diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jchuff.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jchuff.c | 3152 | 
1 files changed, 1576 insertions, 1576 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jchuff.c b/plugins/FreeImage/Source/LibJPEG/jchuff.c index 4cbab438d5..257d7aa1f5 100644 --- a/plugins/FreeImage/Source/LibJPEG/jchuff.c +++ b/plugins/FreeImage/Source/LibJPEG/jchuff.c @@ -1,1576 +1,1576 @@ -/*
 - * jchuff.c
 - *
 - * Copyright (C) 1991-1997, Thomas G. Lane.
 - * Modified 2006-2009 by Guido Vollbeding.
 - * This file is part of the Independent JPEG Group's software.
 - * For conditions of distribution and use, see the accompanying README file.
 - *
 - * This file contains Huffman entropy encoding routines.
 - * Both sequential and progressive modes are supported in this single module.
 - *
 - * Much of the complexity here has to do with supporting output suspension.
 - * If the data destination module demands suspension, we want to be able to
 - * back up to the start of the current MCU.  To do this, we copy state
 - * variables into local working storage, and update them back to the
 - * permanent JPEG objects only upon successful completion of an MCU.
 - *
 - * We do not support output suspension for the progressive JPEG mode, since
 - * the library currently does not allow multiple-scan files to be written
 - * with output suspension.
 - */
 -
 -#define JPEG_INTERNALS
 -#include "jinclude.h"
 -#include "jpeglib.h"
 -
 -
 -/* The legal range of a DCT coefficient is
 - *  -1024 .. +1023  for 8-bit data;
 - * -16384 .. +16383 for 12-bit data.
 - * Hence the magnitude should always fit in 10 or 14 bits respectively.
 - */
 -
 -#if BITS_IN_JSAMPLE == 8
 -#define MAX_COEF_BITS 10
 -#else
 -#define MAX_COEF_BITS 14
 -#endif
 -
 -/* Derived data constructed for each Huffman table */
 -
 -typedef struct {
 -  unsigned int ehufco[256];	/* code for each symbol */
 -  char ehufsi[256];		/* length of code for each symbol */
 -  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
 -} c_derived_tbl;
 -
 -
 -/* Expanded entropy encoder object for Huffman encoding.
 - *
 - * The savable_state subrecord contains fields that change within an MCU,
 - * but must not be updated permanently until we complete the MCU.
 - */
 -
 -typedef struct {
 -  INT32 put_buffer;		/* current bit-accumulation buffer */
 -  int put_bits;			/* # of bits now in it */
 -  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
 -} savable_state;
 -
 -/* This macro is to work around compilers with missing or broken
 - * structure assignment.  You'll need to fix this code if you have
 - * such a compiler and you change MAX_COMPS_IN_SCAN.
 - */
 -
 -#ifndef NO_STRUCT_ASSIGN
 -#define ASSIGN_STATE(dest,src)  ((dest) = (src))
 -#else
 -#if MAX_COMPS_IN_SCAN == 4
 -#define ASSIGN_STATE(dest,src)  \
 -	((dest).put_buffer = (src).put_buffer, \
 -	 (dest).put_bits = (src).put_bits, \
 -	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
 -	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
 -	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
 -	 (dest).last_dc_val[3] = (src).last_dc_val[3])
 -#endif
 -#endif
 -
 -
 -typedef struct {
 -  struct jpeg_entropy_encoder pub; /* public fields */
 -
 -  savable_state saved;		/* Bit buffer & DC state at start of MCU */
 -
 -  /* These fields are NOT loaded into local working state. */
 -  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 -  int next_restart_num;		/* next restart number to write (0-7) */
 -
 -  /* Pointers to derived tables (these workspaces have image lifespan) */
 -  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 -  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 -
 -  /* Statistics tables for optimization */
 -  long * dc_count_ptrs[NUM_HUFF_TBLS];
 -  long * ac_count_ptrs[NUM_HUFF_TBLS];
 -
 -  /* Following fields used only in progressive mode */
 -
 -  /* Mode flag: TRUE for optimization, FALSE for actual data output */
 -  boolean gather_statistics;
 -
 -  /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
 -   */
 -  JOCTET * next_output_byte;	/* => next byte to write in buffer */
 -  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
 -  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
 -
 -  /* Coding status for AC components */
 -  int ac_tbl_no;		/* the table number of the single component */
 -  unsigned int EOBRUN;		/* run length of EOBs */
 -  unsigned int BE;		/* # of buffered correction bits before MCU */
 -  char * bit_buffer;		/* buffer for correction bits (1 per char) */
 -  /* packing correction bits tightly would save some space but cost time... */
 -} huff_entropy_encoder;
 -
 -typedef huff_entropy_encoder * huff_entropy_ptr;
 -
 -/* Working state while writing an MCU (sequential mode).
 - * This struct contains all the fields that are needed by subroutines.
 - */
 -
 -typedef struct {
 -  JOCTET * next_output_byte;	/* => next byte to write in buffer */
 -  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
 -  savable_state cur;		/* Current bit buffer & DC state */
 -  j_compress_ptr cinfo;		/* dump_buffer needs access to this */
 -} working_state;
 -
 -/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
 - * buffer can hold.  Larger sizes may slightly improve compression, but
 - * 1000 is already well into the realm of overkill.
 - * The minimum safe size is 64 bits.
 - */
 -
 -#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
 -
 -/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
 - * We assume that int right shift is unsigned if INT32 right shift is,
 - * which should be safe.
 - */
 -
 -#ifdef RIGHT_SHIFT_IS_UNSIGNED
 -#define ISHIFT_TEMPS	int ishift_temp;
 -#define IRIGHT_SHIFT(x,shft)  \
 -	((ishift_temp = (x)) < 0 ? \
 -	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
 -	 (ishift_temp >> (shft)))
 -#else
 -#define ISHIFT_TEMPS
 -#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
 -#endif
 -
 -
 -/*
 - * Compute the derived values for a Huffman table.
 - * This routine also performs some validation checks on the table.
 - */
 -
 -LOCAL(void)
 -jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
 -			 c_derived_tbl ** pdtbl)
 -{
 -  JHUFF_TBL *htbl;
 -  c_derived_tbl *dtbl;
 -  int p, i, l, lastp, si, maxsymbol;
 -  char huffsize[257];
 -  unsigned int huffcode[257];
 -  unsigned int code;
 -
 -  /* Note that huffsize[] and huffcode[] are filled in code-length order,
 -   * paralleling the order of the symbols themselves in htbl->huffval[].
 -   */
 -
 -  /* Find the input Huffman table */
 -  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 -  htbl =
 -    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 -  if (htbl == NULL)
 -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 -
 -  /* Allocate a workspace if we haven't already done so. */
 -  if (*pdtbl == NULL)
 -    *pdtbl = (c_derived_tbl *)
 -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				  SIZEOF(c_derived_tbl));
 -  dtbl = *pdtbl;
 -  
 -  /* Figure C.1: make table of Huffman code length for each symbol */
 -
 -  p = 0;
 -  for (l = 1; l <= 16; l++) {
 -    i = (int) htbl->bits[l];
 -    if (i < 0 || p + i > 256)	/* protect against table overrun */
 -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 -    while (i--)
 -      huffsize[p++] = (char) l;
 -  }
 -  huffsize[p] = 0;
 -  lastp = p;
 -  
 -  /* Figure C.2: generate the codes themselves */
 -  /* We also validate that the counts represent a legal Huffman code tree. */
 -
 -  code = 0;
 -  si = huffsize[0];
 -  p = 0;
 -  while (huffsize[p]) {
 -    while (((int) huffsize[p]) == si) {
 -      huffcode[p++] = code;
 -      code++;
 -    }
 -    /* code is now 1 more than the last code used for codelength si; but
 -     * it must still fit in si bits, since no code is allowed to be all ones.
 -     */
 -    if (((INT32) code) >= (((INT32) 1) << si))
 -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 -    code <<= 1;
 -    si++;
 -  }
 -  
 -  /* Figure C.3: generate encoding tables */
 -  /* These are code and size indexed by symbol value */
 -
 -  /* Set all codeless symbols to have code length 0;
 -   * this lets us detect duplicate VAL entries here, and later
 -   * allows emit_bits to detect any attempt to emit such symbols.
 -   */
 -  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
 -
 -  /* This is also a convenient place to check for out-of-range
 -   * and duplicated VAL entries.  We allow 0..255 for AC symbols
 -   * but only 0..15 for DC.  (We could constrain them further
 -   * based on data depth and mode, but this seems enough.)
 -   */
 -  maxsymbol = isDC ? 15 : 255;
 -
 -  for (p = 0; p < lastp; p++) {
 -    i = htbl->huffval[p];
 -    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
 -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 -    dtbl->ehufco[i] = huffcode[p];
 -    dtbl->ehufsi[i] = huffsize[p];
 -  }
 -}
 -
 -
 -/* Outputting bytes to the file.
 - * NB: these must be called only when actually outputting,
 - * that is, entropy->gather_statistics == FALSE.
 - */
 -
 -/* Emit a byte, taking 'action' if must suspend. */
 -#define emit_byte_s(state,val,action)  \
 -	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
 -	  if (--(state)->free_in_buffer == 0)  \
 -	    if (! dump_buffer_s(state))  \
 -	      { action; } }
 -
 -/* Emit a byte */
 -#define emit_byte_e(entropy,val)  \
 -	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
 -	  if (--(entropy)->free_in_buffer == 0)  \
 -	    dump_buffer_e(entropy); }
 -
 -
 -LOCAL(boolean)
 -dump_buffer_s (working_state * state)
 -/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
 -{
 -  struct jpeg_destination_mgr * dest = state->cinfo->dest;
 -
 -  if (! (*dest->empty_output_buffer) (state->cinfo))
 -    return FALSE;
 -  /* After a successful buffer dump, must reset buffer pointers */
 -  state->next_output_byte = dest->next_output_byte;
 -  state->free_in_buffer = dest->free_in_buffer;
 -  return TRUE;
 -}
 -
 -
 -LOCAL(void)
 -dump_buffer_e (huff_entropy_ptr entropy)
 -/* Empty the output buffer; we do not support suspension in this case. */
 -{
 -  struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
 -
 -  if (! (*dest->empty_output_buffer) (entropy->cinfo))
 -    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
 -  /* After a successful buffer dump, must reset buffer pointers */
 -  entropy->next_output_byte = dest->next_output_byte;
 -  entropy->free_in_buffer = dest->free_in_buffer;
 -}
 -
 -
 -/* Outputting bits to the file */
 -
 -/* Only the right 24 bits of put_buffer are used; the valid bits are
 - * left-justified in this part.  At most 16 bits can be passed to emit_bits
 - * in one call, and we never retain more than 7 bits in put_buffer
 - * between calls, so 24 bits are sufficient.
