
+
+ x = GETJSAMPLE(cinfo->colormap[1][i]);
+ if (x < minc1) {
+ tdist = (x - minc1) * C1_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ } else if (x > maxc1) {
+ tdist = (x - maxc1) * C1_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ if (x <= centerc1) {
+ tdist = (x - maxc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ tdist = (x - minc1) * C1_SCALE;
+ max_dist += tdist*tdist;
+ }
+ }
+
+ x = GETJSAMPLE(cinfo->colormap[2][i]);
+ if (x < minc2) {
+ tdist = (x - minc2) * C2_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ } else if (x > maxc2) {
+ tdist = (x - maxc2) * C2_SCALE;
+ min_dist += tdist*tdist;
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ /* within cell range so no contribution to min_dist */
+ if (x <= centerc2) {
+ tdist = (x - maxc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ } else {
+ tdist = (x - minc2) * C2_SCALE;
+ max_dist += tdist*tdist;
+ }
+ }
+
+ mindist[i] = min_dist; /* save away the results */
+ if (max_dist < minmaxdist)
+ minmaxdist = max_dist;
+ }
+
+ /* Now we know that no cell in the update box is more than minmaxdist
+ * away from some colormap entry. Therefore, only colors that are
+ * within minmaxdist of some part of the box need be considered.
+ */
+ ncolors = 0;
+ for (i = 0; i < numcolors; i++) {
+ if (mindist[i] <= minmaxdist)
+ colorlist[ncolors++] = (JSAMPLE) i;
+ }
+ return ncolors;
+}
+
+
+LOCAL(void)
+find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+ int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
+/* Find the closest colormap entry for each cell in the update box,
+ * given the list of candidate colors prepared by find_nearby_colors.
+ * Return the indexes of the closest entries in the bestcolor[] array.
+ * This routine uses Thomas' incremental distance calculation method to
+ * find the distance from a colormap entry to successive cells in the box.
+ */
+{
+ int ic0, ic1, ic2;
+ int i, icolor;
+ register INT32 * bptr; /* pointer into bestdist[] array */
+ JSAMPLE * cptr; /* pointer into bestcolor[] array */
+ INT32 dist0, dist1; /* initial distance values */
+ register INT32 dist2; /* current distance in inner loop */
+ INT32 xx0, xx1; /* distance increments */
+ register INT32 xx2;
+ INT32 inc0, inc1, inc2; /* initial values for increments */
+ /* This array holds the distance to the nearest-so-far color for each cell */
+ INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+ /* Initialize best-distance for each cell of the update box */
+ bptr = bestdist;
+ for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
+ *bptr++ = 0x7FFFFFFFL;
+
+ /* For each color selected by find_nearby_colors,
+ * compute its distance to the center of each cell in the box.
+ * If that's less than best-so-far, update best distance and color number.
+ */
+
+ /* Nominal steps between cell centers ("x" in Thomas article) */
+#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
+#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
+#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
+
+ for (i = 0; i < numcolors; i++) {
+ icolor = GETJSAMPLE(colorlist[i]);
+ /* Compute (square of) distance from minc0/c1/c2 to this color */
+ inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
+ dist0 = inc0*inc0;
+ inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
+ dist0 += inc1*inc1;
+ inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
+ dist0 += inc2*inc2;
+ /* Form the initial difference increments */
+ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
+ inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
+ inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
+ /* Now loop over all cells in box, updating distance per Thomas method */
+ bptr = bestdist;
+ cptr = bestcolor;
+ xx0 = inc0;
+ for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
+ dist1 = dist0;
+ xx1 = inc1;
+ for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
+ dist2 = dist1;
+ xx2 = inc2;
+ for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
+ if (dist2 < *bptr) {
+ *bptr = dist2;
+ *cptr = (JSAMPLE) icolor;
+ }
+ dist2 += xx2;
+ xx2 += 2 * STEP_C2 * STEP_C2;
+ bptr++;
+ cptr++;
+ }
+ dist1 += xx1;
+ xx1 += 2 * STEP_C1 * STEP_C1;
+ }
+ dist0 += xx0;
+ xx0 += 2 * STEP_C0 * STEP_C0;
+ }
+ }
+}
+
+
+LOCAL(void)
+fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
+/* Fill the inverse-colormap entries in the update box that contains */
+/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
+/* we can fill as many others as we wish.) */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ int minc0, minc1, minc2; /* lower left corner of update box */
+ int ic0, ic1, ic2;
+ register JSAMPLE * cptr; /* pointer into bestcolor[] array */
+ register histptr cachep; /* pointer into main cache array */
+ /* This array lists the candidate colormap indexes. */
+ JSAMPLE colorlist[MAXNUMCOLORS];
+ int numcolors; /* number of candidate colors */
+ /* This array holds the actually closest colormap index for each cell. */
+ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+ /* Convert cell coordinates to update box ID */
+ c0 >>= BOX_C0_LOG;
+ c1 >>= BOX_C1_LOG;
+ c2 >>= BOX_C2_LOG;
+
+ /* Compute true coordinates of update box's origin corner.
+ * Actually we compute the coordinates of the center of the corner
+ * histogram cell, which are the lower bounds of the volume we care about.
+ */
+ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
+ minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
+ minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
+
+ /* Determine which colormap entries are close enough to be candidates
+ * for the nearest entry to some cell in the update box.
+ */
+ numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
+
+ /* Determine the actually nearest colors. */
+ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
+ bestcolor);
+
+ /* Save the best color numbers (plus 1) in the main cache array */
+ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
+ c1 <<= BOX_C1_LOG;
+ c2 <<= BOX_C2_LOG;
+ cptr = bestcolor;
+ for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
+ for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
+ cachep = & histogram[c0+ic0][c1+ic1][c2];
+ for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
+ *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
+ }
+ }
+ }
+}
+
+
+/*
+ * Map some rows of pixels to the output colormapped representation.
+ */
+
+METHODDEF(void)
+pass2_no_dither (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+/* This version performs no dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ register JSAMPROW inptr, outptr;
+ register histptr cachep;
+ register int c0, c1, c2;
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+
+ for (row = 0; row < num_rows; row++) {
+ inptr = input_buf[row];
+ outptr = output_buf[row];
+ for (col = width; col > 0; col--) {
+ /* get pixel value and index into the cache */
+ c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
+ c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
+ c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
+ cachep = & histogram[c0][c1][c2];
+ /* If we have not seen this color before, find nearest colormap entry */
+ /* and update the cache */
+ if (*cachep == 0)
+ fill_inverse_cmap(cinfo, c0,c1,c2);
+ /* Now emit the colormap index for this cell */
+ *outptr++ = (JSAMPLE) (*cachep - 1);
+ }
+ }
+}
+
+
+METHODDEF(void)
+pass2_fs_dither (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+/* This version performs Floyd-Steinberg dithering */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
+ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
+ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
+ register FSERRPTR errorptr; /* => fserrors[] at column before current */
+ JSAMPROW inptr; /* => current input pixel */
+ JSAMPROW outptr; /* => current output pixel */
+ histptr cachep;
+ int dir; /* +1 or -1 depending on direction */
+ int dir3; /* 3*dir, for advancing inptr & errorptr */
+ int row;
+ JDIMENSION col;
+ JDIMENSION width = cinfo->output_width;
+ JSAMPLE *range_limit = cinfo->sample_range_limit;
+ int *error_limit = cquantize->error_limiter;
+ JSAMPROW colormap0 = cinfo->colormap[0];
+ JSAMPROW colormap1 = cinfo->colormap[1];
+ JSAMPROW colormap2 = cinfo->colormap[2];
+ SHIFT_TEMPS
+
+ for (row = 0; row < num_rows; row++) {
+ inptr = input_buf[row];
+ outptr = output_buf[row];
+ if (cquantize->on_odd_row) {
+ /* work right to left in this row */
+ inptr += (width-1) * 3; /* so point to rightmost pixel */
+ outptr += width-1;
+ dir = -1;
+ dir3 = -3;
+ errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
+ cquantize->on_odd_row = FALSE; /* flip for next time */
+ } else {
+ /* work left to right in this row */
+ dir = 1;
+ dir3 = 3;
+ errorptr = cquantize->fserrors; /* => entry before first real column */
+ cquantize->on_odd_row = TRUE; /* flip for next time */
+ }
+ /* Preset error values: no error propagated to first pixel from left */
+ cur0 = cur1 = cur2 = 0;
+ /* and no error propagated to row below yet */
+ belowerr0 = belowerr1 = belowerr2 = 0;
+ bpreverr0 = bpreverr1 = bpreverr2 = 0;
+
+ for (col = width; col > 0; col--) {
+ /* curN holds the error propagated from the previous pixel on the
+ * current line. Add the error propagated from the previous line
+ * to form the complete error correction term for this pixel, and
+ * round the error term (which is expressed * 16) to an integer.
+ * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+ * for either sign of the error value.
+ * Note: errorptr points to *previous* column's array entry.
+ */
+ cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
+ cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
+ cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
+ /* Limit the error using transfer function set by init_error_limit.
+ * See comments with init_error_limit for rationale.
+ */
+ cur0 = error_limit[cur0];
+ cur1 = error_limit[cur1];
+ cur2 = error_limit[cur2];
+ /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+ * The maximum error is +- MAXJSAMPLE (or less with error limiting);
+ * this sets the required size of the range_limit array.
+ */
+ cur0 += GETJSAMPLE(inptr[0]);
+ cur1 += GETJSAMPLE(inptr[1]);
+ cur2 += GETJSAMPLE(inptr[2]);
+ cur0 = GETJSAMPLE(range_limit[cur0]);
+ cur1 = GETJSAMPLE(range_limit[cur1]);
+ cur2 = GETJSAMPLE(range_limit[cur2]);
+ /* Index into the cache with adjusted pixel value */
+ cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
+ /* If we have not seen this color before, find nearest colormap */
+ /* entry and update the cache */
+ if (*cachep == 0)
+ fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
+ /* Now emit the colormap index for this cell */
+ { register int pixcode = *cachep - 1;
+ *outptr = (JSAMPLE) pixcode;
+ /* Compute representation error for this pixel */
+ cur0 -= GETJSAMPLE(colormap0[pixcode]);
+ cur1 -= GETJSAMPLE(colormap1[pixcode]);
+ cur2 -= GETJSAMPLE(colormap2[pixcode]);
+ }
+ /* Compute error fractions to be propagated to adjacent pixels.
+ * Add these into the running sums, and simultaneously shift the
+ * next-line error sums left by 1 column.
+ */
+ { register LOCFSERROR bnexterr, delta;
+
+ bnexterr = cur0; /* Process component 0 */
+ delta = cur0 * 2;
+ cur0 += delta; /* form error * 3 */
+ errorptr[0] = (FSERROR) (bpreverr0 + cur0);
+ cur0 += delta; /* form error * 5 */
+ bpreverr0 = belowerr0 + cur0;
+ belowerr0 = bnexterr;
+ cur0 += delta; /* form error * 7 */
+ bnexterr = cur1; /* Process component 1 */
+ delta = cur1 * 2;
+ cur1 += delta; /* form error * 3 */
+ errorptr[1] = (FSERROR) (bpreverr1 + cur1);
+ cur1 += delta; /* form error * 5 */
+ bpreverr1 = belowerr1 + cur1;
+ belowerr1 = bnexterr;
+ cur1 += delta; /* form error * 7 */
+ bnexterr = cur2; /* Process component 2 */
+ delta = cur2 * 2;
+ cur2 += delta; /* form error * 3 */
+ errorptr[2] = (FSERROR) (bpreverr2 + cur2);
+ cur2 += delta; /* form error * 5 */
+ bpreverr2 = belowerr2 + cur2;
+ belowerr2 = bnexterr;
+ cur2 += delta; /* form error * 7 */
+ }
+ /* At this point curN contains the 7/16 error value to be propagated
+ * to the next pixel on the current line, and all the errors for the
+ * next line have been shifted over. We are therefore ready to move on.
+ */
+ inptr += dir3; /* Advance pixel pointers to next column */
+ outptr += dir;
+ errorptr += dir3; /* advance errorptr to current column */
+ }
+ /* Post-loop cleanup: we must unload the final error values into the
+ * final fserrors[] entry. Note we need not unload belowerrN because
+ * it is for the dummy column before or after the actual array.
+ */
+ errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
+ errorptr[1] = (FSERROR) bpreverr1;
+ errorptr[2] = (FSERROR) bpreverr2;
+ }
+}
+
+
+/*
+ * Initialize the error-limiting transfer function (lookup table).
+ * The raw F-S error computation can potentially compute error values of up to
+ * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
+ * much less, otherwise obviously wrong pixels will be created. (Typical
+ * effects include weird fringes at color-area boundaries, isolated bright
+ * pixels in a dark area, etc.) The standard advice for avoiding this problem
+ * is to ensure that the "corners" of the color cube are allocated as output
+ * colors; then repeated errors in the same direction cannot cause cascading
+ * error buildup. However, that only prevents the error from getting
+ * completely out of hand; Aaron Giles reports that error limiting improves
+ * the results even with corner colors allocated.
+ * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
+ * well, but the smoother transfer function used below is even better. Thanks
+ * to Aaron Giles for this idea.
+ */
+
+LOCAL(void)
+init_error_limit (j_decompress_ptr cinfo)
+/* Allocate and fill in the error_limiter table */
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ int * table;
+ int in, out;
+
+ table = (int *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
+ table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
+ cquantize->error_limiter = table;
+
+#define STEPSIZE ((MAXJSAMPLE+1)/16)
+ /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
+ out = 0;
+ for (in = 0; in < STEPSIZE; in++, out++) {
+ table[in] = out; table[-in] = -out;
+ }
+ /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
+ for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
+ table[in] = out; table[-in] = -out;
+ }
+ /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
+ for (; in <= MAXJSAMPLE; in++) {
+ table[in] = out; table[-in] = -out;
+ }
+#undef STEPSIZE
+}
+
+
+/*
+ * Finish up at the end of each pass.
+ */
+
+METHODDEF(void)
+finish_pass1 (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+
+ /* Select the representative colors and fill in cinfo->colormap */
+ cinfo->colormap = cquantize->sv_colormap;
+ select_colors(cinfo, cquantize->desired);
+ /* Force next pass to zero the color index table */
+ cquantize->needs_zeroed = TRUE;
+}
+
+
+METHODDEF(void)
+finish_pass2 (j_decompress_ptr cinfo)
+{
+ /* no work */
+}
+
+
+/*
+ * Initialize for each processing pass.
+ */
+
+METHODDEF(void)
+start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+ hist3d histogram = cquantize->histogram;
+ int i;
+
+ /* Only F-S dithering or no dithering is supported. */
+ /* If user asks for ordered dither, give him F-S. */
+ if (cinfo->dither_mode != JDITHER_NONE)
+ cinfo->dither_mode = JDITHER_FS;
+
+ if (is_pre_scan) {
+ /* Set up method pointers */
+ cquantize->pub.color_quantize = prescan_quantize;
+ cquantize->pub.finish_pass = finish_pass1;
+ cquantize->needs_zeroed = TRUE; /* Always zero histogram */
+ } else {
+ /* Set up method pointers */
+ if (cinfo->dither_mode == JDITHER_FS)
+ cquantize->pub.color_quantize = pass2_fs_dither;
+ else
+ cquantize->pub.color_quantize = pass2_no_dither;
+ cquantize->pub.finish_pass = finish_pass2;
+
+ /* Make sure color count is acceptable */
+ i = cinfo->actual_number_of_colors;
+ if (i < 1)
+ ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
+ if (i > MAXNUMCOLORS)
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+
+ if (cinfo->dither_mode == JDITHER_FS) {
+ size_t arraysize = (size_t) ((cinfo->output_width + 2) *
+ (3 * SIZEOF(FSERROR)));
+ /* Allocate Floyd-Steinberg workspace if we didn't already. */
+ if (cquantize->fserrors == NULL)
+ cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+ /* Initialize the propagated errors to zero. */
+ FMEMZERO((void FAR *) cquantize->fserrors, arraysize);
+ /* Make the error-limit table if we didn't already. */
+ if (cquantize->error_limiter == NULL)
+ init_error_limit(cinfo);
+ cquantize->on_odd_row = FALSE;
+ }
+
+ }
+ /* Zero the histogram or inverse color map, if necessary */
+ if (cquantize->needs_zeroed) {
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ FMEMZERO((void FAR *) histogram[i],
+ HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+ }
+ cquantize->needs_zeroed = FALSE;
+ }
+}
+
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+METHODDEF(void)
+new_color_map_2_quant (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+
+ /* Reset the inverse color map */
+ cquantize->needs_zeroed = TRUE;
+}
+
+
+/*
+ * Module initialization routine for 2-pass color quantization.
+ */
+
+GLOBAL(void)
+jinit_2pass_quantizer (j_decompress_ptr cinfo)
+{
+ my_cquantize_ptr cquantize;
+ int i;
+
+ cquantize = (my_cquantize_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_cquantizer));
+ cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+ cquantize->pub.start_pass = start_pass_2_quant;
+ cquantize->pub.new_color_map = new_color_map_2_quant;
+ cquantize->fserrors = NULL; /* flag optional arrays not allocated */
+ cquantize->error_limiter = NULL;
+
+ /* Make sure jdmaster didn't give me a case I can't handle */
+ if (cinfo->out_color_components != 3)
+ ERREXIT(cinfo, JERR_NOTIMPL);
+
+ /* Allocate the histogram/inverse colormap storage */
+ cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
+ for (i = 0; i < HIST_C0_ELEMS; i++) {
+ cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+ }
+ cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
+
+ /* Allocate storage for the completed colormap, if required.
+ * We do this now since it is FAR storage and may affect
+ * the memory manager's space calculations.
+ */
+ if (cinfo->enable_2pass_quant) {
+ /* Make sure color count is acceptable */
+ int desired = cinfo->desired_number_of_colors;
+ /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
+ if (desired < 8)
+ ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
+ /* Make sure colormap indexes can be represented by JSAMPLEs */
+ if (desired > MAXNUMCOLORS)
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+ cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
+ cquantize->desired = desired;
+ } else
+ cquantize->sv_colormap = NULL;
+
+ /* Only F-S dithering or no dithering is supported. */
+ /* If user asks for ordered dither, give him F-S. */
+ if (cinfo->dither_mode != JDITHER_NONE)
+ cinfo->dither_mode = JDITHER_FS;
+
+ /* Allocate Floyd-Steinberg workspace if necessary.
+ * This isn't really needed until pass 2, but again it is FAR storage.
+ * Although we will cope with a later change in dither_mode,
+ * we do not promise to honor max_memory_to_use if dither_mode changes.
+ */
+ if (cinfo->dither_mode == JDITHER_FS) {
+ cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
+ /* Might as well create the error-limiting table too. */
+ init_error_limit(cinfo);
+ }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/jutils.c b/plugins/AdvaImg/src/LibJPEG/jutils.c
new file mode 100644
index 0000000000..5b16b6d03c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jutils.c
@@ -0,0 +1,227 @@
+/*
+ * jutils.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2009-2011 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains tables and miscellaneous utility routines needed
+ * for both compression and decompression.
+ * Note we prefix all global names with "j" to minimize conflicts with
+ * a surrounding application.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
+ * of a DCT block read in natural order (left to right, top to bottom).
+ */
+
+#if 0 /* This table is not actually needed in v6a */
+
+const int jpeg_zigzag_order[DCTSIZE2] = {
+ 0, 1, 5, 6, 14, 15, 27, 28,
+ 2, 4, 7, 13, 16, 26, 29, 42,
+ 3, 8, 12, 17, 25, 30, 41, 43,
+ 9, 11, 18, 24, 31, 40, 44, 53,
+ 10, 19, 23, 32, 39, 45, 52, 54,
+ 20, 22, 33, 38, 46, 51, 55, 60,
+ 21, 34, 37, 47, 50, 56, 59, 61,
+ 35, 36, 48, 49, 57, 58, 62, 63
+};
+
+#endif
+
+/*
+ * jpeg_natural_order[i] is the natural-order position of the i'th element
+ * of zigzag order.
+ *
+ * When reading corrupted data, the Huffman decoders could attempt
+ * to reference an entry beyond the end of this array (if the decoded
+ * zero run length reaches past the end of the block). To prevent
+ * wild stores without adding an inner-loop test, we put some extra
+ * "63"s after the real entries. This will cause the extra coefficient
+ * to be stored in location 63 of the block, not somewhere random.
+ * The worst case would be a run-length of 15, which means we need 16
+ * fake entries.
+ */
+
+const int jpeg_natural_order[DCTSIZE2+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order7[7*7+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 14, 21, 28, 35,
+ 42, 49, 50, 43, 36, 29, 22, 30,
+ 37, 44, 51, 52, 45, 38, 46, 53,
+ 54,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order6[6*6+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 41, 34, 27,
+ 20, 13, 21, 28, 35, 42, 43, 36,
+ 29, 37, 44, 45,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order5[5*5+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 12,
+ 19, 26, 33, 34, 27, 20, 28, 35,
+ 36,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order4[4*4+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 25, 18, 11, 19, 26, 27,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order3[3*3+16] = {
+ 0, 1, 8, 16, 9, 2, 10, 17,
+ 18,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+const int jpeg_natural_order2[2*2+16] = {
+ 0, 1, 8, 9,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+
+/*
+ * Arithmetic utilities
+ */
+
+GLOBAL(long)
+jdiv_round_up (long a, long b)
+/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
+/* Assumes a >= 0, b > 0 */
+{
+ return (a + b - 1L) / b;
+}
+
+
+GLOBAL(long)
+jround_up (long a, long b)
+/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
+/* Assumes a >= 0, b > 0 */
+{
+ a += b - 1L;
+ return a - (a % b);
+}
+
+
+/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
+ * and coefficient-block arrays. This won't work on 80x86 because the arrays
+ * are FAR and we're assuming a small-pointer memory model. However, some
+ * DOS compilers provide far-pointer versions of memcpy() and memset() even
+ * in the small-model libraries. These will be used if USE_FMEM is defined.
+ * Otherwise, the routines below do it the hard way. (The performance cost
+ * is not all that great, because these routines aren't very heavily used.)
+ */
+
+#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */
+#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
+#else /* 80x86 case, define if we can */
+#ifdef USE_FMEM
+#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
+#else
+/* This function is for use by the FMEMZERO macro defined in jpegint.h.
+ * Do not call this function directly, use the FMEMZERO macro instead.
+ */
+GLOBAL(void)
+jzero_far (void FAR * target, size_t bytestozero)
+/* Zero out a chunk of FAR memory. */
+/* This might be sample-array data, block-array data, or alloc_large data. */
+{
+ register char FAR * ptr = (char FAR *) target;
+ register size_t count;
+
+ for (count = bytestozero; count > 0; count--) {
+ *ptr++ = 0;
+ }
+}
+#endif
+#endif
+
+
+GLOBAL(void)
+jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols)
+/* Copy some rows of samples from one place to another.
+ * num_rows rows are copied from input_array[source_row++]
+ * to output_array[dest_row++]; these areas may overlap for duplication.
+ * The source and destination arrays must be at least as wide as num_cols.
+ */
+{
+ register JSAMPROW inptr, outptr;
+#ifdef FMEMCOPY
+ register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
+#else
+ register JDIMENSION count;
+#endif
+ register int row;
+
+ input_array += source_row;
+ output_array += dest_row;
+
+ for (row = num_rows; row > 0; row--) {
+ inptr = *input_array++;
+ outptr = *output_array++;
+#ifdef FMEMCOPY
+ FMEMCOPY(outptr, inptr, count);
+#else
+ for (count = num_cols; count > 0; count--)
+ *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
+#endif
+ }
+}
+
+
+GLOBAL(void)
+jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks)
+/* Copy a row of coefficient blocks from one place to another. */
+{
+#ifdef FMEMCOPY
+ FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
+#else
+ register JCOEFPTR inptr, outptr;
+ register long count;
+
+ inptr = (JCOEFPTR) input_row;
+ outptr = (JCOEFPTR) output_row;
+ for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
+ *outptr++ = *inptr++;
+ }
+#endif
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/jversion.h b/plugins/AdvaImg/src/LibJPEG/jversion.h
new file mode 100644
index 0000000000..5d4915103e
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/jversion.h
@@ -0,0 +1,14 @@
+/*
+ * jversion.h
+ *
+ * Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains software version identification.
+ */
+
+
+#define JVERSION "8d 15-Jan-2012"
+
+#define JCOPYRIGHT "Copyright (C) 2012, Thomas G. Lane, Guido Vollbeding"
diff --git a/plugins/AdvaImg/src/LibJPEG/rdbmp.c b/plugins/AdvaImg/src/LibJPEG/rdbmp.c
new file mode 100644
index 0000000000..dfdf96ff5c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdbmp.c
@@ -0,0 +1,480 @@
+/*
+ * rdbmp.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to read input images in Microsoft "BMP"
+ * format (MS Windows 3.x, OS/2 1.x, and OS/2 2.x flavors).
+ * Currently, only 8-bit and 24-bit images are supported, not 1-bit or
+ * 4-bit (feeding such low-depth images into JPEG would be silly anyway).
+ * Also, we don't support RLE-compressed files.
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume input from
+ * an ordinary stdio stream. They further assume that reading begins
+ * at the start of the file; start_input may need work if the
+ * user interface has already read some data (e.g., to determine that
+ * the file is indeed BMP format).
+ *
+ * This code contributed by James Arthur Boucher.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef BMP_SUPPORTED
+
+
+/* Macros to deal with unsigned chars as efficiently as compiler allows */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char U_CHAR;
+#define UCH(x) ((int) (x))
+#else /* !HAVE_UNSIGNED_CHAR */
+#ifdef CHAR_IS_UNSIGNED
+typedef char U_CHAR;
+#define UCH(x) ((int) (x))
+#else
+typedef char U_CHAR;
+#define UCH(x) ((int) (x) & 0xFF)
+#endif
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+#define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len)))
+
+
+/* Private version of data source object */
+
+typedef struct _bmp_source_struct * bmp_source_ptr;
+
+typedef struct _bmp_source_struct {
+ struct cjpeg_source_struct pub; /* public fields */
+
+ j_compress_ptr cinfo; /* back link saves passing separate parm */
+
+ JSAMPARRAY colormap; /* BMP colormap (converted to my format) */
+
+ jvirt_sarray_ptr whole_image; /* Needed to reverse row order */
+ JDIMENSION source_row; /* Current source row number */
+ JDIMENSION row_width; /* Physical width of scanlines in file */
+
+ int bits_per_pixel; /* remembers 8- or 24-bit format */
+} bmp_source_struct;
+
+
+LOCAL(int)
+read_byte (bmp_source_ptr sinfo)
+/* Read next byte from BMP file */
+{
+ register FILE *infile = sinfo->pub.input_file;
+ register int c;
+
+ if ((c = getc(infile)) == EOF)
+ ERREXIT(sinfo->cinfo, JERR_INPUT_EOF);
+ return c;
+}
+
+
+LOCAL(void)
+read_colormap (bmp_source_ptr sinfo, int cmaplen, int mapentrysize)
+/* Read the colormap from a BMP file */
+{
+ int i;
+
+ switch (mapentrysize) {
+ case 3:
+ /* BGR format (occurs in OS/2 files) */
+ for (i = 0; i < cmaplen; i++) {
+ sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo);
+ sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo);
+ sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo);
+ }
+ break;
+ case 4:
+ /* BGR0 format (occurs in MS Windows files) */
+ for (i = 0; i < cmaplen; i++) {
+ sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo);
+ sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo);
+ sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo);
+ (void) read_byte(sinfo);
+ }
+ break;
+ default:
+ ERREXIT(sinfo->cinfo, JERR_BMP_BADCMAP);
+ break;
+ }
+}
+
+
+/*
+ * Read one row of pixels.
+ * The image has been read into the whole_image array, but is otherwise
+ * unprocessed. We must read it out in top-to-bottom row order, and if
+ * it is an 8-bit image, we must expand colormapped pixels to 24bit format.
+ */
+
+METHODDEF(JDIMENSION)
+get_8bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 8-bit colormap indexes */
+{
+ bmp_source_ptr source = (bmp_source_ptr) sinfo;
+ register JSAMPARRAY colormap = source->colormap;
+ JSAMPARRAY image_ptr;
+ register int t;
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+
+ /* Fetch next row from virtual array */
+ source->source_row--;
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->whole_image,
+ source->source_row, (JDIMENSION) 1, FALSE);
+
+ /* Expand the colormap indexes to real data */
+ inptr = image_ptr[0];
+ outptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ t = GETJSAMPLE(*inptr++);
+ *outptr++ = colormap[0][t]; /* can omit GETJSAMPLE() safely */
+ *outptr++ = colormap[1][t];
+ *outptr++ = colormap[2][t];
+ }
+
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_24bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 24-bit pixels */
+{
+ bmp_source_ptr source = (bmp_source_ptr) sinfo;
+ JSAMPARRAY image_ptr;
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+
+ /* Fetch next row from virtual array */
+ source->source_row--;
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->whole_image,
+ source->source_row, (JDIMENSION) 1, FALSE);
+
+ /* Transfer data. Note source values are in BGR order
+ * (even though Microsoft's own documents say the opposite).
+ */
+ inptr = image_ptr[0];
+ outptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ outptr[2] = *inptr++; /* can omit GETJSAMPLE() safely */
+ outptr[1] = *inptr++;
+ outptr[0] = *inptr++;
+ outptr += 3;
+ }
+
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_32bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 32-bit pixels */
+{
+ bmp_source_ptr source = (bmp_source_ptr) sinfo;
+ JSAMPARRAY image_ptr;
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+
+ /* Fetch next row from virtual array */
+ source->source_row--;
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->whole_image,
+ source->source_row, (JDIMENSION) 1, FALSE);
+ /* Transfer data. Note source values are in BGR order
+ * (even though Microsoft's own documents say the opposite).
+ */
+ inptr = image_ptr[0];
+ outptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ outptr[2] = *inptr++; /* can omit GETJSAMPLE() safely */
+ outptr[1] = *inptr++;
+ outptr[0] = *inptr++;
+ inptr++; /* skip the 4th byte (Alpha channel) */
+ outptr += 3;
+ }
+
+ return 1;
+}
+
+
+/*
+ * This method loads the image into whole_image during the first call on
+ * get_pixel_rows. The get_pixel_rows pointer is then adjusted to call
+ * get_8bit_row, get_24bit_row, or get_32bit_row on subsequent calls.
