diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jdhuff.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jdhuff.c | 3082 | 
1 files changed, 1541 insertions, 1541 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jdhuff.c b/plugins/FreeImage/Source/LibJPEG/jdhuff.c index 9694117947..06f92fe47f 100644 --- a/plugins/FreeImage/Source/LibJPEG/jdhuff.c +++ b/plugins/FreeImage/Source/LibJPEG/jdhuff.c @@ -1,1541 +1,1541 @@ -/*
 - * jdhuff.c
 - *
 - * Copyright (C) 1991-1997, Thomas G. Lane.
 - * Modified 2006-2009 by Guido Vollbeding.
 - * This file is part of the Independent JPEG Group's software.
 - * For conditions of distribution and use, see the accompanying README file.
 - *
 - * This file contains Huffman entropy decoding routines.
 - * Both sequential and progressive modes are supported in this single module.
 - *
 - * Much of the complexity here has to do with supporting input suspension.
 - * If the data source module demands suspension, we want to be able to back
 - * up to the start of the current MCU.  To do this, we copy state variables
 - * into local working storage, and update them back to the permanent
 - * storage only upon successful completion of an MCU.
 - */
 -
 -#define JPEG_INTERNALS
 -#include "jinclude.h"
 -#include "jpeglib.h"
 -
 -
 -/* Derived data constructed for each Huffman table */
 -
 -#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
 -
 -typedef struct {
 -  /* Basic tables: (element [0] of each array is unused) */
 -  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
 -  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
 -  INT32 valoffset[17];		/* huffval[] offset for codes of length k */
 -  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
 -   * the smallest code of length k; so given a code of length k, the
 -   * corresponding symbol is huffval[code + valoffset[k]]
 -   */
 -
 -  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
 -  JHUFF_TBL *pub;
 -
 -  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
 -   * the input data stream.  If the next Huffman code is no more
 -   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
 -   * the corresponding symbol directly from these tables.
 -   */
 -  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
 -  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
 -} d_derived_tbl;
 -
 -
 -/*
 - * Fetching the next N bits from the input stream is a time-critical operation
 - * for the Huffman decoders.  We implement it with a combination of inline
 - * macros and out-of-line subroutines.  Note that N (the number of bits
 - * demanded at one time) never exceeds 15 for JPEG use.
 - *
 - * We read source bytes into get_buffer and dole out bits as needed.
 - * If get_buffer already contains enough bits, they are fetched in-line
 - * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
 - * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
 - * as full as possible (not just to the number of bits needed; this
 - * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
 - * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
 - * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
 - * at least the requested number of bits --- dummy zeroes are inserted if
 - * necessary.
 - */
 -
 -typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
 -#define BIT_BUF_SIZE  32	/* size of buffer in bits */
 -
 -/* If long is > 32 bits on your machine, and shifting/masking longs is
 - * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
 - * appropriately should be a win.  Unfortunately we can't define the size
 - * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
 - * because not all machines measure sizeof in 8-bit bytes.
 - */
 -
 -typedef struct {		/* Bitreading state saved across MCUs */
 -  bit_buf_type get_buffer;	/* current bit-extraction buffer */
 -  int bits_left;		/* # of unused bits in it */
 -} bitread_perm_state;
 -
 -typedef struct {		/* Bitreading working state within an MCU */
 -  /* Current data source location */
 -  /* We need a copy, rather than munging the original, in case of suspension */
 -  const JOCTET * next_input_byte; /* => next byte to read from source */
 -  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
 -  /* Bit input buffer --- note these values are kept in register variables,
 -   * not in this struct, inside the inner loops.
 -   */
 -  bit_buf_type get_buffer;	/* current bit-extraction buffer */
 -  int bits_left;		/* # of unused bits in it */
 -  /* Pointer needed by jpeg_fill_bit_buffer. */
 -  j_decompress_ptr cinfo;	/* back link to decompress master record */
 -} bitread_working_state;
 -
 -/* Macros to declare and load/save bitread local variables. */
 -#define BITREAD_STATE_VARS  \
 -	register bit_buf_type get_buffer;  \
 -	register int bits_left;  \
 -	bitread_working_state br_state
 -
 -#define BITREAD_LOAD_STATE(cinfop,permstate)  \
 -	br_state.cinfo = cinfop; \
 -	br_state.next_input_byte = cinfop->src->next_input_byte; \
 -	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
 -	get_buffer = permstate.get_buffer; \
 -	bits_left = permstate.bits_left;
 -
 -#define BITREAD_SAVE_STATE(cinfop,permstate)  \
 -	cinfop->src->next_input_byte = br_state.next_input_byte; \
 -	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
 -	permstate.get_buffer = get_buffer; \
 -	permstate.bits_left = bits_left
 -
 -/*
 - * These macros provide the in-line portion of bit fetching.
 - * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
 - * before using GET_BITS, PEEK_BITS, or DROP_BITS.
 - * The variables get_buffer and bits_left are assumed to be locals,
 - * but the state struct might not be (jpeg_huff_decode needs this).
 - *	CHECK_BIT_BUFFER(state,n,action);
 - *		Ensure there are N bits in get_buffer; if suspend, take action.
 - *      val = GET_BITS(n);
 - *		Fetch next N bits.
 - *      val = PEEK_BITS(n);
 - *		Fetch next N bits without removing them from the buffer.
 - *	DROP_BITS(n);
 - *		Discard next N bits.
 - * The value N should be a simple variable, not an expression, because it
 - * is evaluated multiple times.
 - */
 -
 -#define CHECK_BIT_BUFFER(state,nbits,action) \
 -	{ if (bits_left < (nbits)) {  \
 -	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
 -	      { action; }  \
 -	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
 -
 -#define GET_BITS(nbits) \
 -	(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
 -
 -#define PEEK_BITS(nbits) \
 -	(((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits))
 -
 -#define DROP_BITS(nbits) \
 -	(bits_left -= (nbits))
 -
 -
 -/*
 - * Code for extracting next Huffman-coded symbol from input bit stream.
 - * Again, this is time-critical and we make the main paths be macros.
 - *
 - * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
 - * without looping.  Usually, more than 95% of the Huffman codes will be 8
 - * or fewer bits long.  The few overlength codes are handled with a loop,
 - * which need not be inline code.
 - *
 - * Notes about the HUFF_DECODE macro:
 - * 1. Near the end of the data segment, we may fail to get enough bits
 - *    for a lookahead.  In that case, we do it the hard way.
 - * 2. If the lookahead table contains no entry, the next code must be
 - *    more than HUFF_LOOKAHEAD bits long.
 - * 3. jpeg_huff_decode returns -1 if forced to suspend.
 - */
 -
 -#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
 -{ register int nb, look; \
 -  if (bits_left < HUFF_LOOKAHEAD) { \
 -    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
 -    get_buffer = state.get_buffer; bits_left = state.bits_left; \
 -    if (bits_left < HUFF_LOOKAHEAD) { \
 -      nb = 1; goto slowlabel; \
 -    } \
 -  } \
 -  look = PEEK_BITS(HUFF_LOOKAHEAD); \
 -  if ((nb = htbl->look_nbits[look]) != 0) { \
 -    DROP_BITS(nb); \
 -    result = htbl->look_sym[look]; \
 -  } else { \
 -    nb = HUFF_LOOKAHEAD+1; \
 -slowlabel: \
 -    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
 -	{ failaction; } \
 -    get_buffer = state.get_buffer; bits_left = state.bits_left; \
 -  } \
 -}
 -
 -
 -/*
 - * Expanded entropy decoder object for Huffman decoding.
 - *
 - * The savable_state subrecord contains fields that change within an MCU,
 - * but must not be updated permanently until we complete the MCU.
 - */
 -
 -typedef struct {
 -  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
 -  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
 -} savable_state;
 -
 -/* This macro is to work around compilers with missing or broken
 - * structure assignment.  You'll need to fix this code if you have
 - * such a compiler and you change MAX_COMPS_IN_SCAN.
 - */
 -
 -#ifndef NO_STRUCT_ASSIGN
 -#define ASSIGN_STATE(dest,src)  ((dest) = (src))
 -#else
 -#if MAX_COMPS_IN_SCAN == 4
 -#define ASSIGN_STATE(dest,src)  \
 -	((dest).EOBRUN = (src).EOBRUN, \
 -	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
 -	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
 -	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
 -	 (dest).last_dc_val[3] = (src).last_dc_val[3])
 -#endif
 -#endif
 -
 -
 -typedef struct {
 -  struct jpeg_entropy_decoder pub; /* public fields */
 -
 -  /* These fields are loaded into local variables at start of each MCU.
 -   * In case of suspension, we exit WITHOUT updating them.
 -   */
 -  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
 -  savable_state saved;		/* Other state at start of MCU */
 -
 -  /* These fields are NOT loaded into local working state. */
 -  boolean insufficient_data;	/* set TRUE after emitting warning */
 -  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 -
 -  /* Following two fields used only in progressive mode */
 -
 -  /* Pointers to derived tables (these workspaces have image lifespan) */
 -  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
 -
 -  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
 -
 -  /* Following fields used only in sequential mode */
 -
 -  /* Pointers to derived tables (these workspaces have image lifespan) */
 -  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 -  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 -
 -  /* Precalculated info set up by start_pass for use in decode_mcu: */
 -
 -  /* Pointers to derived tables to be used for each block within an MCU */
 -  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 -  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 -  /* Whether we care about the DC and AC coefficient values for each block */
 -  int coef_limit[D_MAX_BLOCKS_IN_MCU];
 -} huff_entropy_decoder;
 -
 -typedef huff_entropy_decoder * huff_entropy_ptr;
 -
 -
 -static const int jpeg_zigzag_order[8][8] = {
 -  {  0,  1,  5,  6, 14, 15, 27, 28 },
 -  {  2,  4,  7, 13, 16, 26, 29, 42 },
 -  {  3,  8, 12, 17, 25, 30, 41, 43 },
 -  {  9, 11, 18, 24, 31, 40, 44, 53 },
 -  { 10, 19, 23, 32, 39, 45, 52, 54 },
 -  { 20, 22, 33, 38, 46, 51, 55, 60 },
 -  { 21, 34, 37, 47, 50, 56, 59, 61 },
 -  { 35, 36, 48, 49, 57, 58, 62, 63 }
 -};
 -
 -static const int jpeg_zigzag_order7[7][7] = {
 -  {  0,  1,  5,  6, 14, 15, 27 },
 -  {  2,  4,  7, 13, 16, 26, 28 },
 -  {  3,  8, 12, 17, 25, 29, 38 },
 -  {  9, 11, 18, 24, 30, 37, 39 },
 -  { 10, 19, 23, 31, 36, 40, 45 },
 -  { 20, 22, 32, 35, 41, 44, 46 },
 -  { 21, 33, 34, 42, 43, 47, 48 }
 -};
 -
 -static const int jpeg_zigzag_order6[6][6] = {
 -  {  0,  1,  5,  6, 14, 15 },
 -  {  2,  4,  7, 13, 16, 25 },
 -  {  3,  8, 12, 17, 24, 26 },
 -  {  9, 11, 18, 23, 27, 32 },
 -  { 10, 19, 22, 28, 31, 33 },
 -  { 20, 21, 29, 30, 34, 35 }
 -};
 -
 -static const int jpeg_zigzag_order5[5][5] = {
 -  {  0,  1,  5,  6, 14 },
 -  {  2,  4,  7, 13, 15 },
 -  {  3,  8, 12, 16, 21 },
 -  {  9, 11, 17, 20, 22 },
 -  { 10, 18, 19, 23, 24 }
 -};
 -
 -static const int jpeg_zigzag_order4[4][4] = {
 -  { 0,  1,  5,  6 },
 -  { 2,  4,  7, 12 },
 -  { 3,  8, 11, 13 },
 -  { 9, 10, 14, 15 }
 -};
 -
 -static const int jpeg_zigzag_order3[3][3] = {
 -  { 0, 1, 5 },
 -  { 2, 4, 6 },
 -  { 3, 7, 8 }
 -};
 -
 -static const int jpeg_zigzag_order2[2][2] = {
 -  { 0, 1 },
 -  { 2, 3 }
 -};
 -
 -
 -/*
 - * Compute the derived values for a Huffman table.