 - */
 -
 -INLINE
 -LOCAL(boolean)
 -emit_bits_s (working_state * state, unsigned int code, int size)
 -/* Emit some bits; return TRUE if successful, FALSE if must suspend */
 -{
 -  /* This routine is heavily used, so it's worth coding tightly. */
 -  register INT32 put_buffer = (INT32) code;
 -  register int put_bits = state->cur.put_bits;
 -
 -  /* if size is 0, caller used an invalid Huffman table entry */
 -  if (size == 0)
 -    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
 -
 -  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
 -  
 -  put_bits += size;		/* new number of bits in buffer */
 -  
 -  put_buffer <<= 24 - put_bits; /* align incoming bits */
 -
 -  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
 -  
 -  while (put_bits >= 8) {
 -    int c = (int) ((put_buffer >> 16) & 0xFF);
 -    
 -    emit_byte_s(state, c, return FALSE);
 -    if (c == 0xFF) {		/* need to stuff a zero byte? */
 -      emit_byte_s(state, 0, return FALSE);
 -    }
 -    put_buffer <<= 8;
 -    put_bits -= 8;
 -  }
 -
 -  state->cur.put_buffer = put_buffer; /* update state variables */
 -  state->cur.put_bits = put_bits;
 -
 -  return TRUE;
 -}
 -
 -
 -INLINE
 -LOCAL(void)
 -emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
 -/* Emit some bits, unless we are in gather mode */
 -{
 -  /* This routine is heavily used, so it's worth coding tightly. */
 -  register INT32 put_buffer = (INT32) code;
 -  register int put_bits = entropy->saved.put_bits;
 -
 -  /* if size is 0, caller used an invalid Huffman table entry */
 -  if (size == 0)
 -    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 -
 -  if (entropy->gather_statistics)
 -    return;			/* do nothing if we're only getting stats */
 -
 -  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
 -  
 -  put_bits += size;		/* new number of bits in buffer */
 -
 -  put_buffer <<= 24 - put_bits; /* align incoming bits */
 -
 -  /* and merge with old buffer contents */
 -  put_buffer |= entropy->saved.put_buffer;
 -
 -  while (put_bits >= 8) {
 -    int c = (int) ((put_buffer >> 16) & 0xFF);
 -
 -    emit_byte_e(entropy, c);
 -    if (c == 0xFF) {		/* need to stuff a zero byte? */
 -      emit_byte_e(entropy, 0);
 -    }
 -    put_buffer <<= 8;
 -    put_bits -= 8;
 -  }
 -
 -  entropy->saved.put_buffer = put_buffer; /* update variables */
 -  entropy->saved.put_bits = put_bits;
 -}
 -
 -
 -LOCAL(boolean)
 -flush_bits_s (working_state * state)
 -{
 -  if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
 -    return FALSE;
 -  state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */
 -  state->cur.put_bits = 0;
 -  return TRUE;
 -}
 -
 -
 -LOCAL(void)
 -flush_bits_e (huff_entropy_ptr entropy)
 -{
 -  emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
 -  entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
 -  entropy->saved.put_bits = 0;
 -}
 -
 -
 -/*
 - * Emit (or just count) a Huffman symbol.
 - */
 -
 -INLINE
 -LOCAL(void)
 -emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
 -{
 -  if (entropy->gather_statistics)
 -    entropy->dc_count_ptrs[tbl_no][symbol]++;
 -  else {
 -    c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
 -    emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 -  }
 -}
 -
 -
 -INLINE
 -LOCAL(void)
 -emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
 -{
 -  if (entropy->gather_statistics)
 -    entropy->ac_count_ptrs[tbl_no][symbol]++;
 -  else {
 -    c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
 -    emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 -  }
 -}
 -
 -
 -/*
 - * Emit bits from a correction bit buffer.
 - */
 -
 -LOCAL(void)
 -emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
 -		    unsigned int nbits)
 -{
 -  if (entropy->gather_statistics)
 -    return;			/* no real work */
 -
 -  while (nbits > 0) {
 -    emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
 -    bufstart++;
 -    nbits--;
 -  }
 -}
 -
 -
 -/*
 - * Emit any pending EOBRUN symbol.
 - */
 -
 -LOCAL(void)
 -emit_eobrun (huff_entropy_ptr entropy)
 -{
 -  register int temp, nbits;
 -
 -  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
 -    temp = entropy->EOBRUN;
 -    nbits = 0;
 -    while ((temp >>= 1))
 -      nbits++;
 -    /* safety check: shouldn't happen given limited correction-bit buffer */
 -    if (nbits > 14)
 -      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 -
 -    emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
 -    if (nbits)
 -      emit_bits_e(entropy, entropy->EOBRUN, nbits);
 -
 -    entropy->EOBRUN = 0;
 -
 -    /* Emit any buffered correction bits */
 -    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
 -    entropy->BE = 0;
 -  }
 -}
 -
 -
 -/*
 - * Emit a restart marker & resynchronize predictions.
 - */
 -
 -LOCAL(boolean)
 -emit_restart_s (working_state * state, int restart_num)
 -{
 -  int ci;
 -
 -  if (! flush_bits_s(state))
 -    return FALSE;
 -
 -  emit_byte_s(state, 0xFF, return FALSE);
 -  emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
 -
 -  /* Re-initialize DC predictions to 0 */
 -  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
 -    state->cur.last_dc_val[ci] = 0;
 -
 -  /* The restart counter is not updated until we successfully write the MCU. */
 -
 -  return TRUE;
 -}
 -
 -
 -LOCAL(void)
 -emit_restart_e (huff_entropy_ptr entropy, int restart_num)
 -{
 -  int ci;
 -
 -  emit_eobrun(entropy);
 -
 -  if (! entropy->gather_statistics) {
 -    flush_bits_e(entropy);
 -    emit_byte_e(entropy, 0xFF);
 -    emit_byte_e(entropy, JPEG_RST0 + restart_num);
 -  }
 -
 -  if (entropy->cinfo->Ss == 0) {
 -    /* Re-initialize DC predictions to 0 */
 -    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
 -      entropy->saved.last_dc_val[ci] = 0;
 -  } else {
 -    /* Re-initialize all AC-related fields to 0 */
 -    entropy->EOBRUN = 0;
 -    entropy->BE = 0;
 -  }
 -}
 -
 -
 -/*
 - * MCU encoding for DC initial scan (either spectral selection,
 - * or first pass of successive approximation).
 - */
 -
 -METHODDEF(boolean)
 -encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  register int temp, temp2;
 -  register int nbits;
 -  int blkn, ci;
 -  int Al = cinfo->Al;
 -  JBLOCKROW block;
 -  jpeg_component_info * compptr;
 -  ISHIFT_TEMPS
 -
 -  entropy->next_output_byte = cinfo->dest->next_output_byte;
 -  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 -
 -  /* Emit restart marker if needed */
 -  if (cinfo->restart_interval)
 -    if (entropy->restarts_to_go == 0)
 -      emit_restart_e(entropy, entropy->next_restart_num);
 -
 -  /* Encode the MCU data blocks */
 -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -    block = MCU_data[blkn];
 -    ci = cinfo->MCU_membership[blkn];
 -    compptr = cinfo->cur_comp_info[ci];
 -
 -    /* Compute the DC value after the required point transform by Al.
 -     * This is simply an arithmetic right shift.
 -     */
 -    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
 -
 -    /* DC differences are figured on the point-transformed values. */
 -    temp = temp2 - entropy->saved.last_dc_val[ci];
 -    entropy->saved.last_dc_val[ci] = temp2;
 -
 -    /* Encode the DC coefficient difference per section G.1.2.1 */
 -    temp2 = temp;
 -    if (temp < 0) {
 -      temp = -temp;		/* temp is abs value of input */
 -      /* For a negative input, want temp2 = bitwise complement of abs(input) */
 -      /* This code assumes we are on a two's complement machine */
 -      temp2--;
 -    }
 -    
 -    /* Find the number of bits needed for the magnitude of the coefficient */
 -    nbits = 0;
 -    while (temp) {
 -      nbits++;
 -      temp >>= 1;
 -    }
 -    /* Check for out-of-range coefficient values.
 -     * Since we're encoding a difference, the range limit is twice as much.
 -     */
 -    if (nbits > MAX_COEF_BITS+1)
 -      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 -    
 -    /* Count/emit the Huffman-coded symbol for the number of bits */
 -    emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
 -    
 -    /* Emit that number of bits of the value, if positive, */
 -    /* or the complement of its magnitude, if negative. */
 -    if (nbits)			/* emit_bits rejects calls with size 0 */
 -      emit_bits_e(entropy, (unsigned int) temp2, nbits);
 -  }
 -
 -  cinfo->dest->next_output_byte = entropy->next_output_byte;
 -  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 -
 -  /* Update restart-interval state too */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0) {
 -      entropy->restarts_to_go = cinfo->restart_interval;
 -      entropy->next_restart_num++;
 -      entropy->next_restart_num &= 7;
 -    }
 -    entropy->restarts_to_go--;
 -  }
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * MCU encoding for AC initial scan (either spectral selection,
 - * or first pass of successive approximation).
 - */
 -
 -METHODDEF(boolean)
 -encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  register int temp, temp2;
 -  register int nbits;
 -  register int r, k;
 -  int Se, Al;
 -  const int * natural_order;
 -  JBLOCKROW block;
 -
 -  entropy->next_output_byte = cinfo->dest->next_output_byte;
 -  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 -
 -  /* Emit restart marker if needed */
 -  if (cinfo->restart_interval)
 -    if (entropy->restarts_to_go == 0)
 -      emit_restart_e(entropy, entropy->next_restart_num);
 -
 -  Se = cinfo->Se;
 -  Al = cinfo->Al;
 -  natural_order = cinfo->natural_order;
 -
 -  /* Encode the MCU data block */
 -  block = MCU_data[0];
 -
 -  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
 -  
 -  r = 0;			/* r = run length of zeros */
 -   
 -  for (k = cinfo->Ss; k <= Se; k++) {
 -    if ((temp = (*block)[natural_order[k]]) == 0) {
 -      r++;
 -      continue;
 -    }
 -    /* We must apply the point transform by Al.  For AC coefficients this
 -     * is an integer division with rounding towards 0.  To do this portably
 -     * in C, we shift after obtaining the absolute value; so the code is
 -     * interwoven with finding the abs value (temp) and output bits (temp2).
 -     */
 -    if (temp < 0) {
 -      temp = -temp;		/* temp is abs value of input */
 -      temp >>= Al;		/* apply the point transform */
 -      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
 -      temp2 = ~temp;
 -    } else {
 -      temp >>= Al;		/* apply the point transform */
 -      temp2 = temp;
 -    }
 -    /* Watch out for case that nonzero coef is zero after point transform */
 -    if (temp == 0) {
 -      r++;
 -      continue;
 -    }
 -
 -    /* Emit any pending EOBRUN */
 -    if (entropy->EOBRUN > 0)
 -      emit_eobrun(entropy);
 -    /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 -    while (r > 15) {
 -      emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 -      r -= 16;
 -    }
 -
 -    /* Find the number of bits needed for the magnitude of the coefficient */
 -    nbits = 1;			/* there must be at least one 1 bit */
 -    while ((temp >>= 1))
 -      nbits++;
 -    /* Check for out-of-range coefficient values */
 -    if (nbits > MAX_COEF_BITS)
 -      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 -
 -    /* Count/emit Huffman symbol for run length / number of bits */
 -    emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
 -
 -    /* Emit that number of bits of the value, if positive, */
 -    /* or the complement of its magnitude, if negative. */
 -    emit_bits_e(entropy, (unsigned int) temp2, nbits);
 -
 -    r = 0;			/* reset zero run length */
 -  }
 -
 -  if (r > 0) {			/* If there are trailing zeroes, */
 -    entropy->EOBRUN++;		/* count an EOB */
 -    if (entropy->EOBRUN == 0x7FFF)
 -      emit_eobrun(entropy);	/* force it out to avoid overflow */
 -  }
 -
 -  cinfo->dest->next_output_byte = entropy->next_output_byte;
 -  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 -
 -  /* Update restart-interval state too */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0) {
 -      entropy->restarts_to_go = cinfo->restart_interval;
 -      entropy->next_restart_num++;
 -      entropy->next_restart_num &= 7;
 -    }
 -    entropy->restarts_to_go--;
 -  }
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * MCU encoding for DC successive approximation refinement scan.
