diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibJPEG/jquant2.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibJPEG/jquant2.c | 1311 | 
1 files changed, 0 insertions, 1311 deletions
diff --git a/plugins/FreeImage/Source/LibJPEG/jquant2.c b/plugins/FreeImage/Source/LibJPEG/jquant2.c deleted file mode 100644 index 38fc2af7a5..0000000000 --- a/plugins/FreeImage/Source/LibJPEG/jquant2.c +++ /dev/null @@ -1,1311 +0,0 @@ -/* - * jquant2.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * Modified 2011 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains 2-pass color quantization (color mapping) routines. - * These routines provide selection of a custom color map for an image, - * followed by mapping of the image to that color map, with optional - * Floyd-Steinberg dithering. - * It is also possible to use just the second pass to map to an arbitrary - * externally-given color map. - * - * Note: ordered dithering is not supported, since there isn't any fast - * way to compute intercolor distances; it's unclear that ordered dither's - * fundamental assumptions even hold with an irregularly spaced color map. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -#ifdef QUANT_2PASS_SUPPORTED - - -/* - * This module implements the well-known Heckbert paradigm for color - * quantization.  Most of the ideas used here can be traced back to - * Heckbert's seminal paper - *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display", - *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. - * - * In the first pass over the image, we accumulate a histogram showing the - * usage count of each possible color.  To keep the histogram to a reasonable - * size, we reduce the precision of the input; typical practice is to retain - * 5 or 6 bits per color, so that 8 or 4 different input values are counted - * in the same histogram cell. - * - * Next, the color-selection step begins with a box representing the whole - * color space, and repeatedly splits the "largest" remaining box until we - * have as many boxes as desired colors.  Then the mean color in each - * remaining box becomes one of the possible output colors. - *  - * The second pass over the image maps each input pixel to the closest output - * color (optionally after applying a Floyd-Steinberg dithering correction). - * This mapping is logically trivial, but making it go fast enough requires - * considerable care. - * - * Heckbert-style quantizers vary a good deal in their policies for choosing - * the "largest" box and deciding where to cut it.  The particular policies - * used here have proved out well in experimental comparisons, but better ones - * may yet be found. - * - * In earlier versions of the IJG code, this module quantized in YCbCr color - * space, processing the raw upsampled data without a color conversion step. - * This allowed the color conversion math to be done only once per colormap - * entry, not once per pixel.  However, that optimization precluded other - * useful optimizations (such as merging color conversion with upsampling) - * and it also interfered with desired capabilities such as quantizing to an - * externally-supplied colormap.  We have therefore abandoned that approach. - * The present code works in the post-conversion color space, typically RGB. - * - * To improve the visual quality of the results, we actually work in scaled - * RGB space, giving G distances more weight than R, and R in turn more than - * B.  To do everything in integer math, we must use integer scale factors. - * The 2/3/1 scale factors used here correspond loosely to the relative - * weights of the colors in the NTSC grayscale equation. - * If you want to use this code to quantize a non-RGB color space, you'll - * probably need to change these scale factors. - */ - -#define R_SCALE 2		/* scale R distances by this much */ -#define G_SCALE 3		/* scale G distances by this much */ -#define B_SCALE 1		/* and B by this much */ - -/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined - * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B - * and B,G,R orders.  If you define some other weird order in jmorecfg.h, - * you'll get compile errors until you extend this logic.  In that case - * you'll probably want to tweak the histogram sizes too. - */ - -#if RGB_RED == 0 -#define C0_SCALE R_SCALE -#endif -#if RGB_BLUE == 0 -#define C0_SCALE B_SCALE -#endif -#if RGB_GREEN == 1 -#define C1_SCALE G_SCALE -#endif -#if RGB_RED == 2 -#define C2_SCALE R_SCALE -#endif -#if RGB_BLUE == 2 -#define C2_SCALE B_SCALE -#endif - - -/* - * First we have the histogram data structure and routines for creating it. - * - * The number of bits of precision can be adjusted by changing these symbols. - * We recommend keeping 6 bits for G and 5 each for R and B. - * If you have plenty of memory and cycles, 6 bits all around gives marginally - * better results; if you are short of memory, 5 bits all around will save - * some space but degrade the results. - * To maintain a fully accurate histogram, we'd need to allocate a "long" - * (preferably unsigned long) for each cell.  