diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jcdctmgr.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jcdctmgr.c | 964 | 
1 files changed, 482 insertions, 482 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jcdctmgr.c b/plugins/FreeImage/Source/LibJPEG/jcdctmgr.c index 550b1a6e7c..0bbdbb685d 100644 --- a/plugins/FreeImage/Source/LibJPEG/jcdctmgr.c +++ b/plugins/FreeImage/Source/LibJPEG/jcdctmgr.c @@ -1,482 +1,482 @@ -/*
 - * jcdctmgr.c
 - *
 - * Copyright (C) 1994-1996, Thomas G. Lane.
 - * This file is part of the Independent JPEG Group's software.
 - * For conditions of distribution and use, see the accompanying README file.
 - *
 - * This file contains the forward-DCT management logic.
 - * This code selects a particular DCT implementation to be used,
 - * and it performs related housekeeping chores including coefficient
 - * quantization.
 - */
 -
 -#define JPEG_INTERNALS
 -#include "jinclude.h"
 -#include "jpeglib.h"
 -#include "jdct.h"		/* Private declarations for DCT subsystem */
 -
 -
 -/* Private subobject for this module */
 -
 -typedef struct {
 -  struct jpeg_forward_dct pub;	/* public fields */
 -
 -  /* Pointer to the DCT routine actually in use */
 -  forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
 -
 -  /* The actual post-DCT divisors --- not identical to the quant table
 -   * entries, because of scaling (especially for an unnormalized DCT).
 -   * Each table is given in normal array order.
 -   */
 -  DCTELEM * divisors[NUM_QUANT_TBLS];
 -
 -#ifdef DCT_FLOAT_SUPPORTED
 -  /* Same as above for the floating-point case. */
 -  float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
 -  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
 -#endif
 -} my_fdct_controller;
 -
 -typedef my_fdct_controller * my_fdct_ptr;
 -
 -
 -/* The current scaled-DCT routines require ISLOW-style divisor tables,
 - * so be sure to compile that code if either ISLOW or SCALING is requested.
 - */
 -#ifdef DCT_ISLOW_SUPPORTED
 -#define PROVIDE_ISLOW_TABLES
 -#else
 -#ifdef DCT_SCALING_SUPPORTED
 -#define PROVIDE_ISLOW_TABLES
 -#endif
 -#endif
 -
 -
 -/*
 - * Perform forward DCT on one or more blocks of a component.
 - *
 - * The input samples are taken from the sample_data[] array starting at
 - * position start_row/start_col, and moving to the right for any additional
 - * blocks. The quantized coefficients are returned in coef_blocks[].
 - */
 -
 -METHODDEF(void)
 -forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
 -	     JDIMENSION start_row, JDIMENSION start_col,
 -	     JDIMENSION num_blocks)
 -/* This version is used for integer DCT implementations. */
 -{
 -  /* This routine is heavily used, so it's worth coding it tightly. */
 -  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
 -  forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
 -  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
 -  DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
 -  JDIMENSION bi;
 -
 -  sample_data += start_row;	/* fold in the vertical offset once */
 -
 -  for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
 -    /* Perform the DCT */
 -    (*do_dct) (workspace, sample_data, start_col);
 -
 -    /* Quantize/descale the coefficients, and store into coef_blocks[] */
 -    { register DCTELEM temp, qval;
 -      register int i;
 -      register JCOEFPTR output_ptr = coef_blocks[bi];
 -
 -      for (i = 0; i < DCTSIZE2; i++) {
 -	qval = divisors[i];
 -	temp = workspace[i];
 -	/* Divide the coefficient value by qval, ensuring proper rounding.
 -	 * Since C does not specify the direction of rounding for negative
 -	 * quotients, we have to force the dividend positive for portability.
 -	 *
 -	 * In most files, at least half of the output values will be zero
 -	 * (at default quantization settings, more like three-quarters...)
 -	 * so we should ensure that this case is fast.  On many machines,
 -	 * a comparison is enough cheaper than a divide to make a special test
 -	 * a win.  Since both inputs will be nonnegative, we need only test
 -	 * for a < b to discover whether a/b is 0.
 -	 * If your machine's division is fast enough, define FAST_DIVIDE.