+ */
+
+METHODDEF(JDIMENSION)
+preload_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ bmp_source_ptr source = (bmp_source_ptr) sinfo;
+ register FILE *infile = source->pub.input_file;
+ register int c;
+ register JSAMPROW out_ptr;
+ JSAMPARRAY image_ptr;
+ JDIMENSION row, col;
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+
+ /* Read the data into a virtual array in input-file row order. */
+ for (row = 0; row < cinfo->image_height; row++) {
+ if (progress != NULL) {
+ progress->pub.pass_counter = (long) row;
+ progress->pub.pass_limit = (long) cinfo->image_height;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->whole_image,
+ row, (JDIMENSION) 1, TRUE);
+ out_ptr = image_ptr[0];
+ for (col = source->row_width; col > 0; col--) {
+ /* inline copy of read_byte() for speed */
+ if ((c = getc(infile)) == EOF)
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ *out_ptr++ = (JSAMPLE) c;
+ }
+ }
+ if (progress != NULL)
+ progress->completed_extra_passes++;
+
+ /* Set up to read from the virtual array in top-to-bottom order */
+ switch (source->bits_per_pixel) {
+ case 8:
+ source->pub.get_pixel_rows = get_8bit_row;
+ break;
+ case 24:
+ source->pub.get_pixel_rows = get_24bit_row;
+ break;
+ case 32:
+ source->pub.get_pixel_rows = get_32bit_row;
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BMP_BADDEPTH);
+ }
+ source->source_row = cinfo->image_height;
+
+ /* And read the first row */
+ return (*source->pub.get_pixel_rows) (cinfo, sinfo);
+}
+
+
+/*
+ * Read the file header; return image size and component count.
+ */
+
+METHODDEF(void)
+start_input_bmp (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ bmp_source_ptr source = (bmp_source_ptr) sinfo;
+ U_CHAR bmpfileheader[14];
+ U_CHAR bmpinfoheader[64];
+#define GET_2B(array,offset) ((unsigned int) UCH(array[offset]) + \
+ (((unsigned int) UCH(array[offset+1])) << 8))
+#define GET_4B(array,offset) ((INT32) UCH(array[offset]) + \
+ (((INT32) UCH(array[offset+1])) << 8) + \
+ (((INT32) UCH(array[offset+2])) << 16) + \
+ (((INT32) UCH(array[offset+3])) << 24))
+ INT32 bfOffBits;
+ INT32 headerSize;
+ INT32 biWidth;
+ INT32 biHeight;
+ unsigned int biPlanes;
+ INT32 biCompression;
+ INT32 biXPelsPerMeter,biYPelsPerMeter;
+ INT32 biClrUsed = 0;
+ int mapentrysize = 0; /* 0 indicates no colormap */
+ INT32 bPad;
+ JDIMENSION row_width;
+
+ /* Read and verify the bitmap file header */
+ if (! ReadOK(source->pub.input_file, bmpfileheader, 14))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ if (GET_2B(bmpfileheader,0) != 0x4D42) /* 'BM' */
+ ERREXIT(cinfo, JERR_BMP_NOT);
+ bfOffBits = (INT32) GET_4B(bmpfileheader,10);
+ /* We ignore the remaining fileheader fields */
+
+ /* The infoheader might be 12 bytes (OS/2 1.x), 40 bytes (Windows),
+ * or 64 bytes (OS/2 2.x). Check the first 4 bytes to find out which.
+ */
+ if (! ReadOK(source->pub.input_file, bmpinfoheader, 4))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ headerSize = (INT32) GET_4B(bmpinfoheader,0);
+ if (headerSize < 12 || headerSize > 64)
+ ERREXIT(cinfo, JERR_BMP_BADHEADER);
+ if (! ReadOK(source->pub.input_file, bmpinfoheader+4, headerSize-4))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+
+ switch ((int) headerSize) {
+ case 12:
+ /* Decode OS/2 1.x header (Microsoft calls this a BITMAPCOREHEADER) */
+ biWidth = (INT32) GET_2B(bmpinfoheader,4);
+ biHeight = (INT32) GET_2B(bmpinfoheader,6);
+ biPlanes = GET_2B(bmpinfoheader,8);
+ source->bits_per_pixel = (int) GET_2B(bmpinfoheader,10);
+
+ switch (source->bits_per_pixel) {
+ case 8: /* colormapped image */
+ mapentrysize = 3; /* OS/2 uses RGBTRIPLE colormap */
+ TRACEMS2(cinfo, 1, JTRC_BMP_OS2_MAPPED, (int) biWidth, (int) biHeight);
+ break;
+ case 24: /* RGB image */
+ TRACEMS2(cinfo, 1, JTRC_BMP_OS2, (int) biWidth, (int) biHeight);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BMP_BADDEPTH);
+ break;
+ }
+ break;
+ case 40:
+ case 64:
+ /* Decode Windows 3.x header (Microsoft calls this a BITMAPINFOHEADER) */
+ /* or OS/2 2.x header, which has additional fields that we ignore */
+ biWidth = GET_4B(bmpinfoheader,4);
+ biHeight = GET_4B(bmpinfoheader,8);
+ biPlanes = GET_2B(bmpinfoheader,12);
+ source->bits_per_pixel = (int) GET_2B(bmpinfoheader,14);
+ biCompression = GET_4B(bmpinfoheader,16);
+ biXPelsPerMeter = GET_4B(bmpinfoheader,24);
+ biYPelsPerMeter = GET_4B(bmpinfoheader,28);
+ biClrUsed = GET_4B(bmpinfoheader,32);
+ /* biSizeImage, biClrImportant fields are ignored */
+
+ switch (source->bits_per_pixel) {
+ case 8: /* colormapped image */
+ mapentrysize = 4; /* Windows uses RGBQUAD colormap */
+ TRACEMS2(cinfo, 1, JTRC_BMP_MAPPED, (int) biWidth, (int) biHeight);
+ break;
+ case 24: /* RGB image */
+ TRACEMS2(cinfo, 1, JTRC_BMP, (int) biWidth, (int) biHeight);
+ break;
+ case 32: /* RGB image + Alpha channel */
+ TRACEMS2(cinfo, 1, JTRC_BMP, (int) biWidth, (int) biHeight);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BMP_BADDEPTH);
+ break;
+ }
+ if (biCompression != 0)
+ ERREXIT(cinfo, JERR_BMP_COMPRESSED);
+
+ if (biXPelsPerMeter > 0 && biYPelsPerMeter > 0) {
+ /* Set JFIF density parameters from the BMP data */
+ cinfo->X_density = (UINT16) (biXPelsPerMeter/100); /* 100 cm per meter */
+ cinfo->Y_density = (UINT16) (biYPelsPerMeter/100);
+ cinfo->density_unit = 2; /* dots/cm */
+ }
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BMP_BADHEADER);
+ return;
+ }
+
+ if (biWidth <= 0 || biHeight <= 0)
+ ERREXIT(cinfo, JERR_BMP_EMPTY);
+ if (biPlanes != 1)
+ ERREXIT(cinfo, JERR_BMP_BADPLANES);
+
+ /* Compute distance to bitmap data --- will adjust for colormap below */
+ bPad = bfOffBits - (headerSize + 14);
+
+ /* Read the colormap, if any */
+ if (mapentrysize > 0) {
+ if (biClrUsed <= 0)
+ biClrUsed = 256; /* assume it's 256 */
+ else if (biClrUsed > 256)
+ ERREXIT(cinfo, JERR_BMP_BADCMAP);
+ /* Allocate space to store the colormap */
+ source->colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) biClrUsed, (JDIMENSION) 3);
+ /* and read it from the file */
+ read_colormap(source, (int) biClrUsed, mapentrysize);
+ /* account for size of colormap */
+ bPad -= biClrUsed * mapentrysize;
+ }
+
+ /* Skip any remaining pad bytes */
+ if (bPad < 0) /* incorrect bfOffBits value? */
+ ERREXIT(cinfo, JERR_BMP_BADHEADER);
+ while (--bPad >= 0) {
+ (void) read_byte(source);
+ }
+
+ /* Compute row width in file, including padding to 4-byte boundary */
+ if (source->bits_per_pixel == 24)
+ row_width = (JDIMENSION) (biWidth * 3);
+ else if (source->bits_per_pixel == 32)
+ row_width = (JDIMENSION) (biWidth * 4);
+ else
+ row_width = (JDIMENSION) biWidth;
+ while ((row_width & 3) != 0) row_width++;
+ source->row_width = row_width;
+
+ /* Allocate space for inversion array, prepare for preload pass */
+ source->whole_image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ row_width, (JDIMENSION) biHeight, (JDIMENSION) 1);
+ source->pub.get_pixel_rows = preload_image;
+ if (cinfo->progress != NULL) {
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+ progress->total_extra_passes++; /* count file input as separate pass */
+ }
+
+ /* Allocate one-row buffer for returned data */
+ source->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (biWidth * 3), (JDIMENSION) 1);
+ source->pub.buffer_height = 1;
+
+ cinfo->in_color_space = JCS_RGB;
+ cinfo->input_components = 3;
+ cinfo->data_precision = 8;
+ cinfo->image_width = (JDIMENSION) biWidth;
+ cinfo->image_height = (JDIMENSION) biHeight;
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_input_bmp (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ /* no work */
+}
+
+
+/*
+ * The module selection routine for BMP format input.
+ */
+
+GLOBAL(cjpeg_source_ptr)
+jinit_read_bmp (j_compress_ptr cinfo)
+{
+ bmp_source_ptr source;
+
+ /* Create module interface object */
+ source = (bmp_source_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(bmp_source_struct));
+ source->cinfo = cinfo; /* make back link for subroutines */
+ /* Fill in method ptrs, except get_pixel_rows which start_input sets */
+ source->pub.start_input = start_input_bmp;
+ source->pub.finish_input = finish_input_bmp;
+
+ return (cjpeg_source_ptr) source;
+}
+
+#endif /* BMP_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/rdcolmap.c b/plugins/AdvaImg/src/LibJPEG/rdcolmap.c
new file mode 100644
index 0000000000..eebf8346c5
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdcolmap.c
@@ -0,0 +1,253 @@
+/*
+ * rdcolmap.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file implements djpeg's "-map file" switch. It reads a source image
+ * and constructs a colormap to be supplied to the JPEG decompressor.
+ *
+ * Currently, these file formats are supported for the map file:
+ * GIF: the contents of the GIF's global colormap are used.
+ * PPM (either text or raw flavor): the entire file is read and
+ * each unique pixel value is entered in the map.
+ * Note that reading a large PPM file will be horrendously slow.
+ * Typically, a PPM-format map file should contain just one pixel
+ * of each desired color. Such a file can be extracted from an
+ * ordinary image PPM file with ppmtomap(1).
+ *
+ * Rescaling a PPM that has a maxval unequal to MAXJSAMPLE is not
+ * currently implemented.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */
+
+/* Portions of this code are based on the PBMPLUS library, which is:
+**
+** Copyright (C) 1988 by Jef Poskanzer.
+**
+** Permission to use, copy, modify, and distribute this software and its
+** documentation for any purpose and without fee is hereby granted, provided
+** that the above copyright notice appear in all copies and that both that
+** copyright notice and this permission notice appear in supporting
+** documentation. This software is provided "as is" without express or
+** implied warranty.
+*/
+
+
+/*
+ * Add a (potentially) new color to the color map.
+ */
+
+LOCAL(void)
+add_map_entry (j_decompress_ptr cinfo, int R, int G, int B)
+{
+ JSAMPROW colormap0 = cinfo->colormap[0];
+ JSAMPROW colormap1 = cinfo->colormap[1];
+ JSAMPROW colormap2 = cinfo->colormap[2];
+ int ncolors = cinfo->actual_number_of_colors;
+ int index;
+
+ /* Check for duplicate color. */
+ for (index = 0; index < ncolors; index++) {
+ if (GETJSAMPLE(colormap0[index]) == R &&
+ GETJSAMPLE(colormap1[index]) == G &&
+ GETJSAMPLE(colormap2[index]) == B)
+ return; /* color is already in map */
+ }
+
+ /* Check for map overflow. */
+ if (ncolors >= (MAXJSAMPLE+1))
+ ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, (MAXJSAMPLE+1));
+
+ /* OK, add color to map. */
+ colormap0[ncolors] = (JSAMPLE) R;
+ colormap1[ncolors] = (JSAMPLE) G;
+ colormap2[ncolors] = (JSAMPLE) B;
+ cinfo->actual_number_of_colors++;
+}
+
+
+/*
+ * Extract color map from a GIF file.
+ */
+
+LOCAL(void)
+read_gif_map (j_decompress_ptr cinfo, FILE * infile)
+{
+ int header[13];
+ int i, colormaplen;
+ int R, G, B;
+
+ /* Initial 'G' has already been read by read_color_map */
+ /* Read the rest of the GIF header and logical screen descriptor */
+ for (i = 1; i < 13; i++) {
+ if ((header[i] = getc(infile)) == EOF)
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+ }
+
+ /* Verify GIF Header */
+ if (header[1] != 'I' || header[2] != 'F')
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+
+ /* There must be a global color map. */
+ if ((header[10] & 0x80) == 0)
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+
+ /* OK, fetch it. */
+ colormaplen = 2 << (header[10] & 0x07);
+
+ for (i = 0; i < colormaplen; i++) {
+ R = getc(infile);
+ G = getc(infile);
+ B = getc(infile);
+ if (R == EOF || G == EOF || B == EOF)
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+ add_map_entry(cinfo,
+ R << (BITS_IN_JSAMPLE-8),
+ G << (BITS_IN_JSAMPLE-8),
+ B << (BITS_IN_JSAMPLE-8));
+ }
+}
+
+
+/* Support routines for reading PPM */
+
+
+LOCAL(int)
+pbm_getc (FILE * infile)
+/* Read next char, skipping over any comments */
+/* A comment/newline sequence is returned as a newline */
+{
+ register int ch;
+
+ ch = getc(infile);
+ if (ch == '#') {
+ do {
+ ch = getc(infile);
+ } while (ch != '\n' && ch != EOF);
+ }
+ return ch;
+}
+
+
+LOCAL(unsigned int)
+read_pbm_integer (j_decompress_ptr cinfo, FILE * infile)
+/* Read an unsigned decimal integer from the PPM file */
+/* Swallows one trailing character after the integer */
+/* Note that on a 16-bit-int machine, only values up to 64k can be read. */
+/* This should not be a problem in practice. */
+{
+ register int ch;
+ register unsigned int val;
+
+ /* Skip any leading whitespace */
+ do {
+ ch = pbm_getc(infile);
+ if (ch == EOF)
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+ } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r');
+
+ if (ch < '0' || ch > '9')
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+
+ val = ch - '0';
+ while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') {
+ val *= 10;
+ val += ch - '0';
+ }
+ return val;
+}
+
+
+/*
+ * Extract color map from a PPM file.
+ */
+
+LOCAL(void)
+read_ppm_map (j_decompress_ptr cinfo, FILE * infile)
+{
+ int c;
+ unsigned int w, h, maxval, row, col;
+ int R, G, B;
+
+ /* Initial 'P' has already been read by read_color_map */
+ c = getc(infile); /* save format discriminator for a sec */
+
+ /* while we fetch the remaining header info */
+ w = read_pbm_integer(cinfo, infile);
+ h = read_pbm_integer(cinfo, infile);
+ maxval = read_pbm_integer(cinfo, infile);
+
+ if (w <= 0 || h <= 0 || maxval <= 0) /* error check */
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+
+ /* For now, we don't support rescaling from an unusual maxval. */
+ if (maxval != (unsigned int) MAXJSAMPLE)
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+
+ switch (c) {
+ case '3': /* it's a text-format PPM file */
+ for (row = 0; row < h; row++) {
+ for (col = 0; col < w; col++) {
+ R = read_pbm_integer(cinfo, infile);
+ G = read_pbm_integer(cinfo, infile);
+ B = read_pbm_integer(cinfo, infile);
+ add_map_entry(cinfo, R, G, B);
+ }
+ }
+ break;
+
+ case '6': /* it's a raw-format PPM file */
+ for (row = 0; row < h; row++) {
+ for (col = 0; col < w; col++) {
+ R = getc(infile);
+ G = getc(infile);
+ B = getc(infile);
+ if (R == EOF || G == EOF || B == EOF)
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+ add_map_entry(cinfo, R, G, B);
+ }
+ }
+ break;
+
+ default:
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+ break;
+ }
+}
+
+
+/*
+ * Main entry point from djpeg.c.
+ * Input: opened input file (from file name argument on command line).
+ * Output: colormap and actual_number_of_colors fields are set in cinfo.
+ */
+
+GLOBAL(void)
+read_color_map (j_decompress_ptr cinfo, FILE * infile)
+{
+ /* Allocate space for a color map of maximum supported size. */
+ cinfo->colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) (MAXJSAMPLE+1), (JDIMENSION) 3);
+ cinfo->actual_number_of_colors = 0; /* initialize map to empty */
+
+ /* Read first byte to determine file format */
+ switch (getc(infile)) {
+ case 'G':
+ read_gif_map(cinfo, infile);
+ break;
+ case 'P':
+ read_ppm_map(cinfo, infile);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_BAD_CMAP_FILE);
+ break;
+ }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/rdgif.c b/plugins/AdvaImg/src/LibJPEG/rdgif.c
new file mode 100644
index 0000000000..b0757e718f
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdgif.c
@@ -0,0 +1,38 @@
+/*
+ * rdgif.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to read input images in GIF format.
+ *
+ *****************************************************************************
+ * NOTE: to avoid entanglements with Unisys' patent on LZW compression, *
+ * the ability to read GIF files has been removed from the IJG distribution. *
+ * Sorry about that. *
+ *****************************************************************************
+ *
+ * We are required to state that
+ * "The Graphics Interchange Format(c) is the Copyright property of
+ * CompuServe Incorporated. GIF(sm) is a Service Mark property of
+ * CompuServe Incorporated."
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef GIF_SUPPORTED
+
+/*
+ * The module selection routine for GIF format input.
+ */
+
+GLOBAL(cjpeg_source_ptr)
+jinit_read_gif (j_compress_ptr cinfo)
+{
+ fprintf(stderr, "GIF input is unsupported for legal reasons. Sorry.\n");
+ exit(EXIT_FAILURE);
+ return NULL; /* keep compiler happy */
+}
+
+#endif /* GIF_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/rdjpgcom.c b/plugins/AdvaImg/src/LibJPEG/rdjpgcom.c
new file mode 100644
index 0000000000..ab09b443ff
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdjpgcom.c
@@ -0,0 +1,515 @@
+/*
+ * rdjpgcom.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 2009 by Bill Allombert, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a very simple stand-alone application that displays
+ * the text in COM (comment) markers in a JFIF file.
+ * This may be useful as an example of the minimum logic needed to parse
+ * JPEG markers.
+ */
+
+#define JPEG_CJPEG_DJPEG /* to get the command-line config symbols */
+#include "jinclude.h" /* get auto-config symbols, <stdio.h> */
+
+#ifdef HAVE_LOCALE_H
+#include <locale.h> /* Bill Allombert: use locale for isprint */
+#endif
+#include <ctype.h> /* to declare isupper(), tolower() */
+#ifdef USE_SETMODE
+#include <fcntl.h> /* to declare setmode()'s parameter macros */
+/* If you have setmode() but not <io.h>, just delete this line: */
+#include <io.h> /* to declare setmode() */
+#endif
+
+#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
+#ifdef __MWERKS__
+#include <SIOUX.h> /* Metrowerks needs this */
+#include <console.h> /* ... and this */
+#endif
+#ifdef THINK_C
+#include <console.h> /* Think declares it here */
+#endif
+#endif
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#else
+#ifdef VMS /* VMS is very nonstandard */
+#define READ_BINARY "rb", "ctx=stm"
+#else /* standard ANSI-compliant case */
+#define READ_BINARY "rb"
+#endif
+#endif
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+#ifndef EXIT_SUCCESS
+#ifdef VMS
+#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
+#else
+#define EXIT_SUCCESS 0
+#endif
+#endif
+
+
+/*
+ * These macros are used to read the input file.
+ * To reuse this code in another application, you might need to change these.
+ */
+
+static FILE * infile; /* input JPEG file */
+
+/* Return next input byte, or EOF if no more */
+#define NEXTBYTE() getc(infile)
+
+
+/* Error exit handler */
+#define ERREXIT(msg) (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE))
+
+
+/* Read one byte, testing for EOF */
+static int
+read_1_byte (void)
+{
+ int c;
+
+ c = NEXTBYTE();
+ if (c == EOF)
+ ERREXIT("Premature EOF in JPEG file");
+ return c;
+}
+
+/* Read 2 bytes, convert to unsigned int */
+/* All 2-byte quantities in JPEG markers are MSB first */
+static unsigned int
+read_2_bytes (void)
+{
+ int c1, c2;
+
+ c1 = NEXTBYTE();
+ if (c1 == EOF)
+ ERREXIT("Premature EOF in JPEG file");
+ c2 = NEXTBYTE();
+ if (c2 == EOF)
+ ERREXIT("Premature EOF in JPEG file");
+ return (((unsigned int) c1) << 8) + ((unsigned int) c2);
+}
+
+
+/*
+ * JPEG markers consist of one or more 0xFF bytes, followed by a marker
+ * code byte (which is not an FF). Here are the marker codes of interest
+ * in this program. (See jdmarker.c for a more complete list.)
+ */
+
+#define M_SOF0 0xC0 /* Start Of Frame N */
+#define M_SOF1 0xC1 /* N indicates which compression process */
+#define M_SOF2 0xC2 /* Only SOF0-SOF2 are now in common use */
+#define M_SOF3 0xC3
+#define M_SOF5 0xC5 /* NB: codes C4 and CC are NOT SOF markers */
+#define M_SOF6 0xC6
+#define M_SOF7 0xC7
+#define M_SOF9 0xC9
+#define M_SOF10 0xCA
+#define M_SOF11 0xCB
+#define M_SOF13 0xCD
+#define M_SOF14 0xCE
+#define M_SOF15 0xCF
+#define M_SOI 0xD8 /* Start Of Image (beginning of datastream) */
+#define M_EOI 0xD9 /* End Of Image (end of datastream) */
+#define M_SOS 0xDA /* Start Of Scan (begins compressed data) */
+#define M_APP0 0xE0 /* Application-specific marker, type N */
+#define M_APP12 0xEC /* (we don't bother to list all 16 APPn's) */
+#define M_COM 0xFE /* COMment */
+
+
+/*
+ * Find the next JPEG marker and return its marker code.
+ * We expect at least one FF byte, possibly more if the compressor used FFs
+ * to pad the file.
+ * There could also be non-FF garbage between markers. The treatment of such
+ * garbage is unspecified; we choose to skip over it but emit a warning msg.
+ * NB: this routine must not be used after seeing SOS marker, since it will
+ * not deal correctly with FF/00 sequences in the compressed image data...
+ */
+
+static int
+next_marker (void)
+{
+ int c;
+ int discarded_bytes = 0;
+
+ /* Find 0xFF byte; count and skip any non-FFs. */
+ c = read_1_byte();
+ while (c != 0xFF) {
+ discarded_bytes++;
+ c = read_1_byte();
+ }
+ /* Get marker code byte, swallowing any duplicate FF bytes. Extra FFs
+ * are legal as pad bytes, so don't count them in discarded_bytes.
+ */
+ do {
+ c = read_1_byte();
+ } while (c == 0xFF);
+
+ if (discarded_bytes != 0) {
+ fprintf(stderr, "Warning: garbage data found in JPEG file\n");
+ }
+
+ return c;
+}
+
+
+/*
+ * Read the initial marker, which should be SOI.
+ * For a JFIF file, the first two bytes of the file should be literally
+ * 0xFF M_SOI. To be more general, we could use next_marker, but if the
+ * input file weren't actually JPEG at all, next_marker might read the whole
+ * file and then return a misleading error message...
+ */
+
+static int
+first_marker (void)
+{
+ int c1, c2;
+
+ c1 = NEXTBYTE();
+ c2 = NEXTBYTE();
+ if (c1 != 0xFF || c2 != M_SOI)
+ ERREXIT("Not a JPEG file");
+ return c2;
+}
+
+
+/*
+ * Most types of marker are followed by a variable-length parameter segment.
+ * This routine skips over the parameters for any marker we don't otherwise
+ * want to process.
+ * Note that we MUST skip the parameter segment explicitly in order not to
+ * be fooled by 0xFF bytes that might appear within the parameter segment;
+ * such bytes do NOT introduce new markers.
+ */
+
+static void
+skip_variable (void)
+/* Skip over an unknown or uninteresting variable-length marker */
+{
+ unsigned int length;
+
+ /* Get the marker parameter length count */
+ length = read_2_bytes();
+ /* Length includes itself, so must be at least 2 */
+ if (length < 2)
+ ERREXIT("Erroneous JPEG marker length");
+ length -= 2;
+ /* Skip over the remaining bytes */
+ while (length > 0) {
+ (void) read_1_byte();
+ length--;
+ }
+}
+
+
+/*
+ * Process a COM marker.
+ * We want to print out the marker contents as legible text;
+ * we must guard against non-text junk and varying newline representations.
+ */
+
+static void
+process_COM (int raw)
+{
+ unsigned int length;
+ int ch;
+ int lastch = 0;
+
+ /* Bill Allombert: set locale properly for isprint */
+#ifdef HAVE_LOCALE_H
+ setlocale(LC_CTYPE, "");
+#endif
+
+ /* Get the marker parameter length count */
+ length = read_2_bytes();
+ /* Length includes itself, so must be at least 2 */
+ if (length < 2)
+ ERREXIT("Erroneous JPEG marker length");
+ length -= 2;
+
+ while (length > 0) {
+ ch = read_1_byte();
+ if (raw) {
+ putc(ch, stdout);
+ /* Emit the character in a readable form.
+ * Nonprintables are converted to \nnn form,
+ * while \ is converted to \\.
+ * Newlines in CR, CR/LF, or LF form will be printed as one newline.
+ */
+ } else if (ch == '\r') {
+ printf("\n");
+ } else if (ch == '\n') {
+ if (lastch != '\r')
+ printf("\n");
+ } else if (ch == '\\') {
+ printf("\\\\");
+ } else if (isprint(ch)) {
+ putc(ch, stdout);
+ } else {
+ printf("\\%03o", ch);
+ }
+ lastch = ch;
+ length--;
+ }
+ printf("\n");
+
+ /* Bill Allombert: revert to C locale */
+#ifdef HAVE_LOCALE_H
+ setlocale(LC_CTYPE, "C");
+#endif
+}
+
+
+/*
+ * Process a SOFn marker.
+ * This code is only needed if you want to know the image dimensions...
+ */
+
+static void
+process_SOFn (int marker)
+{
+ unsigned int length;
+ unsigned int image_height, image_width;
+ int data_precision, num_components;
+ const char * process;
+ int ci;
+
+ length = read_2_bytes(); /* usual parameter length count */
+
+ data_precision = read_1_byte();
+ image_height = read_2_bytes();
+ image_width = read_2_bytes();
+ num_components = read_1_byte();
+
+ switch (marker) {
+ case M_SOF0: process = "Baseline"; break;
+ case M_SOF1: process = "Extended sequential"; break;
+ case M_SOF2: process = "Progressive"; break;
+ case M_SOF3: process = "Lossless"; break;
+ case M_SOF5: process = "Differential sequential"; break;
+ case M_SOF6: process = "Differential progressive"; break;
+ case M_SOF7: process = "Differential lossless"; break;
+ case M_SOF9: process = "Extended sequential, arithmetic coding"; break;
+ case M_SOF10: process = "Progressive, arithmetic coding"; break;
+ case M_SOF11: process = "Lossless, arithmetic coding"; break;
+ case M_SOF13: process = "Differential sequential, arithmetic coding"; break;
+ case M_SOF14: process = "Differential progressive, arithmetic coding"; break;
+ case M_SOF15: process = "Differential lossless, arithmetic coding"; break;
+ default: process = "Unknown"; break;
+ }
+
+ printf("JPEG image is %uw * %uh, %d color components, %d bits per sample\n",
+ image_width, image_height, num_components, data_precision);
+ printf("JPEG process: %s\n", process);
+
+ if (length != (unsigned int) (8 + num_components * 3))
+ ERREXIT("Bogus SOF marker length");
+
+ for (ci = 0; ci < num_components; ci++) {
+ (void) read_1_byte(); /* Component ID code */
+ (void) read_1_byte(); /* H, V sampling factors */
+ (void) read_1_byte(); /* Quantization table number */
+ }
+}
+
+
+/*
+ * Parse the marker stream until SOS or EOI is seen;
+ * display any COM markers.
+ * While the companion program wrjpgcom will always insert COM markers before
+ * SOFn, other implementations might not, so we scan to SOS before stopping.
+ * If we were only interested in the image dimensions, we would stop at SOFn.
+ * (Conversely, if we only cared about COM markers, there would be no need
+ * for special code to handle SOFn; we could treat it like other markers.)
+ */
+
+static int
+scan_JPEG_header (int verbose, int raw)
+{
+ int marker;
+
+ /* Expect SOI at start of file */
+ if (first_marker() != M_SOI)
+ ERREXIT("Expected SOI marker first");
+
+ /* Scan miscellaneous markers until we reach SOS. */
+ for (;;) {
+ marker = next_marker();
+ switch (marker) {
+ /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be,
+ * treated as SOFn. C4 in particular is actually DHT.
+ */
+ case M_SOF0: /* Baseline */
+ case M_SOF1: /* Extended sequential, Huffman */
+ case M_SOF2: /* Progressive, Huffman */
+ case M_SOF3: /* Lossless, Huffman */
+ case M_SOF5: /* Differential sequential, Huffman */
+ case M_SOF6: /* Differential progressive, Huffman */
+ case M_SOF7: /* Differential lossless, Huffman */
+ case M_SOF9: /* Extended sequential, arithmetic */
+ case M_SOF10: /* Progressive, arithmetic */
+ case M_SOF11: /* Lossless, arithmetic */
+ case M_SOF13: /* Differential sequential, arithmetic */
+ case M_SOF14: /* Differential progressive, arithmetic */
+ case M_SOF15: /* Differential lossless, arithmetic */
+ if (verbose)
+ process_SOFn(marker);
+ else
+ skip_variable();
+ break;
+
+ case M_SOS: /* stop before hitting compressed data */
+ return marker;
+
+ case M_EOI: /* in case it's a tables-only JPEG stream */
+ return marker;
+
+ case M_COM:
+ process_COM(raw);
+ break;
+
+ case M_APP12:
+ /* Some digital camera makers put useful textual information into
+ * APP12 markers, so we print those out too when in -verbose mode.
