diff options
Diffstat (limited to 'plugins/FreeImage/Source/FreeImageToolkit/BSplineRotate.cpp')
| -rw-r--r-- | plugins/FreeImage/Source/FreeImageToolkit/BSplineRotate.cpp | 730 | 
1 files changed, 730 insertions, 0 deletions
diff --git a/plugins/FreeImage/Source/FreeImageToolkit/BSplineRotate.cpp b/plugins/FreeImage/Source/FreeImageToolkit/BSplineRotate.cpp new file mode 100644 index 0000000000..ed468b4dac --- /dev/null +++ b/plugins/FreeImage/Source/FreeImageToolkit/BSplineRotate.cpp @@ -0,0 +1,730 @@ +// ==========================================================
 +// Bitmap rotation using B-Splines
 +//
 +// Design and implementation by
 +// - Philippe Thévenaz (philippe.thevenaz@epfl.ch)
 +// Adaptation for FreeImage by
 +// - Hervé Drolon (drolon@infonie.fr)
 +//
 +// This file is part of FreeImage 3
 +//
 +// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
 +// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
 +// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
 +// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
 +// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
 +// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
 +// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
 +// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
 +// THIS DISCLAIMER.
 +//
 +// Use at your own risk!
 +// ==========================================================
 +
 +/* 
 +==========================================================
 +This code was taken and adapted from the following reference : 
 +
 +[1] Philippe Thévenaz, Spline interpolation, a C source code 
 +implementation. http://bigwww.epfl.ch/thevenaz/
 +
 +It implements ideas described in the following papers : 
 +
 +[2] Unser M., Splines: A Perfect Fit for Signal and Image Processing. 
 +IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999. 
 +
 +[3] Unser M., Aldroubi A., Eden M., B-Spline Signal Processing: Part I--Theory.
 +IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, February 1993. 
 +
 +[4] Unser M., Aldroubi A., Eden M., B-Spline Signal Processing: Part II--Efficient Design and Applications.
 +IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, February 1993.
 +
 +========================================================== 
 +*/
 +
 +
 +#include <float.h>
 +#include "FreeImage.h"
 +#include "Utilities.h"
 +
 +#define PI	((double)3.14159265358979323846264338327950288419716939937510)
 +
 +#define ROTATE_QUADRATIC 2L	// Use B-splines of degree 2 (quadratic interpolation)
 +#define ROTATE_CUBIC     3L	// Use B-splines of degree 3 (cubic interpolation)
 +#define ROTATE_QUARTIC   4L	// Use B-splines of degree 4 (quartic interpolation)
 +#define ROTATE_QUINTIC   5L	// Use B-splines of degree 5 (quintic interpolation)
 +
 +
 +/////////////////////////////////////////////////////////////////////////////////////////////////////////////
 +// Prototypes definition
 +
 +static void ConvertToInterpolationCoefficients(double *c, long DataLength, double *z, long NbPoles,	double Tolerance);
 +static double InitialCausalCoefficient(double *c, long DataLength, double z, double Tolerance);
 +static void GetColumn(double *Image, long Width, long x, double *Line, long Height);
 +static void	GetRow(double *Image, long y, double *Line, long Width);
 +static double InitialAntiCausalCoefficient(double *c, long DataLength, double z);
 +static void	PutColumn(double *Image, long Width, long x, double *Line, long Height);
 +static void	PutRow(double *Image, long y, double *Line, long Width);
 +static bool SamplesToCoefficients(double *Image, long Width, long Height, long spline_degree);
 +static double InterpolatedValue(double *Bcoeff, long Width, long Height, double x, double y, long spline_degree);
 +
 +static FIBITMAP * Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, long spline_degree, BOOL use_mask);
 +
 +/////////////////////////////////////////////////////////////////////////////////////////////////////////////
 +// Coefficients routines
 +
 +/**
 + ConvertToInterpolationCoefficients
 +
 + @param c Input samples --> output coefficients
 + @param DataLength Number of samples or coefficients
 + @param z Poles
 + @param NbPoles Number of poles