 - * Note: we assume such scans can be multi-component, although the spec
 - * is not very clear on the point.
 - */
 -
 -METHODDEF(boolean)
 -encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  register int temp;
 -  int blkn;
 -  int Al = cinfo->Al;
 -  JBLOCKROW block;
 -
 -  entropy->next_output_byte = cinfo->dest->next_output_byte;
 -  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 -
 -  /* Emit restart marker if needed */
 -  if (cinfo->restart_interval)
 -    if (entropy->restarts_to_go == 0)
 -      emit_restart_e(entropy, entropy->next_restart_num);
 -
 -  /* Encode the MCU data blocks */
 -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -    block = MCU_data[blkn];
 -
 -    /* We simply emit the Al'th bit of the DC coefficient value. */
 -    temp = (*block)[0];
 -    emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
 -  }
 -
 -  cinfo->dest->next_output_byte = entropy->next_output_byte;
 -  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 -
 -  /* Update restart-interval state too */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0) {
 -      entropy->restarts_to_go = cinfo->restart_interval;
 -      entropy->next_restart_num++;
 -      entropy->next_restart_num &= 7;
 -    }
 -    entropy->restarts_to_go--;
 -  }
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * MCU encoding for AC successive approximation refinement scan.
 - */
 -
 -METHODDEF(boolean)
 -encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  register int temp;
 -  register int r, k;
 -  int EOB;
 -  char *BR_buffer;
 -  unsigned int BR;
 -  int Se, Al;
 -  const int * natural_order;
 -  JBLOCKROW block;
 -  int absvalues[DCTSIZE2];
 -
 -  entropy->next_output_byte = cinfo->dest->next_output_byte;
 -  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 -
 -  /* Emit restart marker if needed */
 -  if (cinfo->restart_interval)
 -    if (entropy->restarts_to_go == 0)
 -      emit_restart_e(entropy, entropy->next_restart_num);
 -
 -  Se = cinfo->Se;
 -  Al = cinfo->Al;
 -  natural_order = cinfo->natural_order;
 -
 -  /* Encode the MCU data block */
 -  block = MCU_data[0];
 -
 -  /* It is convenient to make a pre-pass to determine the transformed
 -   * coefficients' absolute values and the EOB position.
 -   */
 -  EOB = 0;
 -  for (k = cinfo->Ss; k <= Se; k++) {
 -    temp = (*block)[natural_order[k]];
 -    /* We must apply the point transform by Al.  For AC coefficients this
 -     * is an integer division with rounding towards 0.  To do this portably
 -     * in C, we shift after obtaining the absolute value.
 -     */
 -    if (temp < 0)
 -      temp = -temp;		/* temp is abs value of input */
 -    temp >>= Al;		/* apply the point transform */
 -    absvalues[k] = temp;	/* save abs value for main pass */
 -    if (temp == 1)
 -      EOB = k;			/* EOB = index of last newly-nonzero coef */
 -  }
 -
 -  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
 -  
 -  r = 0;			/* r = run length of zeros */
 -  BR = 0;			/* BR = count of buffered bits added now */
 -  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
 -
 -  for (k = cinfo->Ss; k <= Se; k++) {
 -    if ((temp = absvalues[k]) == 0) {
 -      r++;
 -      continue;
 -    }
 -
 -    /* Emit any required ZRLs, but not if they can be folded into EOB */
 -    while (r > 15 && k <= EOB) {
 -      /* emit any pending EOBRUN and the BE correction bits */
 -      emit_eobrun(entropy);
 -      /* Emit ZRL */
 -      emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 -      r -= 16;
 -      /* Emit buffered correction bits that must be associated with ZRL */
 -      emit_buffered_bits(entropy, BR_buffer, BR);
 -      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 -      BR = 0;
 -    }
 -
 -    /* If the coef was previously nonzero, it only needs a correction bit.
 -     * NOTE: a straight translation of the spec's figure G.7 would suggest
 -     * that we also need to test r > 15.  But if r > 15, we can only get here
 -     * if k > EOB, which implies that this coefficient is not 1.
 -     */
 -    if (temp > 1) {
 -      /* The correction bit is the next bit of the absolute value. */
 -      BR_buffer[BR++] = (char) (temp & 1);
 -      continue;
 -    }
 -
 -    /* Emit any pending EOBRUN and the BE correction bits */
 -    emit_eobrun(entropy);
 -
 -    /* Count/emit Huffman symbol for run length / number of bits */
 -    emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
 -
 -    /* Emit output bit for newly-nonzero coef */
 -    temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
 -    emit_bits_e(entropy, (unsigned int) temp, 1);
 -
 -    /* Emit buffered correction bits that must be associated with this code */
 -    emit_buffered_bits(entropy, BR_buffer, BR);
 -    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 -    BR = 0;
 -    r = 0;			/* reset zero run length */
 -  }
 -
 -  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
 -    entropy->EOBRUN++;		/* count an EOB */
 -    entropy->BE += BR;		/* concat my correction bits to older ones */
 -    /* We force out the EOB if we risk either:
 -     * 1. overflow of the EOB counter;
 -     * 2. overflow of the correction bit buffer during the next MCU.
 -     */
 -    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
 -      emit_eobrun(entropy);
 -  }
 -
 -  cinfo->dest->next_output_byte = entropy->next_output_byte;
 -  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 -
 -  /* Update restart-interval state too */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0) {
 -      entropy->restarts_to_go = cinfo->restart_interval;
 -      entropy->next_restart_num++;
 -      entropy->next_restart_num &= 7;
 -    }
 -    entropy->restarts_to_go--;
 -  }
 -
 -  return TRUE;
 -}
 -
 -
 -/* Encode a single block's worth of coefficients */
 -
 -LOCAL(boolean)
 -encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
 -		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
 -{
 -  register int temp, temp2;
 -  register int nbits;
 -  register int k, r, i;
 -  int Se = state->cinfo->lim_Se;
 -  const int * natural_order = state->cinfo->natural_order;
 -
 -  /* Encode the DC coefficient difference per section F.1.2.1 */
 -
 -  temp = temp2 = block[0] - last_dc_val;
 -
 -  if (temp < 0) {
 -    temp = -temp;		/* temp is abs value of input */
 -    /* For a negative input, want temp2 = bitwise complement of abs(input) */
 -    /* This code assumes we are on a two's complement machine */
 -    temp2--;
 -  }
 -
 -  /* Find the number of bits needed for the magnitude of the coefficient */
 -  nbits = 0;
 -  while (temp) {
 -    nbits++;
 -    temp >>= 1;
 -  }
 -  /* Check for out-of-range coefficient values.
 -   * Since we're encoding a difference, the range limit is twice as much.
 -   */
 -  if (nbits > MAX_COEF_BITS+1)
 -    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 -
 -  /* Emit the Huffman-coded symbol for the number of bits */
 -  if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
 -    return FALSE;
 -
 -  /* Emit that number of bits of the value, if positive, */
 -  /* or the complement of its magnitude, if negative. */
 -  if (nbits)			/* emit_bits rejects calls with size 0 */
 -    if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 -      return FALSE;
 -
 -  /* Encode the AC coefficients per section F.1.2.2 */
 -
 -  r = 0;			/* r = run length of zeros */
 -
 -  for (k = 1; k <= Se; k++) {
 -    if ((temp = block[natural_order[k]]) == 0) {
 -      r++;
 -    } else {
 -      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 -      while (r > 15) {
 -	if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
 -	  return FALSE;
 -	r -= 16;
 -      }
 -
 -      temp2 = temp;
 -      if (temp < 0) {
 -	temp = -temp;		/* temp is abs value of input */
 -	/* This code assumes we are on a two's complement machine */
 -	temp2--;
 -      }
 -
 -      /* Find the number of bits needed for the magnitude of the coefficient */
 -      nbits = 1;		/* there must be at least one 1 bit */
 -      while ((temp >>= 1))
 -	nbits++;
 -      /* Check for out-of-range coefficient values */
 -      if (nbits > MAX_COEF_BITS)
 -	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 -
 -      /* Emit Huffman symbol for run length / number of bits */
 -      i = (r << 4) + nbits;
 -      if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
 -	return FALSE;
 -
 -      /* Emit that number of bits of the value, if positive, */
 -      /* or the complement of its magnitude, if negative. */
 -      if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 -	return FALSE;
 -
 -      r = 0;
 -    }
 -  }
 -
 -  /* If the last coef(s) were zero, emit an end-of-block code */
 -  if (r > 0)
 -    if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
 -      return FALSE;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Encode and output one MCU's worth of Huffman-compressed coefficients.
 - */
 -
 -METHODDEF(boolean)
 -encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  working_state state;
 -  int blkn, ci;
 -  jpeg_component_info * compptr;
 -
 -  /* Load up working state */
 -  state.next_output_byte = cinfo->dest->next_output_byte;
 -  state.free_in_buffer = cinfo->dest->free_in_buffer;
 -  ASSIGN_STATE(state.cur, entropy->saved);
 -  state.cinfo = cinfo;
 -
 -  /* Emit restart marker if needed */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! emit_restart_s(&state, entropy->next_restart_num))
 -	return FALSE;
 -  }
 -
 -  /* Encode the MCU data blocks */
 -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -    ci = cinfo->MCU_membership[blkn];
 -    compptr = cinfo->cur_comp_info[ci];
 -    if (! encode_one_block(&state,
 -			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
 -			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
 -			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
 -      return FALSE;
 -    /* Update last_dc_val */
 -    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
 -  }
 -
 -  /* Completed MCU, so update state */
 -  cinfo->dest->next_output_byte = state.next_output_byte;
 -  cinfo->dest->free_in_buffer = state.free_in_buffer;
 -  ASSIGN_STATE(entropy->saved, state.cur);
 -
 -  /* Update restart-interval state too */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0) {
 -      entropy->restarts_to_go = cinfo->restart_interval;
 -      entropy->next_restart_num++;
 -      entropy->next_restart_num &= 7;
 -    }
 -    entropy->restarts_to_go--;
 -  }
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Finish up at the end of a Huffman-compressed scan.
 - */
 -
 -METHODDEF(void)
 -finish_pass_huff (j_compress_ptr cinfo)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  working_state state;
 -
 -  if (cinfo->progressive_mode) {
 -    entropy->next_output_byte = cinfo->dest->next_output_byte;
 -    entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 -
 -    /* Flush out any buffered data */
 -    emit_eobrun(entropy);
 -    flush_bits_e(entropy);
 -
 -    cinfo->dest->next_output_byte = entropy->next_output_byte;
 -    cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 -  } else {
 -    /* Load up working state ... flush_bits needs it */
 -    state.next_output_byte = cinfo->dest->next_output_byte;
 -    state.free_in_buffer = cinfo->dest->free_in_buffer;
 -    ASSIGN_STATE(state.cur, entropy->saved);
 -    state.cinfo = cinfo;
 -
 -    /* Flush out the last data */
 -    if (! flush_bits_s(&state))
 -      ERREXIT(cinfo, JERR_CANT_SUSPEND);
 -
 -    /* Update state */
 -    cinfo->dest->next_output_byte = state.next_output_byte;
 -    cinfo->dest->free_in_buffer = state.free_in_buffer;
 -    ASSIGN_STATE(entropy->saved, state.cur);
 -  }
 -}
 -
 -
 -/*
 - * Huffman coding optimization.
 - *
 - * We first scan the supplied data and count the number of uses of each symbol
 - * that is to be Huffman-coded. (This process MUST agree with the code above.)
 - * Then we build a Huffman coding tree for the observed counts.