+ */
+ if (verbose) {
+ printf("APP12 contains:\n");
+ process_COM(raw);
+ } else
+ skip_variable();
+ break;
+
+ default: /* Anything else just gets skipped */
+ skip_variable(); /* we assume it has a parameter count... */
+ break;
+ }
+ } /* end loop */
+}
+
+
+/* Command line parsing code */
+
+static const char * progname; /* program name for error messages */
+
+
+static void
+usage (void)
+/* complain about bad command line */
+{
+ fprintf(stderr, "rdjpgcom displays any textual comments in a JPEG file.\n");
+
+ fprintf(stderr, "Usage: %s [switches] [inputfile]\n", progname);
+
+ fprintf(stderr, "Switches (names may be abbreviated):\n");
+ fprintf(stderr, " -raw Display non-printable characters in comments (unsafe)\n");
+ fprintf(stderr, " -verbose Also display dimensions of JPEG image\n");
+
+ exit(EXIT_FAILURE);
+}
+
+
+static int
+keymatch (char * arg, const char * keyword, int minchars)
+/* Case-insensitive matching of (possibly abbreviated) keyword switches. */
+/* keyword is the constant keyword (must be lower case already), */
+/* minchars is length of minimum legal abbreviation. */
+{
+ register int ca, ck;
+ register int nmatched = 0;
+
+ while ((ca = *arg++) != '\0') {
+ if ((ck = *keyword++) == '\0')
+ return 0; /* arg longer than keyword, no good */
+ if (isupper(ca)) /* force arg to lcase (assume ck is already) */
+ ca = tolower(ca);
+ if (ca != ck)
+ return 0; /* no good */
+ nmatched++; /* count matched characters */
+ }
+ /* reached end of argument; fail if it's too short for unique abbrev */
+ if (nmatched < minchars)
+ return 0;
+ return 1; /* A-OK */
+}
+
+
+/*
+ * The main program.
+ */
+
+int
+main (int argc, char **argv)
+{
+ int argn;
+ char * arg;
+ int verbose = 0, raw = 0;
+
+ /* On Mac, fetch a command line. */
+#ifdef USE_CCOMMAND
+ argc = ccommand(&argv);
+#endif
+
+ progname = argv[0];
+ if (progname == NULL || progname[0] == 0)
+ progname = "rdjpgcom"; /* in case C library doesn't provide it */
+
+ /* Parse switches, if any */
+ for (argn = 1; argn < argc; argn++) {
+ arg = argv[argn];
+ if (arg[0] != '-')
+ break; /* not switch, must be file name */
+ arg++; /* advance over '-' */
+ if (keymatch(arg, "verbose", 1)) {
+ verbose++;
+ } else if (keymatch(arg, "raw", 1)) {
+ raw = 1;
+ } else
+ usage();
+ }
+
+ /* Open the input file. */
+ /* Unix style: expect zero or one file name */
+ if (argn < argc-1) {
+ fprintf(stderr, "%s: only one input file\n", progname);
+ usage();
+ }
+ if (argn < argc) {
+ if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default input file is stdin */
+#ifdef USE_SETMODE /* need to hack file mode? */
+ setmode(fileno(stdin), O_BINARY);
+#endif
+#ifdef USE_FDOPEN /* need to re-open in binary mode? */
+ if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open stdin\n", progname);
+ exit(EXIT_FAILURE);
+ }
+#else
+ infile = stdin;
+#endif
+ }
+
+ /* Scan the JPEG headers. */
+ (void) scan_JPEG_header(verbose, raw);
+
+ /* All done. */
+ exit(EXIT_SUCCESS);
+ return 0; /* suppress no-return-value warnings */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/rdppm.c b/plugins/AdvaImg/src/LibJPEG/rdppm.c
new file mode 100644
index 0000000000..9dcd2dc216
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdppm.c
@@ -0,0 +1,459 @@
+/*
+ * rdppm.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2009 by Bill Allombert, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to read input images in PPM/PGM format.
+ * The extended 2-byte-per-sample raw PPM/PGM formats are supported.
+ * The PBMPLUS library is NOT required to compile this software
+ * (but it is highly useful as a set of PPM image manipulation programs).
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume input from
+ * an ordinary stdio stream. They further assume that reading begins
+ * at the start of the file; start_input may need work if the
+ * user interface has already read some data (e.g., to determine that
+ * the file is indeed PPM format).
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef PPM_SUPPORTED
+
+
+/* Portions of this code are based on the PBMPLUS library, which is:
+**
+** Copyright (C) 1988 by Jef Poskanzer.
+**
+** Permission to use, copy, modify, and distribute this software and its
+** documentation for any purpose and without fee is hereby granted, provided
+** that the above copyright notice appear in all copies and that both that
+** copyright notice and this permission notice appear in supporting
+** documentation. This software is provided "as is" without express or
+** implied warranty.
+*/
+
+
+/* Macros to deal with unsigned chars as efficiently as compiler allows */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char U_CHAR;
+#define UCH(x) ((int) (x))
+#else /* !HAVE_UNSIGNED_CHAR */
+#ifdef CHAR_IS_UNSIGNED
+typedef char U_CHAR;
+#define UCH(x) ((int) (x))
+#else
+typedef char U_CHAR;
+#define UCH(x) ((int) (x) & 0xFF)
+#endif
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+#define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len)))
+
+
+/*
+ * On most systems, reading individual bytes with getc() is drastically less
+ * efficient than buffering a row at a time with fread(). On PCs, we must
+ * allocate the buffer in near data space, because we are assuming small-data
+ * memory model, wherein fread() can't reach far memory. If you need to
+ * process very wide images on a PC, you might have to compile in large-memory
+ * model, or else replace fread() with a getc() loop --- which will be much
+ * slower.
+ */
+
+
+/* Private version of data source object */
+
+typedef struct {
+ struct cjpeg_source_struct pub; /* public fields */
+
+ U_CHAR *iobuffer; /* non-FAR pointer to I/O buffer */
+ JSAMPROW pixrow; /* FAR pointer to same */
+ size_t buffer_width; /* width of I/O buffer */
+ JSAMPLE *rescale; /* => maxval-remapping array, or NULL */
+} ppm_source_struct;
+
+typedef ppm_source_struct * ppm_source_ptr;
+
+
+LOCAL(int)
+pbm_getc (FILE * infile)
+/* Read next char, skipping over any comments */
+/* A comment/newline sequence is returned as a newline */
+{
+ register int ch;
+
+ ch = getc(infile);
+ if (ch == '#') {
+ do {
+ ch = getc(infile);
+ } while (ch != '\n' && ch != EOF);
+ }
+ return ch;
+}
+
+
+LOCAL(unsigned int)
+read_pbm_integer (j_compress_ptr cinfo, FILE * infile)
+/* Read an unsigned decimal integer from the PPM file */
+/* Swallows one trailing character after the integer */
+/* Note that on a 16-bit-int machine, only values up to 64k can be read. */
+/* This should not be a problem in practice. */
+{
+ register int ch;
+ register unsigned int val;
+
+ /* Skip any leading whitespace */
+ do {
+ ch = pbm_getc(infile);
+ if (ch == EOF)
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r');
+
+ if (ch < '0' || ch > '9')
+ ERREXIT(cinfo, JERR_PPM_NONNUMERIC);
+
+ val = ch - '0';
+ while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') {
+ val *= 10;
+ val += ch - '0';
+ }
+ return val;
+}
+
+
+/*
+ * Read one row of pixels.
+ *
+ * We provide several different versions depending on input file format.
+ * In all cases, input is scaled to the size of JSAMPLE.
+ *
+ * A really fast path is provided for reading byte/sample raw files with
+ * maxval = MAXJSAMPLE, which is the normal case for 8-bit data.
+ */
+
+
+METHODDEF(JDIMENSION)
+get_text_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading text-format PGM files with any maxval */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ FILE * infile = source->pub.input_file;
+ register JSAMPROW ptr;
+ register JSAMPLE *rescale = source->rescale;
+ JDIMENSION col;
+
+ ptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
+ }
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_text_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading text-format PPM files with any maxval */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ FILE * infile = source->pub.input_file;
+ register JSAMPROW ptr;
+ register JSAMPLE *rescale = source->rescale;
+ JDIMENSION col;
+
+ ptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
+ *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
+ *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
+ }
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_scaled_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading raw-byte-format PGM files with any maxval */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ register JSAMPROW ptr;
+ register U_CHAR * bufferptr;
+ register JSAMPLE *rescale = source->rescale;
+ JDIMENSION col;
+
+ if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ ptr = source->pub.buffer[0];
+ bufferptr = source->iobuffer;
+ for (col = cinfo->image_width; col > 0; col--) {
+ *ptr++ = rescale[UCH(*bufferptr++)];
+ }
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_scaled_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading raw-byte-format PPM files with any maxval */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ register JSAMPROW ptr;
+ register U_CHAR * bufferptr;
+ register JSAMPLE *rescale = source->rescale;
+ JDIMENSION col;
+
+ if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ ptr = source->pub.buffer[0];
+ bufferptr = source->iobuffer;
+ for (col = cinfo->image_width; col > 0; col--) {
+ *ptr++ = rescale[UCH(*bufferptr++)];
+ *ptr++ = rescale[UCH(*bufferptr++)];
+ *ptr++ = rescale[UCH(*bufferptr++)];
+ }
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_raw_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading raw-byte-format files with maxval = MAXJSAMPLE.
+ * In this case we just read right into the JSAMPLE buffer!
+ * Note that same code works for PPM and PGM files.
+ */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+
+ if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_word_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading raw-word-format PGM files with any maxval */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ register JSAMPROW ptr;
+ register U_CHAR * bufferptr;
+ register JSAMPLE *rescale = source->rescale;
+ JDIMENSION col;
+
+ if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ ptr = source->pub.buffer[0];
+ bufferptr = source->iobuffer;
+ for (col = cinfo->image_width; col > 0; col--) {
+ register int temp;
+ temp = UCH(*bufferptr++) << 8;
+ temp |= UCH(*bufferptr++);
+ *ptr++ = rescale[temp];
+ }
+ return 1;
+}
+
+
+METHODDEF(JDIMENSION)
+get_word_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading raw-word-format PPM files with any maxval */
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ register JSAMPROW ptr;
+ register U_CHAR * bufferptr;
+ register JSAMPLE *rescale = source->rescale;
+ JDIMENSION col;
+
+ if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+ ptr = source->pub.buffer[0];
+ bufferptr = source->iobuffer;
+ for (col = cinfo->image_width; col > 0; col--) {
+ register int temp;
+ temp = UCH(*bufferptr++) << 8;
+ temp |= UCH(*bufferptr++);
+ *ptr++ = rescale[temp];
+ temp = UCH(*bufferptr++) << 8;
+ temp |= UCH(*bufferptr++);
+ *ptr++ = rescale[temp];
+ temp = UCH(*bufferptr++) << 8;
+ temp |= UCH(*bufferptr++);
+ *ptr++ = rescale[temp];
+ }
+ return 1;
+}
+
+
+/*
+ * Read the file header; return image size and component count.
+ */
+
+METHODDEF(void)
+start_input_ppm (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ ppm_source_ptr source = (ppm_source_ptr) sinfo;
+ int c;
+ unsigned int w, h, maxval;
+ boolean need_iobuffer, use_raw_buffer, need_rescale;
+
+ if (getc(source->pub.input_file) != 'P')
+ ERREXIT(cinfo, JERR_PPM_NOT);
+
+ c = getc(source->pub.input_file); /* subformat discriminator character */
+
+ /* detect unsupported variants (ie, PBM) before trying to read header */
+ switch (c) {
+ case '2': /* it's a text-format PGM file */
+ case '3': /* it's a text-format PPM file */
+ case '5': /* it's a raw-format PGM file */
+ case '6': /* it's a raw-format PPM file */
+ break;
+ default:
+ ERREXIT(cinfo, JERR_PPM_NOT);
+ break;
+ }
+
+ /* fetch the remaining header info */
+ w = read_pbm_integer(cinfo, source->pub.input_file);
+ h = read_pbm_integer(cinfo, source->pub.input_file);
+ maxval = read_pbm_integer(cinfo, source->pub.input_file);
+
+ if (w <= 0 || h <= 0 || maxval <= 0) /* error check */
+ ERREXIT(cinfo, JERR_PPM_NOT);
+
+ cinfo->data_precision = BITS_IN_JSAMPLE; /* we always rescale data to this */
+ cinfo->image_width = (JDIMENSION) w;
+ cinfo->image_height = (JDIMENSION) h;
+
+ /* initialize flags to most common settings */
+ need_iobuffer = TRUE; /* do we need an I/O buffer? */
+ use_raw_buffer = FALSE; /* do we map input buffer onto I/O buffer? */
+ need_rescale = TRUE; /* do we need a rescale array? */
+
+ switch (c) {
+ case '2': /* it's a text-format PGM file */
+ cinfo->input_components = 1;
+ cinfo->in_color_space = JCS_GRAYSCALE;
+ TRACEMS2(cinfo, 1, JTRC_PGM_TEXT, w, h);
+ source->pub.get_pixel_rows = get_text_gray_row;
+ need_iobuffer = FALSE;
+ break;
+
+ case '3': /* it's a text-format PPM file */
+ cinfo->input_components = 3;
+ cinfo->in_color_space = JCS_RGB;
+ TRACEMS2(cinfo, 1, JTRC_PPM_TEXT, w, h);
+ source->pub.get_pixel_rows = get_text_rgb_row;
+ need_iobuffer = FALSE;
+ break;
+
+ case '5': /* it's a raw-format PGM file */
+ cinfo->input_components = 1;
+ cinfo->in_color_space = JCS_GRAYSCALE;
+ TRACEMS2(cinfo, 1, JTRC_PGM, w, h);
+ if (maxval > 255) {
+ source->pub.get_pixel_rows = get_word_gray_row;
+ } else if (maxval == MAXJSAMPLE && SIZEOF(JSAMPLE) == SIZEOF(U_CHAR)) {
+ source->pub.get_pixel_rows = get_raw_row;
+ use_raw_buffer = TRUE;
+ need_rescale = FALSE;
+ } else {
+ source->pub.get_pixel_rows = get_scaled_gray_row;
+ }
+ break;
+
+ case '6': /* it's a raw-format PPM file */
+ cinfo->input_components = 3;
+ cinfo->in_color_space = JCS_RGB;
+ TRACEMS2(cinfo, 1, JTRC_PPM, w, h);
+ if (maxval > 255) {
+ source->pub.get_pixel_rows = get_word_rgb_row;
+ } else if (maxval == MAXJSAMPLE && SIZEOF(JSAMPLE) == SIZEOF(U_CHAR)) {
+ source->pub.get_pixel_rows = get_raw_row;
+ use_raw_buffer = TRUE;
+ need_rescale = FALSE;
+ } else {
+ source->pub.get_pixel_rows = get_scaled_rgb_row;
+ }
+ break;
+ }
+
+ /* Allocate space for I/O buffer: 1 or 3 bytes or words/pixel. */
+ if (need_iobuffer) {
+ source->buffer_width = (size_t) w * cinfo->input_components *
+ ((maxval<=255) ? SIZEOF(U_CHAR) : (2*SIZEOF(U_CHAR)));
+ source->iobuffer = (U_CHAR *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ source->buffer_width);
+ }
+
+ /* Create compressor input buffer. */
+ if (use_raw_buffer) {
+ /* For unscaled raw-input case, we can just map it onto the I/O buffer. */
+ /* Synthesize a JSAMPARRAY pointer structure */
+ /* Cast here implies near->far pointer conversion on PCs */
+ source->pixrow = (JSAMPROW) source->iobuffer;
+ source->pub.buffer = & source->pixrow;
+ source->pub.buffer_height = 1;
+ } else {
+ /* Need to translate anyway, so make a separate sample buffer. */
+ source->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) w * cinfo->input_components, (JDIMENSION) 1);
+ source->pub.buffer_height = 1;
+ }
+
+ /* Compute the rescaling array if required. */
+ if (need_rescale) {
+ INT32 val, half_maxval;
+
+ /* On 16-bit-int machines we have to be careful of maxval = 65535 */
+ source->rescale = (JSAMPLE *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (size_t) (((long) maxval + 1L) * SIZEOF(JSAMPLE)));
+ half_maxval = maxval / 2;
+ for (val = 0; val <= (INT32) maxval; val++) {
+ /* The multiplication here must be done in 32 bits to avoid overflow */
+ source->rescale[val] = (JSAMPLE) ((val*MAXJSAMPLE + half_maxval)/maxval);
+ }
+ }
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_input_ppm (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ /* no work */
+}
+
+
+/*
+ * The module selection routine for PPM format input.
+ */
+
+GLOBAL(cjpeg_source_ptr)
+jinit_read_ppm (j_compress_ptr cinfo)
+{
+ ppm_source_ptr source;
+
+ /* Create module interface object */
+ source = (ppm_source_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(ppm_source_struct));
+ /* Fill in method ptrs, except get_pixel_rows which start_input sets */
+ source->pub.start_input = start_input_ppm;
+ source->pub.finish_input = finish_input_ppm;
+
+ return (cjpeg_source_ptr) source;
+}
+
+#endif /* PPM_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/rdrle.c b/plugins/AdvaImg/src/LibJPEG/rdrle.c
new file mode 100644
index 0000000000..df871e00a4
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdrle.c
@@ -0,0 +1,387 @@
+/*
+ * rdrle.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to read input images in Utah RLE format.
+ * The Utah Raster Toolkit library is required (version 3.1 or later).
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume input from
+ * an ordinary stdio stream. They further assume that reading begins
+ * at the start of the file; start_input may need work if the
+ * user interface has already read some data (e.g., to determine that
+ * the file is indeed RLE format).
+ *
+ * Based on code contributed by Mike Lijewski,
+ * with updates from Robert Hutchinson.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef RLE_SUPPORTED
+
+/* rle.h is provided by the Utah Raster Toolkit. */
+
+#include <rle.h>
+
+/*
+ * We assume that JSAMPLE has the same representation as rle_pixel,
+ * to wit, "unsigned char". Hence we can't cope with 12- or 16-bit samples.
+ */
+
+#if BITS_IN_JSAMPLE != 8
+ Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
+#endif
+
+/*
+ * We support the following types of RLE files:
+ *
+ * GRAYSCALE - 8 bits, no colormap
+ * MAPPEDGRAY - 8 bits, 1 channel colomap
+ * PSEUDOCOLOR - 8 bits, 3 channel colormap
+ * TRUECOLOR - 24 bits, 3 channel colormap
+ * DIRECTCOLOR - 24 bits, no colormap
+ *
+ * For now, we ignore any alpha channel in the image.
+ */
+
+typedef enum
+ { GRAYSCALE, MAPPEDGRAY, PSEUDOCOLOR, TRUECOLOR, DIRECTCOLOR } rle_kind;
+
+
+/*
+ * Since RLE stores scanlines bottom-to-top, we have to invert the image
+ * to conform to JPEG's top-to-bottom order. To do this, we read the
+ * incoming image into a virtual array on the first get_pixel_rows call,
+ * then fetch the required row from the virtual array on subsequent calls.
+ */
+
+typedef struct _rle_source_struct * rle_source_ptr;
+
+typedef struct _rle_source_struct {
+ struct cjpeg_source_struct pub; /* public fields */
+
+ rle_kind visual; /* actual type of input file */
+ jvirt_sarray_ptr image; /* virtual array to hold the image */
+ JDIMENSION row; /* current row # in the virtual array */
+ rle_hdr header; /* Input file information */
+ rle_pixel** rle_row; /* holds a row returned by rle_getrow() */
+
+} rle_source_struct;
+
+
+/*
+ * Read the file header; return image size and component count.
+ */
+
+METHODDEF(void)
+start_input_rle (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ rle_source_ptr source = (rle_source_ptr) sinfo;
+ JDIMENSION width, height;
+#ifdef PROGRESS_REPORT
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+#endif
+
+ /* Use RLE library routine to get the header info */
+ source->header = *rle_hdr_init(NULL);
+ source->header.rle_file = source->pub.input_file;
+ switch (rle_get_setup(&(source->header))) {
+ case RLE_SUCCESS:
+ /* A-OK */
+ break;
+ case RLE_NOT_RLE:
+ ERREXIT(cinfo, JERR_RLE_NOT);
+ break;
+ case RLE_NO_SPACE:
+ ERREXIT(cinfo, JERR_RLE_MEM);
+ break;
+ case RLE_EMPTY:
+ ERREXIT(cinfo, JERR_RLE_EMPTY);
+ break;
+ case RLE_EOF:
+ ERREXIT(cinfo, JERR_RLE_EOF);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_RLE_BADERROR);
+ break;
+ }
+
+ /* Figure out what we have, set private vars and return values accordingly */
+
+ width = source->header.xmax - source->header.xmin + 1;
+ height = source->header.ymax - source->header.ymin + 1;
+ source->header.xmin = 0; /* realign horizontally */
+ source->header.xmax = width-1;
+
+ cinfo->image_width = width;
+ cinfo->image_height = height;
+ cinfo->data_precision = 8; /* we can only handle 8 bit data */
+
+ if (source->header.ncolors == 1 && source->header.ncmap == 0) {
+ source->visual = GRAYSCALE;
+ TRACEMS2(cinfo, 1, JTRC_RLE_GRAY, width, height);
+ } else if (source->header.ncolors == 1 && source->header.ncmap == 1) {
+ source->visual = MAPPEDGRAY;
+ TRACEMS3(cinfo, 1, JTRC_RLE_MAPGRAY, width, height,
+ 1 << source->header.cmaplen);
+ } else if (source->header.ncolors == 1 && source->header.ncmap == 3) {
+ source->visual = PSEUDOCOLOR;
+ TRACEMS3(cinfo, 1, JTRC_RLE_MAPPED, width, height,
+ 1 << source->header.cmaplen);
+ } else if (source->header.ncolors == 3 && source->header.ncmap == 3) {
+ source->visual = TRUECOLOR;
+ TRACEMS3(cinfo, 1, JTRC_RLE_FULLMAP, width, height,
+ 1 << source->header.cmaplen);
+ } else if (source->header.ncolors == 3 && source->header.ncmap == 0) {
+ source->visual = DIRECTCOLOR;
+ TRACEMS2(cinfo, 1, JTRC_RLE, width, height);
+ } else
+ ERREXIT(cinfo, JERR_RLE_UNSUPPORTED);
+
+ if (source->visual == GRAYSCALE || source->visual == MAPPEDGRAY) {
+ cinfo->in_color_space = JCS_GRAYSCALE;
+ cinfo->input_components = 1;
+ } else {
+ cinfo->in_color_space = JCS_RGB;
+ cinfo->input_components = 3;
+ }
+
+ /*
+ * A place to hold each scanline while it's converted.
+ * (GRAYSCALE scanlines don't need converting)
+ */
+ if (source->visual != GRAYSCALE) {
+ source->rle_row = (rle_pixel**) (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) width, (JDIMENSION) cinfo->input_components);
+ }
+
+ /* request a virtual array to hold the image */
+ source->image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) (width * source->header.ncolors),
+ (JDIMENSION) height, (JDIMENSION) 1);
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ /* count file input as separate pass */
+ progress->total_extra_passes++;
+ }
+#endif
+
+ source->pub.buffer_height = 1;
+}
+
+
+/*
+ * Read one row of pixels.
+ * Called only after load_image has read the image into the virtual array.
+ * Used for GRAYSCALE, MAPPEDGRAY, TRUECOLOR, and DIRECTCOLOR images.
+ */
+
+METHODDEF(JDIMENSION)
+get_rle_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ rle_source_ptr source = (rle_source_ptr) sinfo;
+
+ source->row--;
+ source->pub.buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->image, source->row, (JDIMENSION) 1, FALSE);
+
+ return 1;
+}
+
+/*
+ * Read one row of pixels.
+ * Called only after load_image has read the image into the virtual array.
+ * Used for PSEUDOCOLOR images.
+ */
+
+METHODDEF(JDIMENSION)
+get_pseudocolor_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ rle_source_ptr source = (rle_source_ptr) sinfo;
+ JSAMPROW src_row, dest_row;
+ JDIMENSION col;
+ rle_map *colormap;
+ int val;
+
+ colormap = source->header.cmap;
+ dest_row = source->pub.buffer[0];
+ source->row--;
+ src_row = * (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->image, source->row, (JDIMENSION) 1, FALSE);
+
+ for (col = cinfo->image_width; col > 0; col--) {
+ val = GETJSAMPLE(*src_row++);
+ *dest_row++ = (JSAMPLE) (colormap[val ] >> 8);
+ *dest_row++ = (JSAMPLE) (colormap[val + 256] >> 8);
+ *dest_row++ = (JSAMPLE) (colormap[val + 512] >> 8);
+ }
+
+ return 1;
+}
+
+
+/*
+ * Load the image into a virtual array. We have to do this because RLE
+ * files start at the lower left while the JPEG standard has them starting
+ * in the upper left. This is called the first time we want to get a row
+ * of input. What we do is load the RLE data into the array and then call
+ * the appropriate routine to read one row from the array. Before returning,
+ * we set source->pub.get_pixel_rows so that subsequent calls go straight to
+ * the appropriate row-reading routine.
+ */
+
+METHODDEF(JDIMENSION)
+load_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ rle_source_ptr source = (rle_source_ptr) sinfo;
+ JDIMENSION row, col;
+ JSAMPROW scanline, red_ptr, green_ptr, blue_ptr;
+ rle_pixel **rle_row;
+ rle_map *colormap;
+ char channel;
+#ifdef PROGRESS_REPORT
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+#endif
+
+ colormap = source->header.cmap;
+ rle_row = source->rle_row;
+
+ /* Read the RLE data into our virtual array.
+ * We assume here that (a) rle_pixel is represented the same as JSAMPLE,
+ * and (b) we are not on a machine where FAR pointers differ from regular.
+ */
+ RLE_CLR_BIT(source->header, RLE_ALPHA); /* don't read the alpha channel */
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_limit = cinfo->image_height;
+ progress->pub.pass_counter = 0;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+
+ switch (source->visual) {
+
+ case GRAYSCALE:
+ case PSEUDOCOLOR:
+ for (row = 0; row < cinfo->image_height; row++) {
+ rle_row = (rle_pixel **) (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE);
+ rle_getrow(&source->header, rle_row);
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_counter++;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+ }
+ break;
+
+ case MAPPEDGRAY:
+ case TRUECOLOR:
+ for (row = 0; row < cinfo->image_height; row++) {
+ scanline = * (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE);
+ rle_row = source->rle_row;
+ rle_getrow(&source->header, rle_row);
+
+ for (col = 0; col < cinfo->image_width; col++) {
+ for (channel = 0; channel < source->header.ncolors; channel++) {
+ *scanline++ = (JSAMPLE)
+ (colormap[GETJSAMPLE(rle_row[channel][col]) + 256 * channel] >> 8);
+ }
+ }
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_counter++;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+ }
+ break;
+
+ case DIRECTCOLOR:
+ for (row = 0; row < cinfo->image_height; row++) {
+ scanline = * (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE);
+ rle_getrow(&source->header, rle_row);
+
+ red_ptr = rle_row[0];
+ green_ptr = rle_row[1];
+ blue_ptr = rle_row[2];
+
+ for (col = cinfo->image_width; col > 0; col--) {
+ *scanline++ = *red_ptr++;
+ *scanline++ = *green_ptr++;
+ *scanline++ = *blue_ptr++;
+ }
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_counter++;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+ }
+ }
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL)
+ progress->completed_extra_passes++;
+#endif
+
+ /* Set up to call proper row-extraction routine in future */
+ if (source->visual == PSEUDOCOLOR) {
+ source->pub.buffer = source->rle_row;
+ source->pub.get_pixel_rows = get_pseudocolor_row;
+ } else {
+ source->pub.get_pixel_rows = get_rle_row;
+ }
+ source->row = cinfo->image_height;
+
+ /* And fetch the topmost (bottommost) row */
+ return (*source->pub.get_pixel_rows) (cinfo, sinfo);
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_input_rle (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ /* no work */
+}
+
+
+/*
+ * The module selection routine for RLE format input.
+ */
+
+GLOBAL(cjpeg_source_ptr)
+jinit_read_rle (j_compress_ptr cinfo)
+{
+ rle_source_ptr source;
+
+ /* Create module interface object */
+ source = (rle_source_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(rle_source_struct));
+ /* Fill in method ptrs */
+ source->pub.start_input = start_input_rle;
+ source->pub.finish_input = finish_input_rle;
+ source->pub.get_pixel_rows = load_image;
+
+ return (cjpeg_source_ptr) source;
+}
+
+#endif /* RLE_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/rdswitch.c b/plugins/AdvaImg/src/LibJPEG/rdswitch.c
new file mode 100644
index 0000000000..5eebcc1e5c
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdswitch.c
@@ -0,0 +1,365 @@
+/*
+ * rdswitch.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to process some of cjpeg's more complicated
+ * command-line switches. Switches processed here are:
+ * -qtables file Read quantization tables from text file
+ * -scans file Read scan script from text file
+ * -quality N[,N,...] Set quality ratings
+ * -qslots N[,N,...] Set component quantization table selectors
+ * -sample HxV[,HxV,...] Set component sampling factors
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+#include <ctype.h> /* to declare isdigit(), isspace() */
+
+
+LOCAL(int)
+text_getc (FILE * file)
+/* Read next char, skipping over any comments (# to end of line) */
+/* A comment/newline sequence is returned as a newline */
+{
+ register int ch;
+
+ ch = getc(file);
+ if (ch == '#') {
+ do {
+ ch = getc(file);
+ } while (ch != '\n' && ch != EOF);
+ }
+ return ch;
+}
+
+
+LOCAL(boolean)
+read_text_integer (FILE * file, long * result, int * termchar)
+/* Read an unsigned decimal integer from a file, store it in result */
+/* Reads one trailing character after the integer; returns it in termchar */
+{
+ register int ch;
+ register long val;
+
+ /* Skip any leading whitespace, detect EOF */
+ do {
+ ch = text_getc(file);
+ if (ch == EOF) {
+ *termchar = ch;
+ return FALSE;
+ }
+ } while (isspace(ch));
+
+ if (! isdigit(ch)) {
+ *termchar = ch;
+ return FALSE;
+ }
+
+ val = ch - '0';
+ while ((ch = text_getc(file)) != EOF) {
+ if (! isdigit(ch))
+ break;
+ val *= 10;
+ val += ch - '0';
+ }
+ *result = val;
+ *termchar = ch;
+ return TRUE;
+}
+
+
+GLOBAL(boolean)
+read_quant_tables (j_compress_ptr cinfo, char * filename, boolean force_baseline)
+/* Read a set of quantization tables from the specified file.