 + @param Tolerance Admissible relative error
 +*/
 +static void 
 +ConvertToInterpolationCoefficients(double *c, long DataLength, double *z, long NbPoles,	double Tolerance) {
 +	double	Lambda = 1;
 +	long	n, k;
 +
 +	// special case required by mirror boundaries
 +	if(DataLength == 1L) {
 +		return;
 +	}
 +	// compute the overall gain
 +	for(k = 0L; k < NbPoles; k++) {
 +		Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
 +	}
 +	// apply the gain 
 +	for (n = 0L; n < DataLength; n++) {
 +		c[n] *= Lambda;
 +	}
 +	// loop over all poles 
 +	for (k = 0L; k < NbPoles; k++) {
 +		// causal initialization 
 +		c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
 +		// causal recursion 
 +		for (n = 1L; n < DataLength; n++) {
 +			c[n] += z[k] * c[n - 1L];
 +		}
 +		// anticausal initialization 
 +		c[DataLength - 1L] = InitialAntiCausalCoefficient(c, DataLength, z[k]);
 +		// anticausal recursion 
 +		for (n = DataLength - 2L; 0 <= n; n--) {
 +			c[n] = z[k] * (c[n + 1L] - c[n]);
 +		}
 +	}
 +} 
 +
 +/**
 + InitialCausalCoefficient
 +
 + @param c Coefficients
 + @param DataLength Number of coefficients
 + @param z Actual pole
 + @param Tolerance Admissible relative error
 + @return
 +*/
 +static double 
 +InitialCausalCoefficient(double	*c, long DataLength, double	z, double Tolerance) {
 +	double	Sum, zn, z2n, iz;
 +	long	n, Horizon;
 +
 +	// this initialization corresponds to mirror boundaries 
 +	Horizon = DataLength;
 +	if(Tolerance > 0) {
 +		Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
 +	}
 +	if(Horizon < DataLength) {
 +		// accelerated loop
 +		zn = z;
 +		Sum = c[0];
 +		for (n = 1L; n < Horizon; n++) {
 +			Sum += zn * c[n];
 +			zn *= z;
 +		}
 +		return(Sum);
 +	}
 +	else {
 +		// full loop 
 +		zn = z;
 +		iz = 1.0 / z;
 +		z2n = pow(z, (double)(DataLength - 1L));
 +		Sum = c[0] + z2n * c[DataLength - 1L];
 +		z2n *= z2n * iz;
 +		for (n = 1L; n <= DataLength - 2L; n++) {
 +			Sum += (zn + z2n) * c[n];
 +			zn *= z;
 +			z2n *= iz;
 +		}
 +		return(Sum / (1.0 - zn * zn));
 +	}
 +}
 +
 +/**
 + GetColumn
 +
 + @param Image Input image array
 + @param Width Width of the image
 + @param x x coordinate of the selected line
 + @param Line Output linear array
 + @param Height Length of the line
 +*/
 +static void 
 +GetColumn(double *Image, long Width, long x, double *Line, long Height) {
 +	long y;
 +
 +	Image = Image + x;
 +	for(y = 0L; y < Height; y++) {
 +		Line[y] = (double)*Image;
 +		Image += Width;
 +	}
 +}
 +
 +/**
 + GetRow
 +
 + @param Image Input image array
 + @param y y coordinate of the selected line
 + @param Line Output linear array
 + @param Width Length of the line
 +*/
 +static void	
 +GetRow(double *Image, long y, double *Line, long Width) {
 +	long	x;
 +
 +	Image = Image + (y * Width);
 +	for(x = 0L; x < Width; x++) {
 +		Line[x] = (double)*Image++;
 +	}
 +}
 +
 +/**
 + InitialAntiCausalCoefficient
 +
 + @param c Coefficients
 + @param DataLength Number of samples or coefficients
 + @param z Actual pole
 + @return
 +*/
 +static double 
 +InitialAntiCausalCoefficient(double	*c, long DataLength, double	z) {
 +	// this initialization corresponds to mirror boundaries
 +	return((z / (z * z - 1.0)) * (z * c[DataLength - 2L] + c[DataLength - 1L]));
 +}
 +
 +/**
 + PutColumn
 +
 + @param Image Output image array
 + @param Width Width of the image
 + @param x x coordinate of the selected line
 + @param Line Input linear array
 + @param Height Length of the line and height of the image
 +*/
 +static void	
 +PutColumn(double *Image, long Width, long x, double *Line, long Height) {
 +	long	y;
 +
 +	Image = Image + x;
 +	for(y = 0L; y < Height; y++) {
 +		*Image = (double)Line[y];
 +		Image += Width;
 +	}
 +}
 +
 +/**
 + PutRow
 +
 + @param Image Output image array
 + @param y y coordinate of the selected line
 + @param Line Input linear array
 + @param Width length of the line and width of the image
 +*/
 +static void	
 +PutRow(double *Image, long y, double *Line, long Width) {
 +	long	x;
 +
 +	Image = Image + (y * Width);
 +	for(x = 0L; x < Width; x++) {
 +		*Image++ = (double)Line[x];
 +	}
 +}
 +
 +/**
 + SamplesToCoefficients.<br>
 + Implement the algorithm that converts the image samples into B-spline coefficients. 