 -	 */
 -#ifdef FAST_DIVIDE
 -#define DIVIDE_BY(a,b)	a /= b
 -#else
 -#define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
 -#endif
 -	if (temp < 0) {
 -	  temp = -temp;
 -	  temp += qval>>1;	/* for rounding */
 -	  DIVIDE_BY(temp, qval);
 -	  temp = -temp;
 -	} else {
 -	  temp += qval>>1;	/* for rounding */
 -	  DIVIDE_BY(temp, qval);
 -	}
 -	output_ptr[i] = (JCOEF) temp;
 -      }
 -    }
 -  }
 -}
 -
 -
 -#ifdef DCT_FLOAT_SUPPORTED
 -
 -METHODDEF(void)
 -forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
 -		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
 -		   JDIMENSION start_row, JDIMENSION start_col,
 -		   JDIMENSION num_blocks)
 -/* This version is used for floating-point DCT implementations. */
 -{
 -  /* This routine is heavily used, so it's worth coding it tightly. */
 -  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
 -  float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
 -  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
 -  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
 -  JDIMENSION bi;
 -
 -  sample_data += start_row;	/* fold in the vertical offset once */
 -
 -  for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
 -    /* Perform the DCT */
 -    (*do_dct) (workspace, sample_data, start_col);
 -
 -    /* Quantize/descale the coefficients, and store into coef_blocks[] */
 -    { register FAST_FLOAT temp;
 -      register int i;
 -      register JCOEFPTR output_ptr = coef_blocks[bi];
 -
 -      for (i = 0; i < DCTSIZE2; i++) {
 -	/* Apply the quantization and scaling factor */
 -	temp = workspace[i] * divisors[i];
 -	/* Round to nearest integer.
 -	 * Since C does not specify the direction of rounding for negative
 -	 * quotients, we have to force the dividend positive for portability.
 -	 * The maximum coefficient size is +-16K (for 12-bit data), so this
 -	 * code should work for either 16-bit or 32-bit ints.
 -	 */
 -	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
 -      }
 -    }
 -  }
 -}
 -
 -#endif /* DCT_FLOAT_SUPPORTED */
 -
 -
 -/*
 - * Initialize for a processing pass.
 - * Verify that all referenced Q-tables are present, and set up
 - * the divisor table for each one.
 - * In the current implementation, DCT of all components is done during
 - * the first pass, even if only some components will be output in the
 - * first scan.  Hence all components should be examined here.
 - */
 -
 -METHODDEF(void)
 -start_pass_fdctmgr (j_compress_ptr cinfo)
 -{
 -  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
 -  int ci, qtblno, i;
 -  jpeg_component_info *compptr;
 -  int method = 0;
 -  JQUANT_TBL * qtbl;
 -  DCTELEM * dtbl;
 -
 -  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 -       ci++, compptr++) {
 -    /* Select the proper DCT routine for this component's scaling */
 -    switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
 -#ifdef DCT_SCALING_SUPPORTED
 -    case ((1 << 8) + 1):
 -      fdct->do_dct[ci] = jpeg_fdct_1x1;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((2 << 8) + 2):
 -      fdct->do_dct[ci] = jpeg_fdct_2x2;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((3 << 8) + 3):
 -      fdct->do_dct[ci] = jpeg_fdct_3x3;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((4 << 8) + 4):
 -      fdct->do_dct[ci] = jpeg_fdct_4x4;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((5 << 8) + 5):
 -      fdct->do_dct[ci] = jpeg_fdct_5x5;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((6 << 8) + 6):
 -      fdct->do_dct[ci] = jpeg_fdct_6x6;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((7 << 8) + 7):
 -      fdct->do_dct[ci] = jpeg_fdct_7x7;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((9 << 8) + 9):
 -      fdct->do_dct[ci] = jpeg_fdct_9x9;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((10 << 8) + 10):
 -      fdct->do_dct[ci] = jpeg_fdct_10x10;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((11 << 8) + 11):
 -      fdct->do_dct[ci] = jpeg_fdct_11x11;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((12 << 8) + 12):
 -      fdct->do_dct[ci] = jpeg_fdct_12x12;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((13 << 8) + 13):
 -      fdct->do_dct[ci] = jpeg_fdct_13x13;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((14 << 8) + 14):