+ * The file is plain ASCII text: decimal numbers with whitespace between.
+ * Comments preceded by '#' may be included in the file.
+ * There may be one to NUM_QUANT_TBLS tables in the file, each of 64 values.
+ * The tables are implicitly numbered 0,1,etc.
+ * NOTE: does not affect the qslots mapping, which will default to selecting
+ * table 0 for luminance (or primary) components, 1 for chrominance components.
+ * You must use -qslots if you want a different component->table mapping.
+ */
+{
+ FILE * fp;
+ int tblno, i, termchar;
+ long val;
+ unsigned int table[DCTSIZE2];
+
+ if ((fp = fopen(filename, "r")) == NULL) {
+ fprintf(stderr, "Can't open table file %s\n", filename);
+ return FALSE;
+ }
+ tblno = 0;
+
+ while (read_text_integer(fp, &val, &termchar)) { /* read 1st element of table */
+ if (tblno >= NUM_QUANT_TBLS) {
+ fprintf(stderr, "Too many tables in file %s\n", filename);
+ fclose(fp);
+ return FALSE;
+ }
+ table[0] = (unsigned int) val;
+ for (i = 1; i < DCTSIZE2; i++) {
+ if (! read_text_integer(fp, &val, &termchar)) {
+ fprintf(stderr, "Invalid table data in file %s\n", filename);
+ fclose(fp);
+ return FALSE;
+ }
+ table[i] = (unsigned int) val;
+ }
+ jpeg_add_quant_table(cinfo, tblno, table, cinfo->q_scale_factor[tblno],
+ force_baseline);
+ tblno++;
+ }
+
+ if (termchar != EOF) {
+ fprintf(stderr, "Non-numeric data in file %s\n", filename);
+ fclose(fp);
+ return FALSE;
+ }
+
+ fclose(fp);
+ return TRUE;
+}
+
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+
+LOCAL(boolean)
+read_scan_integer (FILE * file, long * result, int * termchar)
+/* Variant of read_text_integer that always looks for a non-space termchar;
+ * this simplifies parsing of punctuation in scan scripts.
+ */
+{
+ register int ch;
+
+ if (! read_text_integer(file, result, termchar))
+ return FALSE;
+ ch = *termchar;
+ while (ch != EOF && isspace(ch))
+ ch = text_getc(file);
+ if (isdigit(ch)) { /* oops, put it back */
+ if (ungetc(ch, file) == EOF)
+ return FALSE;
+ ch = ' ';
+ } else {
+ /* Any separators other than ';' and ':' are ignored;
+ * this allows user to insert commas, etc, if desired.
+ */
+ if (ch != EOF && ch != ';' && ch != ':')
+ ch = ' ';
+ }
+ *termchar = ch;
+ return TRUE;
+}
+
+
+GLOBAL(boolean)
+read_scan_script (j_compress_ptr cinfo, char * filename)
+/* Read a scan script from the specified text file.
+ * Each entry in the file defines one scan to be emitted.
+ * Entries are separated by semicolons ';'.
+ * An entry contains one to four component indexes,
+ * optionally followed by a colon ':' and four progressive-JPEG parameters.
+ * The component indexes denote which component(s) are to be transmitted
+ * in the current scan. The first component has index 0.
+ * Sequential JPEG is used if the progressive-JPEG parameters are omitted.
+ * The file is free format text: any whitespace may appear between numbers
+ * and the ':' and ';' punctuation marks. Also, other punctuation (such
+ * as commas or dashes) can be placed between numbers if desired.
+ * Comments preceded by '#' may be included in the file.
+ * Note: we do very little validity checking here;
+ * jcmaster.c will validate the script parameters.
+ */
+{
+ FILE * fp;
+ int scanno, ncomps, termchar;
+ long val;
+ jpeg_scan_info * scanptr;
+#define MAX_SCANS 100 /* quite arbitrary limit */
+ jpeg_scan_info scans[MAX_SCANS];
+
+ if ((fp = fopen(filename, "r")) == NULL) {
+ fprintf(stderr, "Can't open scan definition file %s\n", filename);
+ return FALSE;
+ }
+ scanptr = scans;
+ scanno = 0;
+
+ while (read_scan_integer(fp, &val, &termchar)) {
+ if (scanno >= MAX_SCANS) {
+ fprintf(stderr, "Too many scans defined in file %s\n", filename);
+ fclose(fp);
+ return FALSE;
+ }
+ scanptr->component_index[0] = (int) val;
+ ncomps = 1;
+ while (termchar == ' ') {
+ if (ncomps >= MAX_COMPS_IN_SCAN) {
+ fprintf(stderr, "Too many components in one scan in file %s\n",
+ filename);
+ fclose(fp);
+ return FALSE;
+ }
+ if (! read_scan_integer(fp, &val, &termchar))
+ goto bogus;
+ scanptr->component_index[ncomps] = (int) val;
+ ncomps++;
+ }
+ scanptr->comps_in_scan = ncomps;
+ if (termchar == ':') {
+ if (! read_scan_integer(fp, &val, &termchar) || termchar != ' ')
+ goto bogus;
+ scanptr->Ss = (int) val;
+ if (! read_scan_integer(fp, &val, &termchar) || termchar != ' ')
+ goto bogus;
+ scanptr->Se = (int) val;
+ if (! read_scan_integer(fp, &val, &termchar) || termchar != ' ')
+ goto bogus;
+ scanptr->Ah = (int) val;
+ if (! read_scan_integer(fp, &val, &termchar))
+ goto bogus;
+ scanptr->Al = (int) val;
+ } else {
+ /* set non-progressive parameters */
+ scanptr->Ss = 0;
+ scanptr->Se = DCTSIZE2-1;
+ scanptr->Ah = 0;
+ scanptr->Al = 0;
+ }
+ if (termchar != ';' && termchar != EOF) {
+bogus:
+ fprintf(stderr, "Invalid scan entry format in file %s\n", filename);
+ fclose(fp);
+ return FALSE;
+ }
+ scanptr++, scanno++;
+ }
+
+ if (termchar != EOF) {
+ fprintf(stderr, "Non-numeric data in file %s\n", filename);
+ fclose(fp);
+ return FALSE;
+ }
+
+ if (scanno > 0) {
+ /* Stash completed scan list in cinfo structure.
+ * NOTE: for cjpeg's use, JPOOL_IMAGE is the right lifetime for this data,
+ * but if you want to compress multiple images you'd want JPOOL_PERMANENT.
+ */
+ scanptr = (jpeg_scan_info *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ scanno * SIZEOF(jpeg_scan_info));
+ MEMCOPY(scanptr, scans, scanno * SIZEOF(jpeg_scan_info));
+ cinfo->scan_info = scanptr;
+ cinfo->num_scans = scanno;
+ }
+
+ fclose(fp);
+ return TRUE;
+}
+
+#endif /* C_MULTISCAN_FILES_SUPPORTED */
+
+
+GLOBAL(boolean)
+set_quality_ratings (j_compress_ptr cinfo, char *arg, boolean force_baseline)
+/* Process a quality-ratings parameter string, of the form
+ * N[,N,...]
+ * If there are more q-table slots than parameters, the last value is replicated.
+ */
+{
+ int val = 75; /* default value */
+ int tblno;
+ char ch;
+
+ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+ if (*arg) {
+ ch = ','; /* if not set by sscanf, will be ',' */
+ if (sscanf(arg, "%d%c", &val, &ch) < 1)
+ return FALSE;
+ if (ch != ',') /* syntax check */
+ return FALSE;
+ /* Convert user 0-100 rating to percentage scaling */
+ cinfo->q_scale_factor[tblno] = jpeg_quality_scaling(val);
+ while (*arg && *arg++ != ',') /* advance to next segment of arg string */
+ ;
+ } else {
+ /* reached end of parameter, set remaining factors to last value */
+ cinfo->q_scale_factor[tblno] = jpeg_quality_scaling(val);
+ }
+ }
+ jpeg_default_qtables(cinfo, force_baseline);
+ return TRUE;
+}
+
+
+GLOBAL(boolean)
+set_quant_slots (j_compress_ptr cinfo, char *arg)
+/* Process a quantization-table-selectors parameter string, of the form
+ * N[,N,...]
+ * If there are more components than parameters, the last value is replicated.
+ */
+{
+ int val = 0; /* default table # */
+ int ci;
+ char ch;
+
+ for (ci = 0; ci < MAX_COMPONENTS; ci++) {
+ if (*arg) {
+ ch = ','; /* if not set by sscanf, will be ',' */
+ if (sscanf(arg, "%d%c", &val, &ch) < 1)
+ return FALSE;
+ if (ch != ',') /* syntax check */
+ return FALSE;
+ if (val < 0 || val >= NUM_QUANT_TBLS) {
+ fprintf(stderr, "JPEG quantization tables are numbered 0..%d\n",
+ NUM_QUANT_TBLS-1);
+ return FALSE;
+ }
+ cinfo->comp_info[ci].quant_tbl_no = val;
+ while (*arg && *arg++ != ',') /* advance to next segment of arg string */
+ ;
+ } else {
+ /* reached end of parameter, set remaining components to last table */
+ cinfo->comp_info[ci].quant_tbl_no = val;
+ }
+ }
+ return TRUE;
+}
+
+
+GLOBAL(boolean)
+set_sample_factors (j_compress_ptr cinfo, char *arg)
+/* Process a sample-factors parameter string, of the form
+ * HxV[,HxV,...]
+ * If there are more components than parameters, "1x1" is assumed for the rest.
+ */
+{
+ int ci, val1, val2;
+ char ch1, ch2;
+
+ for (ci = 0; ci < MAX_COMPONENTS; ci++) {
+ if (*arg) {
+ ch2 = ','; /* if not set by sscanf, will be ',' */
+ if (sscanf(arg, "%d%c%d%c", &val1, &ch1, &val2, &ch2) < 3)
+ return FALSE;
+ if ((ch1 != 'x' && ch1 != 'X') || ch2 != ',') /* syntax check */
+ return FALSE;
+ if (val1 <= 0 || val1 > 4 || val2 <= 0 || val2 > 4) {
+ fprintf(stderr, "JPEG sampling factors must be 1..4\n");
+ return FALSE;
+ }
+ cinfo->comp_info[ci].h_samp_factor = val1;
+ cinfo->comp_info[ci].v_samp_factor = val2;
+ while (*arg && *arg++ != ',') /* advance to next segment of arg string */
+ ;
+ } else {
+ /* reached end of parameter, set remaining components to 1x1 sampling */
+ cinfo->comp_info[ci].h_samp_factor = 1;
+ cinfo->comp_info[ci].v_samp_factor = 1;
+ }
+ }
+ return TRUE;
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/rdtarga.c b/plugins/AdvaImg/src/LibJPEG/rdtarga.c
new file mode 100644
index 0000000000..d7ffc33ebd
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/rdtarga.c
@@ -0,0 +1,500 @@
+/*
+ * rdtarga.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to read input images in Targa format.
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume input from
+ * an ordinary stdio stream. They further assume that reading begins
+ * at the start of the file; start_input may need work if the
+ * user interface has already read some data (e.g., to determine that
+ * the file is indeed Targa format).
+ *
+ * Based on code contributed by Lee Daniel Crocker.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef TARGA_SUPPORTED
+
+
+/* Macros to deal with unsigned chars as efficiently as compiler allows */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char U_CHAR;
+#define UCH(x) ((int) (x))
+#else /* !HAVE_UNSIGNED_CHAR */
+#ifdef CHAR_IS_UNSIGNED
+typedef char U_CHAR;
+#define UCH(x) ((int) (x))
+#else
+typedef char U_CHAR;
+#define UCH(x) ((int) (x) & 0xFF)
+#endif
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+#define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len)))
+
+
+/* Private version of data source object */
+
+typedef struct _tga_source_struct * tga_source_ptr;
+
+typedef struct _tga_source_struct {
+ struct cjpeg_source_struct pub; /* public fields */
+
+ j_compress_ptr cinfo; /* back link saves passing separate parm */
+
+ JSAMPARRAY colormap; /* Targa colormap (converted to my format) */
+
+ jvirt_sarray_ptr whole_image; /* Needed if funny input row order */
+ JDIMENSION current_row; /* Current logical row number to read */
+
+ /* Pointer to routine to extract next Targa pixel from input file */
+ JMETHOD(void, read_pixel, (tga_source_ptr sinfo));
+
+ /* Result of read_pixel is delivered here: */
+ U_CHAR tga_pixel[4];
+
+ int pixel_size; /* Bytes per Targa pixel (1 to 4) */
+
+ /* State info for reading RLE-coded pixels; both counts must be init to 0 */
+ int block_count; /* # of pixels remaining in RLE block */
+ int dup_pixel_count; /* # of times to duplicate previous pixel */
+
+ /* This saves the correct pixel-row-expansion method for preload_image */
+ JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
+ cjpeg_source_ptr sinfo));
+} tga_source_struct;
+
+
+/* For expanding 5-bit pixel values to 8-bit with best rounding */
+
+static const UINT8 c5to8bits[32] = {
+ 0, 8, 16, 25, 33, 41, 49, 58,
+ 66, 74, 82, 90, 99, 107, 115, 123,
+ 132, 140, 148, 156, 165, 173, 181, 189,
+ 197, 206, 214, 222, 230, 239, 247, 255
+};
+
+
+
+LOCAL(int)
+read_byte (tga_source_ptr sinfo)
+/* Read next byte from Targa file */
+{
+ register FILE *infile = sinfo->pub.input_file;
+ register int c;
+
+ if ((c = getc(infile)) == EOF)
+ ERREXIT(sinfo->cinfo, JERR_INPUT_EOF);
+ return c;
+}
+
+
+LOCAL(void)
+read_colormap (tga_source_ptr sinfo, int cmaplen, int mapentrysize)
+/* Read the colormap from a Targa file */
+{
+ int i;
+
+ /* Presently only handles 24-bit BGR format */
+ if (mapentrysize != 24)
+ ERREXIT(sinfo->cinfo, JERR_TGA_BADCMAP);
+
+ for (i = 0; i < cmaplen; i++) {
+ sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo);
+ sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo);
+ sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo);
+ }
+}
+
+
+/*
+ * read_pixel methods: get a single pixel from Targa file into tga_pixel[]
+ */
+
+METHODDEF(void)
+read_non_rle_pixel (tga_source_ptr sinfo)
+/* Read one Targa pixel from the input file; no RLE expansion */
+{
+ register FILE *infile = sinfo->pub.input_file;
+ register int i;
+
+ for (i = 0; i < sinfo->pixel_size; i++) {
+ sinfo->tga_pixel[i] = (U_CHAR) getc(infile);
+ }
+}
+
+
+METHODDEF(void)
+read_rle_pixel (tga_source_ptr sinfo)
+/* Read one Targa pixel from the input file, expanding RLE data as needed */
+{
+ register FILE *infile = sinfo->pub.input_file;
+ register int i;
+
+ /* Duplicate previously read pixel? */
+ if (sinfo->dup_pixel_count > 0) {
+ sinfo->dup_pixel_count--;
+ return;
+ }
+
+ /* Time to read RLE block header? */
+ if (--sinfo->block_count < 0) { /* decrement pixels remaining in block */
+ i = read_byte(sinfo);
+ if (i & 0x80) { /* Start of duplicate-pixel block? */
+ sinfo->dup_pixel_count = i & 0x7F; /* number of dups after this one */
+ sinfo->block_count = 0; /* then read new block header */
+ } else {
+ sinfo->block_count = i & 0x7F; /* number of pixels after this one */
+ }
+ }
+
+ /* Read next pixel */
+ for (i = 0; i < sinfo->pixel_size; i++) {
+ sinfo->tga_pixel[i] = (U_CHAR) getc(infile);
+ }
+}
+
+
+/*
+ * Read one row of pixels.
+ *
+ * We provide several different versions depending on input file format.
+ */
+
+
+METHODDEF(JDIMENSION)
+get_8bit_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 8-bit grayscale pixels */
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ register JSAMPROW ptr;
+ register JDIMENSION col;
+
+ ptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
+ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[0]);
+ }
+ return 1;
+}
+
+METHODDEF(JDIMENSION)
+get_8bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 8-bit colormap indexes */
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ register int t;
+ register JSAMPROW ptr;
+ register JDIMENSION col;
+ register JSAMPARRAY colormap = source->colormap;
+
+ ptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
+ t = UCH(source->tga_pixel[0]);
+ *ptr++ = colormap[0][t];
+ *ptr++ = colormap[1][t];
+ *ptr++ = colormap[2][t];
+ }
+ return 1;
+}
+
+METHODDEF(JDIMENSION)
+get_16bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 16-bit pixels */
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ register int t;
+ register JSAMPROW ptr;
+ register JDIMENSION col;
+
+ ptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
+ t = UCH(source->tga_pixel[0]);
+ t += UCH(source->tga_pixel[1]) << 8;
+ /* We expand 5 bit data to 8 bit sample width.
+ * The format of the 16-bit (LSB first) input word is
+ * xRRRRRGGGGGBBBBB
+ */
+ ptr[2] = (JSAMPLE) c5to8bits[t & 0x1F];
+ t >>= 5;
+ ptr[1] = (JSAMPLE) c5to8bits[t & 0x1F];
+ t >>= 5;
+ ptr[0] = (JSAMPLE) c5to8bits[t & 0x1F];
+ ptr += 3;
+ }
+ return 1;
+}
+
+METHODDEF(JDIMENSION)
+get_24bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+/* This version is for reading 24-bit pixels */
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ register JSAMPROW ptr;
+ register JDIMENSION col;
+
+ ptr = source->pub.buffer[0];
+ for (col = cinfo->image_width; col > 0; col--) {
+ (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
+ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[2]); /* change BGR to RGB order */
+ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[1]);
+ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[0]);
+ }
+ return 1;
+}
+
+/*
+ * Targa also defines a 32-bit pixel format with order B,G,R,A.
+ * We presently ignore the attribute byte, so the code for reading
+ * these pixels is identical to the 24-bit routine above.
+ * This works because the actual pixel length is only known to read_pixel.
+ */
+
+#define get_32bit_row get_24bit_row
+
+
+/*
+ * This method is for re-reading the input data in standard top-down
+ * row order. The entire image has already been read into whole_image
+ * with proper conversion of pixel format, but it's in a funny row order.
+ */
+
+METHODDEF(JDIMENSION)
+get_memory_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ JDIMENSION source_row;
+
+ /* Compute row of source that maps to current_row of normal order */
+ /* For now, assume image is bottom-up and not interlaced. */
+ /* NEEDS WORK to support interlaced images! */
+ source_row = cinfo->image_height - source->current_row - 1;
+
+ /* Fetch that row from virtual array */
+ source->pub.buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->whole_image,
+ source_row, (JDIMENSION) 1, FALSE);
+
+ source->current_row++;
+ return 1;
+}
+
+
+/*
+ * This method loads the image into whole_image during the first call on
+ * get_pixel_rows. The get_pixel_rows pointer is then adjusted to call
+ * get_memory_row on subsequent calls.
+ */
+
+METHODDEF(JDIMENSION)
+preload_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ JDIMENSION row;
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+
+ /* Read the data into a virtual array in input-file row order. */
+ for (row = 0; row < cinfo->image_height; row++) {
+ if (progress != NULL) {
+ progress->pub.pass_counter = (long) row;
+ progress->pub.pass_limit = (long) cinfo->image_height;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+ source->pub.buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, source->whole_image, row, (JDIMENSION) 1, TRUE);
+ (*source->get_pixel_rows) (cinfo, sinfo);
+ }
+ if (progress != NULL)
+ progress->completed_extra_passes++;
+
+ /* Set up to read from the virtual array in unscrambled order */
+ source->pub.get_pixel_rows = get_memory_row;
+ source->current_row = 0;
+ /* And read the first row */
+ return get_memory_row(cinfo, sinfo);
+}
+
+
+/*
+ * Read the file header; return image size and component count.
+ */
+
+METHODDEF(void)
+start_input_tga (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ tga_source_ptr source = (tga_source_ptr) sinfo;
+ U_CHAR targaheader[18];
+ int idlen, cmaptype, subtype, flags, interlace_type, components;
+ unsigned int width, height, maplen;
+ boolean is_bottom_up;
+
+#define GET_2B(offset) ((unsigned int) UCH(targaheader[offset]) + \
+ (((unsigned int) UCH(targaheader[offset+1])) << 8))
+
+ if (! ReadOK(source->pub.input_file, targaheader, 18))
+ ERREXIT(cinfo, JERR_INPUT_EOF);
+
+ /* Pretend "15-bit" pixels are 16-bit --- we ignore attribute bit anyway */
+ if (targaheader[16] == 15)
+ targaheader[16] = 16;
+
+ idlen = UCH(targaheader[0]);
+ cmaptype = UCH(targaheader[1]);
+ subtype = UCH(targaheader[2]);
+ maplen = GET_2B(5);
+ width = GET_2B(12);
+ height = GET_2B(14);
+ source->pixel_size = UCH(targaheader[16]) >> 3;
+ flags = UCH(targaheader[17]); /* Image Descriptor byte */
+
+ is_bottom_up = ((flags & 0x20) == 0); /* bit 5 set => top-down */
+ interlace_type = flags >> 6; /* bits 6/7 are interlace code */
+
+ if (cmaptype > 1 || /* cmaptype must be 0 or 1 */
+ source->pixel_size < 1 || source->pixel_size > 4 ||
+ (UCH(targaheader[16]) & 7) != 0 || /* bits/pixel must be multiple of 8 */
+ interlace_type != 0) /* currently don't allow interlaced image */
+ ERREXIT(cinfo, JERR_TGA_BADPARMS);
+
+ if (subtype > 8) {
+ /* It's an RLE-coded file */
+ source->read_pixel = read_rle_pixel;
+ source->block_count = source->dup_pixel_count = 0;
+ subtype -= 8;
+ } else {
+ /* Non-RLE file */
+ source->read_pixel = read_non_rle_pixel;
+ }
+
+ /* Now should have subtype 1, 2, or 3 */
+ components = 3; /* until proven different */
+ cinfo->in_color_space = JCS_RGB;
+
+ switch (subtype) {
+ case 1: /* Colormapped image */
+ if (source->pixel_size == 1 && cmaptype == 1)
+ source->get_pixel_rows = get_8bit_row;
+ else
+ ERREXIT(cinfo, JERR_TGA_BADPARMS);
+ TRACEMS2(cinfo, 1, JTRC_TGA_MAPPED, width, height);
+ break;
+ case 2: /* RGB image */
+ switch (source->pixel_size) {
+ case 2:
+ source->get_pixel_rows = get_16bit_row;
+ break;
+ case 3:
+ source->get_pixel_rows = get_24bit_row;
+ break;
+ case 4:
+ source->get_pixel_rows = get_32bit_row;
+ break;
+ default:
+ ERREXIT(cinfo, JERR_TGA_BADPARMS);
+ break;
+ }
+ TRACEMS2(cinfo, 1, JTRC_TGA, width, height);
+ break;
+ case 3: /* Grayscale image */
+ components = 1;
+ cinfo->in_color_space = JCS_GRAYSCALE;
+ if (source->pixel_size == 1)
+ source->get_pixel_rows = get_8bit_gray_row;
+ else
+ ERREXIT(cinfo, JERR_TGA_BADPARMS);
+ TRACEMS2(cinfo, 1, JTRC_TGA_GRAY, width, height);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_TGA_BADPARMS);
+ break;
+ }
+
+ if (is_bottom_up) {
+ /* Create a virtual array to buffer the upside-down image. */
+ source->whole_image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) width * components, (JDIMENSION) height, (JDIMENSION) 1);
+ if (cinfo->progress != NULL) {
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+ progress->total_extra_passes++; /* count file input as separate pass */
+ }
+ /* source->pub.buffer will point to the virtual array. */
+ source->pub.buffer_height = 1; /* in case anyone looks at it */
+ source->pub.get_pixel_rows = preload_image;
+ } else {
+ /* Don't need a virtual array, but do need a one-row input buffer. */
+ source->whole_image = NULL;
+ source->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) width * components, (JDIMENSION) 1);
+ source->pub.buffer_height = 1;
+ source->pub.get_pixel_rows = source->get_pixel_rows;
+ }
+
+ while (idlen--) /* Throw away ID field */
+ (void) read_byte(source);
+
+ if (maplen > 0) {
+ if (maplen > 256 || GET_2B(3) != 0)
+ ERREXIT(cinfo, JERR_TGA_BADCMAP);
+ /* Allocate space to store the colormap */
+ source->colormap = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) maplen, (JDIMENSION) 3);
+ /* and read it from the file */
+ read_colormap(source, (int) maplen, UCH(targaheader[7]));
+ } else {
+ if (cmaptype) /* but you promised a cmap! */
+ ERREXIT(cinfo, JERR_TGA_BADPARMS);
+ source->colormap = NULL;
+ }
+
+ cinfo->input_components = components;
+ cinfo->data_precision = 8;
+ cinfo->image_width = width;
+ cinfo->image_height = height;
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_input_tga (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
+{
+ /* no work */
+}
+
+
+/*
+ * The module selection routine for Targa format input.
+ */
+
+GLOBAL(cjpeg_source_ptr)
+jinit_read_targa (j_compress_ptr cinfo)
+{
+ tga_source_ptr source;
+
+ /* Create module interface object */
+ source = (tga_source_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(tga_source_struct));
+ source->cinfo = cinfo; /* make back link for subroutines */
+ /* Fill in method ptrs, except get_pixel_rows which start_input sets */
+ source->pub.start_input = start_input_tga;
+ source->pub.finish_input = finish_input_tga;
+
+ return (cjpeg_source_ptr) source;
+}
+
+#endif /* TARGA_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/transupp.c b/plugins/AdvaImg/src/LibJPEG/transupp.c
new file mode 100644
index 0000000000..016f383d4f
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/transupp.c
@@ -0,0 +1,1597 @@
+/*
+ * transupp.c
+ *
+ * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains image transformation routines and other utility code
+ * used by the jpegtran sample application. These are NOT part of the core
+ * JPEG library. But we keep these routines separate from jpegtran.c to
+ * ease the task of maintaining jpegtran-like programs that have other user
+ * interfaces.
+ */
+
+/* Although this file really shouldn't have access to the library internals,
+ * it's helpful to let it call jround_up() and jcopy_block_row().
+ */
+#define JPEG_INTERNALS
+
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "transupp.h" /* My own external interface */
+#include <ctype.h> /* to declare isdigit() */
+
+
+#if TRANSFORMS_SUPPORTED
+
+/*
+ * Lossless image transformation routines. These routines work on DCT
+ * coefficient arrays and thus do not require any lossy decompression
+ * or recompression of the image.
+ * Thanks to Guido Vollbeding for the initial design and code of this feature,
+ * and to Ben Jackson for introducing the cropping feature.
+ *
+ * Horizontal flipping is done in-place, using a single top-to-bottom
+ * pass through the virtual source array. It will thus be much the
+ * fastest option for images larger than main memory.
+ *
+ * The other routines require a set of destination virtual arrays, so they
+ * need twice as much memory as jpegtran normally does. The destination
+ * arrays are always written in normal scan order (top to bottom) because
+ * the virtual array manager expects this. The source arrays will be scanned
+ * in the corresponding order, which means multiple passes through the source
+ * arrays for most of the transforms. That could result in much thrashing
+ * if the image is larger than main memory.
+ *
+ * If cropping or trimming is involved, the destination arrays may be smaller
+ * than the source arrays. Note it is not possible to do horizontal flip
+ * in-place when a nonzero Y crop offset is specified, since we'd have to move
+ * data from one block row to another but the virtual array manager doesn't
+ * guarantee we can touch more than one row at a time. So in that case,
+ * we have to use a separate destination array.
+ *
+ * Some notes about the operating environment of the individual transform
+ * routines:
+ * 1. Both the source and destination virtual arrays are allocated from the
+ * source JPEG object, and therefore should be manipulated by calling the
+ * source's memory manager.
+ * 2. The destination's component count should be used. It may be smaller
+ * than the source's when forcing to grayscale.
+ * 3. Likewise the destination's sampling factors should be used. When
+ * forcing to grayscale the destination's sampling factors will be all 1,
+ * and we may as well take that as the effective iMCU size.
+ * 4. When "trim" is in effect, the destination's dimensions will be the
+ * trimmed values but the source's will be untrimmed.
+ * 5. When "crop" is in effect, the destination's dimensions will be the
+ * cropped values but the source's will be uncropped. Each transform
+ * routine is responsible for picking up source data starting at the
+ * correct X and Y offset for the crop region. (The X and Y offsets
+ * passed to the transform routines are measured in iMCU blocks of the
+ * destination.)
+ * 6. All the routines assume that the source and destination buffers are
+ * padded out to a full iMCU boundary. This is true, although for the
+ * source buffer it is an undocumented property of jdcoefct.c.
+ */
+
+
+LOCAL(void)
+do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Crop. This is only used when no rotate/flip is requested with the crop. */
+{
+ JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks;
+ int ci, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ jpeg_component_info *compptr;
+
+ /* We simply have to copy the right amount of data (the destination's
+ * image size) starting at the given X and Y offsets in the source.
+ */
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_y + y_crop_blocks,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
+ dst_buffer[offset_y],
+ compptr->width_in_blocks);
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays)
+/* Horizontal flip; done in-place, so no separate dest array is required.
+ * NB: this only works when y_crop_offset is zero.
+ */
+{
+ JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks;
+ int ci, k, offset_y;
+ JBLOCKARRAY buffer;
+ JCOEFPTR ptr1, ptr2;
+ JCOEF temp1, temp2;
+ jpeg_component_info *compptr;
+
+ /* Horizontal mirroring of DCT blocks is accomplished by swapping
+ * pairs of blocks in-place. Within a DCT block, we perform horizontal
+ * mirroring by changing the signs of odd-numbered columns.
+ * Partial iMCUs at the right edge are left untouched.
+ */
+ MCU_cols = srcinfo->output_width /
+ (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ for (blk_y = 0; blk_y < compptr->height_in_blocks;
+ blk_y += compptr->v_samp_factor) {
+ buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ /* Do the mirroring */
+ for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
+ ptr1 = buffer[offset_y][blk_x];
+ ptr2 = buffer[offset_y][comp_width - blk_x - 1];
+ /* this unrolled loop doesn't need to know which row it's on... */
+ for (k = 0; k < DCTSIZE2; k += 2) {
+ temp1 = *ptr1; /* swap even column */
+ temp2 = *ptr2;
+ *ptr1++ = temp2;
+ *ptr2++ = temp1;
+ temp1 = *ptr1; /* swap odd column with sign change */
+ temp2 = *ptr2;
+ *ptr1++ = -temp2;
+ *ptr2++ = -temp1;
+ }
+ }
+ if (x_crop_blocks > 0) {
+ /* Now left-justify the portion of the data to be kept.
