summaryrefslogtreecommitdiff
path: root/plugins/CryptoPP/crypto/src/polynomi.h
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/CryptoPP/crypto/src/polynomi.h')
-rw-r--r--plugins/CryptoPP/crypto/src/polynomi.h459
1 files changed, 459 insertions, 0 deletions
diff --git a/plugins/CryptoPP/crypto/src/polynomi.h b/plugins/CryptoPP/crypto/src/polynomi.h
new file mode 100644
index 0000000000..60221659e8
--- /dev/null
+++ b/plugins/CryptoPP/crypto/src/polynomi.h
@@ -0,0 +1,459 @@
+#ifndef CRYPTOPP_POLYNOMI_H
+#define CRYPTOPP_POLYNOMI_H
+
+/*! \file */
+
+#include "cryptlib.h"
+#include "misc.h"
+#include "algebra.h"
+
+#include <iosfwd>
+#include <vector>
+
+NAMESPACE_BEGIN(CryptoPP)
+
+//! represents single-variable polynomials over arbitrary rings
+/*! \nosubgrouping */
+template <class T> class PolynomialOver
+{
+public:
+ //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
+ //@{
+ //! division by zero exception
+ class DivideByZero : public Exception
+ {
+ public:
+ DivideByZero() : Exception(OTHER_ERROR, "PolynomialOver<T>: division by zero") {}
+ };
+
+ //! specify the distribution for randomization functions
+ class RandomizationParameter
+ {
+ public:
+ RandomizationParameter(unsigned int coefficientCount, const typename T::RandomizationParameter &coefficientParameter )
+ : m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}
+
+ private:
+ unsigned int m_coefficientCount;
+ typename T::RandomizationParameter m_coefficientParameter;
+ friend class PolynomialOver<T>;
+ };
+
+ typedef T Ring;
+ typedef typename T::Element CoefficientType;
+ //@}
+
+ //! \name CREATORS
+ //@{
+ //! creates the zero polynomial
+ PolynomialOver() {}
+
+ //!
+ PolynomialOver(const Ring &ring, unsigned int count)
+ : m_coefficients((size_t)count, ring.Identity()) {}
+
+ //! copy constructor
+ PolynomialOver(const PolynomialOver<Ring> &t)
+ : m_coefficients(t.m_coefficients.size()) {*this = t;}
+
+ //! construct constant polynomial
+ PolynomialOver(const CoefficientType &element)
+ : m_coefficients(1, element) {}
+
+ //! construct polynomial with specified coefficients, starting from coefficient of x^0
+ template <typename Iterator> PolynomialOver(Iterator begin, Iterator end)
+ : m_coefficients(begin, end) {}
+
+ //! convert from string
+ PolynomialOver(const char *str, const Ring &ring) {FromStr(str, ring);}
+
+ //! convert from big-endian byte array
+ PolynomialOver(const byte *encodedPolynomialOver, unsigned int byteCount);
+
+ //! convert from Basic Encoding Rules encoded byte array
+ explicit PolynomialOver(const byte *BEREncodedPolynomialOver);
+
+ //! convert from BER encoded byte array stored in a BufferedTransformation object
+ explicit PolynomialOver(BufferedTransformation &bt);
+
+ //! create a random PolynomialOver<T>
+ PolynomialOver(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring)
+ {Randomize(rng, parameter, ring);}
+ //@}
+
+ //! \name ACCESSORS
+ //@{
+ //! the zero polynomial will return a degree of -1
+ int Degree(const Ring &ring) const {return int(CoefficientCount(ring))-1;}
+ //!
+ unsigned int CoefficientCount(const Ring &ring) const;
+ //! return coefficient for x^i
+ CoefficientType GetCoefficient(unsigned int i, const Ring &ring) const;
+ //@}
+
+ //! \name MANIPULATORS
+ //@{
+ //!
+ PolynomialOver<Ring>& operator=(const PolynomialOver<Ring>& t);
+
+ //!
+ void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring);
+
+ //! set the coefficient for x^i to value
+ void SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring);
+
+ //!
+ void Negate(const Ring &ring);
+
+ //!
