diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jcarith.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jcarith.c | 937 | 
1 files changed, 0 insertions, 937 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jcarith.c b/plugins/FreeImage/Source/LibJPEG/jcarith.c deleted file mode 100644 index 033f67069e..0000000000 --- a/plugins/FreeImage/Source/LibJPEG/jcarith.c +++ /dev/null @@ -1,937 +0,0 @@ -/* - * jcarith.c - * - * Developed 1997-2011 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains portable arithmetic entropy encoding routines for JPEG - * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). - * - * Both sequential and progressive modes are supported in this single module. - * - * Suspension is not currently supported in this module. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Expanded entropy encoder object for arithmetic encoding. */ - -typedef struct { -  struct jpeg_entropy_encoder pub; /* public fields */ - -  INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ -  INT32 a;               /* A register, normalized size of coding interval */ -  INT32 sc;        /* counter for stacked 0xFF values which might overflow */ -  INT32 zc;          /* counter for pending 0x00 output values which might * -                          * be discarded at the end ("Pacman" termination) */ -  int ct;  /* bit shift counter, determines when next byte will be written */ -  int buffer;                /* buffer for most recent output byte != 0xFF */ - -  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ -  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ - -  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ -  int next_restart_num;		/* next restart number to write (0-7) */ - -  /* Pointers to statistics areas (these workspaces have image lifespan) */ -  unsigned char * dc_stats[NUM_ARITH_TBLS]; -  unsigned char * ac_stats[NUM_ARITH_TBLS]; - -  /* Statistics bin for coding with fixed probability 0.5 */ -  unsigned char fixed_bin[4]; -} arith_entropy_encoder; - -typedef arith_entropy_encoder * arith_entropy_ptr; - -/* The following two definitions specify the allocation chunk size - * for the statistics area. - * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least - * 49 statistics bins for DC, and 245 statistics bins for AC coding. - * - * We use a compact representation with 1 byte per statistics bin, - * thus the numbers directly represent byte sizes. - * This 1 byte per statistics bin contains the meaning of the MPS - * (more probable symbol) in the highest bit (mask 0x80), and the - * index into the probability estimation state machine table - * in the lower bits (mask 0x7F). - */ - -#define DC_STAT_BINS 64 -#define AC_STAT_BINS 256 - -/* NOTE: Uncomment the following #define if you want to use the - * given formula for calculating the AC conditioning parameter Kx - * for spectral selection progressive coding in section G.1.3.2 - * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). - * Although the spec and P&M authors claim that this "has proven - * to give good results for 8 bit precision samples", I'm not - * convinced yet that this is really beneficial. - * Early tests gave only very marginal compression enhancements - * (a few - around 5 or so - bytes even for very large files), - * which would turn out rather negative if we'd suppress the - * DAC (Define Arithmetic Conditioning) marker segments for - * the default parameters in the future. - * Note that currently the marker writing module emits 12-byte - * DAC segments for a full-component scan in a color image. - * This is not worth worrying about IMHO. However, since the - * spec defines the default values to be used if the tables - * are omitted (unlike Huffman tables, which are required - * anyway), one might optimize this behaviour in the future, - * and then it would be disadvantageous to use custom tables if - * they don't