 -      fdct->do_dct[ci] = jpeg_fdct_14x14;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((15 << 8) + 15):
 -      fdct->do_dct[ci] = jpeg_fdct_15x15;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((16 << 8) + 16):
 -      fdct->do_dct[ci] = jpeg_fdct_16x16;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((16 << 8) + 8):
 -      fdct->do_dct[ci] = jpeg_fdct_16x8;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((14 << 8) + 7):
 -      fdct->do_dct[ci] = jpeg_fdct_14x7;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((12 << 8) + 6):
 -      fdct->do_dct[ci] = jpeg_fdct_12x6;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((10 << 8) + 5):
 -      fdct->do_dct[ci] = jpeg_fdct_10x5;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((8 << 8) + 4):
 -      fdct->do_dct[ci] = jpeg_fdct_8x4;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((6 << 8) + 3):
 -      fdct->do_dct[ci] = jpeg_fdct_6x3;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((4 << 8) + 2):
 -      fdct->do_dct[ci] = jpeg_fdct_4x2;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((2 << 8) + 1):
 -      fdct->do_dct[ci] = jpeg_fdct_2x1;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((8 << 8) + 16):
 -      fdct->do_dct[ci] = jpeg_fdct_8x16;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((7 << 8) + 14):
 -      fdct->do_dct[ci] = jpeg_fdct_7x14;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((6 << 8) + 12):
 -      fdct->do_dct[ci] = jpeg_fdct_6x12;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((5 << 8) + 10):
 -      fdct->do_dct[ci] = jpeg_fdct_5x10;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((4 << 8) + 8):
 -      fdct->do_dct[ci] = jpeg_fdct_4x8;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((3 << 8) + 6):
 -      fdct->do_dct[ci] = jpeg_fdct_3x6;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((2 << 8) + 4):
 -      fdct->do_dct[ci] = jpeg_fdct_2x4;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -    case ((1 << 8) + 2):
 -      fdct->do_dct[ci] = jpeg_fdct_1x2;
 -      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
 -      break;
 -#endif
 -    case ((DCTSIZE << 8) + DCTSIZE):
 -      switch (cinfo->dct_method) {
 -#ifdef DCT_ISLOW_SUPPORTED
 -      case JDCT_ISLOW:
 -	fdct->do_dct[ci] = jpeg_fdct_islow;
 -	method = JDCT_ISLOW;
 -	break;
 -#endif
 -#ifdef DCT_IFAST_SUPPORTED
 -      case JDCT_IFAST:
 -	fdct->do_dct[ci] = jpeg_fdct_ifast;
 -	method = JDCT_IFAST;
 -	break;
 -#endif
 -#ifdef DCT_FLOAT_SUPPORTED
 -      case JDCT_FLOAT:
 -	fdct->do_float_dct[ci] = jpeg_fdct_float;
 -	method = JDCT_FLOAT;
 -	break;
 -#endif
 -      default:
 -	ERREXIT(cinfo, JERR_NOT_COMPILED);
 -	break;
 -      }
 -      break;
 -    default:
 -      ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
 -	       compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
 -      break;
 -    }
 -    qtblno = compptr->quant_tbl_no;
 -    /* Make sure specified quantization table is present */
 -    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
 -	cinfo->quant_tbl_ptrs[qtblno] == NULL)
 -      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
 -    qtbl = cinfo->quant_tbl_ptrs[qtblno];
 -    /* Compute divisors for this quant table */
 -    /* We may do this more than once for same table, but it's not a big deal */
 -    switch (method) {
 -#ifdef PROVIDE_ISLOW_TABLES
 -    case JDCT_ISLOW:
 -      /* For LL&M IDCT method, divisors are equal to raw quantization
 -       * coefficients multiplied by 8 (to counteract scaling).
 -       */
 -      if (fdct->divisors[qtblno] == NULL) {
 -	fdct->divisors[qtblno] = (DCTELEM *)
 -	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				      DCTSIZE2 * SIZEOF(DCTELEM));
 -      }
 -      dtbl = fdct->divisors[qtblno];
 -      for (i = 0; i < DCTSIZE2; i++) {
 -	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
 -      }
 -      fdct->pub.forward_DCT[ci] = forward_DCT;
 -      break;
 -#endif
 -#ifdef DCT_IFAST_SUPPORTED
 -    case JDCT_IFAST:
 -      {
 -	/* For AA&N IDCT method, divisors are equal to quantization
 -	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
 -	 *   scalefactor[0] = 1
 -	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
 -	 * We apply a further scale factor of 8.