+ void swap(PolynomialOver<Ring> &t);
+ //@}
+
+
+ //! \name BASIC ARITHMETIC ON POLYNOMIALS
+ //@{
+ bool Equals(const PolynomialOver<Ring> &t, const Ring &ring) const;
+ bool IsZero(const Ring &ring) const {return CoefficientCount(ring)==0;}
+
+ PolynomialOver<Ring> Plus(const PolynomialOver<Ring>& t, const Ring &ring) const;
+ PolynomialOver<Ring> Minus(const PolynomialOver<Ring>& t, const Ring &ring) const;
+ PolynomialOver<Ring> Inverse(const Ring &ring) const;
+
+ PolynomialOver<Ring> Times(const PolynomialOver<Ring>& t, const Ring &ring) const;
+ PolynomialOver<Ring> DividedBy(const PolynomialOver<Ring>& t, const Ring &ring) const;
+ PolynomialOver<Ring> Modulo(const PolynomialOver<Ring>& t, const Ring &ring) const;
+ PolynomialOver<Ring> MultiplicativeInverse(const Ring &ring) const;
+ bool IsUnit(const Ring &ring) const;
+
+ PolynomialOver<Ring>& Accumulate(const PolynomialOver<Ring>& t, const Ring &ring);
+ PolynomialOver<Ring>& Reduce(const PolynomialOver<Ring>& t, const Ring &ring);
+
+ //!
+ PolynomialOver<Ring> Doubled(const Ring &ring) const {return Plus(*this, ring);}
+ //!
+ PolynomialOver<Ring> Squared(const Ring &ring) const {return Times(*this, ring);}
+
+ CoefficientType EvaluateAt(const CoefficientType &x, const Ring &ring) const;
+
+ PolynomialOver<Ring>& ShiftLeft(unsigned int n, const Ring &ring);
+ PolynomialOver<Ring>& ShiftRight(unsigned int n, const Ring &ring);
+
+ //! calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree of d)
+ static void Divide(PolynomialOver<Ring> &r, PolynomialOver<Ring> &q, const PolynomialOver<Ring> &a, const PolynomialOver<Ring> &d, const Ring &ring);
+ //@}
+
+ //! \name INPUT/OUTPUT
+ //@{
+ std::istream& Input(std::istream &in, const Ring &ring);
+ std::ostream& Output(std::ostream &out, const Ring &ring) const;
+ //@}
+
+private:
+ void FromStr(const char *str, const Ring &ring);
+
+ std::vector<CoefficientType> m_coefficients;
+};
+
+//! Polynomials over a fixed ring
+/*! Having a fixed ring allows overloaded operators */
+template <class T, int instance> class PolynomialOverFixedRing : private PolynomialOver<T>
+{
+ typedef PolynomialOver<T> B;
+ typedef PolynomialOverFixedRing<T, instance> ThisType;
+
+public:
+ typedef T Ring;
+ typedef typename T::Element CoefficientType;
+ typedef typename B::DivideByZero DivideByZero;
+ typedef typename B::RandomizationParameter RandomizationParameter;
+
+ //! \name CREATORS
+ //@{
+ //! creates the zero polynomial
+ PolynomialOverFixedRing(unsigned int count = 0) : B(ms_fixedRing, count) {}
+
+ //! copy constructor
+ PolynomialOverFixedRing(const ThisType &t) : B(t) {}
+
+ explicit PolynomialOverFixedRing(const B &t) : B(t) {}
+
+ //! construct constant polynomial
+ PolynomialOverFixedRing(const CoefficientType &element) : B(element) {}
+
+ //! construct polynomial with specified coefficients, starting from coefficient of x^0
+ template <typename Iterator> PolynomialOverFixedRing(Iterator first, Iterator last)
+ : B(first, last) {}
+
+ //! convert from string
+ explicit PolynomialOverFixedRing(const char *str) : B(str, ms_fixedRing) {}
+
+ //! convert from big-endian byte array
+ PolynomialOverFixedRing(const byte *encodedPoly, unsigned int byteCount) : B(encodedPoly, byteCount) {}
+
+ //! convert from Basic Encoding Rules encoded byte array
+ explicit PolynomialOverFixedRing(const byte *BEREncodedPoly) : B(BEREncodedPoly) {}
+
+ //! convert from BER encoded byte array stored in a BufferedTransformation object
+ explicit PolynomialOverFixedRing(BufferedTransformation &bt) : B(bt) {}
+
+ //! create a random PolynomialOverFixedRing
+ PolynomialOverFixedRing(RandomNumberGenerator &rng, const RandomizationParameter &parameter) : B(rng, parameter, ms_fixedRing) {}
+
+ static const ThisType &Zero();
+ static const ThisType &One();
+ //@}
+
+ //! \name ACCESSORS
+ //@{
+ //! the zero polynomial will return a degree of -1
+ int Degree() const {return B::Degree(ms_fixedRing);}
+ //! degree + 1
+ unsigned int CoefficientCount() const {return B::CoefficientCount(ms_fixedRing);}
+ //! return coefficient for x^i
+ CoefficientType GetCoefficient(unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
+ //! return coefficient for x^i
+ CoefficientType operator[](unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
+ //@}
+
+ //! \name MANIPULATORS
+ //@{
+ //!