provide sufficient gain to exceed the DAC size. - * - * On the other hand, I'd consider it as a reasonable result - * that the conditioning has no significant influence on the - * compression performance. This means that the basic - * statistical model is already rather stable. - * - * Thus, at the moment, we use the default conditioning values - * anyway, and do not use the custom formula. - * -#define CALCULATE_SPECTRAL_CONDITIONING - */ - -/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. - * We assume that int right shift is unsigned if INT32 right shift is, - * which should be safe. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define ISHIFT_TEMPS	int ishift_temp; -#define IRIGHT_SHIFT(x,shft)  \ -	((ishift_temp = (x)) < 0 ? \ -	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ -	 (ishift_temp >> (shft))) -#else -#define ISHIFT_TEMPS -#define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) -#endif - - -LOCAL(void) -emit_byte (int val, j_compress_ptr cinfo) -/* Write next output byte; we do not support suspension in this module. */ -{ -  struct jpeg_destination_mgr * dest = cinfo->dest; - -  *dest->next_output_byte++ = (JOCTET) val; -  if (--dest->free_in_buffer == 0) -    if (! (*dest->empty_output_buffer) (cinfo)) -      ERREXIT(cinfo, JERR_CANT_SUSPEND); -} - - -/* - * Finish up at the end of an arithmetic-compressed scan. - */ - -METHODDEF(void) -finish_pass (j_compress_ptr cinfo) -{ -  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; -  INT32 temp; - -  /* Section D.1.8: Termination of encoding */ - -  /* Find the e->c in the coding interval with the largest -   * number of trailing zero bits */ -  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) -    e->c = temp + 0x8000L; -  else -    e->c = temp; -  /* Send remaining bytes to output */ -  e->c <<= e->ct; -  if (e->c & 0xF8000000L) { -    /* One final overflow has to be handled */ -    if (e->buffer >= 0) { -      if (e->zc) -	do emit_byte(0x00, cinfo); -	while (--e->zc); -      emit_byte(e->buffer + 1, cinfo); -      if (e->buffer + 1 == 0xFF) -	emit_byte(0x00, cinfo); -    } -    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ -    e->sc = 0; -  } else { -    if (e->buffer == 0) -      ++e->zc; -    else if (e->buffer >= 0) { -      if (e->zc) -	do emit_byte(0x00, cinfo); -	while (--e->zc); -      emit_byte(e->buffer, cinfo); -    } -    if (e->sc) { -      if (e->zc) -	do emit_byte(0x00, cinfo); -	while (--e->zc); -      do { -	emit_byte(0xFF, cinfo); -	emit_byte(0x00, cinfo); -      } while (--e->sc); -    } -  } -  /* Output final bytes only if they are not 0x00 */ -  if (e->c & 0x7FFF800L) { -    if (e->zc)  /* output final pending zero bytes */ -      do emit_byte(0x00, cinfo); -      while (--e->zc); -    emit_byte((e->c >> 19) & 0xFF, cinfo); -    if (((e->c >> 19) & 0xFF) == 0xFF) -      emit_byte(0x00, cinfo); -    if (e->c & 0x7F800L) { -      emit_byte((e->c >> 11) & 0xFF, cinfo); -      if (((e->c >> 11) & 0xFF) == 0xFF) -	emit_byte(0x00, cinfo); -    } -  } -} - - -/* - * The core arithmetic encoding routine (common in JPEG and JBIG). - * This needs to go as fast as possible. - * Machine-dependent optimization facilities - * are not utilized in this portable implementation. - * However, this code should be fairly efficient and - * may be a good base for further optimizations anyway. - * - * Parameter 'val' to be encoded may be 0 or 1 (binary decision). - * - * Note: I've added full "Pacman" termination support to the - * byte output routines, which is equivalent to the optional - * Discard_final_zeros procedure (Figure D.15) in the spec. - * Thus, we always produce the shortest possible output - * stream compliant to the spec (no trailing zero bytes, - * except for FF stuffing). - * - * I've also introduced a new scheme for accessing - * the probability estimation state machine table, - * derived from Markus Kuhn's JBIG