 - * Symbols which are not needed at all for the particular image are not
 - * assigned any code, which saves space in the DHT marker as well as in
 - * the compressed data.
 - */
 -
 -
 -/* Process a single block's worth of coefficients */
 -
 -LOCAL(void)
 -htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
 -		 long dc_counts[], long ac_counts[])
 -{
 -  register int temp;
 -  register int nbits;
 -  register int k, r;
 -  int Se = cinfo->lim_Se;
 -  const int * natural_order = cinfo->natural_order;
 -  
 -  /* Encode the DC coefficient difference per section F.1.2.1 */
 -  
 -  temp = block[0] - last_dc_val;
 -  if (temp < 0)
 -    temp = -temp;
 -  
 -  /* Find the number of bits needed for the magnitude of the coefficient */
 -  nbits = 0;
 -  while (temp) {
 -    nbits++;
 -    temp >>= 1;
 -  }
 -  /* Check for out-of-range coefficient values.
 -   * Since we're encoding a difference, the range limit is twice as much.
 -   */
 -  if (nbits > MAX_COEF_BITS+1)
 -    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 -
 -  /* Count the Huffman symbol for the number of bits */
 -  dc_counts[nbits]++;
 -  
 -  /* Encode the AC coefficients per section F.1.2.2 */
 -  
 -  r = 0;			/* r = run length of zeros */
 -  
 -  for (k = 1; k <= Se; k++) {
 -    if ((temp = block[natural_order[k]]) == 0) {
 -      r++;
 -    } else {
 -      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 -      while (r > 15) {
 -	ac_counts[0xF0]++;
 -	r -= 16;
 -      }
 -      
 -      /* Find the number of bits needed for the magnitude of the coefficient */
 -      if (temp < 0)
 -	temp = -temp;
 -      
 -      /* Find the number of bits needed for the magnitude of the coefficient */
 -      nbits = 1;		/* there must be at least one 1 bit */
 -      while ((temp >>= 1))
 -	nbits++;
 -      /* Check for out-of-range coefficient values */
 -      if (nbits > MAX_COEF_BITS)
 -	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 -      
 -      /* Count Huffman symbol for run length / number of bits */
 -      ac_counts[(r << 4) + nbits]++;
 -      
 -      r = 0;
 -    }
 -  }
 -
 -  /* If the last coef(s) were zero, emit an end-of-block code */
 -  if (r > 0)
 -    ac_counts[0]++;
 -}
 -
 -
 -/*
 - * Trial-encode one MCU's worth of Huffman-compressed coefficients.
 - * No data is actually output, so no suspension return is possible.
 - */
 -
 -METHODDEF(boolean)
 -encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int blkn, ci;
 -  jpeg_component_info * compptr;
 -
 -  /* Take care of restart intervals if needed */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0) {
 -      /* Re-initialize DC predictions to 0 */
 -      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 -	entropy->saved.last_dc_val[ci] = 0;
 -      /* Update restart state */
 -      entropy->restarts_to_go = cinfo->restart_interval;
 -    }
 -    entropy->restarts_to_go--;
 -  }
 -
 -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -    ci = cinfo->MCU_membership[blkn];
 -    compptr = cinfo->cur_comp_info[ci];
 -    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
 -		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
 -		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
 -    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
 -  }
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Generate the best Huffman code table for the given counts, fill htbl.
 - *
 - * The JPEG standard requires that no symbol be assigned a codeword of all
 - * one bits (so that padding bits added at the end of a compressed segment
 - * can't look like a valid code).  Because of the canonical ordering of
 - * codewords, this just means that there must be an unused slot in the
 - * longest codeword length category.  Section K.2 of the JPEG spec suggests
 - * reserving such a slot by pretending that symbol 256 is a valid symbol
 - * with count 1.  In theory that's not optimal; giving it count zero but
 - * including it in the symbol set anyway should give a better Huffman code.
 - * But the theoretically better code actually seems to come out worse in
 - * practice, because it produces more all-ones bytes (which incur stuffed
 - * zero bytes in the final file).  In any case the difference is tiny.
 - *
 - * The JPEG standard requires Huffman codes to be no more than 16 bits long.
 - * If some symbols have a very small but nonzero probability, the Huffman tree
 - * must be adjusted to meet the code length restriction.  We currently use
 - * the adjustment method suggested in JPEG section K.2.  This method is *not*
 - * optimal; it may not choose the best possible limited-length code.  But
 - * typically only very-low-frequency symbols will be given less-than-optimal
 - * lengths, so the code is almost optimal.  Experimental comparisons against
 - * an optimal limited-length-code algorithm indicate that the difference is
 - * microscopic --- usually less than a hundredth of a percent of total size.
 - * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
 - */
 -
 -LOCAL(void)
 -jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
 -{
 -#define MAX_CLEN 32		/* assumed maximum initial code length */
 -  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
 -  int codesize[257];		/* codesize[k] = code length of symbol k */
 -  int others[257];		/* next symbol in current branch of tree */
 -  int c1, c2;
 -  int p, i, j;
 -  long v;
 -
 -  /* This algorithm is explained in section K.2 of the JPEG standard */
 -
 -  MEMZERO(bits, SIZEOF(bits));
 -  MEMZERO(codesize, SIZEOF(codesize));
 -  for (i = 0; i < 257; i++)
 -    others[i] = -1;		/* init links to empty */
 -  
 -  freq[256] = 1;		/* make sure 256 has a nonzero count */
 -  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
 -   * that no real symbol is given code-value of all ones, because 256
 -   * will be placed last in the largest codeword category.
 -   */
 -
 -  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
 -
 -  for (;;) {
 -    /* Find the smallest nonzero frequency, set c1 = its symbol */
 -    /* In case of ties, take the larger symbol number */
 -    c1 = -1;
 -    v = 1000000000L;
 -    for (i = 0; i <= 256; i++) {
 -      if (freq[i] && freq[i] <= v) {
 -	v = freq[i];
 -	c1 = i;
 -      }
 -    }
 -
 -    /* Find the next smallest nonzero frequency, set c2 = its symbol */
 -    /* In case of ties, take the larger symbol number */
 -    c2 = -1;
 -    v = 1000000000L;
 -    for (i = 0; i <= 256; i++) {
 -      if (freq[i] && freq[i] <= v && i != c1) {
 -	v = freq[i];
 -	c2 = i;
 -      }
 -    }
 -
 -    /* Done if we've merged everything into one frequency */
 -    if (c2 < 0)
 -      break;
 -    
 -    /* Else merge the two counts/trees */
 -    freq[c1] += freq[c2];
 -    freq[c2] = 0;
 -
 -    /* Increment the codesize of everything in c1's tree branch */
 -    codesize[c1]++;
 -    while (others[c1] >= 0) {
 -      c1 = others[c1];
 -      codesize[c1]++;
 -    }
 -    
 -    others[c1] = c2;		/* chain c2 onto c1's tree branch */
 -    
 -    /* Increment the codesize of everything in c2's tree branch */
 -    codesize[c2]++;
 -    while (others[c2] >= 0) {
 -      c2 = others[c2];
 -      codesize[c2]++;
 -    }
 -  }
 -
 -  /* Now count the number of symbols of each code length */
 -  for (i = 0; i <= 256; i++) {
 -    if (codesize[i]) {
 -      /* The JPEG standard seems to think that this can't happen, */
 -      /* but I'm paranoid... */
 -      if (codesize[i] > MAX_CLEN)
 -	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
 -
 -      bits[codesize[i]]++;
 -    }
 -  }
 -
 -  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
 -   * Huffman procedure assigned any such lengths, we must adjust the coding.
 -   * Here is what the JPEG spec says about how this next bit works:
 -   * Since symbols are paired for the longest Huffman code, the symbols are
 -   * removed from this length category two at a time.  The prefix for the pair
 -   * (which is one bit shorter) is allocated to one of the pair; then,
 -   * skipping the BITS entry for that prefix length, a code word from the next
 -   * shortest nonzero BITS entry is converted into a prefix for two code words
 -   * one bit longer.
 -   */
 -  
 -  for (i = MAX_CLEN; i > 16; i--) {
 -    while (bits[i] > 0) {
 -      j = i - 2;		/* find length of new prefix to be used */
 -      while (bits[j] == 0)
 -	j--;
 -      
 -      bits[i] -= 2;		/* remove two symbols */
 -      bits[i-1]++;		/* one goes in this length */
 -      bits[j+1] += 2;		/* two new symbols in this length */
 -      bits[j]--;		/* symbol of this length is now a prefix */
 -    }
 -  }
 -
 -  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
 -  while (bits[i] == 0)		/* find largest codelength still in use */
 -    i--;
 -  bits[i]--;
 -  
 -  /* Return final symbol counts (only for lengths 0..16) */
 -  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
 -  
 -  /* Return a list of the symbols sorted by code length */
 -  /* It's not real clear to me why we don't need to consider the codelength
 -   * changes made above, but the JPEG spec seems to think this works.
 -   */
 -  p = 0;
 -  for (i = 1; i <= MAX_CLEN; i++) {
 -    for (j = 0; j <= 255; j++) {
 -      if (codesize[j] == i) {
 -	htbl->huffval[p] = (UINT8) j;
 -	p++;
 -      }
 -    }
 -  }
 -
 -  /* Set sent_table FALSE so updated table will be written to JPEG file. */
 -  htbl->sent_table = FALSE;
 -}
 -
 -
 -/*
 - * Finish up a statistics-gathering pass and create the new Huffman tables.
 - */
 -
 -METHODDEF(void)
 -finish_pass_gather (j_compress_ptr cinfo)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int ci, tbl;
 -  jpeg_component_info * compptr;
 -  JHUFF_TBL **htblptr;
 -  boolean did_dc[NUM_HUFF_TBLS];
 -  boolean did_ac[NUM_HUFF_TBLS];
 -
 -  /* It's important not to apply jpeg_gen_optimal_table more than once
 -   * per table, because it clobbers the input frequency counts!
 -   */
 -  if (cinfo->progressive_mode)
 -    /* Flush out buffered data (all we care about is counting the EOB symbol) */
 -    emit_eobrun(entropy);
 -
 -  MEMZERO(did_dc, SIZEOF(did_dc));
 -  MEMZERO(did_ac, SIZEOF(did_ac));
 -
 -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 -    compptr = cinfo->cur_comp_info[ci];
 -    /* DC needs no table for refinement scan */
 -    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
 -      tbl = compptr->dc_tbl_no;
 -      if (! did_dc[tbl]) {
 -	htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
 -	if (*htblptr == NULL)
 -	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
 -	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
 -	did_dc[tbl] = TRUE;
 -      }
 -    }
 -    /* AC needs no table when not present */
 -    if (cinfo->Se) {
 -      tbl = compptr->ac_tbl_no;
 -      if (! did_ac[tbl]) {
 -	htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
 -	if (*htblptr == NULL)
 -	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
 -	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
 -	did_ac[tbl] = TRUE;
 -      }
 -    }
 -  }
 -}
 -
 -
 -/*
 - * Initialize for a Huffman-compressed scan.
 - * If gather_statistics is TRUE, we do not output anything during the scan,
 - * just count the Huffman symbols used and generate Huffman code tables.