 -	 */
 -#define CONST_BITS 14
 -	static const INT16 aanscales[DCTSIZE2] = {
 -	  /* precomputed values scaled up by 14 bits */
 -	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
 -	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
 -	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
 -	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
 -	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
 -	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
 -	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
 -	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
 -	};
 -	SHIFT_TEMPS
 -
 -	if (fdct->divisors[qtblno] == NULL) {
 -	  fdct->divisors[qtblno] = (DCTELEM *)
 -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -					DCTSIZE2 * SIZEOF(DCTELEM));
 -	}
 -	dtbl = fdct->divisors[qtblno];
 -	for (i = 0; i < DCTSIZE2; i++) {
 -	  dtbl[i] = (DCTELEM)
 -	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
 -				  (INT32) aanscales[i]),
 -		    CONST_BITS-3);
 -	}
 -      }
 -      fdct->pub.forward_DCT[ci] = forward_DCT;
 -      break;
 -#endif
 -#ifdef DCT_FLOAT_SUPPORTED
 -    case JDCT_FLOAT:
 -      {
 -	/* For float AA&N IDCT method, divisors are equal to quantization
 -	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
 -	 *   scalefactor[0] = 1
 -	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
 -	 * We apply a further scale factor of 8.
 -	 * What's actually stored is 1/divisor so that the inner loop can
 -	 * use a multiplication rather than a division.
 -	 */
 -	FAST_FLOAT * fdtbl;
 -	int row, col;
 -	static const double aanscalefactor[DCTSIZE] = {
 -	  1.0, 1.387039845, 1.306562965, 1.175875602,
 -	  1.0, 0.785694958, 0.541196100, 0.275899379
 -	};
 -
 -	if (fdct->float_divisors[qtblno] == NULL) {
 -	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
 -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -					DCTSIZE2 * SIZEOF(FAST_FLOAT));
 -	}
 -	fdtbl = fdct->float_divisors[qtblno];
 -	i = 0;
 -	for (row = 0; row < DCTSIZE; row++) {
 -	  for (col = 0; col < DCTSIZE; col++) {
 -	    fdtbl[i] = (FAST_FLOAT)
 -	      (1.0 / (((double) qtbl->quantval[i] *
 -		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
 -	    i++;
 -	  }
 -	}
 -      }
 -      fdct->pub.forward_DCT[ci] = forward_DCT_float;
 -      break;
 -#endif
 -    default:
 -      ERREXIT(cinfo, JERR_NOT_COMPILED);
 -      break;
 -    }
 -  }
 -}
 -
 -
 -/*
 - * Initialize FDCT manager.
 - */
 -
 -GLOBAL(void)
 -jinit_forward_dct (j_compress_ptr cinfo)
 -{
 -  my_fdct_ptr fdct;
 -  int i;
 -
 -  fdct = (my_fdct_ptr)
 -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				SIZEOF(my_fdct_controller));
 -  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
 -  fdct->pub.start_pass = start_pass_fdctmgr;
 -
 -  /* Mark divisor tables unallocated */
 -  for (i = 0; i < NUM_QUANT_TBLS; i++) {
 -    fdct->divisors[i] = NULL;
 -#ifdef DCT_FLOAT_SUPPORTED
 -    fdct->float_divisors[i] = NULL;
 -#endif
 -  }
 -}
 +/* + * jcdctmgr.c + * + * Copyright (C) 1994-1996, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the forward-DCT management logic. + * This code selects a particular DCT implementation to be used, + * and it performs related housekeeping chores including coefficient + * quantization. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + + +/* Private subobject for this module */ + +typedef struct { +  struct jpeg_forward_dct pub;	/* public fields */ + +  /* Pointer to the DCT routine actually in use */ +  forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; + +  /* The actual post-DCT divisors --- not identical to the quant table +   * entries, because of scaling (especially for an unnormalized DCT). +   * Each table is given in normal array order. +   */ +  DCTELEM * divisors[NUM_QUANT_TBLS]; + +#ifdef DCT_FLOAT_SUPPORTED +  /* Same as above for the floating-point case. */ +  float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; +  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; +#endif +} my_fdct_controller; + +typedef my_fdct_controller * my_fdct_ptr; + + +/* The current scaled-DCT routines require ISLOW-style divisor tables, + * so be sure to compile that code if either ISLOW or SCALING is requested. + */ +#ifdef DCT_ISLOW_SUPPORTED +#define PROVIDE_ISLOW_TABLES +#else +#ifdef DCT_SCALING_SUPPORTED +#define PROVIDE_ISLOW_TABLES +#endif +#endif + + +/* + * Perform forward DCT on one or more blocks of