implementation. - */ - -LOCAL(void) -arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)  -{ -  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; -  register unsigned char nl, nm; -  register INT32 qe, temp; -  register int sv; - -  /* Fetch values from our compact representation of Table D.3(D.2): -   * Qe values and probability estimation state machine -   */ -  sv = *st; -  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */ -  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */ -  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */ - -  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ -  e->a -= qe; -  if (val != (sv >> 7)) { -    /* Encode the less probable symbol */ -    if (e->a >= qe) { -      /* If the interval size (qe) for the less probable symbol (LPS) -       * is larger than the interval size for the MPS, then exchange -       * the two symbols for coding efficiency, otherwise code the LPS -       * as usual: */ -      e->c += e->a; -      e->a = qe; -    } -    *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */ -  } else { -    /* Encode the more probable symbol */ -    if (e->a >= 0x8000L) -      return;  /* A >= 0x8000 -> ready, no renormalization required */ -    if (e->a < qe) { -      /* If the interval size (qe) for the less probable symbol (LPS) -       * is larger than the interval size for the MPS, then exchange -       * the two symbols for coding efficiency: */ -      e->c += e->a; -      e->a = qe; -    } -    *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */ -  } - -  /* Renormalization & data output per section D.1.6 */ -  do { -    e->a <<= 1; -    e->c <<= 1; -    if (--e->ct == 0) { -      /* Another byte is ready for output */ -      temp = e->c >> 19; -      if (temp > 0xFF) { -	/* Handle overflow over all stacked 0xFF bytes */ -	if (e->buffer >= 0) { -	  if (e->zc) -	    do emit_byte(0x00, cinfo); -	    while (--e->zc); -	  emit_byte(e->buffer + 1, cinfo); -	  if (e->buffer + 1 == 0xFF) -	    emit_byte(0x00, cinfo); -	} -	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ -	e->sc = 0; -	/* Note: The 3 spacer bits in the C register guarantee -	 * that the new buffer byte can't be 0xFF here -	 * (see page 160 in the P&M JPEG book). */ -	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */ -      } else if (temp == 0xFF) { -	++e->sc;  /* stack 0xFF byte (which might overflow later) */ -      } else { -	/* Output all stacked 0xFF bytes, they will not overflow any more */ -	if (e->buffer == 0) -	  ++e->zc; -	else if (e->buffer >= 0) { -	  if (e->zc) -	    do emit_byte(0x00, cinfo); -	    while (--e->zc); -	  emit_byte(e->buffer, cinfo); -	} -	if (e->sc) { -	  if (e->zc) -	    do emit_byte(0x00, cinfo); -	    while (--e->zc); -	  do { -	    emit_byte(0xFF, cinfo); -	    emit_byte(0x00, cinfo); -	  } while (--e->sc); -	} -	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */ -      } -      e->c &= 0x7FFFFL; -      e->ct += 8; -    } -  } while (e->a < 0x8000L); -} - - -/* - * Emit a restart marker & resynchronize predictions. - */ - -LOCAL(void) -emit_restart (j_compress_ptr cinfo, int restart_num) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  int ci; -  jpeg_component_info * compptr; - -  finish_pass(cinfo); - -  emit_byte(0xFF, cinfo); -  emit_byte(JPEG_RST0 + restart_num, cinfo); - -  /* Re-initialize statistics areas */ -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -    compptr = cinfo->cur_comp_info[ci]; -    /* DC needs no table for refinement scan */ -    if (cinfo->Ss == 0 && cinfo->Ah == 0) { -      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); -      /* Reset DC predictions to 0 */ -      entropy->last_dc_val[ci] = 0; -      entropy->dc_context[ci] = 0; -    } -    /* AC needs no table when not present */ -    if (cinfo->Se) { -      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); -    } -  } - -  /* Reset arithmetic