 + This efficient procedure essentially relies on the three papers cited above; 
 + data are processed in-place. 
 + Even though this algorithm is robust with respect to quantization, 
 + we advocate the use of a floating-point format for the data. 
 +
 + @param Image Input / Output image (in-place processing)
 + @param Width Width of the image
 + @param Height Height of the image
 + @param spline_degree Degree of the spline model
 + @return Returns true if success, false otherwise
 +*/
 +static bool	
 +SamplesToCoefficients(double *Image, long Width, long Height, long spline_degree) {
 +	double	*Line;
 +	double	Pole[2];
 +	long	NbPoles;
 +	long	x, y;
 +
 +	// recover the poles from a lookup table
 +	switch (spline_degree) {
 +		case 2L:
 +			NbPoles = 1L;
 +			Pole[0] = sqrt(8.0) - 3.0;
 +			break;
 +		case 3L:
 +			NbPoles = 1L;
 +			Pole[0] = sqrt(3.0) - 2.0;
 +			break;
 +		case 4L:
 +			NbPoles = 2L;
 +			Pole[0] = sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0;
 +			Pole[1] = sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0;
 +			break;
 +		case 5L:
 +			NbPoles = 2L;
 +			Pole[0] = sqrt(135.0 / 2.0 - sqrt(17745.0 / 4.0)) + sqrt(105.0 / 4.0)
 +				- 13.0 / 2.0;
 +			Pole[1] = sqrt(135.0 / 2.0 + sqrt(17745.0 / 4.0)) - sqrt(105.0 / 4.0)
 +				- 13.0 / 2.0;
 +			break;
 +		default:
 +			// Invalid spline degree
 +			return false;
 +	}
 +
 +	// convert the image samples into interpolation coefficients 
 +
 +	// in-place separable process, along x 
 +	Line = (double *)malloc(Width * sizeof(double));
 +	if (Line == NULL) {
 +		// Row allocation failed
 +		return false;
 +	}
 +	for (y = 0L; y < Height; y++) {
 +		GetRow(Image, y, Line, Width);
 +		ConvertToInterpolationCoefficients(Line, Width, Pole, NbPoles, DBL_EPSILON);
 +		PutRow(Image, y, Line, Width);
 +	}
 +	free(Line);
 +
 +	// in-place separable process, along y 
 +	Line = (double *)malloc(Height * sizeof(double));
 +	if (Line == NULL) {
 +		// Column allocation failed
 +		return false;
 +	}
 +	for (x = 0L; x < Width; x++) {
 +		GetColumn(Image, Width, x, Line, Height);
 +		ConvertToInterpolationCoefficients(Line, Height, Pole, NbPoles, DBL_EPSILON);
 +		PutColumn(Image, Width, x, Line, Height);
 +	}
 +	free(Line);
 +
 +	return true;
 +}
 +
 +/////////////////////////////////////////////////////////////////////////////////////////////////////////////
 +// Interpolation routines
 +
 +/**
 +Perform the bidimensional interpolation of an image.
 +Given an array of spline coefficients, return the value of 
 +the underlying continuous spline model, sampled at the location (x, y). 