+ ThisType& operator=(const ThisType& t) {B::operator=(t); return *this;}
+ //!
+ ThisType& operator+=(const ThisType& t) {Accumulate(t, ms_fixedRing); return *this;}
+ //!
+ ThisType& operator-=(const ThisType& t) {Reduce(t, ms_fixedRing); return *this;}
+ //!
+ ThisType& operator*=(const ThisType& t) {return *this = *this*t;}
+ //!
+ ThisType& operator/=(const ThisType& t) {return *this = *this/t;}
+ //!
+ ThisType& operator%=(const ThisType& t) {return *this = *this%t;}
+
+ //!
+ ThisType& operator<<=(unsigned int n) {ShiftLeft(n, ms_fixedRing); return *this;}
+ //!
+ ThisType& operator>>=(unsigned int n) {ShiftRight(n, ms_fixedRing); return *this;}
+
+ //! set the coefficient for x^i to value
+ void SetCoefficient(unsigned int i, const CoefficientType &value) {B::SetCoefficient(i, value, ms_fixedRing);}
+
+ //!
+ void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter) {B::Randomize(rng, parameter, ms_fixedRing);}
+
+ //!
+ void Negate() {B::Negate(ms_fixedRing);}
+
+ void swap(ThisType &t) {B::swap(t);}
+ //@}
+
+ //! \name UNARY OPERATORS
+ //@{
+ //!
+ bool operator!() const {return CoefficientCount()==0;}
+ //!
+ ThisType operator+() const {return *this;}
+ //!
+ ThisType operator-() const {return ThisType(Inverse(ms_fixedRing));}
+ //@}
+
+ //! \name BINARY OPERATORS
+ //@{
+ //!
+ friend ThisType operator>>(ThisType a, unsigned int n) {return ThisType(a>>=n);}
+ //!
+ friend ThisType operator<<(ThisType a, unsigned int n) {return ThisType(a<<=n);}
+ //@}
+
+ //! \name OTHER ARITHMETIC FUNCTIONS
+ //@{
+ //!
+ ThisType MultiplicativeInverse() const {return ThisType(B::MultiplicativeInverse(ms_fixedRing));}
+ //!
+ bool IsUnit() const {return B::IsUnit(ms_fixedRing);}
+
+ //!
+ ThisType Doubled() const {return ThisType(B::Doubled(ms_fixedRing));}
+ //!
+ ThisType Squared() const {return ThisType(B::Squared(ms_fixedRing));}
+
+ CoefficientType EvaluateAt(const CoefficientType &x) const {return B::EvaluateAt(x, ms_fixedRing);}
+
+ //! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
+ static void Divide(ThisType &r, ThisType &q, const ThisType &a, const ThisType &d)
+ {B::Divide(r, q, a, d, ms_fixedRing);}
+ //@}
+
+ //! \name INPUT/OUTPUT
+ //@{
+ //!
+ friend std::istream& operator>>(std::istream& in, ThisType &a)
+ {return a.Input(in, ms_fixedRing);}
+ //!