encoding variables */ -  entropy->c = 0; -  entropy->a = 0x10000L; -  entropy->sc = 0; -  entropy->zc = 0; -  entropy->ct = 11; -  entropy->buffer = -1;  /* empty */ -} - - -/* - * MCU encoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  JBLOCKROW block; -  unsigned char *st; -  int blkn, ci, tbl; -  int v, v2, m; -  ISHIFT_TEMPS - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      emit_restart(cinfo, entropy->next_restart_num); -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  /* Encode the MCU data blocks */ -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    block = MCU_data[blkn]; -    ci = cinfo->MCU_membership[blkn]; -    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; - -    /* Compute the DC value after the required point transform by Al. -     * This is simply an arithmetic right shift. -     */ -    m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); - -    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ - -    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ -    st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; - -    /* Figure F.4: Encode_DC_DIFF */ -    if ((v = m - entropy->last_dc_val[ci]) == 0) { -      arith_encode(cinfo, st, 0); -      entropy->dc_context[ci] = 0;	/* zero diff category */ -    } else { -      entropy->last_dc_val[ci] = m; -      arith_encode(cinfo, st, 1); -      /* Figure F.6: Encoding nonzero value v */ -      /* Figure F.7: Encoding the sign of v */ -      if (v > 0) { -	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */ -	st += 2;			/* Table F.4: SP = S0 + 2 */ -	entropy->dc_context[ci] = 4;	/* small positive diff category */ -      } else { -	v = -v; -	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */ -	st += 3;			/* Table F.4: SN = S0 + 3 */ -	entropy->dc_context[ci] = 8;	/* small negative diff category */ -      } -      /* Figure F.8: Encoding the magnitude category of v */ -      m = 0; -      if (v -= 1) { -	arith_encode(cinfo, st, 1); -	m = 1; -	v2 = v; -	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ -	while (v2 >>= 1) { -	  arith_encode(cinfo, st, 1); -	  m <<= 1; -	  st += 1; -	} -      } -      arith_encode(cinfo, st, 0); -      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ -      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) -	entropy->dc_context[ci] = 0;	/* zero diff category */ -      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) -	entropy->dc_context[ci] += 8;	/* large diff category */ -      /* Figure F.9: Encoding the magnitude bit pattern of v */ -      st += 14; -      while (m >>= 1) -	arith_encode(cinfo, st, (m & v) ? 1 : 0); -    } -  } - -  return TRUE; -} - - -/* - * MCU encoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  JBLOCKROW block; -  unsigned char *st; -  int tbl, k, ke; -  int v, v2, m; -  const int * natural_order; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      emit_restart(cinfo, entropy->next_restart_num); -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  natural_order = cinfo->natural_order; - -  /* Encode the MCU data block */ -  block = MCU_data[0]; -  tbl = cinfo->cur_comp_info[0]->ac_tbl_no; - -  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ - -  /* Establish EOB (end-of-block) index */ -  for (ke = cinfo->Se; ke > 0; ke--) -    /* We must apply the point transform by Al.  For AC coefficients this -     * is an integer division with rounding towards 0.  