 - */
 -
 -METHODDEF(void)
 -start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int ci, tbl;
 -  jpeg_component_info * compptr;
 -
 -  if (gather_statistics)
 -    entropy->pub.finish_pass = finish_pass_gather;
 -  else
 -    entropy->pub.finish_pass = finish_pass_huff;
 -
 -  if (cinfo->progressive_mode) {
 -    entropy->cinfo = cinfo;
 -    entropy->gather_statistics = gather_statistics;
 -
 -    /* We assume jcmaster.c already validated the scan parameters. */
 -
 -    /* Select execution routine */
 -    if (cinfo->Ah == 0) {
 -      if (cinfo->Ss == 0)
 -	entropy->pub.encode_mcu = encode_mcu_DC_first;
 -      else
 -	entropy->pub.encode_mcu = encode_mcu_AC_first;
 -    } else {
 -      if (cinfo->Ss == 0)
 -	entropy->pub.encode_mcu = encode_mcu_DC_refine;
 -      else {
 -	entropy->pub.encode_mcu = encode_mcu_AC_refine;
 -	/* AC refinement needs a correction bit buffer */
 -	if (entropy->bit_buffer == NULL)
 -	  entropy->bit_buffer = (char *)
 -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -					MAX_CORR_BITS * SIZEOF(char));
 -      }
 -    }
 -
 -    /* Initialize AC stuff */
 -    entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
 -    entropy->EOBRUN = 0;
 -    entropy->BE = 0;
 -  } else {
 -    if (gather_statistics)
 -      entropy->pub.encode_mcu = encode_mcu_gather;
 -    else
 -      entropy->pub.encode_mcu = encode_mcu_huff;
 -  }
 -
 -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 -    compptr = cinfo->cur_comp_info[ci];
 -    /* DC needs no table for refinement scan */
 -    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
 -      tbl = compptr->dc_tbl_no;
 -      if (gather_statistics) {
 -	/* Check for invalid table index */
 -	/* (make_c_derived_tbl does this in the other path) */
 -	if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
 -	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
 -	/* Allocate and zero the statistics tables */
 -	/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
 -	if (entropy->dc_count_ptrs[tbl] == NULL)
 -	  entropy->dc_count_ptrs[tbl] = (long *)
 -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -					257 * SIZEOF(long));
 -	MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
 -      } else {
 -	/* Compute derived values for Huffman tables */
 -	/* We may do this more than once for a table, but it's not expensive */
 -	jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
 -				& entropy->dc_derived_tbls[tbl]);
 -      }
 -      /* Initialize DC predictions to 0 */
 -      entropy->saved.last_dc_val[ci] = 0;
 -    }
 -    /* AC needs no table when not present */
 -    if (cinfo->Se) {
 -      tbl = compptr->ac_tbl_no;
 -      if (gather_statistics) {
 -	if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
 -	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
 -	if (entropy->ac_count_ptrs[tbl] == NULL)
 -	  entropy->ac_count_ptrs[tbl] = (long *)
 -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -					257 * SIZEOF(long));
 -	MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
 -      } else {
 -	jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
 -				& entropy->ac_derived_tbls[tbl]);
 -      }
 -    }
 -  }
 -
 -  /* Initialize bit buffer to empty */
 -  entropy->saved.put_buffer = 0;
 -  entropy->saved.put_bits = 0;
 -
 -  /* Initialize restart stuff */
 -  entropy->restarts_to_go = cinfo->restart_interval;
 -  entropy->next_restart_num = 0;
 -}
 -
 -
 -/*
 - * Module initialization routine for Huffman entropy encoding.
 - */
 -
 -GLOBAL(void)
 -jinit_huff_encoder (j_compress_ptr cinfo)
 -{
 -  huff_entropy_ptr entropy;
 -  int i;
 -
 -  entropy = (huff_entropy_ptr)
 -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				SIZEOF(huff_entropy_encoder));
 -  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
 -  entropy->pub.start_pass = start_pass_huff;
 -
 -  /* Mark tables unallocated */
 -  for (i = 0; i < NUM_HUFF_TBLS; i++) {
 -    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
 -    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
 -  }
 -
 -  if (cinfo->progressive_mode)
 -    entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
 -}
 +/* + * jchuff.c + * + * Copyright (C) 1991-1997, Thomas G. Lane. + * Modified 2006-2009 by Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains Huffman entropy encoding routines. + * Both sequential and progressive modes are supported in this single module. + * + * Much of the complexity here has to do with supporting output suspension. + * If the data destination module demands suspension, we want to be able to + * back up to the start of the current MCU.  To do this, we copy state + * variables into local working storage, and update them back to the + * permanent JPEG objects only upon successful completion of an MCU. + * + * We do not support output suspension for the progressive JPEG mode, since + * the library currently does not allow multiple-scan files to be written + * with output suspension. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* The legal range of a DCT coefficient is + *  -1024 .. +1023  for 8-bit data; + * -16384 .. +16383 for 12-bit data. + * Hence the magnitude should always fit in 10 or 14 bits respectively. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MAX_COEF_BITS 10 +#else +#define MAX_COEF_BITS 14 +#endif + +/* Derived data constructed for each Huffman table */ + +typedef struct { +  unsigned int ehufco[256];	/* code for each symbol */ +  char ehufsi[256];		/* length of code for each symbol */ +  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ +} c_derived_tbl; + + +/* Expanded entropy encoder object for Huffman encoding. + * + * The savable_state subrecord contains fields that change within an MCU, + * but must not be updated permanently until we complete the MCU. + */ + +typedef struct { +  INT32 put_buffer;		/* current bit-accumulation buffer */ +  int put_bits;			/* # of bits now in it */ +  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ +} savable_state; + +/* This macro is to work around compilers with missing or broken + * structure assignment.  You'll need to fix this code if you have + * such a compiler and you change MAX_COMPS_IN_SCAN. + */ + +#ifndef NO_STRUCT_ASSIGN +#define ASSIGN_STATE(dest,src)  ((dest) = (src)) +#else +#if MAX_COMPS_IN_SCAN == 4 +#define ASSIGN_STATE(dest,src)  \ +	((dest).put_buffer = (src).put_buffer, \ +	 (dest).put_bits = (src).put_bits, \ +	 (dest).last_dc_val[0] = (src).last_dc_val[0], \ +	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ +	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ +	 (dest).last_dc_val[3] = (src).last_dc_val[3]) +#endif +#endif + + +typedef struct { +  struct jpeg_entropy_encoder pub; /* public fields */ + +  savable_state saved;		/* Bit buffer & DC state at start of MCU */ + +  /* These fields are NOT loaded into local working state. */ +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ +  int next_restart_num;		/* next restart number to write (0-7) */ + +  /* Pointers to derived tables (these workspaces have image lifespan) */ +  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; +  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; + +  /* Statistics tables for optimization */ +  long * dc_count_ptrs[NUM_HUFF_TBLS]; +  long * ac_count_ptrs[NUM_HUFF_TBLS]; + +  /* Following fields used only in progressive mode */ + +  /* Mode flag: TRUE for optimization, FALSE for actual data output */ +  boolean gather_statistics; + +  /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. +   */ +  JOCTET * next_output_byte;	/* => next byte to write in buffer */ +  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ +  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */ + +  /* Coding status for AC components */ +  int ac_tbl_no;		/* the table number of the single component */ +  unsigned int EOBRUN;		/* run length of EOBs */ +  unsigned int BE;		/* # of buffered correction bits before MCU */ +  char * bit_buffer;		/* buffer for correction bits (1 per char) */ +  /* packing correction bits tightly would save some space but cost time... */ +} huff_entropy_encoder; + +typedef huff_entropy_encoder * huff_entropy_ptr; + +/* Working state while writing an MCU (sequential mode). + * This struct contains all the fields that are needed by subroutines. + */ + +typedef struct { +  JOCTET * next_output_byte;	/* => next byte to write in buffer */ +  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ +  savable_state cur;		/* Current bit buffer & DC state */ +  j_compress_ptr cinfo;		/* dump_buffer needs access to this */ +} working_state; + +/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit + * buffer can hold.  Larger sizes may slightly improve compression, but + * 1000 is already well into the realm of overkill. + * The minimum safe size is 64 bits. + */ + +#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */ + +/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. + * We assume that int right shift is unsigned if INT32 right shift is, + * which should be safe. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define ISHIFT_TEMPS	int ishift_temp; +#define IRIGHT_SHIFT(x,shft)  \ +	((ishift_temp = (x)) < 0 ? \ +	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ +	 (ishift_temp >> (shft))) +#else +#define ISHIFT_TEMPS +#define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) +#endif + + +/* + * Compute the derived values for a Huffman table. + * This routine also performs some validation checks on the table. + */ + +LOCAL(void) +jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, +			 c_derived_tbl ** pdtbl) +{ +  JHUFF_TBL *htbl; +  c_derived_tbl *dtbl; +  int p, i, l, lastp, si, maxsymbol; +  char huffsize[257]; +  unsigned int huffcode[257]; +  unsigned int code; + +  /* Note that huffsize[] and huffcode[] are filled in code-length order, +   * paralleling the order of the symbols themselves in htbl->huffval[]. +   */ + +  /* Find the input Huffman table */ +  if (tblno < 0 || tblno >= NUM_HUFF_TBLS) +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); +  htbl = +    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; +  if (htbl == NULL) +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); + +  /* Allocate a workspace if we haven't already done so. */ +  if (*pdtbl == NULL) +    *pdtbl = (c_derived_tbl *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(c_derived_tbl)); +  dtbl = *pdtbl; +   +  /* Figure C.1: make table of Huffman code length for each symbol */ + +  p = 0; +  for (l = 1; l <= 16; l++) { +    i = (int) htbl->bits[l]; +    if (i < 0 || p + i > 256)	/* protect against table overrun */ +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); +    while (i--) +      huffsize[p++] = (char) l; +  } +  huffsize[p] = 0; +  lastp = p; +   +  /* Figure C.2: generate the codes themselves */ +  /* We also validate that the counts represent a legal Huffman code tree. */ + +  code = 0; +  si = huffsize[0]; +  p = 0; +  while (huffsize[p]) { +    while (((int) huffsize[p]) == si) { +      huffcode[p++] = code; +      code++; +    } +    /* code is now 1 more than the last code used for codelength si; but +     * it must still fit in si bits, since no code is allowed to be all ones. +     */ +    if (((INT32) code) >= (((INT32) 1) << si)) +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); +    code <<= 1; +    si++; +  } +   +  /* Figure C.3: generate encoding tables */ +  /* These are code and size indexed by symbol value */ + +  /* Set all codeless symbols to have code length 0; +   * this lets us detect duplicate VAL entries here, and later +   * allows emit_bits to detect any attempt to emit such symbols. +   */ +  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); + +  /* This is also a convenient place to check for out-of-range +   * and duplicated VAL entries.  We allow 0..255 for AC symbols +   * but only 0..15 for DC.  (We could constrain them further +   * based on data depth and mode, but this seems enough.) +   */ +  maxsymbol = isDC ? 