a component. + * + * The input samples are taken from the sample_data[] array starting at + * position start_row/start_col, and moving to the right for any additional + * blocks. The quantized coefficients are returned in coef_blocks[]. + */ + +METHODDEF(void) +forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, +	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks, +	     JDIMENSION start_row, JDIMENSION start_col, +	     JDIMENSION num_blocks) +/* This version is used for integer DCT implementations. */ +{ +  /* This routine is heavily used, so it's worth coding it tightly. */ +  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; +  forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; +  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; +  DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */ +  JDIMENSION bi; + +  sample_data += start_row;	/* fold in the vertical offset once */ + +  for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { +    /* Perform the DCT */ +    (*do_dct) (workspace, sample_data, start_col); + +    /* Quantize/descale the coefficients, and store into coef_blocks[] */ +    { register DCTELEM temp, qval; +      register int i; +      register JCOEFPTR output_ptr = coef_blocks[bi]; + +      for (i = 0; i < DCTSIZE2; i++) { +	qval = divisors[i]; +	temp = workspace[i]; +	/* Divide the coefficient value by qval, ensuring proper rounding. +	 * Since C does not specify the direction of rounding for negative +	 * quotients, we have to force the dividend positive for portability. +	 * +	 * In most files, at least half of the output values will be zero +	 * (at default quantization settings, more like three-quarters...) +	 * so we should ensure that this case is fast.  On many machines, +	 * a comparison is enough cheaper than a divide to make a special test +	 * a win.  Since both inputs will be nonnegative, we need only test +	 * for a < b to discover whether a/b is 0. +	 * If your machine's division is fast enough, define FAST_DIVIDE. +	 */ +#ifdef FAST_DIVIDE +#define DIVIDE_BY(a,b)	a /= b +#else +#define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0 +#endif +	if (temp < 0) { +	  temp = -temp; +	  temp += qval>>1;	/* for rounding */ +	  DIVIDE_BY(temp, qval); +	  temp = -temp; +	} else { +	  temp += qval>>1;	/* for rounding */ +	  DIVIDE_BY(temp, qval); +	} +	output_ptr[i] = (JCOEF) temp; +      } +    } +  } +} + + +#ifdef DCT_FLOAT_SUPPORTED + +METHODDEF(void) +forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, +		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks, +		   JDIMENSION start_row, JDIMENSION start_col, +		   JDIMENSION num_blocks) +/* This version is used for floating-point DCT implementations. */ +{ +  /* This routine is heavily used, so it's worth coding it tightly. */ +  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; +  float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; +  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; +  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ +  JDIMENSION bi; + +  sample_data += start_row;	/* fold in the vertical offset once */ + +  for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { +    /* Perform the DCT */ +    (*do_dct) (workspace, sample_data, start_col); + +    /* Quantize/descale the coefficients, and store into coef_blocks[] */ +    { register FAST_FLOAT temp; +      register int i; +      register JCOEFPTR output_ptr = coef_blocks[bi]; + +      for (i = 0; i < DCTSIZE2; i++) { +	/* Apply the quantization and scaling factor */ +	temp = workspace[i] * divisors[i]; +	/* Round to nearest integer. +	 * Since C does not specify the direction of rounding for negative +	 * quotients, we have to force the dividend positive for portability. +	 * The maximum coefficient size is +-16K (for 12-bit data), so this +	 * code should work for either 16-bit or 32-bit ints. +	 */ +	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); +      } +    } +  } +} + +#endif /* DCT_FLOAT_SUPPORTED */ + + +/* + * Initialize for a processing pass. + * Verify that all referenced Q-tables are present, and set up + * the divisor table for each one. + * In the current implementation, DCT of all components is done during + * the first pass, even if only some components will be output in the + * first scan.  