 - * This routine also performs some validation checks on the table.
 - */
 -
 -LOCAL(void)
 -jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
 -			 d_derived_tbl ** pdtbl)
 -{
 -  JHUFF_TBL *htbl;
 -  d_derived_tbl *dtbl;
 -  int p, i, l, si, numsymbols;
 -  int lookbits, ctr;
 -  char huffsize[257];
 -  unsigned int huffcode[257];
 -  unsigned int code;
 -
 -  /* Note that huffsize[] and huffcode[] are filled in code-length order,
 -   * paralleling the order of the symbols themselves in htbl->huffval[].
 -   */
 -
 -  /* Find the input Huffman table */
 -  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 -  htbl =
 -    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 -  if (htbl == NULL)
 -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 -
 -  /* Allocate a workspace if we haven't already done so. */
 -  if (*pdtbl == NULL)
 -    *pdtbl = (d_derived_tbl *)
 -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				  SIZEOF(d_derived_tbl));
 -  dtbl = *pdtbl;
 -  dtbl->pub = htbl;		/* fill in back link */
 -  
 -  /* Figure C.1: make table of Huffman code length for each symbol */
 -
 -  p = 0;
 -  for (l = 1; l <= 16; l++) {
 -    i = (int) htbl->bits[l];
 -    if (i < 0 || p + i > 256)	/* protect against table overrun */
 -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 -    while (i--)
 -      huffsize[p++] = (char) l;
 -  }
 -  huffsize[p] = 0;
 -  numsymbols = p;
 -  
 -  /* Figure C.2: generate the codes themselves */
 -  /* We also validate that the counts represent a legal Huffman code tree. */
 -  
 -  code = 0;
 -  si = huffsize[0];
 -  p = 0;
 -  while (huffsize[p]) {
 -    while (((int) huffsize[p]) == si) {
 -      huffcode[p++] = code;
 -      code++;
 -    }
 -    /* code is now 1 more than the last code used for codelength si; but
 -     * it must still fit in si bits, since no code is allowed to be all ones.
 -     */
 -    if (((INT32) code) >= (((INT32) 1) << si))
 -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 -    code <<= 1;
 -    si++;
 -  }
 -
 -  /* Figure F.15: generate decoding tables for bit-sequential decoding */
 -
 -  p = 0;
 -  for (l = 1; l <= 16; l++) {
 -    if (htbl->bits[l]) {
 -      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
 -       * minus the minimum code of length l
 -       */
 -      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
 -      p += htbl->bits[l];
 -      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
 -    } else {
 -      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
 -    }
 -  }
 -  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
 -
 -  /* Compute lookahead tables to speed up decoding.
 -   * First we set all the table entries to 0, indicating "too long";
 -   * then we iterate through the Huffman codes that are short enough and
 -   * fill in all the entries that correspond to bit sequences starting
 -   * with that code.
 -   */
 -
 -  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
 -
 -  p = 0;
 -  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
 -    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
 -      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
 -      /* Generate left-justified code followed by all possible bit sequences */
 -      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
 -      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
 -	dtbl->look_nbits[lookbits] = l;
 -	dtbl->look_sym[lookbits] = htbl->huffval[p];
 -	lookbits++;
 -      }
 -    }
 -  }
 -
 -  /* Validate symbols as being reasonable.
 -   * For AC tables, we make no check, but accept all byte values 0..255.
 -   * For DC tables, we require the symbols to be in range 0..15.
 -   * (Tighter bounds could be applied depending on the data depth and mode,
 -   * but this is sufficient to ensure safe decoding.)
 -   */
 -  if (isDC) {
 -    for (i = 0; i < numsymbols; i++) {
 -      int sym = htbl->huffval[i];
 -      if (sym < 0 || sym > 15)
 -	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 -    }
 -  }
 -}
 -
 -
 -/*
 - * Out-of-line code for bit fetching.
 - * Note: current values of get_buffer and bits_left are passed as parameters,
 - * but are returned in the corresponding fields of the state struct.
 - *
 - * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
 - * of get_buffer to be used.  (On machines with wider words, an even larger
 - * buffer could be used.)  However, on some machines 32-bit shifts are
 - * quite slow and take time proportional to the number of places shifted.
 - * (This is true with most PC compilers, for instance.)  In this case it may
 - * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
 - * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
 - */
 -
 -#ifdef SLOW_SHIFT_32
 -#define MIN_GET_BITS  15	/* minimum allowable value */
 -#else
 -#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
 -#endif
 -
 -
 -LOCAL(boolean)
 -jpeg_fill_bit_buffer (bitread_working_state * state,
 -		      register bit_buf_type get_buffer, register int bits_left,
 -		      int nbits)
 -/* Load up the bit buffer to a depth of at least nbits */
 -{
 -  /* Copy heavily used state fields into locals (hopefully registers) */
 -  register const JOCTET * next_input_byte = state->next_input_byte;
 -  register size_t bytes_in_buffer = state->bytes_in_buffer;
 -  j_decompress_ptr cinfo = state->cinfo;
 -
 -  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
 -  /* (It is assumed that no request will be for more than that many bits.) */
 -  /* We fail to do so only if we hit a marker or are forced to suspend. */
 -
 -  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
 -    while (bits_left < MIN_GET_BITS) {
 -      register int c;
 -
 -      /* Attempt to read a byte */
 -      if (bytes_in_buffer == 0) {
 -	if (! (*cinfo->src->fill_input_buffer) (cinfo))
 -	  return FALSE;
 -	next_input_byte = cinfo->src->next_input_byte;
 -	bytes_in_buffer = cinfo->src->bytes_in_buffer;
 -      }
 -      bytes_in_buffer--;
 -      c = GETJOCTET(*next_input_byte++);
 -
 -      /* If it's 0xFF, check and discard stuffed zero byte */
 -      if (c == 0xFF) {
 -	/* Loop here to discard any padding FF's on terminating marker,
 -	 * so that we can save a valid unread_marker value.  NOTE: we will
 -	 * accept multiple FF's followed by a 0 as meaning a single FF data
 -	 * byte.  This data pattern is not valid according to the standard.
 -	 */
 -	do {
 -	  if (bytes_in_buffer == 0) {
 -	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
 -	      return FALSE;
 -	    next_input_byte = cinfo->src->next_input_byte;
 -	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
 -	  }
 -	  bytes_in_buffer--;
 -	  c = GETJOCTET(*next_input_byte++);
 -	} while (c == 0xFF);
 -
 -	if (c == 0) {
 -	  /* Found FF/00, which represents an FF data byte */
 -	  c = 0xFF;
 -	} else {
 -	  /* Oops, it's actually a marker indicating end of compressed data.
 -	   * Save the marker code for later use.
 -	   * Fine point: it might appear that we should save the marker into
 -	   * bitread working state, not straight into permanent state.  But
 -	   * once we have hit a marker, we cannot need to suspend within the
 -	   * current MCU, because we will read no more bytes from the data
 -	   * source.  So it is OK to update permanent state right away.
 -	   */
 -	  cinfo->unread_marker = c;
 -	  /* See if we need to insert some fake zero bits. */
 -	  goto no_more_bytes;
 -	}
 -      }
 -
 -      /* OK, load c into get_buffer */
 -      get_buffer = (get_buffer << 8) | c;
 -      bits_left += 8;
 -    } /* end while */
 -  } else {
 -  no_more_bytes:
 -    /* We get here if we've read the marker that terminates the compressed
 -     * data segment.  There should be enough bits in the buffer register
 -     * to satisfy the request; if so, no problem.
 -     */
 -    if (nbits > bits_left) {
 -      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
 -       * the data stream, so that we can produce some kind of image.
 -       * We use a nonvolatile flag to ensure that only one warning message
 -       * appears per data segment.
 -       */
 -      if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
 -	WARNMS(cinfo, JWRN_HIT_MARKER);
 -	((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
 -      }
 -      /* Fill the buffer with zero bits */
 -      get_buffer <<= MIN_GET_BITS - bits_left;
 -      bits_left = MIN_GET_BITS;
 -    }
 -  }
 -
 -  /* Unload the local registers */
 -  state->next_input_byte = next_input_byte;
 -  state->bytes_in_buffer = bytes_in_buffer;
 -  state->get_buffer = get_buffer;
 -  state->bits_left = bits_left;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Figure F.12: extend sign bit.
 - * On some machines, a shift and sub will be faster than a table lookup.
 - */
 -
 -#ifdef AVOID_TABLES
 -
 -#define BIT_MASK(nbits)   ((1<<(nbits))-1)
 -#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
 -
 -#else
 -
 -#define BIT_MASK(nbits)   bmask[nbits]
 -#define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
 -
 -static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */
 -  { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
 -    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
 -
 -#endif /* AVOID_TABLES */
 -
 -
 -/*
 - * Out-of-line code for Huffman code decoding.
 - */
 -
 -LOCAL(int)
 -jpeg_huff_decode (bitread_working_state * state,
 -		  register bit_buf_type get_buffer, register int bits_left,
 -		  d_derived_tbl * htbl, int min_bits)
 -{
 -  register int l = min_bits;
 -  register INT32 code;
 -
 -  /* HUFF_DECODE has determined that the code is at least min_bits */
 -  /* bits long, so fetch that many bits in one swoop. */
 -
 -  CHECK_BIT_BUFFER(*state, l, return -1);
 -  code = GET_BITS(l);
 -
 -  /* Collect the rest of the Huffman code one bit at a time. */
 -  /* This is per Figure F.16 in the JPEG spec. */
 -
 -  while (code > htbl->maxcode[l]) {
 -    code <<= 1;
 -    CHECK_BIT_BUFFER(*state, 1, return -1);
 -    code |= GET_BITS(1);
 -    l++;
 -  }
 -
 -  /* Unload the local registers */
 -  state->get_buffer = get_buffer;
 -  state->bits_left = bits_left;
 -
 -  /* With garbage input we may reach the sentinel value l = 17. */
 -
 -  if (l > 16) {
 -    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
 -    return 0;			/* fake a zero as the safest result */
 -  }
 -
 -  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
 -}
 -
 -
 -/*
 - * Check for a restart marker & resynchronize decoder.
 - * Returns FALSE if must suspend.
 - */
 -
 -LOCAL(boolean)
 -process_restart (j_decompress_ptr cinfo)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int ci;
 -
 -  /* Throw away any unused bits remaining in bit buffer; */
 -  /* include any full bytes in next_marker's count of discarded bytes */
 -  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
 -  entropy->bitstate.bits_left = 0;
 -
 -  /* Advance past the RSTn marker */
 -  if (! (*cinfo->marker->read_restart_marker) (cinfo))
 -    return FALSE;
 -
 -  /* Re-initialize DC predictions to 0 */
 -  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 -    entropy->saved.last_dc_val[ci] = 0;
 -  /* Re-init EOB run count, too */
 -  entropy->saved.EOBRUN = 0;
 -
 -  /* Reset restart counter */
 -  entropy->restarts_to_go = cinfo->restart_interval;
 -
 -  /* Reset out-of-data flag, unless read_restart_marker left us smack up
 -   * against a marker.  In that case we will end up treating the next data
 -   * segment as empty, and we can avoid producing bogus output pixels by
 -   * leaving the flag set.
 -   */
 -  if (cinfo->unread_marker == 0)
 -    entropy->insufficient_data = FALSE;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Huffman MCU decoding.