15 : 255; + +  for (p = 0; p < lastp; p++) { +    i = htbl->huffval[p]; +    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); +    dtbl->ehufco[i] = huffcode[p]; +    dtbl->ehufsi[i] = huffsize[p]; +  } +} + + +/* Outputting bytes to the file. + * NB: these must be called only when actually outputting, + * that is, entropy->gather_statistics == FALSE. + */ + +/* Emit a byte, taking 'action' if must suspend. */ +#define emit_byte_s(state,val,action)  \ +	{ *(state)->next_output_byte++ = (JOCTET) (val);  \ +	  if (--(state)->free_in_buffer == 0)  \ +	    if (! dump_buffer_s(state))  \ +	      { action; } } + +/* Emit a byte */ +#define emit_byte_e(entropy,val)  \ +	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \ +	  if (--(entropy)->free_in_buffer == 0)  \ +	    dump_buffer_e(entropy); } + + +LOCAL(boolean) +dump_buffer_s (working_state * state) +/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ +{ +  struct jpeg_destination_mgr * dest = state->cinfo->dest; + +  if (! (*dest->empty_output_buffer) (state->cinfo)) +    return FALSE; +  /* After a successful buffer dump, must reset buffer pointers */ +  state->next_output_byte = dest->next_output_byte; +  state->free_in_buffer = dest->free_in_buffer; +  return TRUE; +} + + +LOCAL(void) +dump_buffer_e (huff_entropy_ptr entropy) +/* Empty the output buffer; we do not support suspension in this case. */ +{ +  struct jpeg_destination_mgr * dest = entropy->cinfo->dest; + +  if (! (*dest->empty_output_buffer) (entropy->cinfo)) +    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); +  /* After a successful buffer dump, must reset buffer pointers */ +  entropy->next_output_byte = dest->next_output_byte; +  entropy->free_in_buffer = dest->free_in_buffer; +} + + +/* Outputting bits to the file */ + +/* Only the right 24 bits of put_buffer are used; the valid bits are + * left-justified in this part.  At most 16 bits can be passed to emit_bits + * in one call, and we never retain more than 7 bits in put_buffer + * between calls, so 24 bits are sufficient. + */ + +INLINE +LOCAL(boolean) +emit_bits_s (working_state * state, unsigned int code, int size) +/* Emit some bits; return TRUE if successful, FALSE if must suspend */ +{ +  /* This routine is heavily used, so it's worth coding tightly. */ +  register INT32 put_buffer = (INT32) code; +  register int put_bits = state->cur.put_bits; + +  /* if size is 0, caller used an invalid Huffman table entry */ +  if (size == 0) +    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); + +  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ +   +  put_bits += size;		/* new number of bits in buffer */ +   +  put_buffer <<= 24 - put_bits; /* align incoming bits */ + +  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ +   +  while (put_bits >= 8) { +    int c = (int) ((put_buffer >> 16) & 0xFF); +     +    emit_byte_s(state, c, return FALSE); +    if (c == 0xFF) {		/* need to stuff a zero byte? */ +      emit_byte_s(state, 0, return FALSE); +    } +    put_buffer <<= 8; +    put_bits -= 8; +  } + +  state->cur.put_buffer = put_buffer; /* update state variables */ +  state->cur.put_bits = put_bits; + +  return TRUE; +} + + +INLINE +LOCAL(void) +emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) +/* Emit some bits, unless we are in gather mode */ +{ +  /* This routine is heavily used, so it's worth coding tightly. */ +  register INT32 put_buffer = (INT32) code; +  register int put_bits = entropy->saved.put_bits; + +  /* if size is 0, caller used an invalid Huffman table entry */ +  if (size == 0) +    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); + +  if (entropy->gather_statistics) +    return;			/* do nothing if we're only getting stats */ + +  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ +   +  put_bits += size;		/* new number of bits in buffer */ + +  put_buffer <<= 24 - put_bits; /* align incoming bits */ + +  /* and merge with old buffer contents */ +  put_buffer |= entropy->saved.put_buffer; + +  while (put_bits >= 8) { +    int c = (int) ((put_buffer >> 16) & 0xFF); + +    emit_byte_e(entropy, c); +    if (c == 0xFF) {		/* need to stuff a zero byte? */ +      emit_byte_e(entropy, 0); +    } +    put_buffer <<= 8; +    put_bits -= 8; +  } + +  entropy->saved.put_buffer = put_buffer; /* update variables */ +  entropy->saved.put_bits = put_bits; +} + + +LOCAL(boolean) +flush_bits_s (working_state * state) +{ +  if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ +    return FALSE; +  state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */ +  state->cur.put_bits = 0; +  return TRUE; +} + + +LOCAL(void) +flush_bits_e (huff_entropy_ptr entropy) +{ +  emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ +  entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ +  entropy->saved.put_bits = 0; +} + + +/* + * Emit (or just count) a Huffman symbol. + */ + +INLINE +LOCAL(void) +emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) +{ +  if (entropy->gather_statistics) +    entropy->dc_count_ptrs[tbl_no][symbol]++; +  else { +    c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; +    emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); +  } +} + + +INLINE +LOCAL(void) +emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) +{ +  if (entropy->gather_statistics) +    entropy->ac_count_ptrs[tbl_no][symbol]++; +  else { +    c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; +    emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); +  } +} + + +/* + * Emit bits from a correction bit buffer. + */ + +LOCAL(void) +emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, +		    unsigned int nbits) +{ +  if (entropy->gather_statistics) +    return;			/* no real work */ + +  while (nbits > 0) { +    emit_bits_e(entropy, (unsigned int) (*bufstart), 1); +    bufstart++; +    nbits--; +  } +} + + +/* + * Emit any pending EOBRUN symbol. + */ + +LOCAL(void) +emit_eobrun (huff_entropy_ptr entropy) +{ +  register int temp, nbits; + +  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */ +    temp = entropy->EOBRUN; +    nbits = 0; +    while ((temp >>= 1)) +      nbits++; +    /* safety check: shouldn't happen given limited correction-bit buffer */ +    if (nbits > 14) +      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); + +    emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); +    if (nbits) +      emit_bits_e(entropy, entropy->EOBRUN, nbits); + +    entropy->EOBRUN = 0; + +    /* Emit any buffered correction bits */ +    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); +    entropy->BE = 0; +  } +} + + +/* + * Emit a restart marker & resynchronize predictions. + */ + +LOCAL(boolean) +emit_restart_s (working_state * state, int restart_num) +{ +  int ci; + +  if (! flush_bits_s(state)) +    return FALSE; + +  emit_byte_s(state, 0xFF, return FALSE); +  emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); + +  /* Re-initialize DC predictions to 0 */ +  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) +    state->cur.last_dc_val[ci] = 0; + +  /* The restart counter is not updated until we successfully write the MCU. */ + +  return TRUE; +} + + +LOCAL(void) +emit_restart_e (huff_entropy_ptr entropy, int restart_num) +{ +  int ci; + +  emit_eobrun(entropy); + +  if (! entropy->gather_statistics) { +    flush_bits_e(entropy); +    emit_byte_e(entropy, 0xFF); +    emit_byte_e(entropy, JPEG_RST0 + restart_num); +  } + +  if (entropy->cinfo->Ss == 0) { +    /* Re-initialize DC predictions to 0 */ +    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) +      entropy->saved.last_dc_val[ci] = 0; +  } else { +    /* Re-initialize all AC-related fields to 0 */ +    entropy->EOBRUN = 0; +    entropy->BE = 0; +  } +} + + +/* + * MCU encoding for DC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF(boolean) +encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int temp, temp2; +  register int nbits; +  int blkn, ci; +  int Al = cinfo->Al; +  JBLOCKROW block; +  jpeg_component_info * compptr; +  ISHIFT_TEMPS + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart_e(entropy, entropy->next_restart_num); + +  /* Encode the MCU data blocks */ +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; + +    /* Compute the DC value after the required point transform by Al. +     * This is simply an arithmetic right shift. +     */ +    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); + +    /* DC differences are figured on the point-transformed values. */ +    temp = temp2 - entropy->saved.last_dc_val[ci]; +    entropy->saved.last_dc_val[ci] = temp2; + +    /* Encode the DC coefficient difference per section G.1.2.1 */ +    temp2 = temp; +    if (temp < 0) { +      temp = -temp;		/* temp is abs value of input */ +      /* For a negative input, want temp2 = bitwise complement of abs(input) */ +      /* This code assumes we are on a two's complement machine */ +      temp2--; +    } +     +    /* Find the number of bits needed for the magnitude of the coefficient */ +    nbits = 0; +    while (temp) { +      nbits++; +      temp >>= 1; +    } +    /* Check for out-of-range coefficient values. +     * Since we're encoding a difference, the range limit is twice as much. +     */ +    if (nbits > MAX_COEF_BITS+1) +      ERREXIT(cinfo, JERR_BAD_DCT_COEF); +     +    /* Count/emit the Huffman-coded symbol for the number of bits */ +    emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); +     +    /* Emit that number of bits of the value, if positive, */ +    /* or the complement of its magnitude, if negative. */ +    if (nbits)			/* emit_bits rejects calls with size 0 */ +      emit_bits_e(entropy, (unsigned int) temp2, nbits); +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * MCU encoding for AC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF(boolean) +encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int temp, temp2; +  register int nbits; +  register int r, k; +  int Se, Al; +  const int * natural_order; +  JBLOCKROW block; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart_e(entropy, entropy->next_restart_num); + +  Se = cinfo->Se; +  Al = cinfo->Al; +  natural_order = cinfo->natural_order; + +  /* Encode the MCU data block */ +  block = MCU_data[0]; + +  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ +   +  r = 0;			/* r = run length of zeros */ +    +  for (k = cinfo->Ss; k <= Se; k++) { +    if ((temp = (*block)[natural_order[k]]) == 0) { +      r++; +      continue; +    } +    /* We must apply the point transform by Al.  For AC coefficients this +     * is an integer division with rounding towards 0.  To do this portably +     * in C, we shift after obtaining the absolute value; so the code is +     * interwoven with finding the abs value (temp) and output bits (temp2). +     */ +    if (temp < 0) { +      temp = -temp;		/* temp is abs value of input */ +      temp >>= Al;		/* apply the point transform */ +      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ +      temp2 = ~temp; +    } else { +      temp >>= Al;		/* apply the point transform */ +      temp2 = temp; +    } +    /* Watch out for case that nonzero coef is zero after point transform */ +    if (temp == 0) { +      r++; +      continue; +    } + +    /* Emit any pending EOBRUN */ +    if (entropy->EOBRUN > 0) +      emit_eobrun(entropy); +    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ +    while (r > 15) { +      emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); +      r -= 16; +    } + +    /* Find the number of bits needed for the magnitude of the coefficient */ +    nbits = 1;			/* there must be at least one 1 bit */ +    while ((temp >>= 1)) +      nbits++; +    /* Check for out-of-range coefficient values */ +    if (nbits > MAX_COEF_BITS) +      ERREXIT(cinfo, JERR_BAD_DCT_COEF); + +    /* Count/emit Huffman symbol for run length / number of bits */ +    emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); + +    /* Emit that number of bits of the value, if positive, */ +    /* or the complement of its magnitude, if negative. */ +    emit_bits_e(entropy, (unsigned int) temp2, nbits); + +    r = 0;			/* reset zero run length */ +  } + +  if (r > 0) {			/* If there are trailing zeroes, */ +    entropy->EOBRUN++;		/* count an EOB */ +    if (entropy->EOBRUN == 0x7FFF) +      emit_eobrun(entropy);	/* force it out to avoid overflow */ +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * MCU encoding for DC successive approximation refinement scan. + * Note: we assume such scans can be multi-component, although the spec + * is not very clear on the point. + */ + +METHODDEF(boolean) +encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int temp; +  int blkn; +  int Al = cinfo->Al; +  JBLOCKROW block; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart_e(entropy, entropy->next_restart_num); + +  /* Encode the MCU data blocks */ +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; + +    /* We simply emit the Al'th bit of the DC coefficient value. */ +    temp = (*block)[0]; +    emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * MCU encoding for AC successive approximation refinement scan. + */ + +METHODDEF(boolean) +encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int temp; +  register int r, k; +  int EOB; +  char *BR_buffer; +  unsigned int BR; +  int Se, Al; +  const int * natural_order; +  JBLOCKROW block; +  int absvalues[DCTSIZE2]; + +  entropy->next_output_byte = cinfo->dest->next_output_byte; +  entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) +    if (entropy->restarts_to_go == 0) +      emit_restart_e(entropy, entropy->next_restart_num); + +  Se = cinfo->Se; +  Al = cinfo->Al; +  natural_order = cinfo->natural_order; + +  /* Encode the MCU data block */ +  block = MCU_data[0]; + +  /* It is convenient to make a pre-pass to determine the transformed +   * coefficients' absolute values and the EOB position. +   */ +  EOB = 0; +  for (k = cinfo->Ss; k <= Se; k++) { +    temp = (*block)[natural_order[k]]; +    /* We must apply the point transform by Al.  