diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jdhuff.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jdhuff.c | 1541 | 
1 files changed, 0 insertions, 1541 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jdhuff.c b/plugins/FreeImage/Source/LibJPEG/jdhuff.c deleted file mode 100644 index 06f92fe47f..0000000000 --- a/plugins/FreeImage/Source/LibJPEG/jdhuff.c +++ /dev/null @@ -1,1541 +0,0 @@ -/* - * jdhuff.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2006-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains Huffman entropy decoding routines. - * Both sequential and progressive modes are supported in this single module. - * - * Much of the complexity here has to do with supporting input suspension. - * If the data source module demands suspension, we want to be able to back - * up to the start of the current MCU.  To do this, we copy state variables - * into local working storage, and update them back to the permanent - * storage only upon successful completion of an MCU. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* Derived data constructed for each Huffman table */ - -#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */ - -typedef struct { -  /* Basic tables: (element [0] of each array is unused) */ -  INT32 maxcode[18];		/* largest code of length k (-1 if none) */ -  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ -  INT32 valoffset[17];		/* huffval[] offset for codes of length k */ -  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less -   * the smallest code of length k; so given a code of length k, the -   * corresponding symbol is huffval[code + valoffset[k]] -   */ - -  /* Link to public Huffman table (needed only in jpeg_huff_decode) */ -  JHUFF_TBL *pub; - -  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of -   * the input data stream.  If the next Huffman code is no more -   * than HUFF_LOOKAHEAD bits long, we can obtain its length and -   * the corresponding symbol directly from these tables. -   */ -  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ -  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ -} d_derived_tbl; - - -/* - * Fetching the next N bits from the input stream is a time-critical operation - * for the Huffman decoders.  We implement it with a combination of inline - * macros and out-of-line subroutines.  Note that N (the number of bits - * demanded at one time) never exceeds 15 for JPEG use. - * - * We read source bytes into get_buffer and dole out bits as needed. - * If get_buffer already contains enough bits, they are fetched in-line - * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough - * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer - * as full as possible (not just to the number of bits needed; this - * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). - * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. - * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains - * at least the requested number of bits --- dummy zeroes are inserted if - * necessary. - */ - -typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */ -#define BIT_BUF_SIZE  32	/* size of buffer in bits */ - -/* If long is > 32 bits on your machine, and shifting/masking longs is - * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE - * appropriately should be a win.  Unfortunately we can't define the size - * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) - * because not all machines measure sizeof in 8-bit bytes. - */ - -typedef struct {		/* Bitreading state saved across MCUs */ -  bit_buf_type get_buffer;	/* current bit-extraction buffer */ -  int bits_left;		/* # of unused bits in it */ -} bitread_perm_state; - -typedef struct {		/* Bitreading working state within an MCU */ -  /* Current data source location */ -  /* We need a copy, rather than munging the original, in case of suspension */ -  const JOCTET * next_input_byte; /* => next byte to read from source */ -  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */ -  /* Bit input buffer --- note these values are kept in register variables, -   * not in this struct, inside the inner loops. -   */ -  bit_buf_type get_buffer;	/* current bit-extraction buffer */ -  int bits_left;		/* # of unused bits in it */ -  /* Pointer needed by jpeg_fill_bit_buffer. */ -  j_decompress_ptr cinfo;	/* back link to decompress master record */ -} bitread_working_state; - -/* Macros to declare and load/save bitread local variables. */ -#define BITREAD_STATE_VARS  \ -	register bit_buf_type get_buffer;  \ -	register int bits_left;  \ -	bitread_working_state br_state - -#define BITREAD_LOAD_STATE(cinfop,permstate)  \ -	br_state.cinfo = cinfop; \ -	br_state.next_input_byte = cinfop->src->next_input_byte; \ -	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ -	get_buffer = permstate.get_buffer; \ -	bits_left = permstate.bits_left; - -#define BITREAD_SAVE_STATE(cinfop,permstate)  \ -	cinfop->src->next_input_byte = br_state.next_input_byte; \ -	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ -	permstate.get_buffer = get_buffer; \ -	permstate.bits_left = bits_left - -/* - * These macros provide the in-line portion of bit fetching. - * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer - * before using GET_BITS, PEEK_BITS, or DROP_BITS. - * The variables get_buffer and bits_left are assumed to be locals, - * but the state struct might not be (jpeg_huff_decode needs this). - *	CHECK_BIT_BUFFER(state,n,action); - *		Ensure there are N bits in get_buffer; if suspend, take action. - *      val = GET_BITS(n); - *		Fetch next N bits. - *      val = PEEK_BITS(n); - *		Fetch next N bits without removing them from the buffer. - *	DROP_BITS(n); - *		Discard next N bits. - * The value N should be a simple variable, not an expression, because it - * is evaluated multiple times. - */ - -#define CHECK_BIT_BUFFER(state,nbits,action) \ -	{ if (bits_left < (nbits)) {  \ -	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \ -	      { action; }  \ -	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } - -#define GET_BITS(nbits) \ -	(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) - -#define PEEK_BITS(nbits) \ -	(((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits)) - -#define DROP_BITS(nbits) \ -	(bits_left -= (nbits)) - - -/* - * Code for extracting next Huffman-coded symbol from input bit stream. - * Again, this is time-critical and we make the main paths be macros. - * - * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits - * without looping.  