 - * Each of these routines decodes and returns one MCU's worth of
 - * Huffman-compressed coefficients. 
 - * The coefficients are reordered from zigzag order into natural array order,
 - * but are not dequantized.
 - *
 - * The i'th block of the MCU is stored into the block pointed to by
 - * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
 - * (Wholesale zeroing is usually a little faster than retail...)
 - *
 - * We return FALSE if data source requested suspension.  In that case no
 - * changes have been made to permanent state.  (Exception: some output
 - * coefficients may already have been assigned.  This is harmless for
 - * spectral selection, since we'll just re-assign them on the next call.
 - * Successive approximation AC refinement has to be more careful, however.)
 - */
 -
 -/*
 - * MCU decoding for DC initial scan (either spectral selection,
 - * or first pass of successive approximation).
 - */
 -
 -METHODDEF(boolean)
 -decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 -{   
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int Al = cinfo->Al;
 -  register int s, r;
 -  int blkn, ci;
 -  JBLOCKROW block;
 -  BITREAD_STATE_VARS;
 -  savable_state state;
 -  d_derived_tbl * tbl;
 -  jpeg_component_info * compptr;
 -
 -  /* Process restart marker if needed; may have to suspend */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! process_restart(cinfo))
 -	return FALSE;
 -  }
 -
 -  /* If we've run out of data, just leave the MCU set to zeroes.
 -   * This way, we return uniform gray for the remainder of the segment.
 -   */
 -  if (! entropy->insufficient_data) {
 -
 -    /* Load up working state */
 -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 -    ASSIGN_STATE(state, entropy->saved);
 -
 -    /* Outer loop handles each block in the MCU */
 -
 -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -      block = MCU_data[blkn];
 -      ci = cinfo->MCU_membership[blkn];
 -      compptr = cinfo->cur_comp_info[ci];
 -      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
 -
 -      /* Decode a single block's worth of coefficients */
 -
 -      /* Section F.2.2.1: decode the DC coefficient difference */
 -      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
 -      if (s) {
 -	CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	r = GET_BITS(s);
 -	s = HUFF_EXTEND(r, s);
 -      }
 -
 -      /* Convert DC difference to actual value, update last_dc_val */
 -      s += state.last_dc_val[ci];
 -      state.last_dc_val[ci] = s;
 -      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
 -      (*block)[0] = (JCOEF) (s << Al);
 -    }
 -
 -    /* Completed MCU, so update state */
 -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 -    ASSIGN_STATE(entropy->saved, state);
 -  }
 -
 -  /* Account for restart interval (no-op if not using restarts) */
 -  entropy->restarts_to_go--;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * MCU decoding for AC initial scan (either spectral selection,
 - * or first pass of successive approximation).
 - */
 -
 -METHODDEF(boolean)
 -decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 -{   
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  register int s, k, r;
 -  unsigned int EOBRUN;
 -  int Se, Al;
 -  const int * natural_order;
 -  JBLOCKROW block;
 -  BITREAD_STATE_VARS;
 -  d_derived_tbl * tbl;
 -
 -  /* Process restart marker if needed; may have to suspend */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! process_restart(cinfo))
 -	return FALSE;
 -  }
 -
 -  /* If we've run out of data, just leave the MCU set to zeroes.
 -   * This way, we return uniform gray for the remainder of the segment.
 -   */
 -  if (! entropy->insufficient_data) {
 -
 -    Se = cinfo->Se;
 -    Al = cinfo->Al;
 -    natural_order = cinfo->natural_order;
 -
 -    /* Load up working state.
 -     * We can avoid loading/saving bitread state if in an EOB run.
 -     */
 -    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
 -
 -    /* There is always only one block per MCU */
 -
 -    if (EOBRUN > 0)		/* if it's a band of zeroes... */
 -      EOBRUN--;			/* ...process it now (we do nothing) */
 -    else {
 -      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 -      block = MCU_data[0];
 -      tbl = entropy->ac_derived_tbl;
 -
 -      for (k = cinfo->Ss; k <= Se; k++) {
 -	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
 -	r = s >> 4;
 -	s &= 15;
 -	if (s) {
 -	  k += r;
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  r = GET_BITS(s);
 -	  s = HUFF_EXTEND(r, s);
 -	  /* Scale and output coefficient in natural (dezigzagged) order */
 -	  (*block)[natural_order[k]] = (JCOEF) (s << Al);
 -	} else {
 -	  if (r == 15) {	/* ZRL */
 -	    k += 15;		/* skip 15 zeroes in band */
 -	  } else {		/* EOBr, run length is 2^r + appended bits */
 -	    EOBRUN = 1 << r;
 -	    if (r) {		/* EOBr, r > 0 */
 -	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
 -	      r = GET_BITS(r);
 -	      EOBRUN += r;
 -	    }
 -	    EOBRUN--;		/* this band is processed at this moment */
 -	    break;		/* force end-of-band */
 -	  }
 -	}
 -      }
 -
 -      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 -    }
 -
 -    /* Completed MCU, so update state */
 -    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
 -  }
 -
 -  /* Account for restart interval (no-op if not using restarts) */
 -  entropy->restarts_to_go--;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * MCU decoding for DC successive approximation refinement scan.
 - * Note: we assume such scans can be multi-component, although the spec
 - * is not very clear on the point.
 - */
 -
 -METHODDEF(boolean)
 -decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 -{   
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
 -  int blkn;
 -  JBLOCKROW block;
 -  BITREAD_STATE_VARS;
 -
 -  /* Process restart marker if needed; may have to suspend */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! process_restart(cinfo))
 -	return FALSE;
 -  }
 -
 -  /* Not worth the cycles to check insufficient_data here,
 -   * since we will not change the data anyway if we read zeroes.
 -   */
 -
 -  /* Load up working state */
 -  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 -
 -  /* Outer loop handles each block in the MCU */
 -
 -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -    block = MCU_data[blkn];
 -
 -    /* Encoded data is simply the next bit of the two's-complement DC value */
 -    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
 -    if (GET_BITS(1))
 -      (*block)[0] |= p1;
 -    /* Note: since we use |=, repeating the assignment later is safe */
 -  }
 -
 -  /* Completed MCU, so update state */
 -  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 -
 -  /* Account for restart interval (no-op if not using restarts) */
 -  entropy->restarts_to_go--;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * MCU decoding for AC successive approximation refinement scan.
 - */
 -
 -METHODDEF(boolean)
 -decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 -{   
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  register int s, k, r;
 -  unsigned int EOBRUN;
 -  int Se, p1, m1;
 -  const int * natural_order;
 -  JBLOCKROW block;
 -  JCOEFPTR thiscoef;
 -  BITREAD_STATE_VARS;
 -  d_derived_tbl * tbl;
 -  int num_newnz;
 -  int newnz_pos[DCTSIZE2];
 -
 -  /* Process restart marker if needed; may have to suspend */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! process_restart(cinfo))
 -	return FALSE;
 -  }
 -
 -  /* If we've run out of data, don't modify the MCU.
 -   */
 -  if (! entropy->insufficient_data) {
 -
 -    Se = cinfo->Se;
 -    p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
 -    m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
 -    natural_order = cinfo->natural_order;
 -
 -    /* Load up working state */
 -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 -    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
 -
 -    /* There is always only one block per MCU */
 -    block = MCU_data[0];
 -    tbl = entropy->ac_derived_tbl;
 -
 -    /* If we are forced to suspend, we must undo the assignments to any newly
 -     * nonzero coefficients in the block, because otherwise we'd get confused
 -     * next time about which coefficients were already nonzero.
 -     * But we need not undo addition of bits to already-nonzero coefficients;
 -     * instead, we can test the current bit to see if we already did it.
 -     */
 -    num_newnz = 0;
 -
 -    /* initialize coefficient loop counter to start of band */
 -    k = cinfo->Ss;
 -
 -    if (EOBRUN == 0) {
 -      for (; k <= Se; k++) {
 -	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
 -	r = s >> 4;
 -	s &= 15;
 -	if (s) {
 -	  if (s != 1)		/* size of new coef should always be 1 */
 -	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
 -	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 -	  if (GET_BITS(1))
 -	    s = p1;		/* newly nonzero coef is positive */
 -	  else
 -	    s = m1;		/* newly nonzero coef is negative */
 -	} else {
 -	  if (r != 15) {
 -	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
 -	    if (r) {
 -	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
 -	      r = GET_BITS(r);
 -	      EOBRUN += r;
 -	    }
 -	    break;		/* rest of block is handled by EOB logic */
 -	  }
 -	  /* note s = 0 for processing ZRL */
 -	}
 -	/* Advance over already-nonzero coefs and r still-zero coefs,
 -	 * appending correction bits to the nonzeroes.  A correction bit is 1
 -	 * if the absolute value of the coefficient must be increased.
 -	 */
 -	do {
 -	  thiscoef = *block + natural_order[k];
 -	  if (*thiscoef != 0) {
 -	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 -	    if (GET_BITS(1)) {
 -	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
 -		if (*thiscoef >= 0)
 -		  *thiscoef += p1;
 -		else
 -		  *thiscoef += m1;
 -	      }
 -	    }
 -	  } else {
 -	    if (--r < 0)
 -	      break;		/* reached target zero coefficient */
 -	  }
 -	  k++;
 -	} while (k <= Se);
 -	if (s) {
 -	  int pos = natural_order[k];
 -	  /* Output newly nonzero coefficient */
 -	  (*block)[pos] = (JCOEF) s;
 -	  /* Remember its position in case we have to suspend */
 -	  newnz_pos[num_newnz++] = pos;
 -	}
 -      }
 -    }
 -
 -    if (EOBRUN > 0) {
 -      /* Scan any remaining coefficient positions after the end-of-band
 -       * (the last newly nonzero coefficient, if any).  Append a correction
 -       * bit to each already-nonzero coefficient.  A correction bit is 1
 -       * if the absolute value of the coefficient must be increased.
 -       */
 -      for (; k <= Se; k++) {
 -	thiscoef = *block + natural_order[k];
 -	if (*thiscoef != 0) {
 -	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
 -	  if (GET_BITS(1)) {
 -	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
 -	      if (*thiscoef >= 0)
 -		*thiscoef += p1;
 -	      else
 -		*thiscoef += m1;
 -	    }
 -	  }
 -	}
 -      }
 -      /* Count one block completed in EOB run */
 -      EOBRUN--;
 -    }
 -
 -    /* Completed MCU, so update state */
 -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 -    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
 -  }
 -
 -  /* Account for restart interval (no-op if not using restarts) */
 -  entropy->restarts_to_go--;
 -
 -  return TRUE;
 -
 -undoit:
 -  /* Re-zero any output coefficients that we made newly nonzero */
 -  while (num_newnz > 0)
 -    (*block)[newnz_pos[--num_newnz]] = 0;
 -
 -  return FALSE;
 -}
 -
 -
 -/*
 - * Decode one MCU's worth of Huffman-compressed coefficients,
 - * partial blocks.
 - */
 -
 -METHODDEF(boolean)
 -decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  const int * natural_order;
 -  int Se, blkn;
 -  BITREAD_STATE_VARS;
 -  savable_state state;
 -
 -  /* Process restart marker if needed; may have to suspend */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! process_restart(cinfo))
 -	return FALSE;
 -  }
 -
 -  /* If we've run out of data, just leave the MCU set to zeroes.
 -   * This way, we return uniform gray for the remainder of the segment.