To do this portably -     * in C, we shift after obtaining the absolute value. -     */ -    if ((v = (*block)[natural_order[ke]]) >= 0) { -      if (v >>= cinfo->Al) break; -    } else { -      v = -v; -      if (v >>= cinfo->Al) break; -    } - -  /* Figure F.5: Encode_AC_Coefficients */ -  for (k = cinfo->Ss; k <= ke; k++) { -    st = entropy->ac_stats[tbl] + 3 * (k - 1); -    arith_encode(cinfo, st, 0);		/* EOB decision */ -    for (;;) { -      if ((v = (*block)[natural_order[k]]) >= 0) { -	if (v >>= cinfo->Al) { -	  arith_encode(cinfo, st + 1, 1); -	  arith_encode(cinfo, entropy->fixed_bin, 0); -	  break; -	} -      } else { -	v = -v; -	if (v >>= cinfo->Al) { -	  arith_encode(cinfo, st + 1, 1); -	  arith_encode(cinfo, entropy->fixed_bin, 1); -	  break; -	} -      } -      arith_encode(cinfo, st + 1, 0); st += 3; k++; -    } -    st += 2; -    /* Figure F.8: Encoding the magnitude category of v */ -    m = 0; -    if (v -= 1) { -      arith_encode(cinfo, st, 1); -      m = 1; -      v2 = v; -      if (v2 >>= 1) { -	arith_encode(cinfo, st, 1); -	m <<= 1; -	st = entropy->ac_stats[tbl] + -	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); -	while (v2 >>= 1) { -	  arith_encode(cinfo, st, 1); -	  m <<= 1; -	  st += 1; -	} -      } -    } -    arith_encode(cinfo, st, 0); -    /* Figure F.9: Encoding the magnitude bit pattern of v */ -    st += 14; -    while (m >>= 1) -      arith_encode(cinfo, st, (m & v) ? 1 : 0); -  } -  /* Encode EOB decision only if k <= cinfo->Se */ -  if (k <= cinfo->Se) { -    st = entropy->ac_stats[tbl] + 3 * (k - 1); -    arith_encode(cinfo, st, 1); -  } - -  return TRUE; -} - - -/* - * MCU encoding for DC successive approximation refinement scan. - */ - -METHODDEF(boolean) -encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  unsigned char *st; -  int Al, blkn; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      emit_restart(cinfo, entropy->next_restart_num); -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  st = entropy->fixed_bin;	/* use fixed probability estimation */ -  Al = cinfo->Al; - -  /* Encode the MCU data blocks */ -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    /* We simply emit the Al'th bit of the DC coefficient value. */ -    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); -  } - -  return TRUE; -} - - -/* - * MCU encoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  JBLOCKROW block; -  unsigned char *st; -  int tbl, k, ke, kex; -  int v; -  const int * natural_order; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      emit_restart(cinfo, entropy->next_restart_num); -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  natural_order = cinfo->natural_order; - -  /* Encode the MCU data block */ -  block = MCU_data[0]; -  tbl = cinfo->cur_comp_info[0]->ac_tbl_no; - -  /* Section G.1.3.3: Encoding of AC coefficients */ - -  /* Establish EOB (end-of-block) index */ -  for (ke = cinfo->Se; ke > 0; ke--) -    /* We must apply the point transform by Al.  For AC coefficients this -     * is an integer division with rounding towards 0.  To do this portably -     * in C, we shift after obtaining the absolute value. -     */ -    if ((v = (*block)[natural_order[ke]]) >= 0) { -      if (v >>= cinfo->Al) break; -    } else { -      v = -v; -      if (v >>= cinfo->Al) break; -    } - -  /* Establish EOBx (previous stage end-of-block) index */ -  for (kex = ke; kex > 0; kex--) -    if ((v = (*block)[natural_order[kex]]) >= 0) { -      if (v >>= cinfo->Ah) break; -    } else { -      v = -v; -      if (v >>= cinfo->Ah) break; -    } - -  /* Figure G.10: Encode_AC_Coefficients_SA */ -  for (k = cinfo->Ss; k <= ke; k++) { -    st = entropy->ac_stats[tbl] + 3 * (k - 1); -    if (k > kex) -      arith_encode(cinfo, st, 0);	/* EOB decision */ -    for (;;) { -      if ((v = (*block)[natural_order[k]]) >= 0) { -	if (v >>= cinfo->Al) { -	  if (v >> 1)			/* previously nonzero coef */ -	    arith_encode(cinfo, st + 2, (v & 1)); -	  else {			/* newly nonzero coef */ -	    arith_encode(cinfo, st + 1, 1); -	    arith_encode(cinfo, entropy->fixed_bin, 0); -	  } -	  break; -	} -      } else { -	v = -v; -	if (v >>= cinfo->Al) { -	  if (v >> 1)			/* previously nonzero coef */ -	    arith_encode(cinfo, st + 2, (v & 1)); -	  else {			/* newly nonzero coef */ -	    arith_encode(cinfo, st + 1, 1); -	    arith_encode(cinfo, entropy->fixed_bin, 1); -	  } -	  