+ friend std::ostream& operator<<(std::ostream& out, const ThisType &a)
+ {return a.Output(out, ms_fixedRing);}
+ //@}
+
+private:
+ struct NewOnePolynomial
+ {
+ ThisType * operator()() const
+ {
+ return new ThisType(ms_fixedRing.MultiplicativeIdentity());
+ }
+ };
+
+ static const Ring ms_fixedRing;
+};
+
+//! Ring of polynomials over another ring
+template <class T> class RingOfPolynomialsOver : public AbstractEuclideanDomain<PolynomialOver<T> >
+{
+public:
+ typedef T CoefficientRing;
+ typedef PolynomialOver<T> Element;
+ typedef typename Element::CoefficientType CoefficientType;
+ typedef typename Element::RandomizationParameter RandomizationParameter;
+
+ RingOfPolynomialsOver(const CoefficientRing &ring) : m_ring(ring) {}
+
+ Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &parameter)
+ {return Element(rng, parameter, m_ring);}
+
+ bool Equal(const Element &a, const Element &b) const
+ {return a.Equals(b, m_ring);}
+
+ const Element& Identity() const
+ {return this->result = m_ring.Identity();}
+
+ const Element& Add(const Element &a, const Element &b) const
+ {return this->result = a.Plus(b, m_ring);}
+
+ Element& Accumulate(Element &a, const Element &b) const
+ {a.Accumulate(b, m_ring); return a;}
+
+ const Element& Inverse(const Element &a) const
+ {return this->result = a.Inverse(m_ring);}
+
+ const Element& Subtract(const Element &a, const Element &b) const
+ {return this->result = a.Minus(b, m_ring);}
+
+ Element& Reduce(Element &a, const Element &b) const
+ {return a.Reduce(b, m_ring);}
+
+ const Element& Double(const Element &a) const
+ {return this->result = a.Doubled(m_ring);}
+
+ const Element& MultiplicativeIdentity() const
+ {return this->result = m_ring.MultiplicativeIdentity();}
+
+ const Element& Multiply(const Element &a, const Element &b) const
+ {return this->result = a.Times(b, m_ring);}
+
+ const Element& Square(const Element &a) const
+ {return this->result = a.Squared(m_ring);}
+
+ bool IsUnit(const Element &a) const
+ {return a.IsUnit(m_ring);}
+
+ const Element& MultiplicativeInverse(const Element &a) const
+ {return this->result = a.MultiplicativeInverse(m_ring);}
+
+ const Element& Divide(const Element &a, const Element &b) const
+ {return this->result = a.DividedBy(b, m_ring);}
+
+ const Element& Mod(const Element &a, const Element &b) const
+ {return this->result = a.Modulo(b, m_ring);}
+
+ void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
+ {Element::Divide(r, q, a, d, m_ring);}
+
+ class InterpolationFailed : public Exception
+ {
+ public:
+ InterpolationFailed() : Exception(OTHER_ERROR, "RingOfPolynomialsOver<T>: interpolation failed") {}
+ };
+
+ Element Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
+
+ // a faster version of Interpolate(x, y, n).EvaluateAt(position)
+ CoefficientType InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
+/*
+ void PrepareBulkInterpolation(CoefficientType *w, const CoefficientType x[], unsigned int n) const;
+ void PrepareBulkInterpolationAt(CoefficientType *v, const CoefficientType &position, const CoefficientType x[], const CoefficientType w[], unsigned int n) const;
+ CoefficientType BulkInterpolateAt(const CoefficientType y[], const CoefficientType v[], unsigned int n) const;
+*/
+protected:
+ void CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
+
+ CoefficientRing m_ring;
+};
+
+template <class Ring, class Element>
+void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n);
+template <class Ring, class Element>
+void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n);
+template <class Ring, class Element>
+Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n);
+
+//!
+template <class T, int instance>
+inline bool operator==(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return a.Equals(b, a.ms_fixedRing);}
+//!
+template <class T, int instance>
+inline bool operator!=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return !(a==b);}
+
+//!
+template <class T, int instance>
+inline bool operator> (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return a.Degree() > b.Degree();}
+//!
+template <class T, int instance>
+inline bool operator>=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return a.Degree() >= b.Degree();}
+//!
+template <class T, int instance>
+inline bool operator< (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return a.Degree() < b.Degree();}
+//!
+template <class T, int instance>
+inline bool operator<=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return a.Degree() <= b.Degree();}
+
+//!
+template <class T, int instance>
+inline CryptoPP::PolynomialOverFixedRing<T, instance> operator+(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));}
+//!
+template <class T, int instance>
+inline CryptoPP::PolynomialOverFixedRing<T, instance> operator-(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));}
+//!
+template <class T, int instance>
+inline CryptoPP::PolynomialOverFixedRing<T, instance> operator*(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));}
+//!
+template <class T, int instance>
+inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));}
+//!
+template <class T, int instance>
+inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
+ {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}
+
+NAMESPACE_END
+
+NAMESPACE_BEGIN(std)
+template<class T> inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b)
+{
+ a.swap(b);
+}
+template<class T, int i> inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b)
+{
+ a.swap(b);
+}
+NAMESPACE_END
+
+#endif