+ * We can't use a single jcopy_block_row() call because that routine
+ * depends on memcpy(), whose behavior is unspecified for overlapping
+ * source and destination areas. Sigh.
+ */
+ for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) {
+ jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks,
+ buffer[offset_y] + blk_x,
+ (JDIMENSION) 1);
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Horizontal flip in general cropping case */
+{
+ JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
+ JDIMENSION x_crop_blocks, y_crop_blocks;
+ int ci, k, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JBLOCKROW src_row_ptr, dst_row_ptr;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Here we must output into a separate array because we can't touch
+ * different rows of a single virtual array simultaneously. Otherwise,
+ * this is essentially the same as the routine above.
+ */
+ MCU_cols = srcinfo->output_width /
+ (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_y + y_crop_blocks,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ dst_row_ptr = dst_buffer[offset_y];
+ src_row_ptr = src_buffer[offset_y];
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Do the mirrorable blocks */
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
+ /* this unrolled loop doesn't need to know which row it's on... */
+ for (k = 0; k < DCTSIZE2; k += 2) {
+ *dst_ptr++ = *src_ptr++; /* copy even column */
+ *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */
+ }
+ } else {
+ /* Copy last partial block(s) verbatim */
+ jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
+ dst_row_ptr + dst_blk_x,
+ (JDIMENSION) 1);
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Vertical flip */
+{
+ JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
+ JDIMENSION x_crop_blocks, y_crop_blocks;
+ int ci, i, j, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JBLOCKROW src_row_ptr, dst_row_ptr;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* We output into a separate array because we can't touch different
+ * rows of the source virtual array simultaneously. Otherwise, this
+ * is a pretty straightforward analog of horizontal flip.
+ * Within a DCT block, vertical mirroring is done by changing the signs
+ * of odd-numbered rows.
+ * Partial iMCUs at the bottom edge are copied verbatim.
+ */
+ MCU_rows = srcinfo->output_height /
+ (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ if (y_crop_blocks + dst_blk_y < comp_height) {
+ /* Row is within the mirrorable area. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ comp_height - y_crop_blocks - dst_blk_y -
+ (JDIMENSION) compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ } else {
+ /* Bottom-edge blocks will be copied verbatim. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_y + y_crop_blocks,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ if (y_crop_blocks + dst_blk_y < comp_height) {
+ /* Row is within the mirrorable area. */
+ dst_row_ptr = dst_buffer[offset_y];
+ src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
+ src_row_ptr += x_crop_blocks;
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[dst_blk_x];
+ for (i = 0; i < DCTSIZE; i += 2) {
+ /* copy even row */
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = *src_ptr++;
+ /* copy odd row with sign change */
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = - *src_ptr++;
+ }
+ }
+ } else {
+ /* Just copy row verbatim. */
+ jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
+ dst_buffer[offset_y],
+ compptr->width_in_blocks);
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Transpose source into destination */
+{
+ JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Transposing pixels within a block just requires transposing the
+ * DCT coefficients.
+ * Partial iMCUs at the edges require no special treatment; we simply
+ * process all the available DCT blocks for every component.
+ */
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_x + x_crop_blocks,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* 90 degree rotation is equivalent to
+ * 1. Transposing the image;
+ * 2. Horizontal mirroring.
+ * These two steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
+ JDIMENSION x_crop_blocks, y_crop_blocks;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Because of the horizontal mirror step, we can't process partial iMCUs
+ * at the (output) right edge properly. They just get transposed and
+ * not mirrored.
+ */
+ MCU_cols = srcinfo->output_height /
+ (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Block is within the mirrorable area. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ comp_width - x_crop_blocks - dst_blk_x -
+ (JDIMENSION) compptr->h_samp_factor,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ } else {
+ /* Edge blocks are transposed but not mirrored. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_x + x_crop_blocks,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ }
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Block is within the mirrorable area. */
+ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
+ [dst_blk_y + offset_y + y_crop_blocks];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ i++;
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ } else {
+ /* Edge blocks are transposed but not mirrored. */
+ src_ptr = src_buffer[offset_x]
+ [dst_blk_y + offset_y + y_crop_blocks];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* 270 degree rotation is equivalent to
+ * 1. Horizontal mirroring;
+ * 2. Transposing the image.
+ * These two steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
+ JDIMENSION x_crop_blocks, y_crop_blocks;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ /* Because of the horizontal mirror step, we can't process partial iMCUs
+ * at the (output) bottom edge properly. They just get transposed and
+ * not mirrored.
+ */
+ MCU_rows = srcinfo->output_width /
+ (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_x + x_crop_blocks,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ if (y_crop_blocks + dst_blk_y < comp_height) {
+ /* Block is within the mirrorable area. */
+ src_ptr = src_buffer[offset_x]
+ [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ }
+ } else {
+ /* Edge blocks are transposed but not mirrored. */
+ src_ptr = src_buffer[offset_x]
+ [dst_blk_y + offset_y + y_crop_blocks];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* 180 degree rotation is equivalent to
+ * 1. Vertical mirroring;
+ * 2. Horizontal mirroring.
+ * These two steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
+ JDIMENSION x_crop_blocks, y_crop_blocks;
+ int ci, i, j, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JBLOCKROW src_row_ptr, dst_row_ptr;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ MCU_cols = srcinfo->output_width /
+ (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
+ MCU_rows = srcinfo->output_height /
+ (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ if (y_crop_blocks + dst_blk_y < comp_height) {
+ /* Row is within the vertically mirrorable area. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ comp_height - y_crop_blocks - dst_blk_y -
+ (JDIMENSION) compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ } else {
+ /* Bottom-edge rows are only mirrored horizontally. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_y + y_crop_blocks,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ }
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ dst_row_ptr = dst_buffer[offset_y];
+ if (y_crop_blocks + dst_blk_y < comp_height) {
+ /* Row is within the mirrorable area. */
+ src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Process the blocks that can be mirrored both ways. */
+ src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
+ for (i = 0; i < DCTSIZE; i += 2) {
+ /* For even row, negate every odd column. */
+ for (j = 0; j < DCTSIZE; j += 2) {
+ *dst_ptr++ = *src_ptr++;
+ *dst_ptr++ = - *src_ptr++;
+ }
+ /* For odd row, negate every even column. */
+ for (j = 0; j < DCTSIZE; j += 2) {
+ *dst_ptr++ = - *src_ptr++;
+ *dst_ptr++ = *src_ptr++;
+ }
+ }
+ } else {
+ /* Any remaining right-edge blocks are only mirrored vertically. */
+ src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x];
+ for (i = 0; i < DCTSIZE; i += 2) {
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = *src_ptr++;
+ for (j = 0; j < DCTSIZE; j++)
+ *dst_ptr++ = - *src_ptr++;
+ }
+ }
+ }
+ } else {
+ /* Remaining rows are just mirrored horizontally. */
+ src_row_ptr = src_buffer[offset_y];
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Process the blocks that can be mirrored. */
+ dst_ptr = dst_row_ptr[dst_blk_x];
+ src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
+ for (i = 0; i < DCTSIZE2; i += 2) {
+ *dst_ptr++ = *src_ptr++;
+ *dst_ptr++ = - *src_ptr++;
+ }
+ } else {
+ /* Any remaining right-edge blocks are only copied. */
+ jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
+ dst_row_ptr + dst_blk_x,
+ (JDIMENSION) 1);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+LOCAL(void)
+do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
+ jvirt_barray_ptr *src_coef_arrays,
+ jvirt_barray_ptr *dst_coef_arrays)
+/* Transverse transpose is equivalent to
+ * 1. 180 degree rotation;
+ * 2. Transposition;
+ * or
+ * 1. Horizontal mirroring;
+ * 2. Transposition;
+ * 3. Horizontal mirroring.
+ * These steps are merged into a single processing routine.
+ */
+{
+ JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
+ JDIMENSION x_crop_blocks, y_crop_blocks;
+ int ci, i, j, offset_x, offset_y;
+ JBLOCKARRAY src_buffer, dst_buffer;
+ JCOEFPTR src_ptr, dst_ptr;
+ jpeg_component_info *compptr;
+
+ MCU_cols = srcinfo->output_height /
+ (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
+ MCU_rows = srcinfo->output_width /
+ (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
+
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ comp_width = MCU_cols * compptr->h_samp_factor;
+ comp_height = MCU_rows * compptr->v_samp_factor;
+ x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
+ y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
+ for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
+ dst_blk_y += compptr->v_samp_factor) {
+ dst_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
+ for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
+ dst_blk_x += compptr->h_samp_factor) {
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Block is within the mirrorable area. */
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ comp_width - x_crop_blocks - dst_blk_x -
+ (JDIMENSION) compptr->h_samp_factor,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ } else {
+ src_buffer = (*srcinfo->mem->access_virt_barray)
+ ((j_common_ptr) srcinfo, src_coef_arrays[ci],
+ dst_blk_x + x_crop_blocks,
+ (JDIMENSION) compptr->h_samp_factor, FALSE);
+ }
+ for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
+ dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
+ if (y_crop_blocks + dst_blk_y < comp_height) {
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Block is within the mirrorable area. */
+ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
+ [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ i++;
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ } else {
+ /* Right-edge blocks are mirrored in y only */
+ src_ptr = src_buffer[offset_x]
+ [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++) {
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ j++;
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ } else {
+ if (x_crop_blocks + dst_blk_x < comp_width) {
+ /* Bottom-edge blocks are mirrored in x only */
+ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
+ [dst_blk_y + offset_y + y_crop_blocks];
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ i++;
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
+ }
+ } else {
+ /* At lower right corner, just transpose, no mirroring */
+ src_ptr = src_buffer[offset_x]
+ [dst_blk_y + offset_y + y_crop_blocks];
+ for (i = 0; i < DCTSIZE; i++)
+ for (j = 0; j < DCTSIZE; j++)
+ dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+/* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec.
+ * Returns TRUE if valid integer found, FALSE if not.
+ * *strptr is advanced over the digit string, and *result is set to its value.
+ */
+
+LOCAL(boolean)
+jt_read_integer (const char ** strptr, JDIMENSION * result)
+{
+ const char * ptr = *strptr;
+ JDIMENSION val = 0;
+
+ for (; isdigit(*ptr); ptr++) {
+ val = val * 10 + (JDIMENSION) (*ptr - '0');
+ }
+ *result = val;
+ if (ptr == *strptr)
+ return FALSE; /* oops, no digits */
+ *strptr = ptr;
+ return TRUE;
+}
+
+
+/* Parse a crop specification (written in X11 geometry style).
+ * The routine returns TRUE if the spec string is valid, FALSE if not.
+ *
+ * The crop spec string should have the format
+ * <width>[f]x<height>[f]{+-}<xoffset>{+-}<yoffset>
+ * where width, height, xoffset, and yoffset are unsigned integers.
+ * Each of the elements can be omitted to indicate a default value.
+ * (A weakness of this style is that it is not possible to omit xoffset
+ * while specifying yoffset, since they look alike.)
+ *
+ * This code is loosely based on XParseGeometry from the X11 distribution.
+ */
+
+GLOBAL(boolean)
+jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec)
+{
+ info->crop = FALSE;
+ info->crop_width_set = JCROP_UNSET;
+ info->crop_height_set = JCROP_UNSET;
+ info->crop_xoffset_set = JCROP_UNSET;
+ info->crop_yoffset_set = JCROP_UNSET;
+
+ if (isdigit(*spec)) {
+ /* fetch width */
+ if (! jt_read_integer(&spec, &info->crop_width))
+ return FALSE;
+ if (*spec == 'f' || *spec == 'F') {
+ spec++;
+ info->crop_width_set = JCROP_FORCE;
+ } else
+ info->crop_width_set = JCROP_POS;
+ }
+ if (*spec == 'x' || *spec == 'X') {
+ /* fetch height */
+ spec++;
+ if (! jt_read_integer(&spec, &info->crop_height))
+ return FALSE;
+ if (*spec == 'f' || *spec == 'F') {
+ spec++;
+ info->crop_height_set = JCROP_FORCE;
+ } else
+ info->crop_height_set = JCROP_POS;
+ }
+ if (*spec == '+' || *spec == '-') {
+ /* fetch xoffset */
+ info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
+ spec++;
+ if (! jt_read_integer(&spec, &info->crop_xoffset))
+ return FALSE;
+ }
+ if (*spec == '+' || *spec == '-') {
+ /* fetch yoffset */
+ info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
+ spec++;
+ if (! jt_read_integer(&spec, &info->crop_yoffset))
+ return FALSE;
+ }
+ /* We had better have gotten to the end of the string. */
+ if (*spec != '\0')
+ return FALSE;
+ info->crop = TRUE;
+ return TRUE;
+}
+
+
+/* Trim off any partial iMCUs on the indicated destination edge */
+
+LOCAL(void)
+trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width)
+{
+ JDIMENSION MCU_cols;
+
+ MCU_cols = info->output_width / info->iMCU_sample_width;
+ if (MCU_cols > 0 && info->x_crop_offset + MCU_cols ==
+ full_width / info->iMCU_sample_width)
+ info->output_width = MCU_cols * info->iMCU_sample_width;
+}
+
+LOCAL(void)
+trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height)
+{
+ JDIMENSION MCU_rows;
+
+ MCU_rows = info->output_height / info->iMCU_sample_height;
+ if (MCU_rows > 0 && info->y_crop_offset + MCU_rows ==
+ full_height / info->iMCU_sample_height)
+ info->output_height = MCU_rows * info->iMCU_sample_height;
+}
+
+
+/* Request any required workspace.
+ *
+ * This routine figures out the size that the output image will be
+ * (which implies that all the transform parameters must be set before
+ * it is called).
+ *
+ * We allocate the workspace virtual arrays from the source decompression
+ * object, so that all the arrays (both the original data and the workspace)
+ * will be taken into account while making memory management decisions.
+ * Hence, this routine must be called after jpeg_read_header (which reads
+ * the image dimensions) and before jpeg_read_coefficients (which realizes
+ * the source's virtual arrays).
+ *
+ * This function returns FALSE right away if -perfect is given
+ * and transformation is not perfect. Otherwise returns TRUE.
+ */
+
+GLOBAL(boolean)
+jtransform_request_workspace (j_decompress_ptr srcinfo,
+ jpeg_transform_info *info)
+{
+ jvirt_barray_ptr *coef_arrays;
+ boolean need_workspace, transpose_it;
+ jpeg_component_info *compptr;
+ JDIMENSION xoffset, yoffset;
+ JDIMENSION width_in_iMCUs, height_in_iMCUs;
+ JDIMENSION width_in_blocks, height_in_blocks;
+ int ci, h_samp_factor, v_samp_factor;
+
+ /* Determine number of components in output image */
+ if (info->force_grayscale &&
+ srcinfo->jpeg_color_space == JCS_YCbCr &&
+ srcinfo->num_components == 3)
+ /* We'll only process the first component */
+ info->num_components = 1;
+ else
+ /* Process all the components */
+ info->num_components = srcinfo->num_components;
+
+ /* Compute output image dimensions and related values. */
+ jpeg_core_output_dimensions(srcinfo);
+
+ /* Return right away if -perfect is given and transformation is not perfect.
+ */
+ if (info->perfect) {
+ if (info->num_components == 1) {
+ if (!jtransform_perfect_transform(srcinfo->output_width,
+ srcinfo->output_height,
+ srcinfo->min_DCT_h_scaled_size,
+ srcinfo->min_DCT_v_scaled_size,
+ info->transform))
+ return FALSE;
+ } else {
+ if (!jtransform_perfect_transform(srcinfo->output_width,
+ srcinfo->output_height,
+ srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size,
+ srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size,
+ info->transform))
+ return FALSE;
+ }
+ }
+
+ /* If there is only one output component, force the iMCU size to be 1;
+ * else use the source iMCU size. (This allows us to do the right thing
+ * when reducing color to grayscale, and also provides a handy way of
+ * cleaning up "funny" grayscale images whose sampling factors are not 1x1.)
+ */
+ switch (info->transform) {
+ case JXFORM_TRANSPOSE:
+ case JXFORM_TRANSVERSE:
+ case JXFORM_ROT_90:
+ case JXFORM_ROT_270:
+ info->output_width = srcinfo->output_height;
+ info->output_height = srcinfo->output_width;
+ if (info->num_components == 1) {
+ info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size;
+ info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size;
+ } else {
+ info->iMCU_sample_width =
+ srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
+ info->iMCU_sample_height =
+ srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
+ }
+ break;
+ default:
+ info->output_width = srcinfo->output_width;
+ info->output_height = srcinfo->output_height;
+ if (info->num_components == 1) {
+ info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size;
+ info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size;
+ } else {
+ info->iMCU_sample_width =
+ srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size;
+ info->iMCU_sample_height =
+ srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size;
+ }
+ break;
+ }
+
+ /* If cropping has been requested, compute the crop area's position and
+ * dimensions, ensuring that its upper left corner falls at an iMCU boundary.
+ */
+ if (info->crop) {
+ /* Insert default values for unset crop parameters */
+ if (info->crop_xoffset_set == JCROP_UNSET)
+ info->crop_xoffset = 0; /* default to +0 */
+ if (info->crop_yoffset_set == JCROP_UNSET)
+ info->crop_yoffset = 0; /* default to +0 */
+ if (info->crop_xoffset >= info->output_width ||
+ info->crop_yoffset >= info->output_height)
+ ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
+ if (info->crop_width_set == JCROP_UNSET)
+ info->crop_width = info->output_width - info->crop_xoffset;
+ if (info->crop_height_set == JCROP_UNSET)
+ info->crop_height = info->output_height - info->crop_yoffset;
+ /* Ensure parameters are valid */
+ if (info->crop_width <= 0 || info->crop_width > info->output_width ||
+ info->crop_height <= 0 || info->crop_height > info->output_height ||
+ info->crop_xoffset > info->output_width - info->crop_width ||
+ info->crop_yoffset > info->output_height - info->crop_height)
+ ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
+ /* Convert negative crop offsets into regular offsets */
+ if (info->crop_xoffset_set == JCROP_NEG)
+ xoffset = info->output_width - info->crop_width - info->crop_xoffset;
+ else
+ xoffset = info->crop_xoffset;
+ if (info->crop_yoffset_set == JCROP_NEG)
+ yoffset = info->output_height - info->crop_height - info->crop_yoffset;
+ else
+ yoffset = info->crop_yoffset;
+ /* Now adjust so that upper left corner falls at an iMCU boundary */
+ if (info->crop_width_set == JCROP_FORCE)
+ info->output_width = info->crop_width;
+ else
+ info->output_width =
+ info->crop_width + (xoffset % info->iMCU_sample_width);
+ if (info->crop_height_set == JCROP_FORCE)
+ info->output_height = info->crop_height;
+ else
+ info->output_height =
+ info->crop_height + (yoffset % info->iMCU_sample_height);
+ /* Save x/y offsets measured in iMCUs */
+ info->x_crop_offset = xoffset / info->iMCU_sample_width;
+ info->y_crop_offset = yoffset / info->iMCU_sample_height;
+ } else {
+ info->x_crop_offset = 0;
+ info->y_crop_offset = 0;
+ }
+
+ /* Figure out whether we need workspace arrays,
+ * and if so whether they are transposed relative to the source.
+ */
+ need_workspace = FALSE;
+ transpose_it = FALSE;
+ switch (info->transform) {
+ case JXFORM_NONE:
+ if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
+ need_workspace = TRUE;
+ /* No workspace needed if neither cropping nor transforming */
+ break;
+ case JXFORM_FLIP_H:
+ if (info->trim)
+ trim_right_edge(info, srcinfo->output_width);
+ if (info->y_crop_offset != 0)
+ need_workspace = TRUE;
+ /* do_flip_h_no_crop doesn't need a workspace array */
+ break;
+ case JXFORM_FLIP_V:
+ if (info->trim)
+ trim_bottom_edge(info, srcinfo->output_height);
+ /* Need workspace arrays having same dimensions as source image. */
+ need_workspace = TRUE;
+ break;
+ case JXFORM_TRANSPOSE:
+ /* transpose does NOT have to trim anything */
+ /* Need workspace arrays having transposed dimensions. */
+ need_workspace = TRUE;
+ transpose_it = TRUE;
+ break;
+ case JXFORM_TRANSVERSE:
+ if (info->trim) {
+ trim_right_edge(info, srcinfo->output_height);
+ trim_bottom_edge(info, srcinfo->output_width);
+ }
+ /* Need workspace arrays having transposed dimensions. */
+ need_workspace = TRUE;
+ transpose_it = TRUE;
+ break;
+ case JXFORM_ROT_90:
+ if (info->trim)
+ trim_right_edge(info, srcinfo->output_height);
+ /* Need workspace arrays having transposed dimensions. */
+ need_workspace = TRUE;
+ transpose_it = TRUE;
+ break;
+ case JXFORM_ROT_180:
+ if (info->trim) {
+ trim_right_edge(info, srcinfo->output_width);
+ trim_bottom_edge(info, srcinfo->output_height);
+ }
+ /* Need workspace arrays having same dimensions as source image. */
+ need_workspace = TRUE;
+ break;
+ case JXFORM_ROT_270:
+ if (info->trim)
+ trim_bottom_edge(info, srcinfo->output_width);
+ /* Need workspace arrays having transposed dimensions. */
+ need_workspace = TRUE;
+ transpose_it = TRUE;
+ break;
+ }
+
+ /* Allocate workspace if needed.
+ * Note that we allocate arrays padded out to the next iMCU boundary,
+ * so that transform routines need not worry about missing edge blocks.
+ */
+ if (need_workspace) {
+ coef_arrays = (jvirt_barray_ptr *)
+ (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
+ SIZEOF(jvirt_barray_ptr) * info->num_components);
+ width_in_iMCUs = (JDIMENSION)
+ jdiv_round_up((long) info->output_width,
+ (long) info->iMCU_sample_width);
+ height_in_iMCUs = (JDIMENSION)
+ jdiv_round_up((long) info->output_height,
+ (long) info->iMCU_sample_height);
+ for (ci = 0; ci < info->num_components; ci++) {
+ compptr = srcinfo->comp_info + ci;
+ if (info->num_components == 1) {
+ /* we're going to force samp factors to 1x1 in this case */
+ h_samp_factor = v_samp_factor = 1;
+ } else if (transpose_it) {
+ h_samp_factor = compptr->v_samp_factor;
+ v_samp_factor = compptr->h_samp_factor;
+ } else {
+ h_samp_factor = compptr->h_samp_factor;
+ v_samp_factor = compptr->v_samp_factor;
+ }
+ width_in_blocks = width_in_iMCUs * h_samp_factor;
+ height_in_blocks = height_in_iMCUs * v_samp_factor;
+ coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
+ ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
+ width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor);
+ }
+ info->workspace_coef_arrays = coef_arrays;
+ } else
+ info->workspace_coef_arrays = NULL;
+
+ return TRUE;
+}
+
+
+/* Transpose destination image parameters */
+
+LOCAL(void)
+transpose_critical_parameters (j_compress_ptr dstinfo)
+{
+ int tblno, i, j, ci, itemp;
+ jpeg_component_info *compptr;
+ JQUANT_TBL *qtblptr;
+ JDIMENSION jtemp;
+ UINT16 qtemp;
+
+ /* Transpose image dimensions */
+ jtemp = dstinfo->image_width;
+ dstinfo->image_width = dstinfo->image_height;
+ dstinfo->image_height = jtemp;
+ itemp = dstinfo->min_DCT_h_scaled_size;
+ dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size;
+ dstinfo->min_DCT_v_scaled_size = itemp;
+
+ /* Transpose sampling factors */
+ for (ci = 0; ci < dstinfo->num_components; ci++) {
+ compptr = dstinfo->comp_info + ci;
+ itemp = compptr->h_samp_factor;
+ compptr->h_samp_factor = compptr->v_samp_factor;
+ compptr->v_samp_factor = itemp;
+ }
+
+ /* Transpose quantization tables */
+ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+ qtblptr = dstinfo->quant_tbl_ptrs[tblno];
+ if (qtblptr != NULL) {
+ for (i = 0; i < DCTSIZE; i++) {
+ for (j = 0; j < i; j++) {
+ qtemp = qtblptr->quantval[i*DCTSIZE+j];
+ qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
+ qtblptr->quantval[j*DCTSIZE+i] = qtemp;
+ }
+ }
+ }
+ }
+}
+
+
+/* Adjust Exif image parameters.
+ *
+ * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible.
+ */
+
+LOCAL(void)
+adjust_exif_parameters (JOCTET FAR * data, unsigned int length,
+ JDIMENSION new_width, JDIMENSION new_height)
+{
+ boolean is_motorola; /* Flag for byte order */
+ unsigned int number_of_tags, tagnum;
+ unsigned int firstoffset, offset;
+ JDIMENSION new_value;
+
+ if (length < 12) return; /* Length of an IFD entry */
+
+ /* Discover byte order */
+ if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
+ is_motorola = FALSE;
+ else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
+ is_motorola = TRUE;
+ else
+ return;
+
+ /* Check Tag Mark */
+ if (is_motorola) {
+ if (GETJOCTET(data[2]) != 0) return;
+ if (GETJOCTET(data[3]) != 0x2A) return;
+ } else {
+ if (GETJOCTET(data[3]) != 0) return;
+ if (GETJOCTET(data[2]) != 0x2A) return;
+ }
+
+ /* Get first IFD offset (offset to IFD0) */
+ if (is_motorola) {
+ if (GETJOCTET(data[4]) != 0) return;
+ if (GETJOCTET(data[5]) != 0) return;
+ firstoffset = GETJOCTET(data[6]);
+ firstoffset <<= 8;
+ firstoffset += GETJOCTET(data[7]);
+ } else {
+ if (GETJOCTET(data[7]) != 0) return;
+ if (GETJOCTET(data[6]) != 0) return;
+ firstoffset = GETJOCTET(data[5]);
+ firstoffset <<= 8;
+ firstoffset += GETJOCTET(data[4]);
+ }
+ if (firstoffset > length - 2) return; /* check end of data segment */
+
+ /* Get the number of directory entries contained in this IFD */
+ if (is_motorola) {
+ number_of_tags = GETJOCTET(data[firstoffset]);
+ number_of_tags <<= 8;
+ number_of_tags += GETJOCTET(data[firstoffset+1]);
+ } else {
+ number_of_tags = GETJOCTET(data[firstoffset+1]);
+ number_of_tags <<= 8;
+ number_of_tags += GETJOCTET(data[firstoffset]);
+ }
+ if (number_of_tags == 0) return;
+ firstoffset += 2;
+
+ /* Search for ExifSubIFD offset Tag in IFD0 */
+ for (;;) {
+ if (firstoffset > length - 12) return; /* check end of data segment */
+ /* Get Tag number */
+ if (is_motorola) {
+ tagnum = GETJOCTET(data[firstoffset]);
+ tagnum <<= 8;
+ tagnum += GETJOCTET(data[firstoffset+1]);
+ } else {
+ tagnum = GETJOCTET(data[firstoffset+1]);
+ tagnum <<= 8;
+ tagnum += GETJOCTET(data[firstoffset]);
+ }
+ if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */
+ if (--number_of_tags == 0) return;
+ firstoffset += 12;
+ }
+
+ /* Get the ExifSubIFD offset */
+ if (is_motorola) {
+ if (GETJOCTET(data[firstoffset+8]) != 0) return;
+ if (GETJOCTET(data[firstoffset+9]) != 0) return;
+ offset = GETJOCTET(data[firstoffset+10]);
+ offset <<= 8;
+ offset += GETJOCTET(data[firstoffset+11]);
+ } else {
+ if (GETJOCTET(data[firstoffset+11]) != 0) return;
+ if (GETJOCTET(data[firstoffset+10]) != 0) return;
+ offset = GETJOCTET(data[firstoffset+9]);
+ offset <<= 8;
+ offset += GETJOCTET(data[firstoffset+8]);
+ }
+ if (offset > length - 2) return; /* check end of data segment */
+
+ /* Get the number of directory entries contained in this SubIFD */
+ if (is_motorola) {
+ number_of_tags = GETJOCTET(data[offset]);
+ number_of_tags <<= 8;
+ number_of_tags += GETJOCTET(data[offset+1]);
+ } else {
+ number_of_tags = GETJOCTET(data[offset+1]);
+ number_of_tags <<= 8;
+ number_of_tags += GETJOCTET(data[offset]);
+ }
+ if (number_of_tags < 2) return;
+ offset += 2;
+
+ /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */
+ do {
+ if (offset > length - 12) return; /* check end of data segment */
+ /* Get Tag number */
+ if (is_motorola) {
+ tagnum = GETJOCTET(data[offset]);
+ tagnum <<= 8;
+ tagnum += GETJOCTET(data[offset+1]);
+ } else {
+ tagnum = GETJOCTET(data[offset+1]);
+ tagnum <<= 8;
+ tagnum += GETJOCTET(data[offset]);
+ }
+ if (tagnum == 0xA002 || tagnum == 0xA003) {
+ if (tagnum == 0xA002)
+ new_value = new_width; /* ExifImageWidth Tag */
+ else
+ new_value = new_height; /* ExifImageHeight Tag */
+ if (is_motorola) {
+ data[offset+2] = 0; /* Format = unsigned long (4 octets) */
+ data[offset+3] = 4;
+ data[offset+4] = 0; /* Number Of Components = 1 */
+ data[offset+5] = 0;
+ data[offset+6] = 0;
+ data[offset+7] = 1;
+ data[offset+8] = 0;
+ data[offset+9] = 0;
+ data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF);
+ data[offset+11] = (JOCTET)(new_value & 0xFF);
+ } else {
+ data[offset+2] = 4; /* Format = unsigned long (4 octets) */
+ data[offset+3] = 0;
+ data[offset+4] = 1; /* Number Of Components = 1 */
+ data[offset+5] = 0;
+ data[offset+6] = 0;
+ data[offset+7] = 0;
+ data[offset+8] = (JOCTET)(new_value & 0xFF);
+ data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF);
+ data[offset+10] = 0;
+ data[offset+11] = 0;
+ }
+ }
+ offset += 12;
+ } while (--number_of_tags);
+}
+
+
+/* Adjust output image parameters as needed.