break; -	} -      } -      arith_encode(cinfo, st + 1, 0); st += 3; k++; -    } -  } -  /* Encode EOB decision only if k <= cinfo->Se */ -  if (k <= cinfo->Se) { -    st = entropy->ac_stats[tbl] + 3 * (k - 1); -    arith_encode(cinfo, st, 1); -  } - -  return TRUE; -} - - -/* - * Encode and output one MCU's worth of arithmetic-compressed coefficients. - */ - -METHODDEF(boolean) -encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  jpeg_component_info * compptr; -  JBLOCKROW block; -  unsigned char *st; -  int blkn, ci, tbl, k, ke; -  int v, v2, m; -  const int * natural_order; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      emit_restart(cinfo, entropy->next_restart_num); -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  natural_order = cinfo->natural_order; - -  /* Encode the MCU data blocks */ -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    block = MCU_data[blkn]; -    ci = cinfo->MCU_membership[blkn]; -    compptr = cinfo->cur_comp_info[ci]; - -    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ - -    tbl = compptr->dc_tbl_no; - -    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ -    st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; - -    /* Figure F.4: Encode_DC_DIFF */ -    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { -      arith_encode(cinfo, st, 0); -      entropy->dc_context[ci] = 0;	/* zero diff category */ -    } else { -      entropy->last_dc_val[ci] = (*block)[0]; -      arith_encode(cinfo, st, 1); -      /* Figure F.6: Encoding nonzero value v */ -      /* Figure F.7: Encoding the sign of v */ -      if (v > 0) { -	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */ -	st += 2;			/* Table F.4: SP = S0 + 2 */ -	entropy->dc_context[ci] = 4;	/* small positive diff category */ -      } else { -	v = -v; -	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */ -	st += 3;			/* Table F.4: SN = S0 + 3 */ -	entropy->dc_context[ci] = 8;	/* small negative diff category */ -      } -      /* Figure F.8: Encoding the magnitude category of v */ -      m = 0; -      if (v -= 1) { -	arith_encode(cinfo, st, 1); -	m = 1; -	v2 = v; -	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ -	while (v2 >>= 1) { -	  arith_encode(cinfo, st, 1); -	  m <<= 1; -	  st += 1; -	} -      } -      arith_encode(cinfo, st, 0); -      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ -      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) -	entropy->dc_context[ci] = 0;	/* zero diff category */ -      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) -	entropy->dc_context[ci] += 8;	/* large diff category */ -      /* Figure F.9: Encoding the magnitude bit pattern of v */ -      st += 14; -      while (m >>= 1) -	arith_encode(cinfo, st, (m & v) ? 1 : 0); -    } - -    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ - -    if ((ke = cinfo->lim_Se) == 0) continue; -    tbl = compptr->ac_tbl_no; - -    /* Establish EOB (end-of-block) index */ -    do { -      if ((*block)[natural_order[ke]]) break; -    } while (--ke); - -    /* Figure F.5: Encode_AC_Coefficients */ -    for (k = 0; k < ke;) { -      st = entropy->ac_stats[tbl] + 3 * k; -      arith_encode(cinfo, st, 0);	/* EOB decision */ -      while ((v = (*block)[natural_order[++k]]) == 0) { -	arith_encode(cinfo, st + 1, 0); -	st += 3; -      } -      arith_encode(cinfo, st + 1, 1); -      /* Figure F.6: Encoding nonzero value v */ -      /* Figure F.7: Encoding the sign of v */ -      if (v > 0) { -	arith_encode(cinfo, entropy->fixed_bin, 0); -      } else { -	v = -v; -	arith_encode(cinfo, entropy->fixed_bin, 1); -      } -      st += 2; -      /* Figure F.8: Encoding the magnitude category of v */ -      m = 0; -      if (v -= 1) { -	arith_encode(cinfo, st, 1); -	m = 1; -	v2 = v; -	if (v2 >>= 1) { -	  arith_encode(cinfo, st, 1); -	  m <<= 1; -	  st = entropy->ac_stats[tbl] + -	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); -	  while (v2 >>= 1) { -	    arith_encode(cinfo, st, 1); -	    m <<= 1; -	    st += 1; -	  } -	} -      } -      arith_encode(cinfo, st, 0); -      /* Figure F.9: Encoding the magnitude bit pattern of v */ -      st += 14; -      while (m >>= 1) -	arith_encode(cinfo, st, (m & v) ? 