Usually, more than 95% of the Huffman codes will be 8 - * or fewer bits long.  The few overlength codes are handled with a loop, - * which need not be inline code. - * - * Notes about the HUFF_DECODE macro: - * 1. Near the end of the data segment, we may fail to get enough bits - *    for a lookahead.  In that case, we do it the hard way. - * 2. If the lookahead table contains no entry, the next code must be - *    more than HUFF_LOOKAHEAD bits long. - * 3. jpeg_huff_decode returns -1 if forced to suspend. - */ - -#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ -{ register int nb, look; \ -  if (bits_left < HUFF_LOOKAHEAD) { \ -    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ -    get_buffer = state.get_buffer; bits_left = state.bits_left; \ -    if (bits_left < HUFF_LOOKAHEAD) { \ -      nb = 1; goto slowlabel; \ -    } \ -  } \ -  look = PEEK_BITS(HUFF_LOOKAHEAD); \ -  if ((nb = htbl->look_nbits[look]) != 0) { \ -    DROP_BITS(nb); \ -    result = htbl->look_sym[look]; \ -  } else { \ -    nb = HUFF_LOOKAHEAD+1; \ -slowlabel: \ -    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ -	{ failaction; } \ -    get_buffer = state.get_buffer; bits_left = state.bits_left; \ -  } \ -} - - -/* - * Expanded entropy decoder object for Huffman decoding. - * - * The savable_state subrecord contains fields that change within an MCU, - * but must not be updated permanently until we complete the MCU. - */ - -typedef struct { -  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */ -  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */ -} savable_state; - -/* This macro is to work around compilers with missing or broken - * structure assignment.  You'll need to fix this code if you have - * such a compiler and you change MAX_COMPS_IN_SCAN. - */ - -#ifndef NO_STRUCT_ASSIGN -#define ASSIGN_STATE(dest,src)  ((dest) = (src)) -#else -#if MAX_COMPS_IN_SCAN == 4 -#define ASSIGN_STATE(dest,src)  \ -	((dest).EOBRUN = (src).EOBRUN, \ -	 (dest).last_dc_val[0] = (src).last_dc_val[0], \ -	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ -	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ -	 (dest).last_dc_val[3] = (src).last_dc_val[3]) -#endif -#endif - - -typedef struct { -  struct jpeg_entropy_decoder pub; /* public fields */ - -  /* These fields are loaded into local variables at start of each MCU. -   * In case of suspension, we exit WITHOUT updating them. -   */ -  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */ -  savable_state saved;		/* Other state at start of MCU */ - -  /* These fields are NOT loaded into local working state. */ -  boolean insufficient_data;	/* set TRUE after emitting warning */ -  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ - -  /* Following two fields used only in progressive mode */ - -  /* Pointers to derived tables (these workspaces have image lifespan) */ -  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; - -  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ - -  /* Following fields used only in sequential mode */ - -  /* Pointers to derived tables (these workspaces have image lifespan) */ -  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; -  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; - -  /* Precalculated info set up by start_pass for use in decode_mcu: */ - -  /* Pointers to derived tables to be used for each block within an MCU */ -  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; -  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; -  /* Whether we care about the DC and AC coefficient values for each block */ -  int coef_limit[D_MAX_BLOCKS_IN_MCU]; -} huff_entropy_decoder; - -typedef huff_entropy_decoder * huff_entropy_ptr; - - -static const int jpeg_zigzag_order[8][8] = { -  {  0,  1,  5,  6, 14, 15, 27, 28 }, -  {  2,  4,  7, 13, 16, 26, 29, 42 }, -  {  3,  8, 12, 17, 25, 30, 41, 43 }, -  {  9, 11, 18, 24, 31, 40, 44, 53 }, -  { 10, 19, 23, 32, 39, 45, 52, 54 }, -  { 20, 22, 33, 38, 46, 51, 55, 60 }, -  { 21, 34, 37, 47, 50, 56, 59, 61 }, -  { 35, 36, 48, 49, 57, 58, 62, 63 } -}; - -static const int jpeg_zigzag_order7[7][7] = { -  {  0,  1,  5,  6, 14, 15, 27 }, -  {  2,  4,  7, 13, 16, 26, 28 }, -  {  3,  8, 12, 17, 25, 29, 38 }, -  {  9, 11, 18, 24, 30, 37, 39 }, -  { 10, 19, 23, 31, 36, 40, 45 }, -  { 20, 22, 32, 35, 41, 44, 46 }, -  { 21, 33, 34, 42, 43, 47, 48 } -}; - -static const int jpeg_zigzag_order6[6][6] = { -  {  0,  1,  5,  6, 14, 15 }, -  {  2,  4,  7, 13, 16, 25 }, -  {  3,  8, 12, 17, 24, 26 }, -  {  9, 11, 18, 23, 27, 32 }, -  { 10, 19, 22, 28, 31, 33 }, -  { 20, 21, 29, 30, 34, 35 } -}; - -static const int jpeg_zigzag_order5[5][5] = { -  {  0,  1,  5,  6, 14 }, -  {  2,  4,  7, 13, 15 }, -  {  3,  8, 12, 16, 21 }, -  {  9, 11, 17, 20, 22 }, -  { 10, 18, 19, 23, 24 } -}; - -static const int jpeg_zigzag_order4[4][4] = { -  { 0,  1,  5,  6 }, -  { 2,  4,  7, 12 }, -  { 3,  8, 11, 13 }, -  { 9, 10, 14, 15 } -}; - -static const int jpeg_zigzag_order3[3][3] = { -  { 0, 1, 5 }, -  { 2, 4, 6 }, -  { 3, 7, 8 } -}; - -static const int jpeg_zigzag_order2[2][2] = { -  { 0, 1 }, -  { 2, 3 } -}; - - -/* - * Compute the derived values for a Huffman table. - * This routine also performs some validation checks on the table. - */ - -LOCAL(void) -jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, -			 d_derived_tbl ** pdtbl) -{ -  JHUFF_TBL *htbl; -  d_derived_tbl *dtbl; -  int p, i, l, si, numsymbols; -  int lookbits, ctr; -  char huffsize[257]; -  unsigned int huffcode[257]; -  unsigned int code; - -  /* Note that huffsize[] and huffcode[] are filled in code-length order, -   * paralleling the order of the symbols themselves in htbl->huffval[]. -   */ - -  /* Find the input Huffman table */ -  if (tblno < 0 || tblno >= NUM_HUFF_TBLS) -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); -  htbl = -    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; -  if (htbl == NULL) -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - -  /* Allocate a workspace if we haven't already done so. */ -  if (*pdtbl == NULL) -    *pdtbl = (d_derived_tbl *) -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				  SIZEOF(d_derived_tbl)); -  dtbl = *pdtbl; -  dtbl->pub = htbl;		/* fill in back link */ -   -  /* Figure C.1: make table of Huffman code length for each symbol */ - -  p = 0; -  for (l = 1; l <= 16; l++) { -    i = (int) htbl->bits[l]; -    if (i < 0 || p + i > 256)	/* protect against table overrun */ -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); -    while (i--) -      huffsize[p++] = (char) l; -  } -  huffsize[p] = 0; -  numsymbols = p; -   -  /* Figure C.2: generate the codes themselves */ -  /* We also validate that the counts represent a legal Huffman code tree. */ -   -  code = 0; -  si = huffsize[0]; -  p = 0; -  while (huffsize[p]) { -    while (((int) huffsize[p]) == si) { -      huffcode[p++] = code; -      code++; -    } -    /* code is now 1 more than the last code used for codelength si; but -     * it must still fit in si bits, since no code is allowed to be all ones. -     */ -    if (((INT32) code) >= (((INT32) 1) << si)) -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); -    code <<= 1; -    si++; -  } - -  /* Figure F.15: generate decoding tables for bit-sequential decoding */ - -  p = 0; -  for (l = 1; l <= 16; l++) { -    if (htbl->bits[l]) { -      /* valoffset[l] = huffval[] index of 1st symbol of code length l, -       * minus the minimum code of length l -       */ -      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; -      p += htbl->bits[l]; -      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ -    } else { -      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */ -    } -  } -  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ - -  /* Compute lookahead tables to speed up decoding. -   * First we set all the table entries to 0, indicating "too long"; -   * then we iterate through the Huffman codes that are short enough and -   * fill in all the entries that correspond to bit sequences starting -   * with that code. -   */ - -  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); - -  p = 0; -  for (l = 1; l <= HUFF_LOOKAHEAD; l++) { -    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { -      /* l = current code's length, p = its index in huffcode[] & huffval[]. */ -      /* Generate left-justified code followed by all possible bit sequences */ -      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); -      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { -	dtbl->look_nbits[lookbits] = l; -	dtbl->look_sym[lookbits] = htbl->huffval[p]; -	lookbits++; -      } -    } -  } - -  /* Validate symbols as being reasonable. -   * For AC tables, we make no check, but accept all byte values 0..255. -   * For DC tables, we require the symbols to be in range 0..15. -   * (Tighter bounds could be applied depending on the data depth and mode, -   * but this is sufficient to ensure safe decoding.) -   */ -  if (isDC) { -    for (i = 0; i < numsymbols; i++) { -      int sym = htbl->huffval[i]; -      if (sym < 0 || sym > 15) -	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); -    } -  } -} - - -/* - * Out-of-line code for bit fetching. - * Note: current values of get_buffer and bits_left are passed as parameters, - * but are returned in the corresponding fields of the state struct. - * - * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width - * of get_buffer to be used.  (On machines with wider words, an even larger - * buffer could be used.)  However, on some machines 32-bit shifts are - * quite slow and take time proportional to the number of places shifted. - * (This is true with most PC compilers, for instance.)  In this case it may - * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the - * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. - */ - -#ifdef SLOW_SHIFT_32 -#define MIN_GET_BITS  15	/* minimum allowable value */ -#else -#define MIN_GET_BITS  (BIT_BUF_SIZE-7) -#endif - - -LOCAL(boolean) -jpeg_fill_bit_buffer (bitread_working_state * state, -		      register bit_buf_type get_buffer, register int bits_left, -		      int nbits) -/* Load up the bit buffer to a depth of at least nbits */ -{ -  /* Copy heavily used state fields into locals (hopefully registers) */ -  register const JOCTET * next_input_byte = state->next_input_byte; -  register size_t bytes_in_buffer = state->bytes_in_buffer; -  j_decompress_ptr cinfo = state->cinfo; - -  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ -  /* (It is assumed that no request will be for more than that many bits.) */ -  /* We fail to do so only if we hit a marker or are forced to suspend. */ - -  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */ -    while (bits_left < MIN_GET_BITS) { -      register int c; - -      /* Attempt to read a byte */ -      if (bytes_in_buffer == 0) { -	if (! (*cinfo->src->fill_input_buffer) (cinfo)) -	  return FALSE; -	next_input_byte = cinfo->src->next_input_byte; -	bytes_in_buffer = cinfo->src->bytes_in_buffer; -      } -      bytes_in_buffer--; -      c = GETJOCTET(*next_input_byte++); - -      /* If it's 0xFF, check and discard stuffed zero byte */ -      if (c == 0xFF) { -	/* Loop here to discard any padding FF's on terminating marker, -	 * so that we can save a valid unread_marker value.  NOTE: we will -	 * accept multiple FF's followed by a 0 as meaning a single FF data -	 * byte.  