+ *
+ * This must be called after jpeg_copy_critical_parameters()
+ * and before jpeg_write_coefficients().
+ *
+ * The return value is the set of virtual coefficient arrays to be written
+ * (either the ones allocated by jtransform_request_workspace, or the
+ * original source data arrays). The caller will need to pass this value
+ * to jpeg_write_coefficients().
+ */
+
+GLOBAL(jvirt_barray_ptr *)
+jtransform_adjust_parameters (j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info)
+{
+ /* If force-to-grayscale is requested, adjust destination parameters */
+ if (info->force_grayscale) {
+ /* First, ensure we have YCbCr or grayscale data, and that the source's
+ * Y channel is full resolution. (No reasonable person would make Y
+ * be less than full resolution, so actually coping with that case
+ * isn't worth extra code space. But we check it to avoid crashing.)
+ */
+ if (((dstinfo->jpeg_color_space == JCS_YCbCr &&
+ dstinfo->num_components == 3) ||
+ (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
+ dstinfo->num_components == 1)) &&
+ srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor &&
+ srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) {
+ /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
+ * properly. Among other things, it sets the target h_samp_factor &
+ * v_samp_factor to 1, which typically won't match the source.
+ * We have to preserve the source's quantization table number, however.
+ */
+ int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
+ jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
+ dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
+ } else {
+ /* Sorry, can't do it */
+ ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
+ }
+ } else if (info->num_components == 1) {
+ /* For a single-component source, we force the destination sampling factors
+ * to 1x1, with or without force_grayscale. This is useful because some
+ * decoders choke on grayscale images with other sampling factors.
+ */
+ dstinfo->comp_info[0].h_samp_factor = 1;
+ dstinfo->comp_info[0].v_samp_factor = 1;
+ }
+
+ /* Correct the destination's image dimensions as necessary
+ * for rotate/flip, resize, and crop operations.
+ */
+ dstinfo->jpeg_width = info->output_width;
+ dstinfo->jpeg_height = info->output_height;
+
+ /* Transpose destination image parameters */
+ switch (info->transform) {
+ case JXFORM_TRANSPOSE:
+ case JXFORM_TRANSVERSE:
+ case JXFORM_ROT_90:
+ case JXFORM_ROT_270:
+ transpose_critical_parameters(dstinfo);
+ break;
+ default:
+ break;
+ }
+
+ /* Adjust Exif properties */
+ if (srcinfo->marker_list != NULL &&
+ srcinfo->marker_list->marker == JPEG_APP0+1 &&
+ srcinfo->marker_list->data_length >= 6 &&
+ GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 &&
+ GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 &&
+ GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 &&
+ GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 &&
+ GETJOCTET(srcinfo->marker_list->data[4]) == 0 &&
+ GETJOCTET(srcinfo->marker_list->data[5]) == 0) {
+ /* Suppress output of JFIF marker */
+ dstinfo->write_JFIF_header = FALSE;
+ /* Adjust Exif image parameters */
+ if (dstinfo->jpeg_width != srcinfo->image_width ||
+ dstinfo->jpeg_height != srcinfo->image_height)
+ /* Align data segment to start of TIFF structure for parsing */
+ adjust_exif_parameters(srcinfo->marker_list->data + 6,
+ srcinfo->marker_list->data_length - 6,
+ dstinfo->jpeg_width, dstinfo->jpeg_height);
+ }
+
+ /* Return the appropriate output data set */
+ if (info->workspace_coef_arrays != NULL)
+ return info->workspace_coef_arrays;
+ return src_coef_arrays;
+}
+
+
+/* Execute the actual transformation, if any.
+ *
+ * This must be called *after* jpeg_write_coefficients, because it depends
+ * on jpeg_write_coefficients to have computed subsidiary values such as
+ * the per-component width and height fields in the destination object.
+ *
+ * Note that some transformations will modify the source data arrays!
+ */
+
+GLOBAL(void)
+jtransform_execute_transform (j_decompress_ptr srcinfo,
+ j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info)
+{
+ jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
+
+ /* Note: conditions tested here should match those in switch statement
+ * in jtransform_request_workspace()
+ */
+ switch (info->transform) {
+ case JXFORM_NONE:
+ if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
+ do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_FLIP_H:
+ if (info->y_crop_offset != 0)
+ do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ else
+ do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset,
+ src_coef_arrays);
+ break;
+ case JXFORM_FLIP_V:
+ do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_TRANSPOSE:
+ do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_TRANSVERSE:
+ do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_ROT_90:
+ do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_ROT_180:
+ do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ case JXFORM_ROT_270:
+ do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
+ src_coef_arrays, dst_coef_arrays);
+ break;
+ }
+}
+
+/* jtransform_perfect_transform
+ *
+ * Determine whether lossless transformation is perfectly
+ * possible for a specified image and transformation.
+ *
+ * Inputs:
+ * image_width, image_height: source image dimensions.
+ * MCU_width, MCU_height: pixel dimensions of MCU.
+ * transform: transformation identifier.
+ * Parameter sources from initialized jpeg_struct
+ * (after reading source header):
+ * image_width = cinfo.image_width
+ * image_height = cinfo.image_height
+ * MCU_width = cinfo.max_h_samp_factor * cinfo.block_size
+ * MCU_height = cinfo.max_v_samp_factor * cinfo.block_size
+ * Result:
+ * TRUE = perfect transformation possible
+ * FALSE = perfect transformation not possible
+ * (may use custom action then)
+ */
+
+GLOBAL(boolean)
+jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height,
+ int MCU_width, int MCU_height,
+ JXFORM_CODE transform)
+{
+ boolean result = TRUE; /* initialize TRUE */
+
+ switch (transform) {
+ case JXFORM_FLIP_H:
+ case JXFORM_ROT_270:
+ if (image_width % (JDIMENSION) MCU_width)
+ result = FALSE;
+ break;
+ case JXFORM_FLIP_V:
+ case JXFORM_ROT_90:
+ if (image_height % (JDIMENSION) MCU_height)
+ result = FALSE;
+ break;
+ case JXFORM_TRANSVERSE:
+ case JXFORM_ROT_180:
+ if (image_width % (JDIMENSION) MCU_width)
+ result = FALSE;
+ if (image_height % (JDIMENSION) MCU_height)
+ result = FALSE;
+ break;
+ default:
+ break;
+ }
+
+ return result;
+}
+
+#endif /* TRANSFORMS_SUPPORTED */
+
+
+/* Setup decompression object to save desired markers in memory.
+ * This must be called before jpeg_read_header() to have the desired effect.
+ */
+
+GLOBAL(void)
+jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
+{
+#ifdef SAVE_MARKERS_SUPPORTED
+ int m;
+
+ /* Save comments except under NONE option */
+ if (option != JCOPYOPT_NONE) {
+ jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
+ }
+ /* Save all types of APPn markers iff ALL option */
+ if (option == JCOPYOPT_ALL) {
+ for (m = 0; m < 16; m++)
+ jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
+ }
+#endif /* SAVE_MARKERS_SUPPORTED */
+}
+
+/* Copy markers saved in the given source object to the destination object.
+ * This should be called just after jpeg_start_compress() or
+ * jpeg_write_coefficients().
+ * Note that those routines will have written the SOI, and also the
+ * JFIF APP0 or Adobe APP14 markers if selected.
+ */
+
+GLOBAL(void)
+jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JCOPY_OPTION option)
+{
+ jpeg_saved_marker_ptr marker;
+
+ /* In the current implementation, we don't actually need to examine the
+ * option flag here; we just copy everything that got saved.
+ * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
+ * if the encoder library already wrote one.
+ */
+ for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
+ if (dstinfo->write_JFIF_header &&
+ marker->marker == JPEG_APP0 &&
+ marker->data_length >= 5 &&
+ GETJOCTET(marker->data[0]) == 0x4A &&
+ GETJOCTET(marker->data[1]) == 0x46 &&
+ GETJOCTET(marker->data[2]) == 0x49 &&
+ GETJOCTET(marker->data[3]) == 0x46 &&
+ GETJOCTET(marker->data[4]) == 0)
+ continue; /* reject duplicate JFIF */
+ if (dstinfo->write_Adobe_marker &&
+ marker->marker == JPEG_APP0+14 &&
+ marker->data_length >= 5 &&
+ GETJOCTET(marker->data[0]) == 0x41 &&
+ GETJOCTET(marker->data[1]) == 0x64 &&
+ GETJOCTET(marker->data[2]) == 0x6F &&
+ GETJOCTET(marker->data[3]) == 0x62 &&
+ GETJOCTET(marker->data[4]) == 0x65)
+ continue; /* reject duplicate Adobe */
+#ifdef NEED_FAR_POINTERS
+ /* We could use jpeg_write_marker if the data weren't FAR... */
+ {
+ unsigned int i;
+ jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
+ for (i = 0; i < marker->data_length; i++)
+ jpeg_write_m_byte(dstinfo, marker->data[i]);
+ }
+#else
+ jpeg_write_marker(dstinfo, marker->marker,
+ marker->data, marker->data_length);
+#endif
+ }
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/transupp.h b/plugins/AdvaImg/src/LibJPEG/transupp.h
new file mode 100644
index 0000000000..9aa0af385a
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/transupp.h
@@ -0,0 +1,213 @@
+/*
+ * transupp.h
+ *
+ * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for image transformation routines and
+ * other utility code used by the jpegtran sample application. These are
+ * NOT part of the core JPEG library. But we keep these routines separate
+ * from jpegtran.c to ease the task of maintaining jpegtran-like programs
+ * that have other user interfaces.
+ *
+ * NOTE: all the routines declared here have very specific requirements
+ * about when they are to be executed during the reading and writing of the
+ * source and destination files. See the comments in transupp.c, or see
+ * jpegtran.c for an example of correct usage.
+ */
+
+/* If you happen not to want the image transform support, disable it here */
+#ifndef TRANSFORMS_SUPPORTED
+#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
+#endif
+
+/*
+ * Although rotating and flipping data expressed as DCT coefficients is not
+ * hard, there is an asymmetry in the JPEG format specification for images
+ * whose dimensions aren't multiples of the iMCU size. The right and bottom
+ * image edges are padded out to the next iMCU boundary with junk data; but
+ * no padding is possible at the top and left edges. If we were to flip
+ * the whole image including the pad data, then pad garbage would become
+ * visible at the top and/or left, and real pixels would disappear into the
+ * pad margins --- perhaps permanently, since encoders & decoders may not
+ * bother to preserve DCT blocks that appear to be completely outside the
+ * nominal image area. So, we have to exclude any partial iMCUs from the
+ * basic transformation.
+ *
+ * Transpose is the only transformation that can handle partial iMCUs at the
+ * right and bottom edges completely cleanly. flip_h can flip partial iMCUs
+ * at the bottom, but leaves any partial iMCUs at the right edge untouched.
+ * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
+ * The other transforms are defined as combinations of these basic transforms
+ * and process edge blocks in a way that preserves the equivalence.
+ *
+ * The "trim" option causes untransformable partial iMCUs to be dropped;
+ * this is not strictly lossless, but it usually gives the best-looking
+ * result for odd-size images. Note that when this option is active,
+ * the expected mathematical equivalences between the transforms may not hold.
+ * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
+ * followed by -rot 180 -trim trims both edges.)
+ *
+ * We also offer a lossless-crop option, which discards data outside a given
+ * image region but losslessly preserves what is inside. Like the rotate and
+ * flip transforms, lossless crop is restricted by the JPEG format: the upper
+ * left corner of the selected region must fall on an iMCU boundary. If this
+ * does not hold for the given crop parameters, we silently move the upper left
+ * corner up and/or left to make it so, simultaneously increasing the region
+ * dimensions to keep the lower right crop corner unchanged. (Thus, the
+ * output image covers at least the requested region, but may cover more.)
+ * The adjustment of the region dimensions may be optionally disabled.
+ *
+ * We also provide a lossless-resize option, which is kind of a lossless-crop
+ * operation in the DCT coefficient block domain - it discards higher-order
+ * coefficients and losslessly preserves lower-order coefficients of a
+ * sub-block.
+ *
+ * Rotate/flip transform, resize, and crop can be requested together in a
+ * single invocation. The crop is applied last --- that is, the crop region
+ * is specified in terms of the destination image after transform/resize.
+ *
+ * We also offer a "force to grayscale" option, which simply discards the
+ * chrominance channels of a YCbCr image. This is lossless in the sense that
+ * the luminance channel is preserved exactly. It's not the same kind of
+ * thing as the rotate/flip transformations, but it's convenient to handle it
+ * as part of this package, mainly because the transformation routines have to
+ * be aware of the option to know how many components to work on.
+ */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jtransform_parse_crop_spec jTrParCrop
+#define jtransform_request_workspace jTrRequest
+#define jtransform_adjust_parameters jTrAdjust
+#define jtransform_execute_transform jTrExec
+#define jtransform_perfect_transform jTrPerfect
+#define jcopy_markers_setup jCMrkSetup
+#define jcopy_markers_execute jCMrkExec
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * Codes for supported types of image transformations.
+ */
+
+typedef enum {
+ JXFORM_NONE, /* no transformation */
+ JXFORM_FLIP_H, /* horizontal flip */
+ JXFORM_FLIP_V, /* vertical flip */
+ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
+ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
+ JXFORM_ROT_90, /* 90-degree clockwise rotation */
+ JXFORM_ROT_180, /* 180-degree rotation */
+ JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */
+} JXFORM_CODE;
+
+/*
+ * Codes for crop parameters, which can individually be unspecified,
+ * positive or negative for xoffset or yoffset,
+ * positive or forced for width or height.
+ */
+
+typedef enum {
+ JCROP_UNSET,
+ JCROP_POS,
+ JCROP_NEG,
+ JCROP_FORCE
+} JCROP_CODE;
+
+/*
+ * Transform parameters struct.
+ * NB: application must not change any elements of this struct after
+ * calling jtransform_request_workspace.
+ */
+
+typedef struct {
+ /* Options: set by caller */
+ JXFORM_CODE transform; /* image transform operator */
+ boolean perfect; /* if TRUE, fail if partial MCUs are requested */
+ boolean trim; /* if TRUE, trim partial MCUs as needed */
+ boolean force_grayscale; /* if TRUE, convert color image to grayscale */
+ boolean crop; /* if TRUE, crop source image */
+
+ /* Crop parameters: application need not set these unless crop is TRUE.
+ * These can be filled in by jtransform_parse_crop_spec().
+ */
+ JDIMENSION crop_width; /* Width of selected region */
+ JCROP_CODE crop_width_set; /* (forced disables adjustment) */
+ JDIMENSION crop_height; /* Height of selected region */
+ JCROP_CODE crop_height_set; /* (forced disables adjustment) */
+ JDIMENSION crop_xoffset; /* X offset of selected region */
+ JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
+ JDIMENSION crop_yoffset; /* Y offset of selected region */
+ JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
+
+ /* Internal workspace: caller should not touch these */
+ int num_components; /* # of components in workspace */
+ jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
+ JDIMENSION output_width; /* cropped destination dimensions */
+ JDIMENSION output_height;
+ JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
+ JDIMENSION y_crop_offset;
+ int iMCU_sample_width; /* destination iMCU size */
+ int iMCU_sample_height;
+} jpeg_transform_info;
+
+
+#if TRANSFORMS_SUPPORTED
+
+/* Parse a crop specification (written in X11 geometry style) */
+EXTERN(boolean) jtransform_parse_crop_spec
+ JPP((jpeg_transform_info *info, const char *spec));
+/* Request any required workspace */
+EXTERN(boolean) jtransform_request_workspace
+ JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
+/* Adjust output image parameters */
+EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info));
+/* Execute the actual transformation, if any */
+EXTERN(void) jtransform_execute_transform
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ jvirt_barray_ptr *src_coef_arrays,
+ jpeg_transform_info *info));
+/* Determine whether lossless transformation is perfectly
+ * possible for a specified image and transformation.
+ */
+EXTERN(boolean) jtransform_perfect_transform
+ JPP((JDIMENSION image_width, JDIMENSION image_height,
+ int MCU_width, int MCU_height,
+ JXFORM_CODE transform));
+
+/* jtransform_execute_transform used to be called
+ * jtransform_execute_transformation, but some compilers complain about
+ * routine names that long. This macro is here to avoid breaking any
+ * old source code that uses the original name...
+ */
+#define jtransform_execute_transformation jtransform_execute_transform
+
+#endif /* TRANSFORMS_SUPPORTED */
+
+
+/*
+ * Support for copying optional markers from source to destination file.
+ */
+
+typedef enum {
+ JCOPYOPT_NONE, /* copy no optional markers */
+ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
+ JCOPYOPT_ALL /* copy all optional markers */
+} JCOPY_OPTION;
+
+#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
+
+/* Setup decompression object to save desired markers in memory */
+EXTERN(void) jcopy_markers_setup
+ JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
+/* Copy markers saved in the given source object to the destination object */
+EXTERN(void) jcopy_markers_execute
+ JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
+ JCOPY_OPTION option));
diff --git a/plugins/AdvaImg/src/LibJPEG/wrbmp.c b/plugins/AdvaImg/src/LibJPEG/wrbmp.c
new file mode 100644
index 0000000000..2b8146e2c0
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/wrbmp.c
@@ -0,0 +1,442 @@
+/*
+ * wrbmp.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write output images in Microsoft "BMP"
+ * format (MS Windows 3.x and OS/2 1.x flavors).
+ * Either 8-bit colormapped or 24-bit full-color format can be written.
+ * No compression is supported.
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume output to
+ * an ordinary stdio stream.
+ *
+ * This code contributed by James Arthur Boucher.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef BMP_SUPPORTED
+
+
+/*
+ * To support 12-bit JPEG data, we'd have to scale output down to 8 bits.
+ * This is not yet implemented.
+ */
+
+#if BITS_IN_JSAMPLE != 8
+ Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
+#endif
+
+/*
+ * Since BMP stores scanlines bottom-to-top, we have to invert the image
+ * from JPEG's top-to-bottom order. To do this, we save the outgoing data
+ * in a virtual array during put_pixel_row calls, then actually emit the
+ * BMP file during finish_output. The virtual array contains one JSAMPLE per
+ * pixel if the output is grayscale or colormapped, three if it is full color.
+ */
+
+/* Private version of data destination object */
+
+typedef struct {
+ struct djpeg_dest_struct pub; /* public fields */
+
+ boolean is_os2; /* saves the OS2 format request flag */
+
+ jvirt_sarray_ptr whole_image; /* needed to reverse row order */
+ JDIMENSION data_width; /* JSAMPLEs per row */
+ JDIMENSION row_width; /* physical width of one row in the BMP file */
+ int pad_bytes; /* number of padding bytes needed per row */
+ JDIMENSION cur_output_row; /* next row# to write to virtual array */
+} bmp_dest_struct;
+
+typedef bmp_dest_struct * bmp_dest_ptr;
+
+
+/* Forward declarations */
+LOCAL(void) write_colormap
+ JPP((j_decompress_ptr cinfo, bmp_dest_ptr dest,
+ int map_colors, int map_entry_size));
+
+
+/*
+ * Write some pixel data.
+ * In this module rows_supplied will always be 1.
+ */
+
+METHODDEF(void)
+put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+/* This version is for writing 24-bit pixels */
+{
+ bmp_dest_ptr dest = (bmp_dest_ptr) dinfo;
+ JSAMPARRAY image_ptr;
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+ int pad;
+
+ /* Access next row in virtual array */
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->whole_image,
+ dest->cur_output_row, (JDIMENSION) 1, TRUE);
+ dest->cur_output_row++;
+
+ /* Transfer data. Note destination values must be in BGR order
+ * (even though Microsoft's own documents say the opposite).
+ */
+ inptr = dest->pub.buffer[0];
+ outptr = image_ptr[0];
+ for (col = cinfo->output_width; col > 0; col--) {
+ outptr[2] = *inptr++; /* can omit GETJSAMPLE() safely */
+ outptr[1] = *inptr++;
+ outptr[0] = *inptr++;
+ outptr += 3;
+ }
+
+ /* Zero out the pad bytes. */
+ pad = dest->pad_bytes;
+ while (--pad >= 0)
+ *outptr++ = 0;
+}
+
+METHODDEF(void)
+put_gray_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+/* This version is for grayscale OR quantized color output */
+{
+ bmp_dest_ptr dest = (bmp_dest_ptr) dinfo;
+ JSAMPARRAY image_ptr;
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION col;
+ int pad;
+
+ /* Access next row in virtual array */
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->whole_image,
+ dest->cur_output_row, (JDIMENSION) 1, TRUE);
+ dest->cur_output_row++;
+
+ /* Transfer data. */
+ inptr = dest->pub.buffer[0];
+ outptr = image_ptr[0];
+ for (col = cinfo->output_width; col > 0; col--) {
+ *outptr++ = *inptr++; /* can omit GETJSAMPLE() safely */
+ }
+
+ /* Zero out the pad bytes. */
+ pad = dest->pad_bytes;
+ while (--pad >= 0)
+ *outptr++ = 0;
+}
+
+
+/*
+ * Startup: normally writes the file header.
+ * In this module we may as well postpone everything until finish_output.
+ */
+
+METHODDEF(void)
+start_output_bmp (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ /* no work here */
+}
+
+
+/*
+ * Finish up at the end of the file.
+ *
+ * Here is where we really output the BMP file.
+ *
+ * First, routines to write the Windows and OS/2 variants of the file header.
+ */
+
+LOCAL(void)
+write_bmp_header (j_decompress_ptr cinfo, bmp_dest_ptr dest)
+/* Write a Windows-style BMP file header, including colormap if needed */
+{
+ char bmpfileheader[14];
+ char bmpinfoheader[40];
+#define PUT_2B(array,offset,value) \
+ (array[offset] = (char) ((value) & 0xFF), \
+ array[offset+1] = (char) (((value) >> 8) & 0xFF))
+#define PUT_4B(array,offset,value) \
+ (array[offset] = (char) ((value) & 0xFF), \
+ array[offset+1] = (char) (((value) >> 8) & 0xFF), \
+ array[offset+2] = (char) (((value) >> 16) & 0xFF), \
+ array[offset+3] = (char) (((value) >> 24) & 0xFF))
+ INT32 headersize, bfSize;
+ int bits_per_pixel, cmap_entries;
+
+ /* Compute colormap size and total file size */
+ if (cinfo->out_color_space == JCS_RGB) {
+ if (cinfo->quantize_colors) {
+ /* Colormapped RGB */
+ bits_per_pixel = 8;
+ cmap_entries = 256;
+ } else {
+ /* Unquantized, full color RGB */
+ bits_per_pixel = 24;
+ cmap_entries = 0;
+ }
+ } else {
+ /* Grayscale output. We need to fake a 256-entry colormap. */
+ bits_per_pixel = 8;
+ cmap_entries = 256;
+ }
+ /* File size */
+ headersize = 14 + 40 + cmap_entries * 4; /* Header and colormap */
+ bfSize = headersize + (INT32) dest->row_width * (INT32) cinfo->output_height;
+
+ /* Set unused fields of header to 0 */
+ MEMZERO(bmpfileheader, SIZEOF(bmpfileheader));
+ MEMZERO(bmpinfoheader, SIZEOF(bmpinfoheader));
+
+ /* Fill the file header */
+ bmpfileheader[0] = 0x42; /* first 2 bytes are ASCII 'B', 'M' */
+ bmpfileheader[1] = 0x4D;
+ PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */
+ /* we leave bfReserved1 & bfReserved2 = 0 */
+ PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */
+
+ /* Fill the info header (Microsoft calls this a BITMAPINFOHEADER) */
+ PUT_2B(bmpinfoheader, 0, 40); /* biSize */
+ PUT_4B(bmpinfoheader, 4, cinfo->output_width); /* biWidth */
+ PUT_4B(bmpinfoheader, 8, cinfo->output_height); /* biHeight */
+ PUT_2B(bmpinfoheader, 12, 1); /* biPlanes - must be 1 */
+ PUT_2B(bmpinfoheader, 14, bits_per_pixel); /* biBitCount */
+ /* we leave biCompression = 0, for none */
+ /* we leave biSizeImage = 0; this is correct for uncompressed data */
+ if (cinfo->density_unit == 2) { /* if have density in dots/cm, then */
+ PUT_4B(bmpinfoheader, 24, (INT32) (cinfo->X_density*100)); /* XPels/M */
+ PUT_4B(bmpinfoheader, 28, (INT32) (cinfo->Y_density*100)); /* XPels/M */
+ }
+ PUT_2B(bmpinfoheader, 32, cmap_entries); /* biClrUsed */
+ /* we leave biClrImportant = 0 */
+
+ if (JFWRITE(dest->pub.output_file, bmpfileheader, 14) != (size_t) 14)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+ if (JFWRITE(dest->pub.output_file, bmpinfoheader, 40) != (size_t) 40)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+
+ if (cmap_entries > 0)
+ write_colormap(cinfo, dest, cmap_entries, 4);
+}
+
+
+LOCAL(void)
+write_os2_header (j_decompress_ptr cinfo, bmp_dest_ptr dest)
+/* Write an OS2-style BMP file header, including colormap if needed */
+{
+ char bmpfileheader[14];
+ char bmpcoreheader[12];
+ INT32 headersize, bfSize;
+ int bits_per_pixel, cmap_entries;
+
+ /* Compute colormap size and total file size */
+ if (cinfo->out_color_space == JCS_RGB) {
+ if (cinfo->quantize_colors) {
+ /* Colormapped RGB */
+ bits_per_pixel = 8;
+ cmap_entries = 256;
+ } else {
+ /* Unquantized, full color RGB */
+ bits_per_pixel = 24;
+ cmap_entries = 0;
+ }
+ } else {
+ /* Grayscale output. We need to fake a 256-entry colormap. */
+ bits_per_pixel = 8;
+ cmap_entries = 256;
+ }
+ /* File size */
+ headersize = 14 + 12 + cmap_entries * 3; /* Header and colormap */
+ bfSize = headersize + (INT32) dest->row_width * (INT32) cinfo->output_height;
+
+ /* Set unused fields of header to 0 */
+ MEMZERO(bmpfileheader, SIZEOF(bmpfileheader));
+ MEMZERO(bmpcoreheader, SIZEOF(bmpcoreheader));
+
+ /* Fill the file header */
+ bmpfileheader[0] = 0x42; /* first 2 bytes are ASCII 'B', 'M' */
+ bmpfileheader[1] = 0x4D;
+ PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */
+ /* we leave bfReserved1 & bfReserved2 = 0 */
+ PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */
+
+ /* Fill the info header (Microsoft calls this a BITMAPCOREHEADER) */
+ PUT_2B(bmpcoreheader, 0, 12); /* bcSize */
+ PUT_2B(bmpcoreheader, 4, cinfo->output_width); /* bcWidth */
+ PUT_2B(bmpcoreheader, 6, cinfo->output_height); /* bcHeight */
+ PUT_2B(bmpcoreheader, 8, 1); /* bcPlanes - must be 1 */
+ PUT_2B(bmpcoreheader, 10, bits_per_pixel); /* bcBitCount */
+
+ if (JFWRITE(dest->pub.output_file, bmpfileheader, 14) != (size_t) 14)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+ if (JFWRITE(dest->pub.output_file, bmpcoreheader, 12) != (size_t) 12)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+
+ if (cmap_entries > 0)
+ write_colormap(cinfo, dest, cmap_entries, 3);
+}
+
+
+/*
+ * Write the colormap.
+ * Windows uses BGR0 map entries; OS/2 uses BGR entries.
+ */
+
+LOCAL(void)
+write_colormap (j_decompress_ptr cinfo, bmp_dest_ptr dest,
+ int map_colors, int map_entry_size)
+{
+ JSAMPARRAY colormap = cinfo->colormap;
+ int num_colors = cinfo->actual_number_of_colors;
+ FILE * outfile = dest->pub.output_file;
+ int i;
+
+ if (colormap != NULL) {
+ if (cinfo->out_color_components == 3) {
+ /* Normal case with RGB colormap */
+ for (i = 0; i < num_colors; i++) {
+ putc(GETJSAMPLE(colormap[2][i]), outfile);
+ putc(GETJSAMPLE(colormap[1][i]), outfile);
+ putc(GETJSAMPLE(colormap[0][i]), outfile);
+ if (map_entry_size == 4)
+ putc(0, outfile);
+ }
+ } else {
+ /* Grayscale colormap (only happens with grayscale quantization) */
+ for (i = 0; i < num_colors; i++) {
+ putc(GETJSAMPLE(colormap[0][i]), outfile);
+ putc(GETJSAMPLE(colormap[0][i]), outfile);
+ putc(GETJSAMPLE(colormap[0][i]), outfile);
+ if (map_entry_size == 4)
+ putc(0, outfile);
+ }
+ }
+ } else {
+ /* If no colormap, must be grayscale data. Generate a linear "map". */
+ for (i = 0; i < 256; i++) {
+ putc(i, outfile);
+ putc(i, outfile);
+ putc(i, outfile);
+ if (map_entry_size == 4)
+ putc(0, outfile);
+ }
+ }
+ /* Pad colormap with zeros to ensure specified number of colormap entries */
+ if (i > map_colors)
+ ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, i);
+ for (; i < map_colors; i++) {
+ putc(0, outfile);
+ putc(0, outfile);
+ putc(0, outfile);
+ if (map_entry_size == 4)
+ putc(0, outfile);
+ }
+}
+
+
+METHODDEF(void)
+finish_output_bmp (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ bmp_dest_ptr dest = (bmp_dest_ptr) dinfo;
+ register FILE * outfile = dest->pub.output_file;
+ JSAMPARRAY image_ptr;
+ register JSAMPROW data_ptr;
+ JDIMENSION row;
+ register JDIMENSION col;
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+
+ /* Write the header and colormap */
+ if (dest->is_os2)
+ write_os2_header(cinfo, dest);
+ else
+ write_bmp_header(cinfo, dest);
+
+ /* Write the file body from our virtual array */
+ for (row = cinfo->output_height; row > 0; row--) {
+ if (progress != NULL) {
+ progress->pub.pass_counter = (long) (cinfo->output_height - row);
+ progress->pub.pass_limit = (long) cinfo->output_height;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+ image_ptr = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->whole_image, row-1, (JDIMENSION) 1, FALSE);
+ data_ptr = image_ptr[0];
+ for (col = dest->row_width; col > 0; col--) {
+ putc(GETJSAMPLE(*data_ptr), outfile);
+ data_ptr++;
+ }
+ }
+ if (progress != NULL)
+ progress->completed_extra_passes++;
+
+ /* Make sure we wrote the output file OK */
+ fflush(outfile);
+ if (ferror(outfile))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+
+/*
+ * The module selection routine for BMP format output.