1 : 0); -    } -    /* Encode EOB decision only if k < cinfo->lim_Se */ -    if (k < cinfo->lim_Se) { -      st = entropy->ac_stats[tbl] + 3 * k; -      arith_encode(cinfo, st, 1); -    } -  } - -  return TRUE; -} - - -/* - * Initialize for an arithmetic-compressed scan. - */ - -METHODDEF(void) -start_pass (j_compress_ptr cinfo, boolean gather_statistics) -{ -  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; -  int ci, tbl; -  jpeg_component_info * compptr; - -  if (gather_statistics) -    /* Make sure to avoid that in the master control logic! -     * We are fully adaptive here and need no extra -     * statistics gathering pass! -     */ -    ERREXIT(cinfo, JERR_NOT_COMPILED); - -  /* We assume jcmaster.c already validated the progressive scan parameters. */ - -  /* Select execution routines */ -  if (cinfo->progressive_mode) { -    if (cinfo->Ah == 0) { -      if (cinfo->Ss == 0) -	entropy->pub.encode_mcu = encode_mcu_DC_first; -      else -	entropy->pub.encode_mcu = encode_mcu_AC_first; -    } else { -      if (cinfo->Ss == 0) -	entropy->pub.encode_mcu = encode_mcu_DC_refine; -      else -	entropy->pub.encode_mcu = encode_mcu_AC_refine; -    } -  } else -    entropy->pub.encode_mcu = encode_mcu; - -  /* Allocate & initialize requested statistics areas */ -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -    compptr = cinfo->cur_comp_info[ci]; -    /* DC needs no table for refinement scan */ -    if (cinfo->Ss == 0 && cinfo->Ah == 0) { -      tbl = compptr->dc_tbl_no; -      if (tbl < 0 || tbl >= NUM_ARITH_TBLS) -	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); -      if (entropy->dc_stats[tbl] == NULL) -	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) -	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); -      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); -      /* Initialize DC predictions to 0 */ -      entropy->last_dc_val[ci] = 0; -      entropy->dc_context[ci] = 0; -    } -    /* AC needs no table when not present */ -    if (cinfo->Se) { -      tbl = compptr->ac_tbl_no; -      if (tbl < 0 || tbl >= NUM_ARITH_TBLS) -	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); -      if (entropy->ac_stats[tbl] == NULL) -	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) -	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); -      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); -#ifdef CALCULATE_SPECTRAL_CONDITIONING -      if (cinfo->progressive_mode) -	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ -	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); -#endif -    } -  } - -  /* Initialize arithmetic encoding variables */ -  entropy->c = 0; -  entropy->a = 0x10000L; -  entropy->sc = 0; -  entropy->zc = 0; -  entropy->ct = 11; -  entropy->buffer = -1;  /* empty */ - -  /* Initialize restart stuff */ -  entropy->restarts_to_go = cinfo->restart_interval; -  entropy->next_restart_num = 0; -} - - -/* - * Module initialization routine for arithmetic entropy encoding. - */ - -GLOBAL(void) -jinit_arith_encoder (j_compress_ptr cinfo) -{ -  arith_entropy_ptr entropy; -  int i; - -  entropy = (arith_entropy_ptr) -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				SIZEOF(arith_entropy_encoder)); -  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; -  entropy->pub.start_pass = start_pass; -  entropy->pub.finish_pass = finish_pass; - -  /* Mark tables unallocated */ -  for (i = 0; i < NUM_ARITH_TBLS; i++) { -    entropy->dc_stats[i] = NULL; -    entropy->ac_stats[i] = NULL; -  } - -  /* Initialize index for fixed probability estimation */ -  entropy->fixed_bin[0] = 113; -}  | 