This data pattern is not valid according to the standard. -	 */ -	do { -	  if (bytes_in_buffer == 0) { -	    if (! (*cinfo->src->fill_input_buffer) (cinfo)) -	      return FALSE; -	    next_input_byte = cinfo->src->next_input_byte; -	    bytes_in_buffer = cinfo->src->bytes_in_buffer; -	  } -	  bytes_in_buffer--; -	  c = GETJOCTET(*next_input_byte++); -	} while (c == 0xFF); - -	if (c == 0) { -	  /* Found FF/00, which represents an FF data byte */ -	  c = 0xFF; -	} else { -	  /* Oops, it's actually a marker indicating end of compressed data. -	   * Save the marker code for later use. -	   * Fine point: it might appear that we should save the marker into -	   * bitread working state, not straight into permanent state.  But -	   * once we have hit a marker, we cannot need to suspend within the -	   * current MCU, because we will read no more bytes from the data -	   * source.  So it is OK to update permanent state right away. -	   */ -	  cinfo->unread_marker = c; -	  /* See if we need to insert some fake zero bits. */ -	  goto no_more_bytes; -	} -      } - -      /* OK, load c into get_buffer */ -      get_buffer = (get_buffer << 8) | c; -      bits_left += 8; -    } /* end while */ -  } else { -  no_more_bytes: -    /* We get here if we've read the marker that terminates the compressed -     * data segment.  There should be enough bits in the buffer register -     * to satisfy the request; if so, no problem. -     */ -    if (nbits > bits_left) { -      /* Uh-oh.  Report corrupted data to user and stuff zeroes into -       * the data stream, so that we can produce some kind of image. -       * We use a nonvolatile flag to ensure that only one warning message -       * appears per data segment. -       */ -      if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { -	WARNMS(cinfo, JWRN_HIT_MARKER); -	((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; -      } -      /* Fill the buffer with zero bits */ -      get_buffer <<= MIN_GET_BITS - bits_left; -      bits_left = MIN_GET_BITS; -    } -  } - -  /* Unload the local registers */ -  state->next_input_byte = next_input_byte; -  state->bytes_in_buffer = bytes_in_buffer; -  state->get_buffer = get_buffer; -  state->bits_left = bits_left; - -  return TRUE; -} - - -/* - * Figure F.12: extend sign bit. - * On some machines, a shift and sub will be faster than a table lookup. - */ - -#ifdef AVOID_TABLES - -#define BIT_MASK(nbits)   ((1<<(nbits))-1) -#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) - -#else - -#define BIT_MASK(nbits)   bmask[nbits] -#define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) - -static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */ -  { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, -    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; - -#endif /* AVOID_TABLES */ - - -/* - * Out-of-line code for Huffman code decoding. - */ - -LOCAL(int) -jpeg_huff_decode (bitread_working_state * state, -		  register bit_buf_type get_buffer, register int bits_left, -		  d_derived_tbl * htbl, int min_bits) -{ -  register int l = min_bits; -  register INT32 code; - -  /* HUFF_DECODE has determined that the code is at least min_bits */ -  /* bits long, so fetch that many bits in one swoop. */ - -  CHECK_BIT_BUFFER(*state, l, return -1); -  code = GET_BITS(l); - -  /* Collect the rest of the Huffman code one bit at a time. */ -  /* This is per Figure F.16 in the JPEG spec. */ - -  while (code > htbl->maxcode[l]) { -    code <<= 1; -    CHECK_BIT_BUFFER(*state, 1, return -1); -    code |= GET_BITS(1); -    l++; -  } - -  /* Unload the local registers */ -  state->get_buffer = get_buffer; -  state->bits_left = bits_left; - -  /* With garbage input we may reach the sentinel value l = 17. */ - -  if (l > 16) { -    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); -    return 0;			/* fake a zero as the safest result */ -  } - -  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; -} - - -/* - * Check for a restart marker & resynchronize decoder. - * Returns FALSE if must suspend. - */ - -LOCAL(boolean) -process_restart (j_decompress_ptr cinfo) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int ci; - -  /* Throw away any unused bits remaining in bit buffer; */ -  /* include any full bytes in next_marker's count of discarded bytes */ -  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; -  entropy->bitstate.bits_left = 0; - -  /* Advance past the RSTn marker */ -  if (! (*cinfo->marker->read_restart_marker) (cinfo)) -    return FALSE; - -  /* Re-initialize DC predictions to 0 */ -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) -    entropy->saved.last_dc_val[ci] = 0; -  /* Re-init EOB run count, too */ -  entropy->saved.EOBRUN = 0; - -  /* Reset restart counter */ -  entropy->restarts_to_go = cinfo->restart_interval; - -  /* Reset out-of-data flag, unless read_restart_marker left us smack up -   * against a marker.  In that case we will end up treating the next data -   * segment as empty, and we can avoid producing bogus output pixels by -   * leaving the flag set. -   */ -  if (cinfo->unread_marker == 0) -    entropy->insufficient_data = FALSE; - -  return TRUE; -} - - -/* - * Huffman MCU decoding. - * Each of these routines decodes and returns one MCU's worth of - * Huffman-compressed coefficients.  - * The coefficients are reordered from zigzag order into natural array order, - * but are not dequantized. - * - * The i'th block of the MCU is stored into the block pointed to by - * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. - * (Wholesale zeroing is usually a little faster than retail...) - * - * We return FALSE if data source requested suspension.  In that case no - * changes have been made to permanent state.  (Exception: some output - * coefficients may already have been assigned.  