+ */
+
+GLOBAL(djpeg_dest_ptr)
+jinit_write_bmp (j_decompress_ptr cinfo, boolean is_os2)
+{
+ bmp_dest_ptr dest;
+ JDIMENSION row_width;
+
+ /* Create module interface object, fill in method pointers */
+ dest = (bmp_dest_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(bmp_dest_struct));
+ dest->pub.start_output = start_output_bmp;
+ dest->pub.finish_output = finish_output_bmp;
+ dest->is_os2 = is_os2;
+
+ if (cinfo->out_color_space == JCS_GRAYSCALE) {
+ dest->pub.put_pixel_rows = put_gray_rows;
+ } else if (cinfo->out_color_space == JCS_RGB) {
+ if (cinfo->quantize_colors)
+ dest->pub.put_pixel_rows = put_gray_rows;
+ else
+ dest->pub.put_pixel_rows = put_pixel_rows;
+ } else {
+ ERREXIT(cinfo, JERR_BMP_COLORSPACE);
+ }
+
+ /* Calculate output image dimensions so we can allocate space */
+ jpeg_calc_output_dimensions(cinfo);
+
+ /* Determine width of rows in the BMP file (padded to 4-byte boundary). */
+ row_width = cinfo->output_width * cinfo->output_components;
+ dest->data_width = row_width;
+ while ((row_width & 3) != 0) row_width++;
+ dest->row_width = row_width;
+ dest->pad_bytes = (int) (row_width - dest->data_width);
+
+ /* Allocate space for inversion array, prepare for write pass */
+ dest->whole_image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ row_width, cinfo->output_height, (JDIMENSION) 1);
+ dest->cur_output_row = 0;
+ if (cinfo->progress != NULL) {
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+ progress->total_extra_passes++; /* count file input as separate pass */
+ }
+
+ /* Create decompressor output buffer. */
+ dest->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, row_width, (JDIMENSION) 1);
+ dest->pub.buffer_height = 1;
+
+ return (djpeg_dest_ptr) dest;
+}
+
+#endif /* BMP_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/wrgif.c b/plugins/AdvaImg/src/LibJPEG/wrgif.c
new file mode 100644
index 0000000000..13f953b567
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/wrgif.c
@@ -0,0 +1,399 @@
+/*
+ * wrgif.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write output images in GIF format.
+ *
+ **************************************************************************
+ * NOTE: to avoid entanglements with Unisys' patent on LZW compression, *
+ * this code has been modified to output "uncompressed GIF" files. *
+ * There is no trace of the LZW algorithm in this file. *
+ **************************************************************************
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume output to
+ * an ordinary stdio stream.
+ */
+
+/*
+ * This code is loosely based on ppmtogif from the PBMPLUS distribution
+ * of Feb. 1991. That file contains the following copyright notice:
+ * Based on GIFENCODE by David Rowley <mgardi@watdscu.waterloo.edu>.
+ * Lempel-Ziv compression based on "compress" by Spencer W. Thomas et al.
+ * Copyright (C) 1989 by Jef Poskanzer.
+ * Permission to use, copy, modify, and distribute this software and its
+ * documentation for any purpose and without fee is hereby granted, provided
+ * that the above copyright notice appear in all copies and that both that
+ * copyright notice and this permission notice appear in supporting
+ * documentation. This software is provided "as is" without express or
+ * implied warranty.
+ *
+ * We are also required to state that
+ * "The Graphics Interchange Format(c) is the Copyright property of
+ * CompuServe Incorporated. GIF(sm) is a Service Mark property of
+ * CompuServe Incorporated."
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef GIF_SUPPORTED
+
+
+/* Private version of data destination object */
+
+typedef struct {
+ struct djpeg_dest_struct pub; /* public fields */
+
+ j_decompress_ptr cinfo; /* back link saves passing separate parm */
+
+ /* State for packing variable-width codes into a bitstream */
+ int n_bits; /* current number of bits/code */
+ int maxcode; /* maximum code, given n_bits */
+ INT32 cur_accum; /* holds bits not yet output */
+ int cur_bits; /* # of bits in cur_accum */
+
+ /* State for GIF code assignment */
+ int ClearCode; /* clear code (doesn't change) */
+ int EOFCode; /* EOF code (ditto) */
+ int code_counter; /* counts output symbols */
+
+ /* GIF data packet construction buffer */
+ int bytesinpkt; /* # of bytes in current packet */
+ char packetbuf[256]; /* workspace for accumulating packet */
+
+} gif_dest_struct;
+
+typedef gif_dest_struct * gif_dest_ptr;
+
+/* Largest value that will fit in N bits */
+#define MAXCODE(n_bits) ((1 << (n_bits)) - 1)
+
+
+/*
+ * Routines to package finished data bytes into GIF data blocks.
+ * A data block consists of a count byte (1..255) and that many data bytes.
+ */
+
+LOCAL(void)
+flush_packet (gif_dest_ptr dinfo)
+/* flush any accumulated data */
+{
+ if (dinfo->bytesinpkt > 0) { /* never write zero-length packet */
+ dinfo->packetbuf[0] = (char) dinfo->bytesinpkt++;
+ if (JFWRITE(dinfo->pub.output_file, dinfo->packetbuf, dinfo->bytesinpkt)
+ != (size_t) dinfo->bytesinpkt)
+ ERREXIT(dinfo->cinfo, JERR_FILE_WRITE);
+ dinfo->bytesinpkt = 0;
+ }
+}
+
+
+/* Add a character to current packet; flush to disk if necessary */
+#define CHAR_OUT(dinfo,c) \
+ { (dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (c); \
+ if ((dinfo)->bytesinpkt >= 255) \
+ flush_packet(dinfo); \
+ }
+
+
+/* Routine to convert variable-width codes into a byte stream */
+
+LOCAL(void)
+output (gif_dest_ptr dinfo, int code)
+/* Emit a code of n_bits bits */
+/* Uses cur_accum and cur_bits to reblock into 8-bit bytes */
+{
+ dinfo->cur_accum |= ((INT32) code) << dinfo->cur_bits;
+ dinfo->cur_bits += dinfo->n_bits;
+
+ while (dinfo->cur_bits >= 8) {
+ CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF);
+ dinfo->cur_accum >>= 8;
+ dinfo->cur_bits -= 8;
+ }
+}
+
+
+/* The pseudo-compression algorithm.
+ *
+ * In this module we simply output each pixel value as a separate symbol;
+ * thus, no compression occurs. In fact, there is expansion of one bit per
+ * pixel, because we use a symbol width one bit wider than the pixel width.
+ *
+ * GIF ordinarily uses variable-width symbols, and the decoder will expect
+ * to ratchet up the symbol width after a fixed number of symbols.
+ * To simplify the logic and keep the expansion penalty down, we emit a
+ * GIF Clear code to reset the decoder just before the width would ratchet up.
+ * Thus, all the symbols in the output file will have the same bit width.
+ * Note that emitting the Clear codes at the right times is a mere matter of
+ * counting output symbols and is in no way dependent on the LZW patent.
+ *
+ * With a small basic pixel width (low color count), Clear codes will be
+ * needed very frequently, causing the file to expand even more. So this
+ * simplistic approach wouldn't work too well on bilevel images, for example.
+ * But for output of JPEG conversions the pixel width will usually be 8 bits
+ * (129 to 256 colors), so the overhead added by Clear symbols is only about
+ * one symbol in every 256.
+ */
+
+LOCAL(void)
+compress_init (gif_dest_ptr dinfo, int i_bits)
+/* Initialize pseudo-compressor */
+{
+ /* init all the state variables */
+ dinfo->n_bits = i_bits;
+ dinfo->maxcode = MAXCODE(dinfo->n_bits);
+ dinfo->ClearCode = (1 << (i_bits - 1));
+ dinfo->EOFCode = dinfo->ClearCode + 1;
+ dinfo->code_counter = dinfo->ClearCode + 2;
+ /* init output buffering vars */
+ dinfo->bytesinpkt = 0;
+ dinfo->cur_accum = 0;
+ dinfo->cur_bits = 0;
+ /* GIF specifies an initial Clear code */
+ output(dinfo, dinfo->ClearCode);
+}
+
+
+LOCAL(void)
+compress_pixel (gif_dest_ptr dinfo, int c)
+/* Accept and "compress" one pixel value.
+ * The given value must be less than n_bits wide.
+ */
+{
+ /* Output the given pixel value as a symbol. */
+ output(dinfo, c);
+ /* Issue Clear codes often enough to keep the reader from ratcheting up
+ * its symbol size.
+ */
+ if (dinfo->code_counter < dinfo->maxcode) {
+ dinfo->code_counter++;
+ } else {
+ output(dinfo, dinfo->ClearCode);
+ dinfo->code_counter = dinfo->ClearCode + 2; /* reset the counter */
+ }
+}
+
+
+LOCAL(void)
+compress_term (gif_dest_ptr dinfo)
+/* Clean up at end */
+{
+ /* Send an EOF code */
+ output(dinfo, dinfo->EOFCode);
+ /* Flush the bit-packing buffer */
+ if (dinfo->cur_bits > 0) {
+ CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF);
+ }
+ /* Flush the packet buffer */
+ flush_packet(dinfo);
+}
+
+
+/* GIF header construction */
+
+
+LOCAL(void)
+put_word (gif_dest_ptr dinfo, unsigned int w)
+/* Emit a 16-bit word, LSB first */
+{
+ putc(w & 0xFF, dinfo->pub.output_file);
+ putc((w >> 8) & 0xFF, dinfo->pub.output_file);
+}
+
+
+LOCAL(void)
+put_3bytes (gif_dest_ptr dinfo, int val)
+/* Emit 3 copies of same byte value --- handy subr for colormap construction */
+{
+ putc(val, dinfo->pub.output_file);
+ putc(val, dinfo->pub.output_file);
+ putc(val, dinfo->pub.output_file);
+}
+
+
+LOCAL(void)
+emit_header (gif_dest_ptr dinfo, int num_colors, JSAMPARRAY colormap)
+/* Output the GIF file header, including color map */
+/* If colormap==NULL, synthesize a gray-scale colormap */
+{
+ int BitsPerPixel, ColorMapSize, InitCodeSize, FlagByte;
+ int cshift = dinfo->cinfo->data_precision - 8;
+ int i;
+
+ if (num_colors > 256)
+ ERREXIT1(dinfo->cinfo, JERR_TOO_MANY_COLORS, num_colors);
+ /* Compute bits/pixel and related values */
+ BitsPerPixel = 1;
+ while (num_colors > (1 << BitsPerPixel))
+ BitsPerPixel++;
+ ColorMapSize = 1 << BitsPerPixel;
+ if (BitsPerPixel <= 1)
+ InitCodeSize = 2;
+ else
+ InitCodeSize = BitsPerPixel;
+ /*
+ * Write the GIF header.
+ * Note that we generate a plain GIF87 header for maximum compatibility.
+ */
+ putc('G', dinfo->pub.output_file);
+ putc('I', dinfo->pub.output_file);
+ putc('F', dinfo->pub.output_file);
+ putc('8', dinfo->pub.output_file);
+ putc('7', dinfo->pub.output_file);
+ putc('a', dinfo->pub.output_file);
+ /* Write the Logical Screen Descriptor */
+ put_word(dinfo, (unsigned int) dinfo->cinfo->output_width);
+ put_word(dinfo, (unsigned int) dinfo->cinfo->output_height);
+ FlagByte = 0x80; /* Yes, there is a global color table */
+ FlagByte |= (BitsPerPixel-1) << 4; /* color resolution */
+ FlagByte |= (BitsPerPixel-1); /* size of global color table */
+ putc(FlagByte, dinfo->pub.output_file);
+ putc(0, dinfo->pub.output_file); /* Background color index */
+ putc(0, dinfo->pub.output_file); /* Reserved (aspect ratio in GIF89) */
+ /* Write the Global Color Map */
+ /* If the color map is more than 8 bits precision, */
+ /* we reduce it to 8 bits by shifting */
+ for (i=0; i < ColorMapSize; i++) {
+ if (i < num_colors) {
+ if (colormap != NULL) {
+ if (dinfo->cinfo->out_color_space == JCS_RGB) {
+ /* Normal case: RGB color map */
+ putc(GETJSAMPLE(colormap[0][i]) >> cshift, dinfo->pub.output_file);
+ putc(GETJSAMPLE(colormap[1][i]) >> cshift, dinfo->pub.output_file);
+ putc(GETJSAMPLE(colormap[2][i]) >> cshift, dinfo->pub.output_file);
+ } else {
+ /* Grayscale "color map": possible if quantizing grayscale image */
+ put_3bytes(dinfo, GETJSAMPLE(colormap[0][i]) >> cshift);
+ }
+ } else {
+ /* Create a gray-scale map of num_colors values, range 0..255 */
+ put_3bytes(dinfo, (i * 255 + (num_colors-1)/2) / (num_colors-1));
+ }
+ } else {
+ /* fill out the map to a power of 2 */
+ put_3bytes(dinfo, 0);
+ }
+ }
+ /* Write image separator and Image Descriptor */
+ putc(',', dinfo->pub.output_file); /* separator */
+ put_word(dinfo, 0); /* left/top offset */
+ put_word(dinfo, 0);
+ put_word(dinfo, (unsigned int) dinfo->cinfo->output_width); /* image size */
+ put_word(dinfo, (unsigned int) dinfo->cinfo->output_height);
+ /* flag byte: not interlaced, no local color map */
+ putc(0x00, dinfo->pub.output_file);
+ /* Write Initial Code Size byte */
+ putc(InitCodeSize, dinfo->pub.output_file);
+
+ /* Initialize for "compression" of image data */
+ compress_init(dinfo, InitCodeSize+1);
+}
+
+
+/*
+ * Startup: write the file header.
+ */
+
+METHODDEF(void)
+start_output_gif (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ gif_dest_ptr dest = (gif_dest_ptr) dinfo;
+
+ if (cinfo->quantize_colors)
+ emit_header(dest, cinfo->actual_number_of_colors, cinfo->colormap);
+ else
+ emit_header(dest, 256, (JSAMPARRAY) NULL);
+}
+
+
+/*
+ * Write some pixel data.
+ * In this module rows_supplied will always be 1.
+ */
+
+METHODDEF(void)
+put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ gif_dest_ptr dest = (gif_dest_ptr) dinfo;
+ register JSAMPROW ptr;
+ register JDIMENSION col;
+
+ ptr = dest->pub.buffer[0];
+ for (col = cinfo->output_width; col > 0; col--) {
+ compress_pixel(dest, GETJSAMPLE(*ptr++));
+ }
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_output_gif (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ gif_dest_ptr dest = (gif_dest_ptr) dinfo;
+
+ /* Flush "compression" mechanism */
+ compress_term(dest);
+ /* Write a zero-length data block to end the series */
+ putc(0, dest->pub.output_file);
+ /* Write the GIF terminator mark */
+ putc(';', dest->pub.output_file);
+ /* Make sure we wrote the output file OK */
+ fflush(dest->pub.output_file);
+ if (ferror(dest->pub.output_file))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+
+/*
+ * The module selection routine for GIF format output.
+ */
+
+GLOBAL(djpeg_dest_ptr)
+jinit_write_gif (j_decompress_ptr cinfo)
+{
+ gif_dest_ptr dest;
+
+ /* Create module interface object, fill in method pointers */
+ dest = (gif_dest_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(gif_dest_struct));
+ dest->cinfo = cinfo; /* make back link for subroutines */
+ dest->pub.start_output = start_output_gif;
+ dest->pub.put_pixel_rows = put_pixel_rows;
+ dest->pub.finish_output = finish_output_gif;
+
+ if (cinfo->out_color_space != JCS_GRAYSCALE &&
+ cinfo->out_color_space != JCS_RGB)
+ ERREXIT(cinfo, JERR_GIF_COLORSPACE);
+
+ /* Force quantization if color or if > 8 bits input */
+ if (cinfo->out_color_space != JCS_GRAYSCALE || cinfo->data_precision > 8) {
+ /* Force quantization to at most 256 colors */
+ cinfo->quantize_colors = TRUE;
+ if (cinfo->desired_number_of_colors > 256)
+ cinfo->desired_number_of_colors = 256;
+ }
+
+ /* Calculate output image dimensions so we can allocate space */
+ jpeg_calc_output_dimensions(cinfo);
+
+ if (cinfo->output_components != 1) /* safety check: just one component? */
+ ERREXIT(cinfo, JERR_GIF_BUG);
+
+ /* Create decompressor output buffer. */
+ dest->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width, (JDIMENSION) 1);
+ dest->pub.buffer_height = 1;
+
+ return (djpeg_dest_ptr) dest;
+}
+
+#endif /* GIF_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/wrjpgcom.c b/plugins/AdvaImg/src/LibJPEG/wrjpgcom.c
new file mode 100644
index 0000000000..7d10ee66e8
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/wrjpgcom.c
@@ -0,0 +1,583 @@
+/*
+ * wrjpgcom.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a very simple stand-alone application that inserts
+ * user-supplied text as a COM (comment) marker in a JFIF file.
+ * This may be useful as an example of the minimum logic needed to parse
+ * JPEG markers.
+ */
+
+#define JPEG_CJPEG_DJPEG /* to get the command-line config symbols */
+#include "jinclude.h" /* get auto-config symbols, <stdio.h> */
+
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc() */
+extern void * malloc ();
+#endif
+#include <ctype.h> /* to declare isupper(), tolower() */
+#ifdef USE_SETMODE
+#include <fcntl.h> /* to declare setmode()'s parameter macros */
+/* If you have setmode() but not <io.h>, just delete this line: */
+#include <io.h> /* to declare setmode() */
+#endif
+
+#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
+#ifdef __MWERKS__
+#include <SIOUX.h> /* Metrowerks needs this */
+#include <console.h> /* ... and this */
+#endif
+#ifdef THINK_C
+#include <console.h> /* Think declares it here */
+#endif
+#endif
+
+#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
+#define READ_BINARY "r"
+#define WRITE_BINARY "w"
+#else
+#ifdef VMS /* VMS is very nonstandard */
+#define READ_BINARY "rb", "ctx=stm"
+#define WRITE_BINARY "wb", "ctx=stm"
+#else /* standard ANSI-compliant case */
+#define READ_BINARY "rb"
+#define WRITE_BINARY "wb"
+#endif
+#endif
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+#ifndef EXIT_SUCCESS
+#ifdef VMS
+#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
+#else
+#define EXIT_SUCCESS 0
+#endif
+#endif
+
+/* Reduce this value if your malloc() can't allocate blocks up to 64K.
+ * On DOS, compiling in large model is usually a better solution.
+ */
+
+#ifndef MAX_COM_LENGTH
+#define MAX_COM_LENGTH 65000L /* must be <= 65533 in any case */
+#endif
+
+
+/*
+ * These macros are used to read the input file and write the output file.
+ * To reuse this code in another application, you might need to change these.
+ */
+
+static FILE * infile; /* input JPEG file */
+
+/* Return next input byte, or EOF if no more */
+#define NEXTBYTE() getc(infile)
+
+static FILE * outfile; /* output JPEG file */
+
+/* Emit an output byte */
+#define PUTBYTE(x) putc((x), outfile)
+
+
+/* Error exit handler */
+#define ERREXIT(msg) (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE))
+
+
+/* Read one byte, testing for EOF */
+static int
+read_1_byte (void)
+{
+ int c;
+
+ c = NEXTBYTE();
+ if (c == EOF)
+ ERREXIT("Premature EOF in JPEG file");
+ return c;
+}
+
+/* Read 2 bytes, convert to unsigned int */
+/* All 2-byte quantities in JPEG markers are MSB first */
+static unsigned int
+read_2_bytes (void)
+{
+ int c1, c2;
+
+ c1 = NEXTBYTE();
+ if (c1 == EOF)
+ ERREXIT("Premature EOF in JPEG file");
+ c2 = NEXTBYTE();
+ if (c2 == EOF)
+ ERREXIT("Premature EOF in JPEG file");
+ return (((unsigned int) c1) << 8) + ((unsigned int) c2);
+}
+
+
+/* Routines to write data to output file */
+
+static void
+write_1_byte (int c)
+{
+ PUTBYTE(c);
+}
+
+static void
+write_2_bytes (unsigned int val)
+{
+ PUTBYTE((val >> 8) & 0xFF);
+ PUTBYTE(val & 0xFF);
+}
+
+static void
+write_marker (int marker)
+{
+ PUTBYTE(0xFF);
+ PUTBYTE(marker);
+}
+
+static void
+copy_rest_of_file (void)
+{
+ int c;
+
+ while ((c = NEXTBYTE()) != EOF)
+ PUTBYTE(c);
+}
+
+
+/*
+ * JPEG markers consist of one or more 0xFF bytes, followed by a marker
+ * code byte (which is not an FF). Here are the marker codes of interest
+ * in this program. (See jdmarker.c for a more complete list.)
+ */
+
+#define M_SOF0 0xC0 /* Start Of Frame N */
+#define M_SOF1 0xC1 /* N indicates which compression process */
+#define M_SOF2 0xC2 /* Only SOF0-SOF2 are now in common use */
+#define M_SOF3 0xC3
+#define M_SOF5 0xC5 /* NB: codes C4 and CC are NOT SOF markers */
+#define M_SOF6 0xC6
+#define M_SOF7 0xC7
+#define M_SOF9 0xC9
+#define M_SOF10 0xCA
+#define M_SOF11 0xCB
+#define M_SOF13 0xCD
+#define M_SOF14 0xCE
+#define M_SOF15 0xCF
+#define M_SOI 0xD8 /* Start Of Image (beginning of datastream) */
+#define M_EOI 0xD9 /* End Of Image (end of datastream) */
+#define M_SOS 0xDA /* Start Of Scan (begins compressed data) */
+#define M_COM 0xFE /* COMment */
+
+
+/*
+ * Find the next JPEG marker and return its marker code.
+ * We expect at least one FF byte, possibly more if the compressor used FFs
+ * to pad the file. (Padding FFs will NOT be replicated in the output file.)
+ * There could also be non-FF garbage between markers. The treatment of such
+ * garbage is unspecified; we choose to skip over it but emit a warning msg.
+ * NB: this routine must not be used after seeing SOS marker, since it will
+ * not deal correctly with FF/00 sequences in the compressed image data...
+ */
+
+static int
+next_marker (void)
+{
+ int c;
+ int discarded_bytes = 0;
+
+ /* Find 0xFF byte; count and skip any non-FFs. */
+ c = read_1_byte();
+ while (c != 0xFF) {
+ discarded_bytes++;
+ c = read_1_byte();
+ }
+ /* Get marker code byte, swallowing any duplicate FF bytes. Extra FFs
+ * are legal as pad bytes, so don't count them in discarded_bytes.
+ */
+ do {
+ c = read_1_byte();
+ } while (c == 0xFF);
+
+ if (discarded_bytes != 0) {
+ fprintf(stderr, "Warning: garbage data found in JPEG file\n");
+ }
+
+ return c;
+}
+
+
+/*
+ * Read the initial marker, which should be SOI.
+ * For a JFIF file, the first two bytes of the file should be literally
+ * 0xFF M_SOI. To be more general, we could use next_marker, but if the
+ * input file weren't actually JPEG at all, next_marker might read the whole
+ * file and then return a misleading error message...
+ */
+
+static int
+first_marker (void)
+{
+ int c1, c2;
+
+ c1 = NEXTBYTE();
+ c2 = NEXTBYTE();
+ if (c1 != 0xFF || c2 != M_SOI)
+ ERREXIT("Not a JPEG file");
+ return c2;
+}
+
+
+/*
+ * Most types of marker are followed by a variable-length parameter segment.
+ * This routine skips over the parameters for any marker we don't otherwise
+ * want to process.
+ * Note that we MUST skip the parameter segment explicitly in order not to
+ * be fooled by 0xFF bytes that might appear within the parameter segment;
+ * such bytes do NOT introduce new markers.
+ */
+
+static void
+copy_variable (void)
+/* Copy an unknown or uninteresting variable-length marker */
+{
+ unsigned int length;
+
+ /* Get the marker parameter length count */
+ length = read_2_bytes();
+ write_2_bytes(length);
+ /* Length includes itself, so must be at least 2 */
+ if (length < 2)
+ ERREXIT("Erroneous JPEG marker length");
+ length -= 2;
+ /* Skip over the remaining bytes */
+ while (length > 0) {
+ write_1_byte(read_1_byte());
+ length--;
+ }
+}
+
+static void
+skip_variable (void)
+/* Skip over an unknown or uninteresting variable-length marker */
+{
+ unsigned int length;
+
+ /* Get the marker parameter length count */
+ length = read_2_bytes();
+ /* Length includes itself, so must be at least 2 */
+ if (length < 2)
+ ERREXIT("Erroneous JPEG marker length");
+ length -= 2;
+ /* Skip over the remaining bytes */
+ while (length > 0) {
+ (void) read_1_byte();
+ length--;
+ }
+}
+
+
+/*
+ * Parse the marker stream until SOFn or EOI is seen;
+ * copy data to output, but discard COM markers unless keep_COM is true.
+ */
+
+static int
+scan_JPEG_header (int keep_COM)
+{
+ int marker;
+
+ /* Expect SOI at start of file */
+ if (first_marker() != M_SOI)
+ ERREXIT("Expected SOI marker first");
+ write_marker(M_SOI);
+
+ /* Scan miscellaneous markers until we reach SOFn. */
+ for (;;) {
+ marker = next_marker();
+ switch (marker) {
+ /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be,
+ * treated as SOFn. C4 in particular is actually DHT.
+ */
+ case M_SOF0: /* Baseline */
+ case M_SOF1: /* Extended sequential, Huffman */
+ case M_SOF2: /* Progressive, Huffman */
+ case M_SOF3: /* Lossless, Huffman */
+ case M_SOF5: /* Differential sequential, Huffman */
+ case M_SOF6: /* Differential progressive, Huffman */
+ case M_SOF7: /* Differential lossless, Huffman */
+ case M_SOF9: /* Extended sequential, arithmetic */
+ case M_SOF10: /* Progressive, arithmetic */
+ case M_SOF11: /* Lossless, arithmetic */
+ case M_SOF13: /* Differential sequential, arithmetic */
+ case M_SOF14: /* Differential progressive, arithmetic */
+ case M_SOF15: /* Differential lossless, arithmetic */
+ return marker;
+
+ case M_SOS: /* should not see compressed data before SOF */
+ ERREXIT("SOS without prior SOFn");
+ break;
+
+ case M_EOI: /* in case it's a tables-only JPEG stream */
+ return marker;
+
+ case M_COM: /* Existing COM: conditionally discard */
+ if (keep_COM) {
+ write_marker(marker);
+ copy_variable();
+ } else {
+ skip_variable();
+ }
+ break;
+
+ default: /* Anything else just gets copied */
+ write_marker(marker);
+ copy_variable(); /* we assume it has a parameter count... */
+ break;
+ }
+ } /* end loop */
+}
+
+
+/* Command line parsing code */
+
+static const char * progname; /* program name for error messages */
+
+
+static void
+usage (void)
+/* complain about bad command line */
+{
+ fprintf(stderr, "wrjpgcom inserts a textual comment in a JPEG file.\n");
+ fprintf(stderr, "You can add to or replace any existing comment(s).\n");
+
+ fprintf(stderr, "Usage: %s [switches] ", progname);
+#ifdef TWO_FILE_COMMANDLINE
+ fprintf(stderr, "inputfile outputfile\n");
+#else
+ fprintf(stderr, "[inputfile]\n");
+#endif
+
+ fprintf(stderr, "Switches (names may be abbreviated):\n");
+ fprintf(stderr, " -replace Delete any existing comments\n");
+ fprintf(stderr, " -comment \"text\" Insert comment with given text\n");
+ fprintf(stderr, " -cfile name Read comment from named file\n");
+ fprintf(stderr, "Notice that you must put quotes around the comment text\n");
+ fprintf(stderr, "when you use -comment.\n");
+ fprintf(stderr, "If you do not give either -comment or -cfile on the command line,\n");
+ fprintf(stderr, "then the comment text is read from standard input.\n");
+ fprintf(stderr, "It can be multiple lines, up to %u characters total.\n",
+ (unsigned int) MAX_COM_LENGTH);
+#ifndef TWO_FILE_COMMANDLINE
+ fprintf(stderr, "You must specify an input JPEG file name when supplying\n");
+ fprintf(stderr, "comment text from standard input.\n");
+#endif
+
+ exit(EXIT_FAILURE);
+}
+
+
+static int
+keymatch (char * arg, const char * keyword, int minchars)
+/* Case-insensitive matching of (possibly abbreviated) keyword switches. */
+/* keyword is the constant keyword (must be lower case already), */
+/* minchars is length of minimum legal abbreviation. */
+{
+ register int ca, ck;
+ register int nmatched = 0;
+
+ while ((ca = *arg++) != '\0') {
+ if ((ck = *keyword++) == '\0')
+ return 0; /* arg longer than keyword, no good */
+ if (isupper(ca)) /* force arg to lcase (assume ck is already) */
+ ca = tolower(ca);
+ if (ca != ck)
+ return 0; /* no good */
+ nmatched++; /* count matched characters */
+ }
+ /* reached end of argument; fail if it's too short for unique abbrev */
+ if (nmatched < minchars)
+ return 0;
+ return 1; /* A-OK */
+}
+
+
+/*
+ * The main program.
+ */
+
+int
+main (int argc, char **argv)
+{
+ int argn;
+ char * arg;
+ int keep_COM = 1;
+ char * comment_arg = NULL;
+ FILE * comment_file = NULL;
+ unsigned int comment_length = 0;
+ int marker;
+
+ /* On Mac, fetch a command line. */
+#ifdef USE_CCOMMAND
+ argc = ccommand(&argv);
+#endif
+
+ progname = argv[0];
+ if (progname == NULL || progname[0] == 0)
+ progname = "wrjpgcom"; /* in case C library doesn't provide it */
+
+ /* Parse switches, if any */
+ for (argn = 1; argn < argc; argn++) {
+ arg = argv[argn];
+ if (arg[0] != '-')
+ break; /* not switch, must be file name */
+ arg++; /* advance over '-' */
+ if (keymatch(arg, "replace", 1)) {
+ keep_COM = 0;
+ } else if (keymatch(arg, "cfile", 2)) {
+ if (++argn >= argc) usage();
+ if ((comment_file = fopen(argv[argn], "r")) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
+ exit(EXIT_FAILURE);
+ }
+ } else if (keymatch(arg, "comment", 1)) {
+ if (++argn >= argc) usage();
+ comment_arg = argv[argn];
+ /* If the comment text starts with '"', then we are probably running
+ * under MS-DOG and must parse out the quoted string ourselves. Sigh.