 +The model degree can be 2 (quadratic), 3 (cubic), 4 (quartic), or 5 (quintic).
 +
 +@param Bcoeff Input B-spline array of coefficients
 +@param Width Width of the image
 +@param Height Height of the image
 +@param x x coordinate where to interpolate
 +@param y y coordinate where to interpolate
 +@param spline_degree Degree of the spline model
 +@return Returns the value of the underlying continuous spline model, 
 +sampled at the location (x, y)
 +*/
 +static double 
 +InterpolatedValue(double *Bcoeff, long Width, long Height, double x, double y, long spline_degree) {
 +	double	*p;
 +	double	xWeight[6], yWeight[6];
 +	double	interpolated;
 +	double	w, w2, w4, t, t0, t1;
 +	long	xIndex[6], yIndex[6];
 +	long	Width2 = 2L * Width - 2L, Height2 = 2L * Height - 2L;
 +	long	i, j, k;
 +
 +	// compute the interpolation indexes
 +	if (spline_degree & 1L) {
 +		i = (long)floor(x) - spline_degree / 2L;
 +		j = (long)floor(y) - spline_degree / 2L;
 +		for(k = 0; k <= spline_degree; k++) {
 +			xIndex[k] = i++;
 +			yIndex[k] = j++;
 +		}
 +	}
 +	else {
 +		i = (long)floor(x + 0.5) - spline_degree / 2L;
 +		j = (long)floor(y + 0.5) - spline_degree / 2L;
 +		for (k = 0; k <= spline_degree; k++) {
 +			xIndex[k] = i++;
 +			yIndex[k] = j++;
 +		}
 +	}
 +
 +	// compute the interpolation weights
 +	switch (spline_degree) {
 +		case 2L:
 +			/* x */
 +			w = x - (double)xIndex[1];
 +			xWeight[1] = 3.0 / 4.0 - w * w;
 +			xWeight[2] = (1.0 / 2.0) * (w - xWeight[1] + 1.0);
 +			xWeight[0] = 1.0 - xWeight[1] - xWeight[2];
 +			/* y */
 +			w = y - (double)yIndex[1];
 +			yWeight[1] = 3.0 / 4.0 - w * w;
 +			yWeight[2] = (1.0 / 2.0) * (w - yWeight[1] + 1.0);
 +			yWeight[0] = 1.0 - yWeight[1] - yWeight[2];
 +			break;
 +		case 3L:
 +			/* x */
 +			w = x - (double)xIndex[1];
 +			xWeight[3] = (1.0 / 6.0) * w * w * w;
 +			xWeight[0] = (1.0 / 6.0) + (1.0 / 2.0) * w * (w - 1.0) - xWeight[3];
 +			xWeight[2] = w + xWeight[0] - 2.0 * xWeight[3];
 +			xWeight[1] = 1.0 - xWeight[0] - xWeight[2] - xWeight[3];
 +			/* y */
 +			w = y - (double)yIndex[1];
 +			yWeight[3] = (1.0 / 6.0) * w * w * w;
 +			yWeight[0] = (1.0 / 6.0) + (1.0 / 2.0) * w * (w - 1.0) - yWeight[3];
 +			yWeight[2] = w + yWeight[0] - 2.0 * yWeight[3];
 +			yWeight[1] = 1.0 - yWeight[0] - yWeight[2] - yWeight[3];
 +			break;
 +		case 4L:
 +			/* x */
 +			w = x - (double)xIndex[2];
 +			w2 = w * w;
 +			t = (1.0 / 6.0) * w2;
 +			xWeight[0] = 1.0 / 2.0 - w;
 +			xWeight[0] *= xWeight[0];
 +			xWeight[0] *= (1.0 / 24.0) * xWeight[0];
 +			t0 = w * (t - 11.0 / 24.0);
 +			t1 = 19.0 / 96.0 + w2 * (1.0 / 4.0 - t);
 +			xWeight[1] = t1 + t0;
 +			xWeight[3] = t1 - t0;
 +			xWeight[4] = xWeight[0] + t0 + (1.0 / 2.0) * w;
 +			xWeight[2] = 1.0 - xWeight[0] - xWeight[1] - xWeight[3] - xWeight[4];
 +			/* y */