For AC coefficients this +     * is an integer division with rounding towards 0.  To do this portably +     * in C, we shift after obtaining the absolute value. +     */ +    if (temp < 0) +      temp = -temp;		/* temp is abs value of input */ +    temp >>= Al;		/* apply the point transform */ +    absvalues[k] = temp;	/* save abs value for main pass */ +    if (temp == 1) +      EOB = k;			/* EOB = index of last newly-nonzero coef */ +  } + +  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ +   +  r = 0;			/* r = run length of zeros */ +  BR = 0;			/* BR = count of buffered bits added now */ +  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ + +  for (k = cinfo->Ss; k <= Se; k++) { +    if ((temp = absvalues[k]) == 0) { +      r++; +      continue; +    } + +    /* Emit any required ZRLs, but not if they can be folded into EOB */ +    while (r > 15 && k <= EOB) { +      /* emit any pending EOBRUN and the BE correction bits */ +      emit_eobrun(entropy); +      /* Emit ZRL */ +      emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); +      r -= 16; +      /* Emit buffered correction bits that must be associated with ZRL */ +      emit_buffered_bits(entropy, BR_buffer, BR); +      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ +      BR = 0; +    } + +    /* If the coef was previously nonzero, it only needs a correction bit. +     * NOTE: a straight translation of the spec's figure G.7 would suggest +     * that we also need to test r > 15.  But if r > 15, we can only get here +     * if k > EOB, which implies that this coefficient is not 1. +     */ +    if (temp > 1) { +      /* The correction bit is the next bit of the absolute value. */ +      BR_buffer[BR++] = (char) (temp & 1); +      continue; +    } + +    /* Emit any pending EOBRUN and the BE correction bits */ +    emit_eobrun(entropy); + +    /* Count/emit Huffman symbol for run length / number of bits */ +    emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); + +    /* Emit output bit for newly-nonzero coef */ +    temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; +    emit_bits_e(entropy, (unsigned int) temp, 1); + +    /* Emit buffered correction bits that must be associated with this code */ +    emit_buffered_bits(entropy, BR_buffer, BR); +    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ +    BR = 0; +    r = 0;			/* reset zero run length */ +  } + +  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */ +    entropy->EOBRUN++;		/* count an EOB */ +    entropy->BE += BR;		/* concat my correction bits to older ones */ +    /* We force out the EOB if we risk either: +     * 1. overflow of the EOB counter; +     * 2. overflow of the correction bit buffer during the next MCU. +     */ +    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) +      emit_eobrun(entropy); +  } + +  cinfo->dest->next_output_byte = entropy->next_output_byte; +  cinfo->dest->free_in_buffer = entropy->free_in_buffer; + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* Encode a single block's worth of coefficients */ + +LOCAL(boolean) +encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, +		  c_derived_tbl *dctbl, c_derived_tbl *actbl) +{ +  register int temp, temp2; +  register int nbits; +  register int k, r, i; +  int Se = state->cinfo->lim_Se; +  const int * natural_order = state->cinfo->natural_order; + +  /* Encode the DC coefficient difference per section F.1.2.1 */ + +  temp = temp2 = block[0] - last_dc_val; + +  if (temp < 0) { +    temp = -temp;		/* temp is abs value of input */ +    /* For a negative input, want temp2 = bitwise complement of abs(input) */ +    /* This code assumes we are on a two's complement machine */ +    temp2--; +  } + +  /* Find the number of bits needed for the magnitude of the coefficient */ +  nbits = 0; +  while (temp) { +    nbits++; +    temp >>= 1; +  } +  /* Check for out-of-range coefficient values. +   * Since we're encoding a difference, the range limit is twice as much. +   */ +  if (nbits > MAX_COEF_BITS+1) +    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); + +  /* Emit the Huffman-coded symbol for the number of bits */ +  if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) +    return FALSE; + +  /* Emit that number of bits of the value, if positive, */ +  /* or the complement of its magnitude, if negative. */ +  if (nbits)			/* emit_bits rejects calls with size 0 */ +    if (! emit_bits_s(state, (unsigned int) temp2, nbits)) +      return FALSE; + +  /* Encode the AC coefficients per section F.1.2.2 */ + +  r = 0;			/* r = run length of zeros */ + +  for (k = 1; k <= Se; k++) { +    if ((temp = block[natural_order[k]]) == 0) { +      r++; +    } else { +      /* if run length > 15, must emit special run-length-16 codes (0xF0) */ +      while (r > 15) { +	if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) +	  return FALSE; +	r -= 16; +      } + +      temp2 = temp; +      if (temp < 0) { +	temp = -temp;		/* temp is abs value of input */ +	/* This code assumes we are on a two's complement machine */ +	temp2--; +      } + +      /* Find the number of bits needed for the magnitude of the coefficient */ +      nbits = 1;		/* there must be at least one 1 bit */ +      while ((temp >>= 1)) +	nbits++; +      /* Check for out-of-range coefficient values */ +      if (nbits > MAX_COEF_BITS) +	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); + +      /* Emit Huffman symbol for run length / number of bits */ +      i = (r << 4) + nbits; +      if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) +	return FALSE; + +      /* Emit that number of bits of the value, if positive, */ +      /* or the complement of its magnitude, if negative. */ +      if (! emit_bits_s(state, (unsigned int) temp2, nbits)) +	return FALSE; + +      r = 0; +    } +  } + +  /* If the last coef(s) were zero, emit an end-of-block code */ +  if (r > 0) +    if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) +      return FALSE; + +  return TRUE; +} + + +/* + * Encode and output one MCU's worth of Huffman-compressed coefficients. + */ + +METHODDEF(boolean) +encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  working_state state; +  int blkn, ci; +  jpeg_component_info * compptr; + +  /* Load up working state */ +  state.next_output_byte = cinfo->dest->next_output_byte; +  state.free_in_buffer = cinfo->dest->free_in_buffer; +  ASSIGN_STATE(state.cur, entropy->saved); +  state.cinfo = cinfo; + +  /* Emit restart marker if needed */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! emit_restart_s(&state, entropy->next_restart_num)) +	return FALSE; +  } + +  /* Encode the MCU data blocks */ +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; +    if (! encode_one_block(&state, +			   MCU_data[blkn][0], state.cur.last_dc_val[ci], +			   entropy->dc_derived_tbls[compptr->dc_tbl_no], +			   entropy->ac_derived_tbls[compptr->ac_tbl_no])) +      return FALSE; +    /* Update last_dc_val */ +    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; +  } + +  /* Completed MCU, so update state */ +  cinfo->dest->next_output_byte = state.next_output_byte; +  cinfo->dest->free_in_buffer = state.free_in_buffer; +  ASSIGN_STATE(entropy->saved, state.cur); + +  /* Update restart-interval state too */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      entropy->restarts_to_go = cinfo->restart_interval; +      entropy->next_restart_num++; +      entropy->next_restart_num &= 7; +    } +    entropy->restarts_to_go--; +  } + +  return TRUE; +} + + +/* + * Finish up at the end of a Huffman-compressed scan. + */ + +METHODDEF(void) +finish_pass_huff (j_compress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  working_state state; + +  if (cinfo->progressive_mode) { +    entropy->next_output_byte = cinfo->dest->next_output_byte; +    entropy->free_in_buffer = cinfo->dest->free_in_buffer; + +    /* Flush out any buffered data */ +    emit_eobrun(entropy); +    flush_bits_e(entropy); + +    cinfo->dest->next_output_byte = entropy->next_output_byte; +    cinfo->dest->free_in_buffer = entropy->free_in_buffer; +  } else { +    /* Load up working state ... flush_bits needs it */ +    state.next_output_byte = cinfo->dest->next_output_byte; +    state.free_in_buffer = cinfo->dest->free_in_buffer; +    ASSIGN_STATE(state.cur, entropy->saved); +    state.cinfo = cinfo; + +    /* Flush out the last data */ +    if (! flush_bits_s(&state)) +      ERREXIT(cinfo, JERR_CANT_SUSPEND); + +    /* Update state */ +    cinfo->dest->next_output_byte = state.next_output_byte; +    cinfo->dest->free_in_buffer = state.free_in_buffer; +    ASSIGN_STATE(entropy->saved, state.cur); +  } +} + + +/* + * Huffman coding optimization. + * + * We first scan the supplied data and count the number of uses of each symbol + * that is to be Huffman-coded. (This process MUST agree with the code above.) + * Then we build a Huffman coding tree for the observed counts. + * Symbols which are not needed at all for the particular image are not + * assigned any code, which saves space in the DHT marker as well as in + * the compressed data. + */ + + +/* Process a single block's worth of coefficients */ + +LOCAL(void) +htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, +		 long dc_counts[], long ac_counts[]) +{ +  register int temp; +  register int nbits; +  register int k, r; +  int Se = cinfo->lim_Se; +  const int * natural_order = cinfo->natural_order; +   +  /* Encode the DC coefficient difference per section F.1.2.1 */ +   +  temp = block[0] - last_dc_val; +  if (temp < 0) +    temp = -temp; +   +  /* Find the number of bits needed for the magnitude of the coefficient */ +  nbits = 0; +  while (temp) { +    nbits++; +    temp >>= 1; +  } +  /* Check for out-of-range coefficient values. +   * Since we're encoding a difference, the range limit is twice as much. +   */ +  if (nbits > MAX_COEF_BITS+1) +    ERREXIT(cinfo, JERR_BAD_DCT_COEF); + +  /* Count the Huffman symbol for the number of bits */ +  dc_counts[nbits]++; +   +  /* Encode the AC coefficients per section F.1.2.2 */ +   +  r = 0;			/* r = run length of zeros */ +   +  for (k = 1; k <= Se; k++) { +    if ((temp = block[natural_order[k]]) == 0) { +      r++; +    } else { +      /* if run length > 15, must emit special run-length-16 codes (0xF0) */ +      while (r > 15) { +	ac_counts[0xF0]++; +	r -= 16; +      } +       +      /* Find the number of bits needed for the magnitude of the coefficient */ +      if (temp < 0) +	temp = -temp; +       +      /* Find the number of bits needed for the magnitude of the coefficient */ +      nbits = 1;		/* there must be at least one 1 bit */ +      while ((temp >>= 1)) +	nbits++; +      /* Check for out-of-range coefficient values */ +      if (nbits > MAX_COEF_BITS) +	ERREXIT(cinfo, JERR_BAD_DCT_COEF); +       +      /* Count Huffman symbol for run length / number of bits */ +      ac_counts[(r << 4) + nbits]++; +       +      r = 0; +    } +  } + +  /* If the last coef(s) were zero, emit an end-of-block code */ +  if (r > 0) +    ac_counts[0]++; +} + + +/* + * Trial-encode one MCU's worth of Huffman-compressed coefficients. + * No data is actually output, so no suspension return is possible. + */ + +METHODDEF(boolean) +encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int blkn, ci; +  jpeg_component_info * compptr; + +  /* Take care of restart intervals if needed */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) { +      /* Re-initialize DC predictions to 0 */ +      for (ci = 0; ci < cinfo->comps_in_scan; ci++) +	entropy->saved.last_dc_val[ci] = 0; +      /* Update restart state */ +      entropy->restarts_to_go = cinfo->restart_interval; +    } +    entropy->restarts_to_go--; +  } + +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    ci = cinfo->MCU_membership[blkn]; +    compptr = cinfo->cur_comp_info[ci]; +    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], +		    entropy->dc_count_ptrs[compptr->dc_tbl_no], +		    entropy->ac_count_ptrs[compptr->ac_tbl_no]); +    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; +  } + +  return TRUE; +} + + +/* + * Generate the best Huffman code table for the given counts, fill htbl. + * + * The JPEG standard requires that no symbol be assigned a codeword of all + * one bits (so that padding bits added at the end of a compressed segment + * can't look like a valid code).  