+ */
+ if (comment_arg[0] == '"') {
+ comment_arg = (char *) malloc((size_t) MAX_COM_LENGTH);
+ if (comment_arg == NULL)
+ ERREXIT("Insufficient memory");
+ strcpy(comment_arg, argv[argn]+1);
+ for (;;) {
+ comment_length = (unsigned int) strlen(comment_arg);
+ if (comment_length > 0 && comment_arg[comment_length-1] == '"') {
+ comment_arg[comment_length-1] = '\0'; /* zap terminating quote */
+ break;
+ }
+ if (++argn >= argc)
+ ERREXIT("Missing ending quote mark");
+ strcat(comment_arg, " ");
+ strcat(comment_arg, argv[argn]);
+ }
+ }
+ comment_length = (unsigned int) strlen(comment_arg);
+ } else
+ usage();
+ }
+
+ /* Cannot use both -comment and -cfile. */
+ if (comment_arg != NULL && comment_file != NULL)
+ usage();
+ /* If there is neither -comment nor -cfile, we will read the comment text
+ * from stdin; in this case there MUST be an input JPEG file name.
+ */
+ if (comment_arg == NULL && comment_file == NULL && argn >= argc)
+ usage();
+
+ /* Open the input file. */
+ if (argn < argc) {
+ if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ /* default input file is stdin */
+#ifdef USE_SETMODE /* need to hack file mode? */
+ setmode(fileno(stdin), O_BINARY);
+#endif
+#ifdef USE_FDOPEN /* need to re-open in binary mode? */
+ if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open stdin\n", progname);
+ exit(EXIT_FAILURE);
+ }
+#else
+ infile = stdin;
+#endif
+ }
+
+ /* Open the output file. */
+#ifdef TWO_FILE_COMMANDLINE
+ /* Must have explicit output file name */
+ if (argn != argc-2) {
+ fprintf(stderr, "%s: must name one input and one output file\n",
+ progname);
+ usage();
+ }
+ if ((outfile = fopen(argv[argn+1], WRITE_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open %s\n", progname, argv[argn+1]);
+ exit(EXIT_FAILURE);
+ }
+#else
+ /* Unix style: expect zero or one file name */
+ if (argn < argc-1) {
+ fprintf(stderr, "%s: only one input file\n", progname);
+ usage();
+ }
+ /* default output file is stdout */
+#ifdef USE_SETMODE /* need to hack file mode? */
+ setmode(fileno(stdout), O_BINARY);
+#endif
+#ifdef USE_FDOPEN /* need to re-open in binary mode? */
+ if ((outfile = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) {
+ fprintf(stderr, "%s: can't open stdout\n", progname);
+ exit(EXIT_FAILURE);
+ }
+#else
+ outfile = stdout;
+#endif
+#endif /* TWO_FILE_COMMANDLINE */
+
+ /* Collect comment text from comment_file or stdin, if necessary */
+ if (comment_arg == NULL) {
+ FILE * src_file;
+ int c;
+
+ comment_arg = (char *) malloc((size_t) MAX_COM_LENGTH);
+ if (comment_arg == NULL)
+ ERREXIT("Insufficient memory");
+ comment_length = 0;
+ src_file = (comment_file != NULL ? comment_file : stdin);
+ while ((c = getc(src_file)) != EOF) {
+ if (comment_length >= (unsigned int) MAX_COM_LENGTH) {
+ fprintf(stderr, "Comment text may not exceed %u bytes\n",
+ (unsigned int) MAX_COM_LENGTH);
+ exit(EXIT_FAILURE);
+ }
+ comment_arg[comment_length++] = (char) c;
+ }
+ if (comment_file != NULL)
+ fclose(comment_file);
+ }
+
+ /* Copy JPEG headers until SOFn marker;
+ * we will insert the new comment marker just before SOFn.
+ * This (a) causes the new comment to appear after, rather than before,
+ * existing comments; and (b) ensures that comments come after any JFIF
+ * or JFXX markers, as required by the JFIF specification.
+ */
+ marker = scan_JPEG_header(keep_COM);
+ /* Insert the new COM marker, but only if nonempty text has been supplied */
+ if (comment_length > 0) {
+ write_marker(M_COM);
+ write_2_bytes(comment_length + 2);
+ while (comment_length > 0) {
+ write_1_byte(*comment_arg++);
+ comment_length--;
+ }
+ }
+ /* Duplicate the remainder of the source file.
+ * Note that any COM markers occuring after SOF will not be touched.
+ */
+ write_marker(marker);
+ copy_rest_of_file();
+
+ /* All done. */
+ exit(EXIT_SUCCESS);
+ return 0; /* suppress no-return-value warnings */
+}
diff --git a/plugins/AdvaImg/src/LibJPEG/wrppm.c b/plugins/AdvaImg/src/LibJPEG/wrppm.c
new file mode 100644
index 0000000000..1e56d9c50e
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/wrppm.c
@@ -0,0 +1,269 @@
+/*
+ * wrppm.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write output images in PPM/PGM format.
+ * The extended 2-byte-per-sample raw PPM/PGM formats are supported.
+ * The PBMPLUS library is NOT required to compile this software
+ * (but it is highly useful as a set of PPM image manipulation programs).
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume output to
+ * an ordinary stdio stream.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef PPM_SUPPORTED
+
+
+/*
+ * For 12-bit JPEG data, we either downscale the values to 8 bits
+ * (to write standard byte-per-sample PPM/PGM files), or output
+ * nonstandard word-per-sample PPM/PGM files. Downscaling is done
+ * if PPM_NORAWWORD is defined (this can be done in the Makefile
+ * or in jconfig.h).
+ * (When the core library supports data precision reduction, a cleaner
+ * implementation will be to ask for that instead.)
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define PUTPPMSAMPLE(ptr,v) *ptr++ = (char) (v)
+#define BYTESPERSAMPLE 1
+#define PPM_MAXVAL 255
+#else
+#ifdef PPM_NORAWWORD
+#define PUTPPMSAMPLE(ptr,v) *ptr++ = (char) ((v) >> (BITS_IN_JSAMPLE-8))
+#define BYTESPERSAMPLE 1
+#define PPM_MAXVAL 255
+#else
+/* The word-per-sample format always puts the MSB first. */
+#define PUTPPMSAMPLE(ptr,v) \
+ { register int val_ = v; \
+ *ptr++ = (char) ((val_ >> 8) & 0xFF); \
+ *ptr++ = (char) (val_ & 0xFF); \
+ }
+#define BYTESPERSAMPLE 2
+#define PPM_MAXVAL ((1<<BITS_IN_JSAMPLE)-1)
+#endif
+#endif
+
+
+/*
+ * When JSAMPLE is the same size as char, we can just fwrite() the
+ * decompressed data to the PPM or PGM file. On PCs, in order to make this
+ * work the output buffer must be allocated in near data space, because we are
+ * assuming small-data memory model wherein fwrite() can't reach far memory.
+ * If you need to process very wide images on a PC, you might have to compile
+ * in large-memory model, or else replace fwrite() with a putc() loop ---
+ * which will be much slower.
+ */
+
+
+/* Private version of data destination object */
+
+typedef struct {
+ struct djpeg_dest_struct pub; /* public fields */
+
+ /* Usually these two pointers point to the same place: */
+ char *iobuffer; /* fwrite's I/O buffer */
+ JSAMPROW pixrow; /* decompressor output buffer */
+ size_t buffer_width; /* width of I/O buffer */
+ JDIMENSION samples_per_row; /* JSAMPLEs per output row */
+} ppm_dest_struct;
+
+typedef ppm_dest_struct * ppm_dest_ptr;
+
+
+/*
+ * Write some pixel data.
+ * In this module rows_supplied will always be 1.
+ *
+ * put_pixel_rows handles the "normal" 8-bit case where the decompressor
+ * output buffer is physically the same as the fwrite buffer.
+ */
+
+METHODDEF(void)
+put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
+
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+
+/*
+ * This code is used when we have to copy the data and apply a pixel
+ * format translation. Typically this only happens in 12-bit mode.
+ */
+
+METHODDEF(void)
+copy_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
+ register char * bufferptr;
+ register JSAMPROW ptr;
+ register JDIMENSION col;
+
+ ptr = dest->pub.buffer[0];
+ bufferptr = dest->iobuffer;
+ for (col = dest->samples_per_row; col > 0; col--) {
+ PUTPPMSAMPLE(bufferptr, GETJSAMPLE(*ptr++));
+ }
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+
+/*
+ * Write some pixel data when color quantization is in effect.
+ * We have to demap the color index values to straight data.
+ */
+
+METHODDEF(void)
+put_demapped_rgb (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
+ register char * bufferptr;
+ register int pixval;
+ register JSAMPROW ptr;
+ register JSAMPROW color_map0 = cinfo->colormap[0];
+ register JSAMPROW color_map1 = cinfo->colormap[1];
+ register JSAMPROW color_map2 = cinfo->colormap[2];
+ register JDIMENSION col;
+
+ ptr = dest->pub.buffer[0];
+ bufferptr = dest->iobuffer;
+ for (col = cinfo->output_width; col > 0; col--) {
+ pixval = GETJSAMPLE(*ptr++);
+ PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map0[pixval]));
+ PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map1[pixval]));
+ PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map2[pixval]));
+ }
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+
+METHODDEF(void)
+put_demapped_gray (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
+ register char * bufferptr;
+ register JSAMPROW ptr;
+ register JSAMPROW color_map = cinfo->colormap[0];
+ register JDIMENSION col;
+
+ ptr = dest->pub.buffer[0];
+ bufferptr = dest->iobuffer;
+ for (col = cinfo->output_width; col > 0; col--) {
+ PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map[GETJSAMPLE(*ptr++)]));
+ }
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+
+/*
+ * Startup: write the file header.
+ */
+
+METHODDEF(void)
+start_output_ppm (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
+
+ /* Emit file header */
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ /* emit header for raw PGM format */
+ fprintf(dest->pub.output_file, "P5\n%ld %ld\n%d\n",
+ (long) cinfo->output_width, (long) cinfo->output_height,
+ PPM_MAXVAL);
+ break;
+ case JCS_RGB:
+ /* emit header for raw PPM format */
+ fprintf(dest->pub.output_file, "P6\n%ld %ld\n%d\n",
+ (long) cinfo->output_width, (long) cinfo->output_height,
+ PPM_MAXVAL);
+ break;
+ default:
+ ERREXIT(cinfo, JERR_PPM_COLORSPACE);
+ }
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_output_ppm (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ /* Make sure we wrote the output file OK */
+ fflush(dinfo->output_file);
+ if (ferror(dinfo->output_file))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+
+/*
+ * The module selection routine for PPM format output.
+ */
+
+GLOBAL(djpeg_dest_ptr)
+jinit_write_ppm (j_decompress_ptr cinfo)
+{
+ ppm_dest_ptr dest;
+
+ /* Create module interface object, fill in method pointers */
+ dest = (ppm_dest_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(ppm_dest_struct));
+ dest->pub.start_output = start_output_ppm;
+ dest->pub.finish_output = finish_output_ppm;
+
+ /* Calculate output image dimensions so we can allocate space */
+ jpeg_calc_output_dimensions(cinfo);
+
+ /* Create physical I/O buffer. Note we make this near on a PC. */
+ dest->samples_per_row = cinfo->output_width * cinfo->out_color_components;
+ dest->buffer_width = dest->samples_per_row * (BYTESPERSAMPLE * SIZEOF(char));
+ dest->iobuffer = (char *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, dest->buffer_width);
+
+ if (cinfo->quantize_colors || BITS_IN_JSAMPLE != 8 ||
+ SIZEOF(JSAMPLE) != SIZEOF(char)) {
+ /* When quantizing, we need an output buffer for colormap indexes
+ * that's separate from the physical I/O buffer. We also need a
+ * separate buffer if pixel format translation must take place.
+ */
+ dest->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->output_width * cinfo->output_components, (JDIMENSION) 1);
+ dest->pub.buffer_height = 1;
+ if (! cinfo->quantize_colors)
+ dest->pub.put_pixel_rows = copy_pixel_rows;
+ else if (cinfo->out_color_space == JCS_GRAYSCALE)
+ dest->pub.put_pixel_rows = put_demapped_gray;
+ else
+ dest->pub.put_pixel_rows = put_demapped_rgb;
+ } else {
+ /* We will fwrite() directly from decompressor output buffer. */
+ /* Synthesize a JSAMPARRAY pointer structure */
+ /* Cast here implies near->far pointer conversion on PCs */
+ dest->pixrow = (JSAMPROW) dest->iobuffer;
+ dest->pub.buffer = & dest->pixrow;
+ dest->pub.buffer_height = 1;
+ dest->pub.put_pixel_rows = put_pixel_rows;
+ }
+
+ return (djpeg_dest_ptr) dest;
+}
+
+#endif /* PPM_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/wrrle.c b/plugins/AdvaImg/src/LibJPEG/wrrle.c
new file mode 100644
index 0000000000..7a00c0dd11
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/wrrle.c
@@ -0,0 +1,305 @@
+/*
+ * wrrle.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write output images in RLE format.
+ * The Utah Raster Toolkit library is required (version 3.1 or later).
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume output to
+ * an ordinary stdio stream.
+ *
+ * Based on code contributed by Mike Lijewski,
+ * with updates from Robert Hutchinson.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef RLE_SUPPORTED
+
+/* rle.h is provided by the Utah Raster Toolkit. */
+
+#include <rle.h>
+
+/*
+ * We assume that JSAMPLE has the same representation as rle_pixel,
+ * to wit, "unsigned char". Hence we can't cope with 12- or 16-bit samples.
+ */
+
+#if BITS_IN_JSAMPLE != 8
+ Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * Since RLE stores scanlines bottom-to-top, we have to invert the image
+ * from JPEG's top-to-bottom order. To do this, we save the outgoing data
+ * in a virtual array during put_pixel_row calls, then actually emit the
+ * RLE file during finish_output.
+ */
+
+
+/*
+ * For now, if we emit an RLE color map then it is always 256 entries long,
+ * though not all of the entries need be used.
+ */
+
+#define CMAPBITS 8
+#define CMAPLENGTH (1<<(CMAPBITS))
+
+typedef struct {
+ struct djpeg_dest_struct pub; /* public fields */
+
+ jvirt_sarray_ptr image; /* virtual array to store the output image */
+ rle_map *colormap; /* RLE-style color map, or NULL if none */
+ rle_pixel **rle_row; /* To pass rows to rle_putrow() */
+
+} rle_dest_struct;
+
+typedef rle_dest_struct * rle_dest_ptr;
+
+/* Forward declarations */
+METHODDEF(void) rle_put_pixel_rows
+ JPP((j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied));
+
+
+/*
+ * Write the file header.
+ *
+ * In this module it's easier to wait till finish_output to write anything.
+ */
+
+METHODDEF(void)
+start_output_rle (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ rle_dest_ptr dest = (rle_dest_ptr) dinfo;
+ size_t cmapsize;
+ int i, ci;
+#ifdef PROGRESS_REPORT
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+#endif
+
+ /*
+ * Make sure the image can be stored in RLE format.
+ *
+ * - RLE stores image dimensions as *signed* 16 bit integers. JPEG
+ * uses unsigned, so we have to check the width.
+ *
+ * - Colorspace is expected to be grayscale or RGB.
+ *
+ * - The number of channels (components) is expected to be 1 (grayscale/
+ * pseudocolor) or 3 (truecolor/directcolor).
+ * (could be 2 or 4 if using an alpha channel, but we aren't)
+ */
+
+ if (cinfo->output_width > 32767 || cinfo->output_height > 32767)
+ ERREXIT2(cinfo, JERR_RLE_DIMENSIONS, cinfo->output_width,
+ cinfo->output_height);
+
+ if (cinfo->out_color_space != JCS_GRAYSCALE &&
+ cinfo->out_color_space != JCS_RGB)
+ ERREXIT(cinfo, JERR_RLE_COLORSPACE);
+
+ if (cinfo->output_components != 1 && cinfo->output_components != 3)
+ ERREXIT1(cinfo, JERR_RLE_TOOMANYCHANNELS, cinfo->num_components);
+
+ /* Convert colormap, if any, to RLE format. */
+
+ dest->colormap = NULL;
+
+ if (cinfo->quantize_colors) {
+ /* Allocate storage for RLE-style cmap, zero any extra entries */
+ cmapsize = cinfo->out_color_components * CMAPLENGTH * SIZEOF(rle_map);
+ dest->colormap = (rle_map *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, cmapsize);
+ MEMZERO(dest->colormap, cmapsize);
+
+ /* Save away data in RLE format --- note 8-bit left shift! */
+ /* Shifting would need adjustment for JSAMPLEs wider than 8 bits. */
+ for (ci = 0; ci < cinfo->out_color_components; ci++) {
+ for (i = 0; i < cinfo->actual_number_of_colors; i++) {
+ dest->colormap[ci * CMAPLENGTH + i] =
+ GETJSAMPLE(cinfo->colormap[ci][i]) << 8;
+ }
+ }
+ }
+
+ /* Set the output buffer to the first row */
+ dest->pub.buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->image, (JDIMENSION) 0, (JDIMENSION) 1, TRUE);
+ dest->pub.buffer_height = 1;
+
+ dest->pub.put_pixel_rows = rle_put_pixel_rows;
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->total_extra_passes++; /* count file writing as separate pass */
+ }
+#endif
+}
+
+
+/*
+ * Write some pixel data.
+ *
+ * This routine just saves the data away in a virtual array.
+ */
+
+METHODDEF(void)
+rle_put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ rle_dest_ptr dest = (rle_dest_ptr) dinfo;
+
+ if (cinfo->output_scanline < cinfo->output_height) {
+ dest->pub.buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->image,
+ cinfo->output_scanline, (JDIMENSION) 1, TRUE);
+ }
+}
+
+/*
+ * Finish up at the end of the file.
+ *
+ * Here is where we really output the RLE file.
+ */
+
+METHODDEF(void)
+finish_output_rle (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ rle_dest_ptr dest = (rle_dest_ptr) dinfo;
+ rle_hdr header; /* Output file information */
+ rle_pixel **rle_row, *red, *green, *blue;
+ JSAMPROW output_row;
+ char cmapcomment[80];
+ int row, col;
+ int ci;
+#ifdef PROGRESS_REPORT
+ cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
+#endif
+
+ /* Initialize the header info */
+ header = *rle_hdr_init(NULL);
+ header.rle_file = dest->pub.output_file;
+ header.xmin = 0;
+ header.xmax = cinfo->output_width - 1;
+ header.ymin = 0;
+ header.ymax = cinfo->output_height - 1;
+ header.alpha = 0;
+ header.ncolors = cinfo->output_components;
+ for (ci = 0; ci < cinfo->output_components; ci++) {
+ RLE_SET_BIT(header, ci);
+ }
+ if (cinfo->quantize_colors) {
+ header.ncmap = cinfo->out_color_components;
+ header.cmaplen = CMAPBITS;
+ header.cmap = dest->colormap;
+ /* Add a comment to the output image with the true colormap length. */
+ sprintf(cmapcomment, "color_map_length=%d", cinfo->actual_number_of_colors);
+ rle_putcom(cmapcomment, &header);
+ }
+
+ /* Emit the RLE header and color map (if any) */
+ rle_put_setup(&header);
+
+ /* Now output the RLE data from our virtual array.
+ * We assume here that (a) rle_pixel is represented the same as JSAMPLE,
+ * and (b) we are not on a machine where FAR pointers differ from regular.
+ */
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_limit = cinfo->output_height;
+ progress->pub.pass_counter = 0;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+
+ if (cinfo->output_components == 1) {
+ for (row = cinfo->output_height-1; row >= 0; row--) {
+ rle_row = (rle_pixel **) (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->image,
+ (JDIMENSION) row, (JDIMENSION) 1, FALSE);
+ rle_putrow(rle_row, (int) cinfo->output_width, &header);
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_counter++;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+ }
+ } else {
+ for (row = cinfo->output_height-1; row >= 0; row--) {
+ rle_row = (rle_pixel **) dest->rle_row;
+ output_row = * (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, dest->image,
+ (JDIMENSION) row, (JDIMENSION) 1, FALSE);
+ red = rle_row[0];
+ green = rle_row[1];
+ blue = rle_row[2];
+ for (col = cinfo->output_width; col > 0; col--) {
+ *red++ = GETJSAMPLE(*output_row++);
+ *green++ = GETJSAMPLE(*output_row++);
+ *blue++ = GETJSAMPLE(*output_row++);
+ }
+ rle_putrow(rle_row, (int) cinfo->output_width, &header);
+#ifdef PROGRESS_REPORT
+ if (progress != NULL) {
+ progress->pub.pass_counter++;
+ (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
+ }
+#endif
+ }
+ }
+
+#ifdef PROGRESS_REPORT
+ if (progress != NULL)
+ progress->completed_extra_passes++;
+#endif
+
+ /* Emit file trailer */
+ rle_puteof(&header);
+ fflush(dest->pub.output_file);
+ if (ferror(dest->pub.output_file))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+
+/*
+ * The module selection routine for RLE format output.
+ */
+
+GLOBAL(djpeg_dest_ptr)
+jinit_write_rle (j_decompress_ptr cinfo)
+{
+ rle_dest_ptr dest;
+
+ /* Create module interface object, fill in method pointers */
+ dest = (rle_dest_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(rle_dest_struct));
+ dest->pub.start_output = start_output_rle;
+ dest->pub.finish_output = finish_output_rle;
+
+ /* Calculate output image dimensions so we can allocate space */
+ jpeg_calc_output_dimensions(cinfo);
+
+ /* Allocate a work array for output to the RLE library. */
+ dest->rle_row = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->output_width, (JDIMENSION) cinfo->output_components);
+
+ /* Allocate a virtual array to hold the image. */
+ dest->image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ (JDIMENSION) (cinfo->output_width * cinfo->output_components),
+ cinfo->output_height, (JDIMENSION) 1);
+
+ return (djpeg_dest_ptr) dest;
+}
+
+#endif /* RLE_SUPPORTED */
diff --git a/plugins/AdvaImg/src/LibJPEG/wrtarga.c b/plugins/AdvaImg/src/LibJPEG/wrtarga.c
new file mode 100644
index 0000000000..65662738d9
--- /dev/null
+++ b/plugins/AdvaImg/src/LibJPEG/wrtarga.c
@@ -0,0 +1,253 @@
+/*
+ * wrtarga.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write output images in Targa format.
+ *
+ * These routines may need modification for non-Unix environments or
+ * specialized applications. As they stand, they assume output to
+ * an ordinary stdio stream.
+ *
+ * Based on code contributed by Lee Daniel Crocker.
+ */
+
+#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
+
+#ifdef TARGA_SUPPORTED
+
+
+/*
+ * To support 12-bit JPEG data, we'd have to scale output down to 8 bits.
+ * This is not yet implemented.
+ */
+
+#if BITS_IN_JSAMPLE != 8
+ Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
+#endif
+
+/*
+ * The output buffer needs to be writable by fwrite(). On PCs, we must
+ * allocate the buffer in near data space, because we are assuming small-data
+ * memory model, wherein fwrite() can't reach far memory. If you need to
+ * process very wide images on a PC, you might have to compile in large-memory
+ * model, or else replace fwrite() with a putc() loop --- which will be much
+ * slower.
+ */
+
+
+/* Private version of data destination object */
+
+typedef struct {
+ struct djpeg_dest_struct pub; /* public fields */
+
+ char *iobuffer; /* physical I/O buffer */
+ JDIMENSION buffer_width; /* width of one row */
+} tga_dest_struct;
+
+typedef tga_dest_struct * tga_dest_ptr;
+
+
+LOCAL(void)
+write_header (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, int num_colors)
+/* Create and write a Targa header */
+{
+ char targaheader[18];
+
+ /* Set unused fields of header to 0 */
+ MEMZERO(targaheader, SIZEOF(targaheader));
+
+ if (num_colors > 0) {
+ targaheader[1] = 1; /* color map type 1 */
+ targaheader[5] = (char) (num_colors & 0xFF);
+ targaheader[6] = (char) (num_colors >> 8);
+ targaheader[7] = 24; /* 24 bits per cmap entry */
+ }
+
+ targaheader[12] = (char) (cinfo->output_width & 0xFF);
+ targaheader[13] = (char) (cinfo->output_width >> 8);
+ targaheader[14] = (char) (cinfo->output_height & 0xFF);
+ targaheader[15] = (char) (cinfo->output_height >> 8);
+ targaheader[17] = 0x20; /* Top-down, non-interlaced */
+
+ if (cinfo->out_color_space == JCS_GRAYSCALE) {
+ targaheader[2] = 3; /* image type = uncompressed gray-scale */
+ targaheader[16] = 8; /* bits per pixel */
+ } else { /* must be RGB */
+ if (num_colors > 0) {
+ targaheader[2] = 1; /* image type = colormapped RGB */
+ targaheader[16] = 8;
+ } else {
+ targaheader[2] = 2; /* image type = uncompressed RGB */
+ targaheader[16] = 24;
+ }
+ }
+
+ if (JFWRITE(dinfo->output_file, targaheader, 18) != (size_t) 18)
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+
+/*
+ * Write some pixel data.
+ * In this module rows_supplied will always be 1.
+ */
+
+METHODDEF(void)
+put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+/* used for unquantized full-color output */
+{
+ tga_dest_ptr dest = (tga_dest_ptr) dinfo;
+ register JSAMPROW inptr;
+ register char * outptr;
+ register JDIMENSION col;
+
+ inptr = dest->pub.buffer[0];
+ outptr = dest->iobuffer;
+ for (col = cinfo->output_width; col > 0; col--) {
+ outptr[0] = (char) GETJSAMPLE(inptr[2]); /* RGB to BGR order */
+ outptr[1] = (char) GETJSAMPLE(inptr[1]);
+ outptr[2] = (char) GETJSAMPLE(inptr[0]);
+ inptr += 3, outptr += 3;
+ }
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+METHODDEF(void)
+put_gray_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+/* used for grayscale OR quantized color output */
+{
+ tga_dest_ptr dest = (tga_dest_ptr) dinfo;
+ register JSAMPROW inptr;
+ register char * outptr;
+ register JDIMENSION col;
+
+ inptr = dest->pub.buffer[0];
+ outptr = dest->iobuffer;
+ for (col = cinfo->output_width; col > 0; col--) {
+ *outptr++ = (char) GETJSAMPLE(*inptr++);
+ }
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+
+/*
+ * Write some demapped pixel data when color quantization is in effect.
+ * For Targa, this is only applied to grayscale data.
+ */
+
+METHODDEF(void)
+put_demapped_gray (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
+ JDIMENSION rows_supplied)
+{
+ tga_dest_ptr dest = (tga_dest_ptr) dinfo;
+ register JSAMPROW inptr;
+ register char * outptr;
+ register JSAMPROW color_map0 = cinfo->colormap[0];
+ register JDIMENSION col;
+
+ inptr = dest->pub.buffer[0];
+ outptr = dest->iobuffer;
+ for (col = cinfo->output_width; col > 0; col--) {
+ *outptr++ = (char) GETJSAMPLE(color_map0[GETJSAMPLE(*inptr++)]);
+ }
+ (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
+}
+
+
+/*
+ * Startup: write the file header.
+ */
+
+METHODDEF(void)
+start_output_tga (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ tga_dest_ptr dest = (tga_dest_ptr) dinfo;
+ int num_colors, i;
+ FILE *outfile;
+
+ if (cinfo->out_color_space == JCS_GRAYSCALE) {
+ /* Targa doesn't have a mapped grayscale format, so we will */
+ /* demap quantized gray output. Never emit a colormap. */
+ write_header(cinfo, dinfo, 0);
+ if (cinfo->quantize_colors)
+ dest->pub.put_pixel_rows = put_demapped_gray;
+ else
+ dest->pub.put_pixel_rows = put_gray_rows;
+ } else if (cinfo->out_color_space == JCS_RGB) {
+ if (cinfo->quantize_colors) {
+ /* We only support 8-bit colormap indexes, so only 256 colors */
+ num_colors = cinfo->actual_number_of_colors;
+ if (num_colors > 256)
+ ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, num_colors);
+ write_header(cinfo, dinfo, num_colors);
+ /* Write the colormap. Note Targa uses BGR byte order */
+ outfile = dest->pub.output_file;
+ for (i = 0; i < num_colors; i++) {
+ putc(GETJSAMPLE(cinfo->colormap[2][i]), outfile);
+ putc(GETJSAMPLE(cinfo->colormap[1][i]), outfile);
+ putc(GETJSAMPLE(cinfo->colormap[0][i]), outfile);
+ }
+ dest->pub.put_pixel_rows = put_gray_rows;
+ } else {
+ write_header(cinfo, dinfo, 0);
+ dest->pub.put_pixel_rows = put_pixel_rows;
+ }
+ } else {
+ ERREXIT(cinfo, JERR_TGA_COLORSPACE);
+ }
+}
+
+
+/*
+ * Finish up at the end of the file.
+ */
+
+METHODDEF(void)
+finish_output_tga (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
+{
+ /* Make sure we wrote the output file OK */
+ fflush(dinfo->output_file);
+ if (ferror(dinfo->output_file))
+ ERREXIT(cinfo, JERR_FILE_WRITE);
+}
+
+
+/*
+ * The module selection routine for Targa format output.
+ */
+
+GLOBAL(djpeg_dest_ptr)
+jinit_write_targa (j_decompress_ptr cinfo)
+{
+ tga_dest_ptr dest;
+
+ /* Create module interface object, fill in method pointers */
+ dest = (tga_dest_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(tga_dest_struct));
+ dest->pub.start_output = start_output_tga;
+ dest->pub.finish_output = finish_output_tga;
+
+ /* Calculate output image dimensions so we can allocate space */
+ jpeg_calc_output_dimensions(cinfo);
+
+ /* Create I/O buffer. Note we make this near on a PC. */
+ dest->buffer_width = cinfo->output_width * cinfo->output_components;
+ dest->iobuffer = (char *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (size_t) (dest->buffer_width * SIZEOF(char)));
+
+ /* Create decompressor output buffer. */
+ dest->pub.buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, dest->buffer_width, (JDIMENSION) 1);
+ dest->pub.buffer_height = 1;
+
+ return (djpeg_dest_ptr) dest;
+}
+
+#endif /* TARGA_SUPPORTED */