 -   */
 -  if (! entropy->insufficient_data) {
 -
 -    natural_order = cinfo->natural_order;
 -    Se = cinfo->lim_Se;
 -
 -    /* Load up working state */
 -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 -    ASSIGN_STATE(state, entropy->saved);
 -
 -    /* Outer loop handles each block in the MCU */
 -
 -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -      JBLOCKROW block = MCU_data[blkn];
 -      d_derived_tbl * htbl;
 -      register int s, k, r;
 -      int coef_limit, ci;
 -
 -      /* Decode a single block's worth of coefficients */
 -
 -      /* Section F.2.2.1: decode the DC coefficient difference */
 -      htbl = entropy->dc_cur_tbls[blkn];
 -      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
 -
 -      htbl = entropy->ac_cur_tbls[blkn];
 -      k = 1;
 -      coef_limit = entropy->coef_limit[blkn];
 -      if (coef_limit) {
 -	/* Convert DC difference to actual value, update last_dc_val */
 -	if (s) {
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  r = GET_BITS(s);
 -	  s = HUFF_EXTEND(r, s);
 -	}
 -	ci = cinfo->MCU_membership[blkn];
 -	s += state.last_dc_val[ci];
 -	state.last_dc_val[ci] = s;
 -	/* Output the DC coefficient */
 -	(*block)[0] = (JCOEF) s;
 -
 -	/* Section F.2.2.2: decode the AC coefficients */
 -	/* Since zeroes are skipped, output area must be cleared beforehand */
 -	for (; k < coef_limit; k++) {
 -	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
 -
 -	  r = s >> 4;
 -	  s &= 15;
 -
 -	  if (s) {
 -	    k += r;
 -	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	    r = GET_BITS(s);
 -	    s = HUFF_EXTEND(r, s);
 -	    /* Output coefficient in natural (dezigzagged) order.
 -	     * Note: the extra entries in natural_order[] will save us
 -	     * if k > Se, which could happen if the data is corrupted.
 -	     */
 -	    (*block)[natural_order[k]] = (JCOEF) s;
 -	  } else {
 -	    if (r != 15)
 -	      goto EndOfBlock;
 -	    k += 15;
 -	  }
 -	}
 -      } else {
 -	if (s) {
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  DROP_BITS(s);
 -	}
 -      }
 -
 -      /* Section F.2.2.2: decode the AC coefficients */
 -      /* In this path we just discard the values */
 -      for (; k <= Se; k++) {
 -	HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
 -
 -	r = s >> 4;
 -	s &= 15;
 -
 -	if (s) {
 -	  k += r;
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  DROP_BITS(s);
 -	} else {
 -	  if (r != 15)
 -	    break;
 -	  k += 15;
 -	}
 -      }
 -
 -      EndOfBlock: ;
 -    }
 -
 -    /* Completed MCU, so update state */
 -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 -    ASSIGN_STATE(entropy->saved, state);
 -  }
 -
 -  /* Account for restart interval (no-op if not using restarts) */
 -  entropy->restarts_to_go--;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Decode one MCU's worth of Huffman-compressed coefficients,
 - * full-size blocks.
 - */
 -
 -METHODDEF(boolean)
 -decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int blkn;
 -  BITREAD_STATE_VARS;
 -  savable_state state;
 -
 -  /* Process restart marker if needed; may have to suspend */
 -  if (cinfo->restart_interval) {
 -    if (entropy->restarts_to_go == 0)
 -      if (! process_restart(cinfo))
 -	return FALSE;
 -  }
 -
 -  /* If we've run out of data, just leave the MCU set to zeroes.
 -   * This way, we return uniform gray for the remainder of the segment.
 -   */
 -  if (! entropy->insufficient_data) {
 -
 -    /* Load up working state */
 -    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 -    ASSIGN_STATE(state, entropy->saved);
 -
 -    /* Outer loop handles each block in the MCU */
 -
 -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -      JBLOCKROW block = MCU_data[blkn];
 -      d_derived_tbl * htbl;
 -      register int s, k, r;
 -      int coef_limit, ci;
 -
 -      /* Decode a single block's worth of coefficients */
 -
 -      /* Section F.2.2.1: decode the DC coefficient difference */
 -      htbl = entropy->dc_cur_tbls[blkn];
 -      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
 -
 -      htbl = entropy->ac_cur_tbls[blkn];
 -      k = 1;
 -      coef_limit = entropy->coef_limit[blkn];
 -      if (coef_limit) {
 -	/* Convert DC difference to actual value, update last_dc_val */
 -	if (s) {
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  r = GET_BITS(s);
 -	  s = HUFF_EXTEND(r, s);
 -	}
 -	ci = cinfo->MCU_membership[blkn];
 -	s += state.last_dc_val[ci];
 -	state.last_dc_val[ci] = s;
 -	/* Output the DC coefficient */
 -	(*block)[0] = (JCOEF) s;
 -
 -	/* Section F.2.2.2: decode the AC coefficients */
 -	/* Since zeroes are skipped, output area must be cleared beforehand */
 -	for (; k < coef_limit; k++) {
 -	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
 -
 -	  r = s >> 4;
 -	  s &= 15;
 -
 -	  if (s) {
 -	    k += r;
 -	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	    r = GET_BITS(s);
 -	    s = HUFF_EXTEND(r, s);
 -	    /* Output coefficient in natural (dezigzagged) order.
 -	     * Note: the extra entries in jpeg_natural_order[] will save us
 -	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
 -	     */
 -	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
 -	  } else {
 -	    if (r != 15)
 -	      goto EndOfBlock;
 -	    k += 15;
 -	  }
 -	}
 -      } else {
 -	if (s) {
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  DROP_BITS(s);
 -	}
 -      }
 -
 -      /* Section F.2.2.2: decode the AC coefficients */
 -      /* In this path we just discard the values */
 -      for (; k < DCTSIZE2; k++) {
 -	HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
 -
 -	r = s >> 4;
 -	s &= 15;
 -
 -	if (s) {
 -	  k += r;
 -	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
 -	  DROP_BITS(s);
 -	} else {
 -	  if (r != 15)
 -	    break;
 -	  k += 15;
 -	}
 -      }
 -
 -      EndOfBlock: ;
 -    }
 -
 -    /* Completed MCU, so update state */
 -    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 -    ASSIGN_STATE(entropy->saved, state);
 -  }
 -
 -  /* Account for restart interval (no-op if not using restarts) */
 -  entropy->restarts_to_go--;
 -
 -  return TRUE;
 -}
 -
 -
 -/*
 - * Initialize for a Huffman-compressed scan.
 - */
 -
 -METHODDEF(void)
 -start_pass_huff_decoder (j_decompress_ptr cinfo)
 -{
 -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 -  int ci, blkn, tbl, i;
 -  jpeg_component_info * compptr;
 -
 -  if (cinfo->progressive_mode) {
 -    /* Validate progressive scan parameters */
 -    if (cinfo->Ss == 0) {
 -      if (cinfo->Se != 0)
 -	goto bad;
 -    } else {
 -      /* need not check Ss/Se < 0 since they came from unsigned bytes */
 -      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
 -	goto bad;
 -      /* AC scans may have only one component */
 -      if (cinfo->comps_in_scan != 1)
 -	goto bad;
 -    }
 -    if (cinfo->Ah != 0) {
 -      /* Successive approximation refinement scan: must have Al = Ah-1. */
 -      if (cinfo->Ah-1 != cinfo->Al)
 -	goto bad;
 -    }
 -    if (cinfo->Al > 13) {	/* need not check for < 0 */
 -      /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
 -       * but the spec doesn't say so, and we try to be liberal about what we
 -       * accept.  Note: large Al values could result in out-of-range DC
 -       * coefficients during early scans, leading to bizarre displays due to
 -       * overflows in the IDCT math.  But we won't crash.
 -       */
 -      bad:
 -      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
 -	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
 -    }
 -    /* Update progression status, and verify that scan order is legal.
 -     * Note that inter-scan inconsistencies are treated as warnings
 -     * not fatal errors ... not clear if this is right way to behave.
 -     */
 -    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 -      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
 -      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
 -      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
 -	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
 -      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
 -	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
 -	if (cinfo->Ah != expected)
 -	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
 -	coef_bit_ptr[coefi] = cinfo->Al;
 -      }
 -    }
 -
 -    /* Select MCU decoding routine */
 -    if (cinfo->Ah == 0) {
 -      if (cinfo->Ss == 0)
 -	entropy->pub.decode_mcu = decode_mcu_DC_first;
 -      else
 -	entropy->pub.decode_mcu = decode_mcu_AC_first;
 -    } else {
 -      if (cinfo->Ss == 0)
 -	entropy->pub.decode_mcu = decode_mcu_DC_refine;
 -      else
 -	entropy->pub.decode_mcu = decode_mcu_AC_refine;
 -    }
 -
 -    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 -      compptr = cinfo->cur_comp_info[ci];
 -      /* Make sure requested tables are present, and compute derived tables.
 -       * We may build same derived table more than once, but it's not expensive.
 -       */
 -      if (cinfo->Ss == 0) {
 -	if (cinfo->Ah == 0) {	/* DC refinement needs no table */
 -	  tbl = compptr->dc_tbl_no;
 -	  jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
 -				  & entropy->derived_tbls[tbl]);
 -	}
 -      } else {
 -	tbl = compptr->ac_tbl_no;
 -	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
 -				& entropy->derived_tbls[tbl]);
 -	/* remember the single active table */
 -	entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
 -      }
 -      /* Initialize DC predictions to 0 */
 -      entropy->saved.last_dc_val[ci] = 0;
 -    }
 -
 -    /* Initialize private state variables */
 -    entropy->saved.EOBRUN = 0;
 -  } else {
 -    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
 -     * This ought to be an error condition, but we make it a warning because
 -     * there are some baseline files out there with all zeroes in these bytes.
 -     */
 -    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
 -	((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
 -	cinfo->Se != cinfo->lim_Se))
 -      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
 -
 -    /* Select MCU decoding routine */
 -    /* We retain the hard-coded case for full-size blocks.
 -     * This is not necessary, but it appears that this version is slightly
 -     * more performant in the given implementation.
 -     * With an improved implementation we would prefer a single optimized
 -     * function.
 -     */
 -    if (cinfo->lim_Se != DCTSIZE2-1)
 -      entropy->pub.decode_mcu = decode_mcu_sub;
 -    else
 -      entropy->pub.decode_mcu = decode_mcu;
 -
 -    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 -      compptr = cinfo->cur_comp_info[ci];
 -      /* Compute derived values for Huffman tables */
 -      /* We may do this more than once for a table, but it's not expensive */
 -      tbl = compptr->dc_tbl_no;
 -      jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
 -			      & entropy->dc_derived_tbls[tbl]);
 -      if (cinfo->lim_Se) {	/* AC needs no table when not present */
 -	tbl = compptr->ac_tbl_no;
 -	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
 -				& entropy->ac_derived_tbls[tbl]);
 -      }
 -      /* Initialize DC predictions to 0 */
 -      entropy->saved.last_dc_val[ci] = 0;
 -    }
 -
 -    /* Precalculate decoding info for each block in an MCU of this scan */
 -    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 -      ci = cinfo->MCU_membership[blkn];
 -      compptr = cinfo->cur_comp_info[ci];
 -      /* Precalculate which table to use for each block */
 -      entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
 -      entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
 -      /* Decide whether we really care about the coefficient values */
 -      if (compptr->component_needed) {
 -	ci = compptr->DCT_v_scaled_size;
 -	i = compptr->DCT_h_scaled_size;
 -	switch (cinfo->lim_Se) {
 -	case (1*1-1):
 -	  entropy->coef_limit[blkn] = 1;
 -	  break;
 -	case (2*2-1):
 -	  if (ci <= 0 || ci > 2) ci = 2;
 -	  if (i <= 0 || i > 2) i = 2;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
 -	  break;
 -	case (3*3-1):
 -	  if (ci <= 0 || ci > 3) ci = 3;
 -	  if (i <= 0 || i > 3) i = 3;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
 -	  break;
 -	case (4*4-1):
 -	  if (ci <= 0 || ci > 4) ci = 4;
 -	  if (i <= 0 || i > 4) i = 4;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
 -	  break;
 -	case (5*5-1):
 -	  if (ci <= 0 || ci > 5) ci = 5;
 -	  if (i <= 0 || i > 5) i = 5;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
 -	  break;
 -	case (6*6-1):
 -	  if (ci <= 0 || ci > 6) ci = 6;
 -	  if (i <= 0 || i > 6) i = 6;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
 -	  break;
 -	case (7*7-1):
 -	  if (ci <= 0 || ci > 7) ci = 7;
 -	  if (i <= 0 || i > 7) i = 7;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
 -	  break;
 -	default:
 -	  if (ci <= 0 || ci > 8) ci = 8;
 -	  if (i <= 0 || i > 8) i = 8;
 -	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
 -	  break;
 -	}
 -      } else {
 -	entropy->coef_limit[blkn] = 0;
 -      }
 -    }
 -  }
 -
 -  /* Initialize bitread state variables */
 -  entropy->bitstate.bits_left = 0;
 -  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
 -  entropy->insufficient_data = FALSE;
 -
 -  /* Initialize restart counter */
 -  entropy->restarts_to_go = cinfo->restart_interval;
 -}
 -
 -
 -/*
 - * Module initialization routine for Huffman entropy decoding.