Hence all components should be examined here. + */ + +METHODDEF(void) +start_pass_fdctmgr (j_compress_ptr cinfo) +{ +  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; +  int ci, qtblno, i; +  jpeg_component_info *compptr; +  int method = 0; +  JQUANT_TBL * qtbl; +  DCTELEM * dtbl; + +  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; +       ci++, compptr++) { +    /* Select the proper DCT routine for this component's scaling */ +    switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { +#ifdef DCT_SCALING_SUPPORTED +    case ((1 << 8) + 1): +      fdct->do_dct[ci] = jpeg_fdct_1x1; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((2 << 8) + 2): +      fdct->do_dct[ci] = jpeg_fdct_2x2; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((3 << 8) + 3): +      fdct->do_dct[ci] = jpeg_fdct_3x3; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((4 << 8) + 4): +      fdct->do_dct[ci] = jpeg_fdct_4x4; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((5 << 8) + 5): +      fdct->do_dct[ci] = jpeg_fdct_5x5; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((6 << 8) + 6): +      fdct->do_dct[ci] = jpeg_fdct_6x6; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((7 << 8) + 7): +      fdct->do_dct[ci] = jpeg_fdct_7x7; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((9 << 8) + 9): +      fdct->do_dct[ci] = jpeg_fdct_9x9; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((10 << 8) + 10): +      fdct->do_dct[ci] = jpeg_fdct_10x10; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((11 << 8) + 11): +      fdct->do_dct[ci] = jpeg_fdct_11x11; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((12 << 8) + 12): +      fdct->do_dct[ci] = jpeg_fdct_12x12; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((13 << 8) + 13): +      fdct->do_dct[ci] = jpeg_fdct_13x13; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((14 << 8) + 14): +      fdct->do_dct[ci] = jpeg_fdct_14x14; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((15 << 8) + 15): +      fdct->do_dct[ci] = jpeg_fdct_15x15; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((16 << 8) + 16): +      fdct->do_dct[ci] = jpeg_fdct_16x16; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((16 << 8) + 8): +      fdct->do_dct[ci] = jpeg_fdct_16x8; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((14 << 8) + 7): +      fdct->do_dct[ci] = jpeg_fdct_14x7; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((12 << 8) + 6): +      fdct->do_dct[ci] = jpeg_fdct_12x6; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((10 << 8) + 5): +      fdct->do_dct[ci] = jpeg_fdct_10x5; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((8 << 8) + 4): +      fdct->do_dct[ci] = jpeg_fdct_8x4; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((6 << 8) + 3): +      fdct->do_dct[ci] = jpeg_fdct_6x3; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((4 << 8) + 2): +      fdct->do_dct[ci] = jpeg_fdct_4x2; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((2 << 8) + 1): +      fdct->do_dct[ci] = jpeg_fdct_2x1; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((8 << 8) + 16): +      fdct->do_dct[ci] = jpeg_fdct_8x16; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((7 << 8) + 14): +      fdct->do_dct[ci] = jpeg_fdct_7x14; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((6 << 8) + 12): +      fdct->do_dct[ci] = jpeg_fdct_6x12; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((5 << 8) + 10): +      fdct->do_dct[ci] = jpeg_fdct_5x10; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((4 << 8) + 8): +      fdct->do_dct[ci] = jpeg_fdct_4x8; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((3 << 8) + 6): +      fdct->do_dct[ci] = jpeg_fdct_3x6; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((2 << 8) + 4): +      fdct->do_dct[ci] = jpeg_fdct_2x4; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +    case ((1 << 8) + 2): +      fdct->do_dct[ci] = jpeg_fdct_1x2; +      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ +      break; +#endif +    case ((DCTSIZE << 8) + DCTSIZE): +      switch (cinfo->dct_method) { +#ifdef DCT_ISLOW_SUPPORTED +      case JDCT_ISLOW: +	fdct->do_dct[ci] = jpeg_fdct_islow; +	method = JDCT_ISLOW; +	break; +#endif +#ifdef DCT_IFAST_SUPPORTED +      case JDCT_IFAST: +	fdct->do_dct[ci] = jpeg_fdct_ifast; +	method = JDCT_IFAST; +	break; +#endif +#ifdef DCT_FLOAT_SUPPORTED +      case JDCT_FLOAT: +	fdct->do_float_dct[ci] = jpeg_fdct_float; +	method = JDCT_FLOAT; +	break; +#endif +      default: +	ERREXIT(cinfo, JERR_NOT_COMPILED); +	