 +			w = y - (double)yIndex[2];
 +			w2 = w * w;
 +			t = (1.0 / 6.0) * w2;
 +			yWeight[0] = 1.0 / 2.0 - w;
 +			yWeight[0] *= yWeight[0];
 +			yWeight[0] *= (1.0 / 24.0) * yWeight[0];
 +			t0 = w * (t - 11.0 / 24.0);
 +			t1 = 19.0 / 96.0 + w2 * (1.0 / 4.0 - t);
 +			yWeight[1] = t1 + t0;
 +			yWeight[3] = t1 - t0;
 +			yWeight[4] = yWeight[0] + t0 + (1.0 / 2.0) * w;
 +			yWeight[2] = 1.0 - yWeight[0] - yWeight[1] - yWeight[3] - yWeight[4];
 +			break;
 +		case 5L:
 +			/* x */
 +			w = x - (double)xIndex[2];
 +			w2 = w * w;
 +			xWeight[5] = (1.0 / 120.0) * w * w2 * w2;
 +			w2 -= w;
 +			w4 = w2 * w2;
 +			w -= 1.0 / 2.0;
 +			t = w2 * (w2 - 3.0);
 +			xWeight[0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - xWeight[5];
 +			t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0);
 +			t1 = (-1.0 / 12.0) * w * (t + 4.0);
 +			xWeight[2] = t0 + t1;
 +			xWeight[3] = t0 - t1;
 +			t0 = (1.0 / 16.0) * (9.0 / 5.0 - t);
 +			t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0);
 +			xWeight[1] = t0 + t1;
 +			xWeight[4] = t0 - t1;
 +			/* y */
 +			w = y - (double)yIndex[2];
 +			w2 = w * w;
 +			yWeight[5] = (1.0 / 120.0) * w * w2 * w2;
 +			w2 -= w;
 +			w4 = w2 * w2;
 +			w -= 1.0 / 2.0;
 +			t = w2 * (w2 - 3.0);
 +			yWeight[0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - yWeight[5];
 +			t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0);
 +			t1 = (-1.0 / 12.0) * w * (t + 4.0);
 +			yWeight[2] = t0 + t1;
 +			yWeight[3] = t0 - t1;
 +			t0 = (1.0 / 16.0) * (9.0 / 5.0 - t);
 +			t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0);
 +			yWeight[1] = t0 + t1;
 +			yWeight[4] = t0 - t1;
 +			break;
 +		default:
 +			// Invalid spline degree
 +			return 0;
 +	}
 +
 +	// apply the mirror boundary conditions
 +	for(k = 0; k <= spline_degree; k++) {
 +		xIndex[k] = (Width == 1L) ? (0L) : ((xIndex[k] < 0L) ?
 +			(-xIndex[k] - Width2 * ((-xIndex[k]) / Width2))
 +			: (xIndex[k] - Width2 * (xIndex[k] / Width2)));
 +		if (Width <= xIndex[k]) {
 +			xIndex[k] = Width2 - xIndex[k];
 +		}
 +		yIndex[k] = (Height == 1L) ? (0L) : ((yIndex[k] < 0L) ?
 +			(-yIndex[k] - Height2 * ((-yIndex[k]) / Height2))
 +			: (yIndex[k] - Height2 * (yIndex[k] / Height2)));
 +		if (Height <= yIndex[k]) {
 +			yIndex[k] = Height2 - yIndex[k];
 +		}
 +	}
 +
 +	// perform interpolation
 +	interpolated = 0.0;
 +	for(j = 0; j <= spline_degree; j++) {
 +		p = Bcoeff + (yIndex[j] * Width);
 +		w = 0.0;
 +		for(i = 0; i <= spline_degree; i++) {
 +			w += xWeight[i] * p[xIndex[i]];
 +		}
 +		interpolated += yWeight[j] * w;
 +	}
 +
 +	return interpolated;
 +}
 +
 +/////////////////////////////////////////////////////////////////////////////////////////////////////////////
 +// FreeImage implementation
 +
 +
 +/** 
 + Image translation and rotation using B-Splines.