 - */
 -
 -GLOBAL(void)
 -jinit_huff_decoder (j_decompress_ptr cinfo)
 -{
 -  huff_entropy_ptr entropy;
 -  int i;
 -
 -  entropy = (huff_entropy_ptr)
 -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				SIZEOF(huff_entropy_decoder));
 -  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
 -  entropy->pub.start_pass = start_pass_huff_decoder;
 -
 -  if (cinfo->progressive_mode) {
 -    /* Create progression status table */
 -    int *coef_bit_ptr, ci;
 -    cinfo->coef_bits = (int (*)[DCTSIZE2])
 -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 -				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
 -    coef_bit_ptr = & cinfo->coef_bits[0][0];
 -    for (ci = 0; ci < cinfo->num_components; ci++)
 -      for (i = 0; i < DCTSIZE2; i++)
 -	*coef_bit_ptr++ = -1;
 -
 -    /* Mark derived tables unallocated */
 -    for (i = 0; i < NUM_HUFF_TBLS; i++) {
 -      entropy->derived_tbls[i] = NULL;
 -    }
 -  } else {
 -    /* Mark tables unallocated */
 -    for (i = 0; i < NUM_HUFF_TBLS; i++) {
 -      entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
 -    }
 -  }
 -}
 +/* + * jdhuff.c + * + * Copyright (C) 1991-1997, Thomas G. Lane. + * Modified 2006-2009 by Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains Huffman entropy decoding routines. + * Both sequential and progressive modes are supported in this single module. + * + * Much of the complexity here has to do with supporting input suspension. + * If the data source module demands suspension, we want to be able to back + * up to the start of the current MCU.  To do this, we copy state variables + * into local working storage, and update them back to the permanent + * storage only upon successful completion of an MCU. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Derived data constructed for each Huffman table */ + +#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */ + +typedef struct { +  /* Basic tables: (element [0] of each array is unused) */ +  INT32 maxcode[18];		/* largest code of length k (-1 if none) */ +  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ +  INT32 valoffset[17];		/* huffval[] offset for codes of length k */ +  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less +   * the smallest code of length k; so given a code of length k, the +   * corresponding symbol is huffval[code + valoffset[k]] +   */ + +  /* Link to public Huffman table (needed only in jpeg_huff_decode) */ +  JHUFF_TBL *pub; + +  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of +   * the input data stream.  If the next Huffman code is no more +   * than HUFF_LOOKAHEAD bits long, we can obtain its length and +   * the corresponding symbol directly from these tables. +   */ +  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ +  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ +} d_derived_tbl; + + +/* + * Fetching the next N bits from the input stream is a time-critical operation + * for the Huffman decoders.  We implement it with a combination of inline + * macros and out-of-line subroutines.  Note that N (the number of bits + * demanded at one time) never exceeds 15 for JPEG use. + * + * We read source bytes into get_buffer and dole out bits as needed. + * If get_buffer already contains enough bits, they are fetched in-line + * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough + * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer + * as full as possible (not just to the number of bits needed; this + * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). + * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. + * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains + * at least the requested number of bits --- dummy zeroes are inserted if + * necessary. + */ + +typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */ +#define BIT_BUF_SIZE  32	/* size of buffer in bits */ + +/* If long is > 32 bits on your machine, and shifting/masking longs is + * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE + * appropriately should be a win.  Unfortunately we can't define the size + * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) + * because not all machines measure sizeof in 8-bit bytes. + */ + +typedef struct {		/* Bitreading state saved across MCUs */ +  bit_buf_type get_buffer;	/* current bit-extraction buffer */ +  int bits_left;		/* # of unused bits in it */ +} bitread_perm_state; + +typedef struct {		/* Bitreading working state within an MCU */ +  /* Current data source location */ +  /* We need a copy, rather than munging the original, in case of suspension */ +  const JOCTET * next_input_byte; /* => next byte to read from source */ +  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */ +  /* Bit input buffer --- note these values are kept in register variables, +   * not in this struct, inside the inner loops. +   */ +  bit_buf_type get_buffer;	/* current bit-extraction buffer */ +  int bits_left;		/* # of unused bits in it */ +  /* Pointer needed by jpeg_fill_bit_buffer. */ +  j_decompress_ptr cinfo;	/* back link to decompress master record */ +} bitread_working_state; + +/* Macros to declare and load/save bitread local variables. */ +#define BITREAD_STATE_VARS  \ +	register bit_buf_type get_buffer;  \ +	register int bits_left;  \ +	bitread_working_state br_state + +#define BITREAD_LOAD_STATE(cinfop,permstate)  \ +	br_state.cinfo = cinfop; \ +	br_state.next_input_byte = cinfop->src->next_input_byte; \ +	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ +	get_buffer = permstate.get_buffer; \ +	bits_left = permstate.bits_left; + +#define BITREAD_SAVE_STATE(cinfop,permstate)  \ +	cinfop->src->next_input_byte = br_state.next_input_byte; \ +	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ +	permstate.get_buffer = get_buffer; \ +	permstate.bits_left = bits_left + +/* + * These macros provide the in-line portion of bit fetching. + * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer + * before using GET_BITS, PEEK_BITS, or DROP_BITS. + * The variables get_buffer and bits_left are assumed to be locals, + * but the state struct might not be (jpeg_huff_decode needs this). + *	CHECK_BIT_BUFFER(state,n,action); + *		Ensure there are N bits in get_buffer; if suspend, take action. + *      val = GET_BITS(n); + *		Fetch next N bits. + *      val = PEEK_BITS(n); + *		Fetch next N bits without removing them from the buffer. + *	DROP_BITS(n); + *		Discard next N bits. + * The value N should be a simple variable, not an expression, because it + * is evaluated multiple times. + */ + +#define CHECK_BIT_BUFFER(state,nbits,action) \ +	{ if (bits_left < (nbits)) {  \ +	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \ +	      { action; }  \ +	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } + +#define GET_BITS(nbits) \ +	(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) + +#define PEEK_BITS(nbits) \ +	(((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits)) + +#define DROP_BITS(nbits) \ +	(bits_left -= (nbits)) + + +/* + * Code for extracting next Huffman-coded symbol from input bit stream. + * Again, this is time-critical and we make the main paths be macros. + * + * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits + * without looping.  Usually, more than 95% of the Huffman codes will be 8 + * or fewer bits long.  The few overlength codes are handled with a loop, + * which need not be inline code. + * + * Notes about the HUFF_DECODE macro: + * 1. Near the end of the data segment, we may fail to get enough bits + *    for a lookahead.  In that case, we do it the hard way. + * 2. If the lookahead table contains no entry, the next code must be + *    more than HUFF_LOOKAHEAD bits long. + * 3. jpeg_huff_decode returns -1 if forced to suspend. + */ + +#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ +{ register int nb, look; \ +  if (bits_left < HUFF_LOOKAHEAD) { \ +    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ +    get_buffer = state.get_buffer; bits_left = state.bits_left; \ +    if (bits_left < HUFF_LOOKAHEAD) { \ +      nb = 1; goto slowlabel; \ +    } \ +  } \ +  look = PEEK_BITS(HUFF_LOOKAHEAD); \ +  if ((nb = htbl->look_nbits[look]) != 0) { \ +    DROP_BITS(nb); \ +    result = htbl->look_sym[look]; \ +  } else { \ +    nb = HUFF_LOOKAHEAD+1; \ +slowlabel: \ +    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ +	{ failaction; } \ +    get_buffer = state.get_buffer; bits_left = state.bits_left; \ +  } \ +} + + +/* + * Expanded entropy decoder object for Huffman decoding. + * + * The savable_state subrecord contains fields that change within an MCU, + * but must not be updated permanently until we complete the MCU. + */ + +typedef struct { +  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */ +  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */ +} savable_state; + +/* This macro is to work around compilers with missing or broken + * structure assignment.  You'll need to fix this code if you have + * such a compiler and you change MAX_COMPS_IN_SCAN. + */ + +#ifndef NO_STRUCT_ASSIGN +#define ASSIGN_STATE(dest,src)  ((dest) = (src)) +#else +#if MAX_COMPS_IN_SCAN == 4 +#define ASSIGN_STATE(dest,src)  \ +	((dest).EOBRUN = (src).EOBRUN, \ +	 (dest).last_dc_val[0] = (src).last_dc_val[0], \ +	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ +	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ +	 (dest).last_dc_val[3] = (src).last_dc_val[3]) +#endif +#endif + + +typedef struct { +  struct jpeg_entropy_decoder pub; /* public fields */ + +  /* These fields are loaded into local variables at start of each MCU. +   * In case of suspension, we exit WITHOUT updating them. +   */ +  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */ +  savable_state saved;		/* Other state at start of MCU */ + +  /* These fields are NOT loaded into local working state. */ +  boolean insufficient_data;	/* set TRUE after emitting warning */ +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ + +  /* Following two fields used only in progressive mode */ + +  /* Pointers to derived tables (these workspaces have image lifespan) */ +  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; + +  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ + +  /* Following fields used only in sequential mode */ + +  /* Pointers to derived tables (these workspaces have image lifespan) */ +  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; +  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; + +  /* Precalculated info set up by start_pass for use in decode_mcu: */ + +  /* Pointers to derived tables to be used for each block within an MCU */ +  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; +  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; +  /* Whether we care about the DC and AC coefficient values for each block */ +  int coef_limit[D_MAX_BLOCKS_IN_MCU]; +} huff_entropy_decoder; + +typedef huff_entropy_decoder * huff_entropy_ptr; + + +static const int jpeg_zigzag_order[8][8] = { +  {  0,  1,  5,  6, 14, 15, 27, 28 }, +  {  2,  4,  7, 13, 16, 26, 29, 42 }, +  {  3,  8, 12, 17, 25, 30, 41, 43 }, +  {  9, 11, 18, 24, 31, 40, 44, 53 }, +  { 10, 19, 23, 32, 39, 45, 52, 54 }, +  { 20, 22, 33, 38, 46, 51, 55, 60 }, +  { 21, 34, 37, 47, 50, 56, 59, 61 }, +  { 35, 36, 48, 49, 57, 58, 62, 63 } +}; + +static const int jpeg_zigzag_order7[7][7] = { +  {  0,  1,  5,  6, 14, 15, 27 }, +  {  2,  4,  7, 13, 16, 26, 28 }, +  {  3,  8, 12, 17, 25, 29, 38 }, +  {  9, 11, 18, 24, 30, 37, 39 }, +  { 10, 19, 23, 31, 36, 40, 45 }, +  { 20, 22, 32, 35, 41, 44, 46 }, +  { 21, 33, 34, 42, 43, 47, 48 } +}; + +static const int jpeg_zigzag_order6[6][6] = { +  {  0,  1,  5,  6, 14, 15 }, +  {  2,  4,  7, 13, 16, 25 }, +  {  3,  8, 12, 17, 24, 26 }, +  {  9, 11, 18, 23, 27, 32 }, +  { 10, 19, 22, 28, 31, 33 }, +  { 20, 21, 29, 30, 34, 35 } +}; + +static const int jpeg_zigzag_order5[5][5] = { +  {  0,  1,  5,  6, 14 }, +  {  2,  4,  7, 13, 15 }, +  {  3,  8, 12, 16, 21 }, +  {  9, 11, 17, 20, 22 }, +  { 10, 18, 19, 23, 24 } +}; + +static const int jpeg_zigzag_order4[4][4] = { +  { 0,  1,  5,  6 }, +  { 2,  4,  7, 12 }, +  { 3,  8, 11, 13 }, +  { 9, 10, 14, 15 } +}; + +static const int jpeg_zigzag_order3[3][3] = { +  { 0, 1, 5 }, +  { 2, 4, 6 }, +  { 3, 7, 8 } +}; + +static const int jpeg_zigzag_order2[2][2] = { +  { 0, 1 }, +  { 2, 3 } +}; + + +/* + * Compute the derived values for a Huffman table. + * This routine also performs some validation checks on the table. + */ + +LOCAL(void) +jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, +			 d_derived_tbl ** pdtbl) +{ +  JHUFF_TBL *htbl; +  d_derived_tbl *dtbl; +  int p, i, l, si, numsymbols; +  int lookbits, ctr; +  char huffsize[257]; +  unsigned int huffcode[257]; +  unsigned int code; + +  /* Note that huffsize[] and huffcode[] are filled in code-length order, +   * paralleling the order of the symbols themselves in htbl->huffval[]. +   */ + +  /* Find the input Huffman table */ +  if (tblno < 0 || tblno >= NUM_HUFF_TBLS) +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); +  htbl = +    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; +  if (htbl == NULL) +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); + +  /* Allocate a workspace if we haven't already done so. */ +  if (*pdtbl == NULL) +    *pdtbl = (d_derived_tbl *) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  SIZEOF(d_derived_tbl)); +  dtbl = *pdtbl; +  dtbl->pub = htbl;		/* fill in back link */ +   +  /* Figure C.1: make table of Huffman code length for each symbol */ + +  p = 0; +  for (l = 1; l <= 16; l++) { +    i = (int) htbl->bits[l]; +    if (i < 0 || p + i > 256)	/* protect against table overrun */ +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); +    while (i--) +      huffsize[p++] = (char) l; +  } +  huffsize[p] = 0; +  numsymbols = p; +   +  /* Figure C.2: generate the codes themselves */ +  /* We also validate that the counts represent a legal Huffman code tree. */ +   +  code = 0; +  si = huffsize[0]; +  p = 0; +  while (huffsize[p]) { +    while (((int) huffsize[p]) == si) { +      huffcode[p++] = code; +      code++; +    } +    /* code is now 1 more than the last code used for codelength si; but +     * it must still fit in si bits, since no code is allowed to be all ones. +     */ +    if (((INT32) code) >= (((INT32) 1) << si)) +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); +    code <<= 1; +    si++; +  } + +  /* Figure F.15: generate decoding tables for bit-sequential decoding */ + +  p = 0; +  for (l = 1; l <= 16; l++) { +    if (htbl->bits[l]) { +      /* valoffset[l] = huffval[] index of 1st symbol of code length l, +       * minus the minimum code of length l +       */ +      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; +      p += htbl->bits[l]; +      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ +    } else { +      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */ +    } +  } +  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ + +  /* Compute lookahead tables to speed up decoding. +   * First we set all the table entries to 0, indicating "too long"; +   * then we iterate through the Huffman codes that are short enough and +   * fill in all the entries that correspond to bit sequences starting +   * with that code. +   */ + +  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); + +  p = 0; +  for (l = 1; l <= HUFF_LOOKAHEAD; l++) { +    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { +      /* l = current code's length, p = its index in huffcode[] & huffval[]. */ +      /* Generate left-justified code followed by all possible bit sequences */ +      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); +      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { +	dtbl->look_nbits[lookbits] = l; +	dtbl->look_sym[lookbits] = htbl->huffval[p]; +	lookbits++; +      } +    } +  } + +  /* Validate symbols as being reasonable. +   * For AC tables, we make no check, but accept all byte values 0..255. +   * For DC tables, we require the symbols to be in range 0..15. +   * (Tighter bounds could be applied depending on the data depth and mode, +   * but this is sufficient to ensure safe decoding.) +   */ +  if (isDC) { +    for (i = 0; i < numsymbols; i++) { +      int sym = htbl->huffval[i]; +      if (sym < 0 || sym > 15) +	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); +    } +  } +} + + +/* + * Out-of-line code for bit fetching. + * Note: current values of get_buffer and bits_left are passed as parameters, + * but are returned in the corresponding fields of the state struct. + * + * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width + * of get_buffer to be used.  (On machines with wider words, an even larger + * buffer could be used.)  However, on some machines 32-bit shifts are + * quite slow and take time proportional to the number of places shifted. + * (This is true with most PC compilers, for instance.)  In this case it may + * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the + * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. + */ + +#ifdef SLOW_SHIFT_32 +#define MIN_GET_BITS  15	/* minimum allowable value */ +#else +#define MIN_GET_BITS  (BIT_BUF_SIZE-7) +#endif + + +LOCAL(boolean) +jpeg_fill_bit_buffer (bitread_working_state * state, +		      register bit_buf_type get_buffer, register int bits_left, +		      int nbits) +/* Load up the bit buffer to a depth of at least nbits */ +{ +  /* Copy heavily used state fields into locals (hopefully registers) */ +  register const JOCTET * next_input_byte = state->next_input_byte; +  register size_t bytes_in_buffer = state->bytes_in_buffer; +  j_decompress_ptr cinfo = state->cinfo; + +  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ +  /* (It is assumed that no request will be for more than that many bits.) */ +  /* We fail to do so only if we hit a marker or are forced to suspend. */ + +  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */ +    while (bits_left < MIN_GET_BITS) { +      register int c; + +      /* Attempt to read a byte */ +      if (bytes_in_buffer == 0) { +	if (! (*cinfo->src->fill_input_buffer) (cinfo)) +	  return FALSE; +	next_input_byte = cinfo->src->next_input_byte; +	bytes_in_buffer = cinfo->src->bytes_in_buffer; +      } +      bytes_in_buffer--; +      c = GETJOCTET(*next_input_byte++); + +      /* If it's 0xFF, check and discard stuffed zero byte */ +      if (c == 0xFF) { +	/* Loop here to discard any padding FF's on terminating marker, +	 * so that we can save a valid unread_marker value.  NOTE: we will +	 * accept multiple FF's followed by a 0 as meaning a single FF data +	 * byte.  This data pattern is not valid according to the standard. +	 */ +	do { +	  if (bytes_in_buffer == 0) { +	    if (! (*cinfo->src->fill_input_buffer) (cinfo)) +	      return FALSE; +	    next_input_byte = cinfo->src->next_input_byte; +	    bytes_in_buffer = cinfo->src->bytes_in_buffer; +	  } +	  bytes_in_buffer--; +	  c = GETJOCTET(*next_input_byte++); +	} while (c == 0xFF); + +	if (c == 0) { +	  /* Found FF/00, which represents an FF data byte */ +	  c = 0xFF; +	} else { +	  /* Oops, it's actually a marker indicating end of compressed data. +	   * Save the marker code for later use. +	   * Fine point: it might appear that we should save the marker into +	   * bitread working state, not straight into permanent state.  But +	   * once we have hit a marker, we cannot need to suspend within the +	   * current MCU, because we will read no more bytes from the data +	   * source.  So it is OK to update permanent state right away. +	   */ +	  cinfo->unread_marker = c; +	  /* See if we need to insert some fake zero bits. */ +	  goto no_more_bytes; +	} +      } + +      /* OK, load c into get_buffer */ +      get_buffer = (get_buffer << 8) | c; +      bits_left += 8; +    } /* end while */ +  } else { +  no_more_bytes: +    /* We get here if we've read the marker that terminates the compressed +     * data segment.  There should be enough bits in the buffer register +     * to satisfy the request; if so, no problem. +     */ +    if (nbits > bits_left) { +      /* Uh-oh.  Report corrupted data to user and stuff zeroes into +       * the data stream, so that we can produce some kind of image. +       * We use a nonvolatile flag to ensure that only one warning message +       * appears per data segment. +       */ +      if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { +	WARNMS(cinfo, JWRN_HIT_MARKER); +	((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; +      } +      /* Fill the buffer with zero bits */ +      get_buffer <<= MIN_GET_BITS - bits_left; +      bits_left = MIN_GET_BITS; +    } +  } + +  /* Unload the local registers */ +  state->next_input_byte = next_input_byte; +  state->bytes_in_buffer = bytes_in_buffer; +  state->get_buffer = get_buffer; +  state->bits_left = bits_left; + +  return TRUE; +} + + +/* + * Figure F.12: extend sign bit. + * On some machines, a shift and sub will be faster than a table lookup. + */ + +#ifdef AVOID_TABLES + +#define BIT_MASK(nbits)   ((1<<(nbits))-1) +#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) + +#else + +#define BIT_MASK(nbits)   bmask[nbits] +#define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) + +static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */ +  { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, +    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; + +#endif /* AVOID_TABLES */ + + +/* + * Out-of-line code for Huffman code decoding. + */ + +LOCAL(int) +jpeg_huff_decode (bitread_working_state * state, +		  register bit_buf_type get_buffer, register int bits_left, +		  d_derived_tbl * htbl, int min_bits) +{ +  register int l = min_bits; +  register INT32 code; + +  /* HUFF_DECODE has determined that the code is at least min_bits */ +  /* bits long, so fetch that many bits in one swoop. */ + +  CHECK_BIT_BUFFER(*state, l, return -1); +  code = GET_BITS(l); + +  /* Collect the rest of the Huffman code one bit at a time. */ +  /* This is per Figure F.16 in the JPEG spec. */ + +  while (code > htbl->maxcode[l]) { +    code <<= 1; +    CHECK_BIT_BUFFER(*state, 1, return -1); +    code |= GET_BITS(1); +    l++; +  } + +  /* Unload the local registers */ +  state->get_buffer = get_buffer; +  state->bits_left = bits_left; + +  /* With garbage input we may reach the sentinel value l = 17. */ + +  if (l > 16) { +    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); +    return 0;			/* fake a zero as the safest result */ +  } + +  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; +} + + +/* + * Check for a restart marker & resynchronize decoder. + * Returns FALSE if must suspend. + */ + +LOCAL(boolean) +process_restart (j_decompress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci; + +  /* Throw away any unused bits remaining in bit buffer; */ +  /* include any full bytes in next_marker's count of discarded bytes */ +  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; +  entropy->bitstate.bits_left = 0; + +  /* Advance past the RSTn marker */ +  if (! (*cinfo->marker->read_restart_marker) (cinfo)) +    return FALSE; + +  /* Re-initialize DC predictions to 0 */ +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) +    entropy->saved.last_dc_val[ci] = 0; +  /* Re-init EOB run count, too */ +  entropy->saved.EOBRUN = 0; + +  /* Reset restart counter */ +  entropy->restarts_to_go = cinfo->restart_interval; + +  /* Reset out-of-data flag, unless read_restart_marker left us smack up +   * against a marker.  In that case we will end up treating the next data +   * segment as empty, and we can avoid producing bogus output pixels by +   * leaving the flag set. +   */ +  if (cinfo->unread_marker == 0) +    entropy->insufficient_data = FALSE; + +  return TRUE; +} + + +/* + * Huffman MCU decoding. + * Each of these routines decodes and returns one MCU's worth of + * Huffman-compressed coefficients.  + * The coefficients are reordered from zigzag order into natural array order, + * but are not dequantized. + * + * The i'th block of the MCU is stored into the block pointed to by + * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. + * (Wholesale zeroing is usually a little faster than retail...) + * + * We return FALSE if data source requested suspension.  