Because of the canonical ordering of + * codewords, this just means that there must be an unused slot in the + * longest codeword length category.  Section K.2 of the JPEG spec suggests + * reserving such a slot by pretending that symbol 256 is a valid symbol + * with count 1.  In theory that's not optimal; giving it count zero but + * including it in the symbol set anyway should give a better Huffman code. + * But the theoretically better code actually seems to come out worse in + * practice, because it produces more all-ones bytes (which incur stuffed + * zero bytes in the final file).  In any case the difference is tiny. + * + * The JPEG standard requires Huffman codes to be no more than 16 bits long. + * If some symbols have a very small but nonzero probability, the Huffman tree + * must be adjusted to meet the code length restriction.  We currently use + * the adjustment method suggested in JPEG section K.2.  This method is *not* + * optimal; it may not choose the best possible limited-length code.  But + * typically only very-low-frequency symbols will be given less-than-optimal + * lengths, so the code is almost optimal.  Experimental comparisons against + * an optimal limited-length-code algorithm indicate that the difference is + * microscopic --- usually less than a hundredth of a percent of total size. + * So the extra complexity of an optimal algorithm doesn't seem worthwhile. + */ + +LOCAL(void) +jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) +{ +#define MAX_CLEN 32		/* assumed maximum initial code length */ +  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */ +  int codesize[257];		/* codesize[k] = code length of symbol k */ +  int others[257];		/* next symbol in current branch of tree */ +  int c1, c2; +  int p, i, j; +  long v; + +  /* This algorithm is explained in section K.2 of the JPEG standard */ + +  MEMZERO(bits, SIZEOF(bits)); +  MEMZERO(codesize, SIZEOF(codesize)); +  for (i = 0; i < 257; i++) +    others[i] = -1;		/* init links to empty */ +   +  freq[256] = 1;		/* make sure 256 has a nonzero count */ +  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees +   * that no real symbol is given code-value of all ones, because 256 +   * will be placed last in the largest codeword category. +   */ + +  /* Huffman's basic algorithm to assign optimal code lengths to symbols */ + +  for (;;) { +    /* Find the smallest nonzero frequency, set c1 = its symbol */ +    /* In case of ties, take the larger symbol number */ +    c1 = -1; +    v = 1000000000L; +    for (i = 0; i <= 256; i++) { +      if (freq[i] && freq[i] <= v) { +	v = freq[i]; +	c1 = i; +      } +    } + +    /* Find the next smallest nonzero frequency, set c2 = its symbol */ +    /* In case of ties, take the larger symbol number */ +    c2 = -1; +    v = 1000000000L; +    for (i = 0; i <= 256; i++) { +      if (freq[i] && freq[i] <= v && i != c1) { +	v = freq[i]; +	c2 = i; +      } +    } + +    /* Done if we've merged everything into one frequency */ +    if (c2 < 0) +      break; +     +    /* Else merge the two counts/trees */ +    freq[c1] += freq[c2]; +    freq[c2] = 0; + +    /* Increment the codesize of everything in c1's tree branch */ +    codesize[c1]++; +    while (others[c1] >= 0) { +      c1 = others[c1]; +      codesize[c1]++; +    } +     +    others[c1] = c2;		/* chain c2 onto c1's tree branch */ +     +    /* Increment the codesize of everything in c2's tree branch */ +    codesize[c2]++; +    while (others[c2] >= 0) { +      c2 = others[c2]; +      codesize[c2]++; +    } +  } + +  /* Now count the number of symbols of each code length */ +  for (i = 0; i <= 256; i++) { +    if (codesize[i]) { +      /* The JPEG standard seems to think that this can't happen, */ +      /* but I'm paranoid... */ +      if (codesize[i] > MAX_CLEN) +	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); + +      bits[codesize[i]]++; +    } +  } + +  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure +   * Huffman procedure assigned any such lengths, we must adjust the coding. +   * Here is what the JPEG spec says about how this next bit works: +   * Since symbols are paired for the longest Huffman code, the symbols are +   * removed from this length category two at a time.  The prefix for the pair +   * (which is one bit shorter) is allocated to one of the pair; then, +   * skipping the BITS entry for that prefix length, a code word from the next +   * shortest nonzero BITS entry is converted into a prefix for two code words +   * one bit longer. +   */ +   +  for (i = MAX_CLEN; i > 16; i--) { +    while (bits[i] > 0) { +      j = i - 2;		/* find length of new prefix to be used */ +      while (bits[j] == 0) +	j--; +       +      bits[i] -= 2;		/* remove two symbols */ +      bits[i-1]++;		/* one goes in this length */ +      bits[j+1] += 2;		/* two new symbols in this length */ +      bits[j]--;		/* symbol of this length is now a prefix */ +    } +  } + +  /* Remove the count for the pseudo-symbol 256 from the largest codelength */ +  while (bits[i] == 0)		/* find largest codelength still in use */ +    i--; +  bits[i]--; +   +  /* Return final symbol counts (only for lengths 0..16) */ +  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); +   +  /* Return a list of the symbols sorted by code length */ +  /* It's not real clear to me why we don't need to consider the codelength +   * changes made above, but the JPEG spec seems to think this works. +   */ +  p = 0; +  for (i = 1; i <= MAX_CLEN; i++) { +    for (j = 0; j <= 255; j++) { +      if (codesize[j] == i) { +	htbl->huffval[p] = (UINT8) j; +	p++; +      } +    } +  } + +  /* Set sent_table FALSE so updated table will be written to JPEG file. */ +  htbl->sent_table = FALSE; +} + + +/* + * Finish up a statistics-gathering pass and create the new Huffman tables. + */ + +METHODDEF(void) +finish_pass_gather (j_compress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci, tbl; +  jpeg_component_info * compptr; +  JHUFF_TBL **htblptr; +  boolean did_dc[NUM_HUFF_TBLS]; +  boolean did_ac[NUM_HUFF_TBLS]; + +  /* It's important not to apply jpeg_gen_optimal_table more than once +   * per table, because it clobbers the input frequency counts! +   */ +  if (cinfo->progressive_mode) +    /* Flush out buffered data (all we care about is counting the EOB symbol) */ +    emit_eobrun(entropy); + +  MEMZERO(did_dc, SIZEOF(did_dc)); +  MEMZERO(did_ac, SIZEOF(did_ac)); + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    /* DC needs no table for refinement scan */ +    if (cinfo->Ss == 0 && cinfo->Ah == 0) { +      tbl = compptr->dc_tbl_no; +      if (! did_dc[tbl]) { +	htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; +	if (*htblptr == NULL) +	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); +	did_dc[tbl] = TRUE; +      } +    } +    /* AC needs no table when not present */ +    if (cinfo->Se) { +      tbl = compptr->ac_tbl_no; +      if (! did_ac[tbl]) { +	htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; +	if (*htblptr == NULL) +	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); +	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); +	did_ac[tbl] = TRUE; +      } +    } +  } +} + + +/* + * Initialize for a Huffman-compressed scan. + * If gather_statistics is TRUE, we do not output anything during the scan, + * just count the Huffman symbols used and generate Huffman code tables. + */ + +METHODDEF(void) +start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci, tbl; +  jpeg_component_info * compptr; + +  if (gather_statistics) +    entropy->pub.finish_pass = finish_pass_gather; +  else +    entropy->pub.finish_pass = finish_pass_huff; + +  if (cinfo->progressive_mode) { +    entropy->cinfo = cinfo; +    entropy->gather_statistics = gather_statistics; + +    /* We assume jcmaster.c already validated the scan parameters. */ + +    /* Select execution routine */ +    if (cinfo->Ah == 0) { +      if (cinfo->Ss == 0) +	entropy->pub.encode_mcu = encode_mcu_DC_first; +      else +	entropy->pub.encode_mcu = encode_mcu_AC_first; +    } else { +      if (cinfo->Ss == 0) +	entropy->pub.encode_mcu = encode_mcu_DC_refine; +      else { +	entropy->pub.encode_mcu = encode_mcu_AC_refine; +	/* AC refinement needs a correction bit buffer */ +	if (entropy->bit_buffer == NULL) +	  entropy->bit_buffer = (char *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					MAX_CORR_BITS * SIZEOF(char)); +      } +    } + +    /* Initialize AC stuff */ +    entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; +    entropy->EOBRUN = 0; +    entropy->BE = 0; +  } else { +    if (gather_statistics) +      entropy->pub.encode_mcu = encode_mcu_gather; +    else +      entropy->pub.encode_mcu = encode_mcu_huff; +  } + +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +    compptr = cinfo->cur_comp_info[ci]; +    /* DC needs no table for refinement scan */ +    if (cinfo->Ss == 0 && cinfo->Ah == 0) { +      tbl = compptr->dc_tbl_no; +      if (gather_statistics) { +	/* Check for invalid table index */ +	/* (make_c_derived_tbl does this in the other path) */ +	if (tbl < 0 || tbl >= NUM_HUFF_TBLS) +	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); +	/* Allocate and zero the statistics tables */ +	/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ +	if (entropy->dc_count_ptrs[tbl] == NULL) +	  entropy->dc_count_ptrs[tbl] = (long *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					257 * SIZEOF(long)); +	MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); +      } else { +	/* Compute derived values for Huffman tables */ +	/* We may do this more than once for a table, but it's not expensive */ +	jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, +				& entropy->dc_derived_tbls[tbl]); +      } +      /* Initialize DC predictions to 0 */ +      entropy->saved.last_dc_val[ci] = 0; +    } +    /* AC needs no table when not present */ +    if (cinfo->Se) { +      tbl = compptr->ac_tbl_no; +      if (gather_statistics) { +	if (tbl < 0 || tbl >= NUM_HUFF_TBLS) +	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); +	if (entropy->ac_count_ptrs[tbl] == NULL) +	  entropy->ac_count_ptrs[tbl] = (long *) +	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +					257 * SIZEOF(long)); +	MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); +      } else { +	jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, +				& entropy->ac_derived_tbls[tbl]); +      } +    } +  } + +  /* Initialize bit buffer to empty */ +  entropy->saved.put_buffer = 0; +  entropy->saved.put_bits = 0; + +  /* Initialize restart stuff */ +  entropy->restarts_to_go = cinfo->restart_interval; +  entropy->next_restart_num = 0; +} + + +/* + * Module initialization routine for Huffman entropy encoding. + */ + +GLOBAL(void) +jinit_huff_encoder (j_compress_ptr cinfo) +{ +  huff_entropy_ptr entropy; +  int i; + +  entropy = (huff_entropy_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(huff_entropy_encoder)); +  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; +  entropy->pub.start_pass = start_pass_huff; + +  /* Mark tables unallocated */ +  for (i = 0; i < NUM_HUFF_TBLS; i++) { +    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; +    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; +  } + +  if (cinfo->progressive_mode) +    entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */ +}  | 