 +
 + @param dib Input 8-bit greyscale image
 + @param angle Output image rotation in degree
 + @param x_shift Output image horizontal shift
 + @param y_shift Output image vertical shift
 + @param x_origin Output origin of the x-axis
 + @param y_origin Output origin of the y-axis
 + @param spline_degree Output degree of the B-spline model
 + @param use_mask Whether or not to mask the image
 + @return Returns the translated & rotated dib if successful, returns NULL otherwise
 +*/
 +static FIBITMAP * 
 +Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, long spline_degree, BOOL use_mask) {
 +	double	*ImageRasterArray;
 +	double	p;
 +	double	a11, a12, a21, a22;
 +	double	x0, y0, x1, y1;
 +	long	x, y;
 +	long	spline;
 +	bool	bResult;
 +
 +	int bpp = FreeImage_GetBPP(dib);
 +	if(bpp != 8) {
 +		return NULL;
 +	}
 +	
 +	int width = FreeImage_GetWidth(dib);
 +	int height = FreeImage_GetHeight(dib);
 +	switch(spline_degree) {
 +		case ROTATE_QUADRATIC:
 +			spline = 2L;	// Use splines of degree 2 (quadratic interpolation)
 +			break;
 +		case ROTATE_CUBIC:
 +			spline = 3L;	// Use splines of degree 3 (cubic interpolation)
 +			break;
 +		case ROTATE_QUARTIC:
 +			spline = 4L;	// Use splines of degree 4 (quartic interpolation)
 +			break;
 +		case ROTATE_QUINTIC:
 +			spline = 5L;	// Use splines of degree 5 (quintic interpolation)
 +			break;
 +		default:
 +			spline = 3L;
 +	}
 +
 +	// allocate output image
 +	FIBITMAP *dst = FreeImage_Allocate(width, height, bpp);
 +	if(!dst)
 +		return NULL;
 +	// buid a grey scale palette
 +	RGBQUAD *pal = FreeImage_GetPalette(dst);
 +	for(int i = 0; i < 256; i++) {
 +		pal[i].rgbRed = pal[i].rgbGreen = pal[i].rgbBlue = (BYTE)i;
 +	}
 +
 +	// allocate a temporary array
 +	ImageRasterArray = (double*)malloc(width * height * sizeof(double));
 +	if(!ImageRasterArray) {
 +		FreeImage_Unload(dst);
 +		return NULL;
 +	}
 +	// copy data samples
 +	for(y = 0; y < height; y++) {
 +		double *pImage = &ImageRasterArray[y*width];
 +		BYTE *src_bits = FreeImage_GetScanLine(dib, height-1-y);
 +
 +		for(x = 0; x < width; x++) {
 +			pImage[x] = (double)src_bits[x];
 +		}
 +	}
 +
 +	// convert between a representation based on image samples
 +	// and a representation based on image B-spline coefficients
 +	bResult = SamplesToCoefficients(ImageRasterArray, width, height, spline);
 +	if(!bResult) {
 +		FreeImage_Unload(dst);
 +		free(ImageRasterArray);
 +		return NULL;
 +	}
 +
 +	// prepare the geometry
 +	angle *= PI / 180.0;
 +	a11 = cos(angle);
 +	a12 = -sin(angle);
 +	a21 = sin(angle);
 +	a22 = cos(angle);
 +	x0 = a11 * (x_shift + x_origin) + a12 * (y_shift + y_origin);
 +	y0 = a21 * (x_shift + x_origin) + a22 * (y_shift + y_origin);
 +	x_shift = x_origin - x0;
 +	y_shift = y_origin - y0;
 +
 +	// visit all pixels of the output image and assign their value
 +	for(y = 0; y < height; y++) {
 +		BYTE *dst_bits = FreeImage_GetScanLine(dst, height-1-y);
 +		
 +		x0 = a12 * (double)y + x_shift;
 +		y0 = a22 * (double)y + y_shift;
 +
 +		for(x = 0; x < width; x++) {
 +			x1 = x0 + a11 * (double)x;
 +			y1 = y0 + a21 * (double)x;
 +			if(use_mask) {
 +				if((x1 <= -0.5) || (((double)width - 0.5) <= x1) || (y1 <= -0.5) || (((double)height - 0.5) <= y1)) {
 +					p = 0;
 +				}
 +				else {
 +					p = (double)InterpolatedValue(ImageRasterArray, width, height, x1, y1, spline);
 +				}
 +			}
 +			else {
 +				p = (double)InterpolatedValue(ImageRasterArray, width, height, x1, y1, spline);
 +			}
 +			// clamp and convert to BYTE
 +			dst_bits[x] = (BYTE)MIN(MAX((int)0, (int)(p + 0.5)), (int)255);
 +		}
 +	}
 +
 +	// free working array and return
 +	free(ImageRasterArray);
 +
 +	return dst;
 +}
 +
 +/** 
 + Image rotation using a 3rd order (cubic) B-Splines.