break; +      } +      break; +    default: +      ERREXIT2(cinfo, JERR_BAD_DCTSIZE, +	       compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); +      break; +    } +    qtblno = compptr->quant_tbl_no; +    /* Make sure specified quantization table is present */ +    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || +	cinfo->quant_tbl_ptrs[qtblno] == NULL) +      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); +    qtbl = cinfo->quant_tbl_ptrs[qtblno]; +    /* Compute divisors for this quant table */ +    /* We may do this more than once for same table, but it's not a big deal */ +    switch (method) { +#ifdef PROVIDE_ISLOW_TABLES +    case JDCT_ISLOW: +      /* For LL&M IDCT method, divisors are equal to raw quantization +       * coefficients multiplied by 8 (to counteract scaling). +       */ +      if (fdct->divisors[qtblno] == NULL) { +	fdct->divisors[qtblno] = (DCTELEM *) +	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				      DCTSIZE2 * SIZEOF(DCTELEM)); +      } +      dtbl = fdct->divisors[qtblno]; +      for (i = 0; i < DCTSIZE2; i++) { +	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; +      } +      fdct->pub.forward_DCT[ci] = forward_DCT; +      break; +#endif +#ifdef DCT_IFAST_SUPPORTED +    case JDCT_IFAST: +      { +	/* For AA&N IDCT method, divisors are equal to quantization +	 * coefficients scaled by scalefactor[row]*scalefactor[col], where +	 *   scalefactor[0] = 1 +	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 +	 * We apply a further scale factor of 8. +	 */ +#define CONST_BITS 14 +	static const INT16 aanscales[DCTSIZE2] = { +	  /* precomputed values scaled up by 14 bits */ +	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, +	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, +	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, +	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, +	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, +	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, +	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, +	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 +	}; +	SHIFT_TEMPS + +	if (fdct->divisors[qtblno] == NULL) { +	  fdct->divisors[qtblno] = (DCTELEM *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					DCTSIZE2 * SIZEOF(DCTELEM)); +	} +	dtbl = fdct->divisors[qtblno]; +	for (i = 0; i < DCTSIZE2; i++) { +	  dtbl[i] = (DCTELEM) +	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], +				  (INT32) aanscales[i]), +		    CONST_BITS-3); +	} +      } +      fdct->pub.forward_DCT[ci] = forward_DCT; +      break; +#endif +#ifdef DCT_FLOAT_SUPPORTED +    case JDCT_FLOAT: +      { +	/* For float AA&N IDCT method, divisors are equal to quantization +	 * coefficients scaled by scalefactor[row]*scalefactor[col], where +	 *   scalefactor[0] = 1 +	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 +	 * We apply a further scale factor of 8. +	 * What's actually stored is 1/divisor so that the inner loop can +	 * use a multiplication rather than a division. +	 */ +	FAST_FLOAT * fdtbl; +	int row, col; +	static const double aanscalefactor[DCTSIZE] = { +	  1.0, 1.387039845, 1.306562965, 1.175875602, +	  1.0, 0.785694958, 0.541196100, 0.275899379 +	}; + +	if (fdct->float_divisors[qtblno] == NULL) { +	  fdct->float_divisors[qtblno] = (FAST_FLOAT *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					DCTSIZE2 * SIZEOF(FAST_FLOAT)); +	} +	fdtbl = fdct->float_divisors[qtblno]; +	i = 0; +	for (row = 0; row < DCTSIZE; row++) { +	  for (col = 0; col < DCTSIZE; col++) { +	    fdtbl[i] = (FAST_FLOAT) +	      (1.0 / (((double) qtbl->quantval[i] * +		       aanscalefactor[row] * aanscalefactor[col] * 8.0))); +	    i++; +	  } +	} +      } +      fdct->pub.forward_DCT[ci] = forward_DCT_float; +      break; +#endif +    default: +      ERREXIT(cinfo, JERR_NOT_COMPILED); +      break; +    } +  } +} + + +/* + * Initialize FDCT manager. + */ + +GLOBAL(void) +jinit_forward_dct (j_compress_ptr cinfo) +{ +  my_fdct_ptr fdct; +  int i; + +  fdct = (my_fdct_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(my_fdct_controller)); +  cinfo->fdct = (struct jpeg_forward_dct *) fdct; +  fdct->pub.start_pass = start_pass_fdctmgr; + +  /* Mark divisor tables unallocated */ +  for (i = 0; i < NUM_QUANT_TBLS; i++) { +    fdct->divisors[i] = NULL; +#ifdef DCT_FLOAT_SUPPORTED +    fdct->float_divisors[i] = NULL; +#endif +  } +}  | 