In that case no + * changes have been made to permanent state.  (Exception: some output + * coefficients may already have been assigned.  This is harmless for + * spectral selection, since we'll just re-assign them on the next call. + * Successive approximation AC refinement has to be more careful, however.) + */ + +/* + * MCU decoding for DC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF(boolean) +decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int Al = cinfo->Al; +  register int s, r; +  int blkn, ci; +  JBLOCKROW block; +  BITREAD_STATE_VARS; +  savable_state state; +  d_derived_tbl * tbl; +  jpeg_component_info * compptr; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* If we've run out of data, just leave the MCU set to zeroes. +   * This way, we return uniform gray for the remainder of the segment. +   */ +  if (! entropy->insufficient_data) { + +    /* Load up working state */ +    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +    ASSIGN_STATE(state, entropy->saved); + +    /* Outer loop handles each block in the MCU */ + +    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +      block = MCU_data[blkn]; +      ci = cinfo->MCU_membership[blkn]; +      compptr = cinfo->cur_comp_info[ci]; +      tbl = entropy->derived_tbls[compptr->dc_tbl_no]; + +      /* Decode a single block's worth of coefficients */ + +      /* Section F.2.2.1: decode the DC coefficient difference */ +      HUFF_DECODE(s, br_state, tbl, return FALSE, label1); +      if (s) { +	CHECK_BIT_BUFFER(br_state, s, return FALSE); +	r = GET_BITS(s); +	s = HUFF_EXTEND(r, s); +      } + +      /* Convert DC difference to actual value, update last_dc_val */ +      s += state.last_dc_val[ci]; +      state.last_dc_val[ci] = s; +      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ +      (*block)[0] = (JCOEF) (s << Al); +    } + +    /* Completed MCU, so update state */ +    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +    ASSIGN_STATE(entropy->saved, state); +  } + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * MCU decoding for AC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF(boolean) +decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int s, k, r; +  unsigned int EOBRUN; +  int Se, Al; +  const int * natural_order; +  JBLOCKROW block; +  BITREAD_STATE_VARS; +  d_derived_tbl * tbl; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* If we've run out of data, just leave the MCU set to zeroes. +   * This way, we return uniform gray for the remainder of the segment. +   */ +  if (! entropy->insufficient_data) { + +    Se = cinfo->Se; +    Al = cinfo->Al; +    natural_order = cinfo->natural_order; + +    /* Load up working state. +     * We can avoid loading/saving bitread state if in an EOB run. +     */ +    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */ + +    /* There is always only one block per MCU */ + +    if (EOBRUN > 0)		/* if it's a band of zeroes... */ +      EOBRUN--;			/* ...process it now (we do nothing) */ +    else { +      BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +      block = MCU_data[0]; +      tbl = entropy->ac_derived_tbl; + +      for (k = cinfo->Ss; k <= Se; k++) { +	HUFF_DECODE(s, br_state, tbl, return FALSE, label2); +	r = s >> 4; +	s &= 15; +	if (s) { +	  k += r; +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  r = GET_BITS(s); +	  s = HUFF_EXTEND(r, s); +	  /* Scale and output coefficient in natural (dezigzagged) order */ +	  (*block)[natural_order[k]] = (JCOEF) (s << Al); +	} else { +	  if (r == 15) {	/* ZRL */ +	    k += 15;		/* skip 15 zeroes in band */ +	  } else {		/* EOBr, run length is 2^r + appended bits */ +	    EOBRUN = 1 << r; +	    if (r) {		/* EOBr, r > 0 */ +	      CHECK_BIT_BUFFER(br_state, r, return FALSE); +	      r = GET_BITS(r); +	      EOBRUN += r; +	    } +	    EOBRUN--;		/* this band is processed at this moment */ +	    break;		/* force end-of-band */ +	  } +	} +      } + +      BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +    } + +    /* Completed MCU, so update state */ +    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */ +  } + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * MCU decoding for DC successive approximation refinement scan. + * Note: we assume such scans can be multi-component, although the spec + * is not very clear on the point. + */ + +METHODDEF(boolean) +decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ +  int blkn; +  JBLOCKROW block; +  BITREAD_STATE_VARS; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* Not worth the cycles to check insufficient_data here, +   * since we will not change the data anyway if we read zeroes. +   */ + +  /* Load up working state */ +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate); + +  /* Outer loop handles each block in the MCU */ + +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +    block = MCU_data[blkn]; + +    /* Encoded data is simply the next bit of the two's-complement DC value */ +    CHECK_BIT_BUFFER(br_state, 1, return FALSE); +    if (GET_BITS(1)) +      (*block)[0] |= p1; +    /* Note: since we use |=, repeating the assignment later is safe */ +  } + +  /* Completed MCU, so update state */ +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate); + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * MCU decoding for AC successive approximation refinement scan. + */ + +METHODDEF(boolean) +decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{    +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  register int s, k, r; +  unsigned int EOBRUN; +  int Se, p1, m1; +  const int * natural_order; +  JBLOCKROW block; +  JCOEFPTR thiscoef; +  BITREAD_STATE_VARS; +  d_derived_tbl * tbl; +  int num_newnz; +  int newnz_pos[DCTSIZE2]; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* If we've run out of data, don't modify the MCU. +   */ +  if (! entropy->insufficient_data) { + +    Se = cinfo->Se; +    p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ +    m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */ +    natural_order = cinfo->natural_order; + +    /* Load up working state */ +    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ + +    /* There is always only one block per MCU */ +    block = MCU_data[0]; +    tbl = entropy->ac_derived_tbl; + +    /* If we are forced to suspend, we must undo the assignments to any newly +     * nonzero coefficients in the block, because otherwise we'd get confused +     * next time about which coefficients were already nonzero. +     * But we need not undo addition of bits to already-nonzero coefficients; +     * instead, we can test the current bit to see if we already did it. +     */ +    num_newnz = 0; + +    /* initialize coefficient loop counter to start of band */ +    k = cinfo->Ss; + +    if (EOBRUN == 0) { +      for (; k <= Se; k++) { +	HUFF_DECODE(s, br_state, tbl, goto undoit, label3); +	r = s >> 4; +	s &= 15; +	if (s) { +	  if (s != 1)		/* size of new coef should always be 1 */ +	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE); +	  CHECK_BIT_BUFFER(br_state, 1, goto undoit); +	  if (GET_BITS(1)) +	    s = p1;		/* newly nonzero coef is positive */ +	  else +	    s = m1;		/* newly nonzero coef is negative */ +	} else { +	  if (r != 15) { +	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */ +	    if (r) { +	      CHECK_BIT_BUFFER(br_state, r, goto undoit); +	      r = GET_BITS(r); +	      EOBRUN += r; +	    } +	    break;		/* rest of block is handled by EOB logic */ +	  } +	  /* note s = 0 for processing ZRL */ +	} +	/* Advance over already-nonzero coefs and r still-zero coefs, +	 * appending correction bits to the nonzeroes.  A correction bit is 1 +	 * if the absolute value of the coefficient must be increased. +	 */ +	do { +	  thiscoef = *block + natural_order[k]; +	  if (*thiscoef != 0) { +	    CHECK_BIT_BUFFER(br_state, 1, goto undoit); +	    if (GET_BITS(1)) { +	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ +		if (*thiscoef >= 0) +		  *thiscoef += p1; +		else +		  *thiscoef += m1; +	      } +	    } +	  } else { +	    if (--r < 0) +	      break;		/* reached target zero coefficient */ +	  } +	  k++; +	} while (k <= Se); +	if (s) { +	  int pos = natural_order[k]; +	  /* Output newly nonzero coefficient */ +	  (*block)[pos] = (JCOEF) s; +	  /* Remember its position in case we have to suspend */ +	  newnz_pos[num_newnz++] = pos; +	} +      } +    } + +    if (EOBRUN > 0) { +      /* Scan any remaining coefficient positions after the end-of-band +       * (the last newly nonzero coefficient, if any).  Append a correction +       * bit to each already-nonzero coefficient.  A correction bit is 1 +       * if the absolute value of the coefficient must be increased. +       */ +      for (; k <= Se; k++) { +	thiscoef = *block + natural_order[k]; +	if (*thiscoef != 0) { +	  CHECK_BIT_BUFFER(br_state, 1, goto undoit); +	  if (GET_BITS(1)) { +	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ +	      if (*thiscoef >= 0) +		*thiscoef += p1; +	      else +		*thiscoef += m1; +	    } +	  } +	} +      } +      /* Count one block completed in EOB run */ +      EOBRUN--; +    } + +    /* Completed MCU, so update state */ +    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ +  } + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; + +undoit: +  /* Re-zero any output coefficients that we made newly nonzero */ +  while (num_newnz > 0) +    (*block)[newnz_pos[--num_newnz]] = 0; + +  return FALSE; +} + + +/* + * Decode one MCU's worth of Huffman-compressed coefficients, + * partial blocks. + */ + +METHODDEF(boolean) +decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  const int * natural_order; +  int Se, blkn; +  BITREAD_STATE_VARS; +  savable_state state; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* If we've run out of data, just leave the MCU set to zeroes. +   * This way, we return uniform gray for the remainder of the segment. +   */ +  if (! entropy->insufficient_data) { + +    natural_order = cinfo->natural_order; +    Se = cinfo->lim_Se; + +    /* Load up working state */ +    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +    ASSIGN_STATE(state, entropy->saved); + +    /* Outer loop handles each block in the MCU */ + +    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +      JBLOCKROW block = MCU_data[blkn]; +      d_derived_tbl * htbl; +      register int s, k, r; +      int coef_limit, ci; + +      /* Decode a single block's worth of coefficients */ + +      /* Section F.2.2.1: decode the DC coefficient difference */ +      htbl = entropy->dc_cur_tbls[blkn]; +      HUFF_DECODE(s, br_state, htbl, return FALSE, label1); + +      htbl = entropy->ac_cur_tbls[blkn]; +      k = 1; +      coef_limit = entropy->coef_limit[blkn]; +      if (coef_limit) { +	/* Convert DC difference to actual value, update last_dc_val */ +	if (s) { +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  r = GET_BITS(s); +	  s = HUFF_EXTEND(r, s); +	} +	ci = cinfo->MCU_membership[blkn]; +	s += state.last_dc_val[ci]; +	state.last_dc_val[ci] = s; +	/* Output the DC coefficient */ +	(*block)[0] = (JCOEF) s; + +	/* Section F.2.2.2: decode the AC coefficients */ +	/* Since zeroes are skipped, output area must be cleared beforehand */ +	for (; k < coef_limit; k++) { +	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2); + +	  r = s >> 4; +	  s &= 15; + +	  if (s) { +	    k += r; +	    CHECK_BIT_BUFFER(br_state, s, return FALSE); +	    r = GET_BITS(s); +	    s = HUFF_EXTEND(r, s); +	    /* Output coefficient in natural (dezigzagged) order. +	     * Note: the extra entries in natural_order[] will save us +	     * if k > Se, which could happen if the data is corrupted. +	     */ +	    (*block)[natural_order[k]] = (JCOEF) s; +	  } else { +	    if (r != 15) +	      goto EndOfBlock; +	    k += 15; +	  } +	} +      } else { +	if (s) { +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  DROP_BITS(s); +	} +      } + +      /* Section F.2.2.2: decode the AC coefficients */ +      /* In this path we just discard the values */ +      for (; k <= Se; k++) { +	HUFF_DECODE(s, br_state, htbl, return FALSE, label3); + +	r = s >> 4; +	s &= 15; + +	if (s) { +	  k += r; +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  DROP_BITS(s); +	} else { +	  if (r != 15) +	    break; +	  k += 15; +	} +      } + +      EndOfBlock: ; +    } + +    /* Completed MCU, so update state */ +    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +    ASSIGN_STATE(entropy->saved, state); +  } + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * Decode one MCU's worth of Huffman-compressed coefficients, + * full-size blocks. + */ + +METHODDEF(boolean) +decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int blkn; +  BITREAD_STATE_VARS; +  savable_state state; + +  /* Process restart marker if needed; may have to suspend */ +  if (cinfo->restart_interval) { +    if (entropy->restarts_to_go == 0) +      if (! process_restart(cinfo)) +	return FALSE; +  } + +  /* If we've run out of data, just leave the MCU set to zeroes. +   * This way, we return uniform gray for the remainder of the segment. +   */ +  if (! entropy->insufficient_data) { + +    /* Load up working state */ +    BITREAD_LOAD_STATE(cinfo,entropy->bitstate); +    ASSIGN_STATE(state, entropy->saved); + +    /* Outer loop handles each block in the MCU */ + +    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +      JBLOCKROW block = MCU_data[blkn]; +      d_derived_tbl * htbl; +      register int s, k, r; +      int coef_limit, ci; + +      /* Decode a single block's worth of coefficients */ + +      /* Section F.2.2.1: decode the DC coefficient difference */ +      htbl = entropy->dc_cur_tbls[blkn]; +      HUFF_DECODE(s, br_state, htbl, return FALSE, label1); + +      htbl = entropy->ac_cur_tbls[blkn]; +      k = 1; +      coef_limit = entropy->coef_limit[blkn]; +      if (coef_limit) { +	/* Convert DC difference to actual value, update last_dc_val */ +	if (s) { +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  r = GET_BITS(s); +	  s = HUFF_EXTEND(r, s); +	} +	ci = cinfo->MCU_membership[blkn]; +	s += state.last_dc_val[ci]; +	state.last_dc_val[ci] = s; +	/* Output the DC coefficient */ +	(*block)[0] = (JCOEF) s; + +	/* Section F.2.2.2: decode the AC coefficients */ +	/* Since zeroes are skipped, output area must be cleared beforehand */ +	for (; k < coef_limit; k++) { +	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2); + +	  r = s >> 4; +	  s &= 15; + +	  if (s) { +	    k += r; +	    CHECK_BIT_BUFFER(br_state, s, return FALSE); +	    r = GET_BITS(s); +	    s = HUFF_EXTEND(r, s); +	    /* Output coefficient in natural (dezigzagged) order. +	     * Note: the extra entries in jpeg_natural_order[] will save us +	     * if k >= DCTSIZE2, which could happen if the data is corrupted. +	     */ +	    (*block)[jpeg_natural_order[k]] = (JCOEF) s; +	  } else { +	    if (r != 15) +	      goto EndOfBlock; +	    k += 15; +	  } +	} +      } else { +	if (s) { +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  DROP_BITS(s); +	} +      } + +      /* Section F.2.2.2: decode the AC coefficients */ +      /* In this path we just discard the values */ +      for (; k < DCTSIZE2; k++) { +	HUFF_DECODE(s, br_state, htbl, return FALSE, label3); + +	r = s >> 4; +	s &= 15; + +	if (s) { +	  k += r; +	  CHECK_BIT_BUFFER(br_state, s, return FALSE); +	  DROP_BITS(s); +	} else { +	  if (r != 15) +	    break; +	  k += 15; +	} +      } + +      EndOfBlock: ; +    } + +    /* Completed MCU, so update state */ +    BITREAD_SAVE_STATE(cinfo,entropy->bitstate); +    ASSIGN_STATE(entropy->saved, state); +  } + +  /* Account for restart interval (no-op if not using restarts) */ +  entropy->restarts_to_go--; + +  return TRUE; +} + + +/* + * Initialize for a Huffman-compressed scan. + */ + +METHODDEF(void) +start_pass_huff_decoder (j_decompress_ptr cinfo) +{ +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; +  int ci, blkn, tbl, i; +  jpeg_component_info * compptr; + +  if (cinfo->progressive_mode) { +    /* Validate progressive scan parameters */ +    if (cinfo->Ss == 0) { +      if (cinfo->Se != 0) +	goto bad; +    } else { +      /* need not check Ss/Se < 0 since they came from unsigned bytes */ +      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) +	goto bad; +      /* AC scans may have only one component */ +      if (cinfo->comps_in_scan != 1) +	goto bad; +    } +    if (cinfo->Ah != 0) { +      /* Successive approximation refinement scan: must have Al = Ah-1. */ +      if (cinfo->Ah-1 != cinfo->Al) +	goto bad; +    } +    if (cinfo->Al > 13) {	/* need not check for < 0 */ +      /* Arguably the maximum Al value should be less than 13 for 8-bit precision, +       * but the spec doesn't say so, and we try to be liberal about what we +       * accept.  Note: large Al values could result in out-of-range DC +       * coefficients during early scans, leading to bizarre displays due to +       * overflows in the IDCT math.  But we won't crash. +       */ +      bad: +      ERREXIT4(cinfo, JERR_BAD_PROGRESSION, +	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); +    } +    /* Update progression status, and verify that scan order is legal. +     * Note that inter-scan inconsistencies are treated as warnings +     * not fatal errors ... not clear if this is right way to behave. +     */ +    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; +      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; +      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ +	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); +      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { +	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; +	if (cinfo->Ah != expected) +	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); +	coef_bit_ptr[coefi] = cinfo->Al; +      } +    } + +    /* Select MCU decoding routine */ +    if (cinfo->Ah == 0) { +      if (cinfo->Ss == 0) +	entropy->pub.decode_mcu = decode_mcu_DC_first; +      else +	entropy->pub.decode_mcu = decode_mcu_AC_first; +    } else { +      if (cinfo->Ss == 0) +	entropy->pub.decode_mcu = decode_mcu_DC_refine; +      else +	entropy->pub.decode_mcu = decode_mcu_AC_refine; +    } + +    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +      compptr = cinfo->cur_comp_info[ci]; +      /* Make sure requested tables are present, and compute derived tables. +       * We may build same derived table more than once, but it's not expensive. +       */ +      if (cinfo->Ss == 0) { +	if (cinfo->Ah == 0) {	/* DC refinement needs no table */ +	  tbl = compptr->dc_tbl_no; +	  jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, +				  & entropy->derived_tbls[tbl]); +	} +      } else { +	tbl = compptr->ac_tbl_no; +	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, +				& entropy->derived_tbls[tbl]); +	/* remember the single active table */ +	entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; +      } +      /* Initialize DC predictions to 0 */ +      entropy->saved.last_dc_val[ci] = 0; +    } + +    /* Initialize private state variables */ +    entropy->saved.EOBRUN = 0; +  } else { +    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. +     * This ought to be an error condition, but we make it a warning because +     * there are some baseline files out there with all zeroes in these bytes. +     */ +    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || +	((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && +	cinfo->Se != cinfo->lim_Se)) +      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); + +    /* Select MCU decoding routine */ +    /* We retain the hard-coded case for full-size blocks. +     * This is not necessary, but it appears that this version is slightly +     * more performant in the given implementation. +     * With an improved implementation we would prefer a single optimized +     * function. +     */ +    if (cinfo->lim_Se != DCTSIZE2-1) +      entropy->pub.decode_mcu = decode_mcu_sub; +    else +      entropy->pub.decode_mcu = decode_mcu; + +    for (ci = 0; ci < cinfo->comps_in_scan; ci++) { +      compptr = cinfo->cur_comp_info[ci]; +      /* Compute derived values for Huffman tables */ +      /* We may do this more than once for a table, but it's not expensive */ +      tbl = compptr->dc_tbl_no; +      jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, +			      & entropy->dc_derived_tbls[tbl]); +      if (cinfo->lim_Se) {	/* AC needs no table when not present */ +	tbl = compptr->ac_tbl_no; +	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, +				& entropy->ac_derived_tbls[tbl]); +      } +      /* Initialize DC predictions to 0 */ +      entropy->saved.last_dc_val[ci] = 0; +    } + +    /* Precalculate decoding info for each block in an MCU of this scan */ +    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { +      ci = cinfo->MCU_membership[blkn]; +      compptr = cinfo->cur_comp_info[ci]; +      /* Precalculate which table to use for each block */ +      entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; +      entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; +      /* Decide whether we really care about the coefficient values */ +      if (compptr->component_needed) { +	ci = compptr->DCT_v_scaled_size; +	i = compptr->DCT_h_scaled_size; +	switch (cinfo->lim_Se) { +	case (1*1-1): +	  entropy->coef_limit[blkn] = 1; +	  break; +	case (2*2-1): +	  if (ci <= 0 || ci > 2) ci = 2; +	  if (i <= 0 || i > 2) i = 2; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; +	  break; +	case (3*3-1): +	  if (ci <= 0 || ci > 3) ci = 3; +	  if (i <= 0 || i > 3) i = 3; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; +	  break; +	case (4*4-1): +	  if (ci <= 0 || ci > 4) ci = 4; +	  if (i <= 0 || i > 4) i = 4; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; +	  break; +	case (5*5-1): +	  if (ci <= 0 || ci > 5) ci = 5; +	  if (i <= 0 || i > 5) i = 5; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; +	  break; +	case (6*6-1): +	  if (ci <= 0 || ci > 6) ci = 6; +	  if (i <= 0 || i > 6) i = 6; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; +	  break; +	case (7*7-1): +	  if (ci <= 0 || ci > 7) ci = 7; +	  if (i <= 0 || i > 7) i = 7; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; +	  break; +	default: +	  if (ci <= 0 || ci > 8) ci = 8; +	  if (i <= 0 || i > 8) i = 8; +	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; +	  break; +	} +      } else { +	entropy->coef_limit[blkn] = 0; +      } +    } +  } + +  /* Initialize bitread state variables */ +  entropy->bitstate.bits_left = 0; +  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ +  entropy->insufficient_data = FALSE; + +  /* Initialize restart counter */ +  entropy->restarts_to_go = cinfo->restart_interval; +} + + +/* + * Module initialization routine for Huffman entropy decoding. + */ + +GLOBAL(void) +jinit_huff_decoder (j_decompress_ptr cinfo) +{ +  huff_entropy_ptr entropy; +  int i; + +  entropy = (huff_entropy_ptr) +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				SIZEOF(huff_entropy_decoder)); +  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; +  entropy->pub.start_pass = start_pass_huff_decoder; + +  if (cinfo->progressive_mode) { +    /* Create progression status table */ +    int *coef_bit_ptr, ci; +    cinfo->coef_bits = (int (*)[DCTSIZE2]) +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, +				  cinfo->num_components*DCTSIZE2*SIZEOF(int)); +    coef_bit_ptr = & cinfo->coef_bits[0][0]; +    for (ci = 0; ci < cinfo->num_components; ci++) +      for (i = 0; i < DCTSIZE2; i++) +	*coef_bit_ptr++ = -1; + +    /* Mark derived tables unallocated */ +    for (i = 0; i < NUM_HUFF_TBLS; i++) { +      entropy->derived_tbls[i] = NULL; +    } +  } else { +    /* Mark tables unallocated */ +    for (i = 0; i < NUM_HUFF_TBLS; i++) { +      entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; +    } +  } +}  | 