 +
 + @param dib Input dib (8, 24 or 32-bit)
 + @param angle Output image rotation
 + @param x_shift Output image horizontal shift
 + @param y_shift Output image vertical shift
 + @param x_origin Output origin of the x-axis
 + @param y_origin Output origin of the y-axis
 + @param use_mask Whether or not to mask the image
 + @return Returns the translated & rotated dib if successful, returns NULL otherwise
 +*/
 +FIBITMAP * DLL_CALLCONV 
 +FreeImage_RotateEx(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, BOOL use_mask) {
 +
 +	int x, y, bpp;
 +	int channel, nb_channels;
 +	BYTE *src_bits, *dst_bits;
 +	FIBITMAP *src8 = NULL, *dst8 = NULL, *dst = NULL;
 +
 +	if(!FreeImage_HasPixels(dib)) return NULL;
 +
 +	try {
 +
 +		bpp = FreeImage_GetBPP(dib);
 +
 +		if(bpp == 8) {
 +			FIBITMAP *dst_8 = Rotate8Bit(dib, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask);
 +			if(dst_8) {
 +				// copy metadata from src to dst
 +				FreeImage_CloneMetadata(dst_8, dib);
 +			}
 +			return dst_8;
 +		}
 +		if((bpp == 24) || (bpp == 32)) {
 +			// allocate dst image
 +			int width  = FreeImage_GetWidth(dib);
 +			int height = FreeImage_GetHeight(dib);
 +			if( bpp == 24 ) {
 +				dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK);
 +			} else {
 +				dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK);
 +			}
 +			if(!dst) throw(1);
 +
 +			// allocate a temporary 8-bit dib (no need to build a palette)
 +			src8 = FreeImage_Allocate(width, height, 8);
 +			if(!src8) throw(1);
 +
 +			// process each channel separately
 +			// -------------------------------
 +			nb_channels = (bpp / 8);
 +
 +			for(channel = 0; channel < nb_channels; channel++) {
 +				// extract channel from source dib
 +				for(y = 0; y < height; y++) {
 +					src_bits = FreeImage_GetScanLine(dib, y);
 +					dst_bits = FreeImage_GetScanLine(src8, y);
 +					for(x = 0; x < width; x++) {
 +						dst_bits[x] = src_bits[channel];
 +						src_bits += nb_channels;
 +					}
 +				}
 +
 +				// process channel
 +				dst8 = Rotate8Bit(src8, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask);
 +				if(!dst8) throw(1);
 +
 +				// insert channel to destination dib
 +				for(y = 0; y < height; y++) {
 +					src_bits = FreeImage_GetScanLine(dst8, y);
 +					dst_bits = FreeImage_GetScanLine(dst, y);
 +					for(x = 0; x < width; x++) {
 +						dst_bits[channel] = src_bits[x];
 +						dst_bits += nb_channels;
 +					}
 +				}
 +
 +				FreeImage_Unload(dst8);
 +			}
 +
 +			FreeImage_Unload(src8);
 +
 +			// copy metadata from src to dst
 +			FreeImage_CloneMetadata(dst, dib);
 +			
 +			return dst;
 +		}
 +	} catch(int) {
 +		if(src8) FreeImage_Unload(src8);
 +		if(dst8) FreeImage_Unload(dst8);
 +		if(dst)  FreeImage_Unload(dst);
 +	}
 +
 +	return NULL;
 +}
  | 