This is harmless for - * spectral selection, since we'll just re-assign them on the next call. - * Successive approximation AC refinement has to be more careful, however.) - */ - -/* - * MCU decoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{    -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int Al = cinfo->Al; -  register int s, r; -  int blkn, ci; -  JBLOCKROW block; -  BITREAD_STATE_VARS; -  savable_state state; -  d_derived_tbl * tbl; -  jpeg_component_info * compptr; - -  /* Process restart marker if needed; may have to suspend */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! process_restart(cinfo)) -	return FALSE; -  } - -  /* If we've run out of data, just leave the MCU set to zeroes. -   * This way, we return uniform gray for the remainder of the segment. -   */ -  if (! entropy->insufficient_data) { - -    /* Load up working state */ -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); -    ASSIGN_STATE(state, entropy->saved); - -    /* Outer loop handles each block in the MCU */ - -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -      block = MCU_data[blkn]; -      ci = cinfo->MCU_membership[blkn]; -      compptr = cinfo->cur_comp_info[ci]; -      tbl = entropy->derived_tbls[compptr->dc_tbl_no]; - -      /* Decode a single block's worth of coefficients */ - -      /* Section F.2.2.1: decode the DC coefficient difference */ -      HUFF_DECODE(s, br_state, tbl, return FALSE, label1); -      if (s) { -	CHECK_BIT_BUFFER(br_state, s, return FALSE); -	r = GET_BITS(s); -	s = HUFF_EXTEND(r, s); -      } - -      /* Convert DC difference to actual value, update last_dc_val */ -      s += state.last_dc_val[ci]; -      state.last_dc_val[ci] = s; -      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ -      (*block)[0] = (JCOEF) (s << Al); -    } - -    /* Completed MCU, so update state */ -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); -    ASSIGN_STATE(entropy->saved, state); -  } - -  /* Account for restart interval (no-op if not using restarts) */ -  entropy->restarts_to_go--; - -  return TRUE; -} - - -/* - * MCU decoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{    -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  register int s, k, r; -  unsigned int EOBRUN; -  int Se, Al; -  const int * natural_order; -  JBLOCKROW block; -  BITREAD_STATE_VARS; -  d_derived_tbl * tbl; - -  /* Process restart marker if needed; may have to suspend */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! process_restart(cinfo)) -	return FALSE; -  } - -  /* If we've run out of data, just leave the MCU set to zeroes. -   * This way, we return uniform gray for the remainder of the segment. -   */ -  if (! entropy->insufficient_data) { - -    Se = cinfo->Se; -    Al = cinfo->Al; -    natural_order = cinfo->natural_order; - -    /* Load up working state. -     * We can avoid loading/saving bitread state if in an EOB run. -     */ -    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */ - -    /* There is always only one block per MCU */ - -    if (EOBRUN > 0)		/* if it's a band of zeroes... */ -      EOBRUN--;			/* ...process it now (we do nothing) */ -    else { -      BITREAD_LOAD_STATE(cinfo,entropy->bitstate); -      block = MCU_data[0]; -      tbl = entropy->ac_derived_tbl; - -      for (k = cinfo->Ss; k <= Se; k++) { -	HUFF_DECODE(s, br_state, tbl, return FALSE, label2); -	r = s >> 4; -	s &= 15; -	if (s) { -	  k += r; -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  r = GET_BITS(s); -	  s = HUFF_EXTEND(r, s); -	  /* Scale and output coefficient in natural (dezigzagged) order */ -	  (*block)[natural_order[k]] = (JCOEF) (s << Al); -	} else { -	  if (r == 15) {	/* ZRL */ -	    k += 15;		/* skip 15 zeroes in band */ -	  } else {		/* EOBr, run length is 2^r + appended bits */ -	    EOBRUN = 1 << r; -	    if (r) {		/* EOBr, r > 0 */ -	      CHECK_BIT_BUFFER(br_state, r, return FALSE); -	      r = GET_BITS(r); -	      EOBRUN += r; -	    } -	    EOBRUN--;		/* this band is processed at this moment */ -	    break;		/* force end-of-band */ -	  } -	} -      } - -      BITREAD_SAVE_STATE(cinfo,entropy->bitstate); -    } - -    /* Completed MCU, so update state */ -    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */ -  } - -  /* Account for restart interval (no-op if not using restarts) */ -  entropy->restarts_to_go--; - -  return TRUE; -} - - -/* - * MCU decoding for DC successive approximation refinement scan. - * Note: we assume such scans can be multi-component, although the spec - * is not very clear on the point. - */ - -METHODDEF(boolean) -decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{    -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ -  int blkn; -  JBLOCKROW block; -  BITREAD_STATE_VARS; - -  /* Process restart marker if needed; may have to suspend */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! process_restart(cinfo)) -	return FALSE; -  } - -  /* Not worth the cycles to check insufficient_data here, -   * since we will not change the data anyway if we read zeroes. -   */ - -  /* Load up working state */ -  BITREAD_LOAD_STATE(cinfo,entropy->bitstate); - -  /* Outer loop handles each block in the MCU */ - -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    block = MCU_data[blkn]; - -    /* Encoded data is simply the next bit of the two's-complement DC value */ -    CHECK_BIT_BUFFER(br_state, 1, return FALSE); -    if (GET_BITS(1)) -      (*block)[0] |= p1; -    /* Note: since we use |=, repeating the assignment later is safe */ -  } - -  /* Completed MCU, so update state */ -  BITREAD_SAVE_STATE(cinfo,entropy->bitstate); - -  /* Account for restart interval (no-op if not using restarts) */ -  entropy->restarts_to_go--; - -  return TRUE; -} - - -/* - * MCU decoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{    -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  register int s, k, r; -  unsigned int EOBRUN; -  int Se, p1, m1; -  const int * natural_order; -  JBLOCKROW block; -  JCOEFPTR thiscoef; -  BITREAD_STATE_VARS; -  d_derived_tbl * tbl; -  int num_newnz; -  int newnz_pos[DCTSIZE2]; - -  /* Process restart marker if needed; may have to suspend */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! process_restart(cinfo)) -	return FALSE; -  } - -  /* If we've run out of data, don't modify the MCU. -   */ -  if (! entropy->insufficient_data) { - -    Se = cinfo->Se; -    p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ -    m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */ -    natural_order = cinfo->natural_order; - -    /* Load up working state */ -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); -    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ - -    /* There is always only one block per MCU */ -    block = MCU_data[0]; -    tbl = entropy->ac_derived_tbl; - -    /* If we are forced to suspend, we must undo the assignments to any newly -     * nonzero coefficients in the block, because otherwise we'd get confused -     * next time about which coefficients were already nonzero. -     * But we need not undo addition of bits to already-nonzero coefficients; -     * instead, we can test the current bit to see if we already did it. -     */ -    num_newnz = 0; - -    /* initialize coefficient loop counter to start of band */ -    k = cinfo->Ss; - -    if (EOBRUN == 0) { -      for (; k <= Se; k++) { -	HUFF_DECODE(s, br_state, tbl, goto undoit, label3); -	r = s >> 4; -	s &= 15; -	if (s) { -	  if (s != 1)		/* size of new coef should always be 1 */ -	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE); -	  CHECK_BIT_BUFFER(br_state, 1, goto undoit); -	  if (GET_BITS(1)) -	    s = p1;		/* newly nonzero coef is positive */ -	  else -	    s = m1;		/* newly nonzero coef is negative */ -	} else { -	  if (r != 15) { -	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */ -	    if (r) { -	      CHECK_BIT_BUFFER(br_state, r, goto undoit); -	      r = GET_BITS(r); -	      EOBRUN += r; -	    } -	    break;		/* rest of block is handled by EOB logic */ -	  } -	  /* note s = 0 for processing ZRL */ -	} -	/* Advance over already-nonzero coefs and r still-zero coefs, -	 * appending correction bits to the nonzeroes.  A correction bit is 1 -	 * if the absolute value of the coefficient must be increased. -	 */ -	do { -	  thiscoef = *block + natural_order[k]; -	  if (*thiscoef != 0) { -	    CHECK_BIT_BUFFER(br_state, 1, goto undoit); -	    if (GET_BITS(1)) { -	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ -		if (*thiscoef >= 0) -		  *thiscoef += p1; -		else -		  *thiscoef += m1; -	      } -	    } -	  } else { -	    if (--r < 0) -	      break;		/* reached target zero coefficient */ -	  } -	  k++; -	} while (k <= Se); -	if (s) { -	  int pos = natural_order[k]; -	  /* Output newly nonzero coefficient */ -	  (*block)[pos] = (JCOEF) s; -	  /* Remember its position in case we have to suspend */ -	  newnz_pos[num_newnz++] = pos; -	} -      } -    } - -    if (EOBRUN > 0) { -      /* Scan any remaining coefficient positions after the end-of-band -       * (the last newly nonzero coefficient, if any).  Append a correction -       * bit to each already-nonzero coefficient.  A correction bit is 1 -       * if the absolute value of the coefficient must be increased. -       */ -      for (; k <= Se; k++) { -	thiscoef = *block + natural_order[k]; -	if (*thiscoef != 0) { -	  CHECK_BIT_BUFFER(br_state, 1, goto undoit); -	  if (GET_BITS(1)) { -	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ -	      if (*thiscoef >= 0) -		*thiscoef += p1; -	      else -		*thiscoef += m1; -	    } -	  } -	} -      } -      /* Count one block completed in EOB run */ -      EOBRUN--; -    } - -    /* Completed MCU, so update state */ -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); -    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ -  } - -  /* Account for restart interval (no-op if not using restarts) */ -  entropy->restarts_to_go--; - -  return TRUE; - -undoit: -  /* Re-zero any output coefficients that we made newly nonzero */ -  while (num_newnz > 0) -    (*block)[newnz_pos[--num_newnz]] = 0; - -  return FALSE; -} - - -/* - * Decode one MCU's worth of Huffman-compressed coefficients, - * partial blocks. - */ - -METHODDEF(boolean) -decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  const int * natural_order; -  int Se, blkn; -  BITREAD_STATE_VARS; -  savable_state state; - -  /* Process restart marker if needed; may have to suspend */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! process_restart(cinfo)) -	return FALSE; -  } - -  /* If we've run out of data, just leave the MCU set to zeroes. -   * This way, we return uniform gray for the remainder of the segment. -   */ -  if (! entropy->insufficient_data) { - -    natural_order = cinfo->natural_order; -    Se = cinfo->lim_Se; - -    /* Load up working state */ -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); -    ASSIGN_STATE(state, entropy->saved); - -    /* Outer loop handles each block in the MCU */ - -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -      JBLOCKROW block = MCU_data[blkn]; -      d_derived_tbl * htbl; -      register int s, k, r; -      int coef_limit, ci; - -      /* Decode a single block's worth of coefficients */ - -      /* Section F.2.2.1: decode the DC coefficient difference */ -      htbl = entropy->dc_cur_tbls[blkn]; -      HUFF_DECODE(s, br_state, htbl, return FALSE, label1); - -      htbl = entropy->ac_cur_tbls[blkn]; -      k = 1; -      coef_limit = entropy->coef_limit[blkn]; -      if (coef_limit) { -	/* Convert DC difference to actual value, update last_dc_val */ -	if (s) { -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  r = GET_BITS(s); -	  s = HUFF_EXTEND(r, s); -	} -	ci = cinfo->MCU_membership[blkn]; -	s += state.last_dc_val[ci]; -	state.last_dc_val[ci] = s; -	/* Output the DC coefficient */ -	(*block)[0] = (JCOEF) s; - -	/* Section F.2.2.2: decode the AC coefficients */ -	/* Since zeroes are skipped, output area must be cleared beforehand */ -	for (; k < coef_limit; k++) { -	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2); - -	  r = s >> 4; -	  s &= 15; - -	  if (s) { -	    k += r; -	    CHECK_BIT_BUFFER(br_state, s, return FALSE); -	    r = GET_BITS(s); -	    s = HUFF_EXTEND(r, s); -	    /* Output coefficient in natural (dezigzagged) order. -	     * Note: the extra entries in natural_order[] will save us -	     * if k > Se, which could happen if the data is corrupted. -	     */ -	    (*block)[natural_order[k]] = (JCOEF) s; -	  } else { -	    if (r != 15) -	      goto EndOfBlock; -	    k += 15; -	  } -	} -      } else { -	if (s) { -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  DROP_BITS(s); -	} -      } - -      /* Section F.2.2.2: decode the AC coefficients */ -      /* In this path we just discard the values */ -      for (; k <= Se; k++) { -	HUFF_DECODE(s, br_state, htbl, return FALSE, label3); - -	r = s >> 4; -	s &= 15; - -	if (s) { -	  k += r; -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  DROP_BITS(s); -	} else { -	  if (r != 15) -	    break; -	  k += 15; -	} -      } - -      EndOfBlock: ; -    } - -    /* Completed MCU, so update state */ -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); -    ASSIGN_STATE(entropy->saved, state); -  } - -  /* Account for restart interval (no-op if not using restarts) */ -  entropy->restarts_to_go--; - -  return TRUE; -} - - -/* - * Decode one MCU's worth of Huffman-compressed coefficients, - * full-size blocks. - */ - -METHODDEF(boolean) -decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int blkn; -  BITREAD_STATE_VARS; -  savable_state state; - -  /* Process restart marker if needed; may have to suspend */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! process_restart(cinfo)) -	return FALSE; -  } - -  /* If we've run out of data, just leave the MCU set to zeroes. -   * This way, we return uniform gray for the remainder of the segment. -   */ -  if (! entropy->insufficient_data) { - -    /* Load up working state */ -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); -    ASSIGN_STATE(state, entropy->saved); - -    /* Outer loop handles each block in the MCU */ - -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -      JBLOCKROW block = MCU_data[blkn]; -      d_derived_tbl * htbl; -      register int s, k, r; -      int coef_limit, ci; - -      /* Decode a single block's worth of coefficients */ - -      /* Section F.2.2.1: decode the DC coefficient difference */ -      htbl = entropy->dc_cur_tbls[blkn]; -      HUFF_DECODE(s, br_state, htbl, return FALSE, label1); - -      htbl = entropy->ac_cur_tbls[blkn]; -      k = 1; -      coef_limit = entropy->coef_limit[blkn]; -      if (coef_limit) { -	/* Convert DC difference to actual value, update last_dc_val */ -	if (s) { -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  r = GET_BITS(s); -	  s = HUFF_EXTEND(r, s); -	} -	ci = cinfo->MCU_membership[blkn]; -	s += state.last_dc_val[ci]; -	state.last_dc_val[ci] = s; -	/* Output the DC coefficient */ -	(*block)[0] = (JCOEF) s; - -	/* Section F.2.2.2: decode the AC coefficients */ -	/* Since zeroes are skipped, output area must be cleared beforehand */ -	for (; k < coef_limit; k++) { -	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2); - -	  r = s >> 4; -	  s &= 15; - -	  if (s) { -	    k += r; -	    CHECK_BIT_BUFFER(br_state, s, return FALSE); -	    r = GET_BITS(s); -	    s = HUFF_EXTEND(r, s); -	    /* Output coefficient in natural (dezigzagged) order. -	     * Note: the extra entries in jpeg_natural_order[] will save us -	     * if k >= DCTSIZE2, which could happen if the data is corrupted. -	     */ -	    (*block)[jpeg_natural_order[k]] = (JCOEF) s; -	  } else { -	    if (r != 15) -	      goto EndOfBlock; -	    k += 15; -	  } -	} -      } else { -	if (s) { -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  DROP_BITS(s); -	} -      } - -      /* Section F.2.2.2: decode the AC coefficients */ -      /* In this path we just discard the values */ -      for (; k < DCTSIZE2; k++) { -	HUFF_DECODE(s, br_state, htbl, return FALSE, label3); - -	r = s >> 4; -	s &= 15; - -	if (s) { -	  k += r; -	  CHECK_BIT_BUFFER(br_state, s, return FALSE); -	  DROP_BITS(s); -	} else { -	  if (r != 15) -	    break; -	  k += 15; -	} -      } - -      EndOfBlock: ; -    } - -    /* Completed MCU, so update state */ -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); -    ASSIGN_STATE(entropy->saved, state); -  } - -  /* Account for restart interval (no-op if not using restarts) */ -  entropy->restarts_to_go--; - -  return TRUE; -} - - -/* - * Initialize for a Huffman-compressed scan. - */ - -METHODDEF(void) -start_pass_huff_decoder (j_decompress_ptr cinfo) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int ci, blkn, tbl, i; -  jpeg_component_info * compptr; - -  if (cinfo->progressive_mode) { -    /* Validate progressive scan parameters */ -    if (cinfo->Ss == 0) { -      if (cinfo->Se != 0) -	goto bad; -    } else { -      /* need not check Ss/Se < 0 since they came from unsigned bytes */ -      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) -	goto bad; -      /* AC scans may have only one component */ -      if (cinfo->comps_in_scan != 1) -	goto bad; -    } -    if (cinfo->Ah != 0) { -      /* Successive approximation refinement scan: must have Al = Ah-1. */ -      if (cinfo->Ah-1 != cinfo->Al) -	goto bad; -    } -    if (cinfo->Al > 13) {	/* need not check for < 0 */ -      /* Arguably the maximum Al value should be less than 13 for 8-bit precision, -       * but the spec doesn't say so, and we try to be liberal about what we -       * accept.  Note: large Al values could result in out-of-range DC -       * coefficients during early scans, leading to bizarre displays due to -       * overflows in the IDCT math.  But we won't crash. -       */ -      bad: -      ERREXIT4(cinfo, JERR_BAD_PROGRESSION, -	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); -    } -    /* Update progression status, and verify that scan order is legal. -     * Note that inter-scan inconsistencies are treated as warnings -     * not fatal errors ... not clear if this is right way to behave. -     */ -    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; -      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; -      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ -	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); -      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { -	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; -	if (cinfo->Ah != expected) -	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); -	coef_bit_ptr[coefi] = cinfo->Al; -      } -    } - -    /* Select MCU decoding routine */ -    if (cinfo->Ah == 0) { -      if (cinfo->Ss == 0) -	entropy->pub.decode_mcu = decode_mcu_DC_first; -      else -	entropy->pub.decode_mcu = decode_mcu_AC_first; -    } else { -      if (cinfo->Ss == 0) -	entropy->pub.decode_mcu = decode_mcu_DC_refine; -      else -	entropy->pub.decode_mcu = decode_mcu_AC_refine; -    } - -    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -      compptr = cinfo->cur_comp_info[ci]; -      /* Make sure requested tables are present, and compute derived tables. -       * We may build same derived table more than once, but it's not expensive. -       */ -      if (cinfo->Ss == 0) { -	if (cinfo->Ah == 0) {	/* DC refinement needs no table */ -	  tbl = compptr->dc_tbl_no; -	  jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, -				  & entropy->derived_tbls[tbl]); -	} -      } else { -	tbl = compptr->ac_tbl_no; -	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, -				& entropy->derived_tbls[tbl]); -	/* remember the single active table */ -	entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; -      } -      /* Initialize DC predictions to 0 */ -      entropy->saved.last_dc_val[ci] = 0; -    } - -    /* Initialize private state variables */ -    entropy->saved.EOBRUN = 0; -  } else { -    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. -     * This ought to be an error condition, but we make it a warning because -     * there are some baseline files out there with all zeroes in these bytes. -     */ -    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || -	((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && -	cinfo->Se != cinfo->lim_Se)) -      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); - -    /* Select MCU decoding routine */ -    /* We retain the hard-coded case for full-size blocks. -     * This is not necessary, but it appears that this version is slightly -     * more performant in the given implementation. -     * With an improved implementation we would prefer a single optimized -     * function. -     */ -    if (cinfo->lim_Se != DCTSIZE2-1) -      entropy->pub.decode_mcu = decode_mcu_sub; -    else -      entropy->pub.decode_mcu = decode_mcu; - -    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -      compptr = cinfo->cur_comp_info[ci]; -      /* Compute derived values for Huffman tables */ -      /* We may do this more than once for a table, but it's not expensive */ -      tbl = compptr->dc_tbl_no; -      jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, -			      & entropy->dc_derived_tbls[tbl]); -      if (cinfo->lim_Se) {	/* AC needs no table when not present */ -	tbl = compptr->ac_tbl_no; -	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, -				& entropy->ac_derived_tbls[tbl]); -      } -      /* Initialize DC predictions to 0 */ -      entropy->saved.last_dc_val[ci] = 0; -    } - -    /* Precalculate decoding info for each block in an MCU of this scan */ -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -      ci = cinfo->MCU_membership[blkn]; -      compptr = cinfo->cur_comp_info[ci]; -      /* Precalculate which table to use for each block */ -      entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; -      entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; -      /* Decide whether we really care about the coefficient values */ -      if (compptr->component_needed) { -	ci = compptr->DCT_v_scaled_size; -	i = compptr->DCT_h_scaled_size; -	switch (cinfo->lim_Se) { -	case (1*1-1): -	  entropy->coef_limit[blkn] = 1; -	  break; -	case (2*2-1): -	  if (ci <= 0 || ci > 2) ci = 2; -	  if (i <= 0 || i > 2) i = 2; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; -	  break; -	case (3*3-1): -	  if (ci <= 0 || ci > 3) ci = 3; -	  if (i <= 0 || i > 3) i = 3; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; -	  break; -	case (4*4-1): -	  if (ci <= 0 || ci > 4) ci = 4; -	  if (i <= 0 || i > 4) i = 4; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; -	  break; -	case (5*5-1): -	  if (ci <= 0 || ci > 5) ci = 5; -	  if (i <= 0 || i > 5) i = 5; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; -	  break; -	case (6*6-1): -	  if (ci <= 0 || ci > 6) ci = 6; -	  if (i <= 0 || i > 6) i = 6; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; -	  break; -	case (7*7-1): -	  if (ci <= 0 || ci > 7) ci = 7; -	  if (i <= 0 || i > 7) i = 7; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; -	  break; -	default: -	  if (ci <= 0 || ci > 8) ci = 8; -	  if (i <= 0 || i > 8) i = 8; -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; -	  break; -	} -      } else { -	entropy->coef_limit[blkn] = 0; -      } -    } -  } - -  /* Initialize bitread state variables */ -  entropy->bitstate.bits_left = 0; -  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ -  entropy->insufficient_data = FALSE; - -  /* Initialize restart counter */ -  entropy->restarts_to_go = cinfo->restart_interval; -} - - -/* - * Module initialization routine for Huffman entropy decoding. - */ - -GLOBAL(void) -jinit_huff_decoder (j_decompress_ptr cinfo) -{ -  huff_entropy_ptr entropy; -  int i; - -  entropy = (huff_entropy_ptr) -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				SIZEOF(huff_entropy_decoder)); -  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; -  entropy->pub.start_pass = start_pass_huff_decoder; - -  if (cinfo->progressive_mode) { -    /* Create progression status table */ -    int *coef_bit_ptr, ci; -    cinfo->coef_bits = (int (*)[DCTSIZE2]) -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				  cinfo->num_components*DCTSIZE2*SIZEOF(int)); -    coef_bit_ptr = & cinfo->coef_bits[0][0]; -    for (ci = 0; ci < cinfo->num_components; ci++) -      for (i = 0; i < DCTSIZE2; i++) -	*coef_bit_ptr++ = -1; - -    /* Mark derived tables unallocated */ -    for (i = 0; i < NUM_HUFF_TBLS; i++) { -      entropy->derived_tbls[i] = NULL; -    } -  } else { -    /* Mark tables unallocated */ -    for (i = 0; i < NUM_HUFF_TBLS; i++) { -      entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; -    } -  } -}  | 