In practice this is overkill; - * we can get by with 16 bits per cell.  Few of the cell counts will overflow, - * and clamping those that do overflow to the maximum value will give close- - * enough results.  This reduces the recommended histogram size from 256Kb - * to 128Kb, which is a useful savings on PC-class machines. - * (In the second pass the histogram space is re-used for pixel mapping data; - * in that capacity, each cell must be able to store zero to the number of - * desired colors.  16 bits/cell is plenty for that too.) - * Since the JPEG code is intended to run in small memory model on 80x86 - * machines, we can't just allocate the histogram in one chunk.  Instead - * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each - * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and - * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that - * on 80x86 machines, the pointer row is in near memory but the actual - * arrays are in far memory (same arrangement as we use for image arrays). - */ - -#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */ - -/* These will do the right thing for either R,G,B or B,G,R color order, - * but you may not like the results for other color orders. - */ -#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */ -#define HIST_C1_BITS  6		/* bits of precision in G histogram */ -#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */ - -/* Number of elements along histogram axes. */ -#define HIST_C0_ELEMS  (1<<HIST_C0_BITS) -#define HIST_C1_ELEMS  (1<<HIST_C1_BITS) -#define HIST_C2_ELEMS  (1<<HIST_C2_BITS) - -/* These are the amounts to shift an input value to get a histogram index. */ -#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS) -#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS) -#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS) - - -typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */ - -typedef histcell FAR * histptr;	/* for pointers to histogram cells */ - -typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ -typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */ -typedef hist2d * hist3d;	/* type for top-level pointer */ - - -/* Declarations for Floyd-Steinberg dithering. - * - * Errors are accumulated into the array fserrors[], at a resolution of - * 1/16th of a pixel count.  The error at a given pixel is propagated - * to its not-yet-processed neighbors using the standard F-S fractions, - *		...	(here)	7/16 - *		3/16	5/16	1/16 - * We work left-to-right on even rows, right-to-left on odd rows. - * - * We can get away with a single array (holding one row's worth of errors) - * by using it to store the current row's errors at pixel columns not yet - * processed, but the next row's errors at columns already processed.  We - * need only a few extra variables to hold the errors immediately around the - * current column.  (If we are lucky, those variables are in registers, but - * even if not, they're probably cheaper to access than array elements are.) - * - * The fserrors[] array has (#columns + 2) entries; the extra entry at - * each end saves us from special-casing the first and last pixels. - * Each entry is three values long, one value for each color component. - * - * Note: on a wide image, we might not have enough room in a PC's near data - * segment to hold the error array; so it is allocated with alloc_large. - */ - -#if BITS_IN_JSAMPLE == 8 -typedef INT16 FSERROR;		/* 16 bits should be enough */ -typedef int LOCFSERROR;		/* use 'int' for calculation temps */ -#else -typedef INT32 FSERROR;		/* may need more than 16 bits */ -typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ -#endif - -typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ - - -/* Private subobject */ - -typedef struct { -  struct jpeg_color_quantizer pub; /* public fields */ - -  /* Space for the eventually created colormap is stashed here */ -  JSAMPARRAY sv_colormap;	/* colormap allocated at init time */ -  int desired;			/* desired # of colors = size of colormap */ - -  /* Variables for accumulating image statistics */ -  hist3d histogram;		/* pointer to the histogram */ - -  boolean needs_zeroed;		/* TRUE if next pass must zero histogram */ - -  /* Variables for Floyd-Steinberg dithering */ -  FSERRPTR fserrors;		/* accumulated errors */ -  boolean on_odd_row;		/* flag to remember which row we are on */ -  int * error_limiter;		/* table for clamping the applied error */ -} my_cquantizer; - -typedef my_cquantizer * my_cquantize_ptr; - - -/* - * Prescan some rows of pixels. - * In this module the prescan simply updates the histogram, which has been - * initialized to zeroes by start_pass. - * An output_buf parameter is required by the method signature, but no data - * is actually output (in fact the buffer controller is probably passing a - * NULL pointer). - */ - -METHODDEF(void) -prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, -		  JSAMPARRAY output_buf, int num_rows) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  register JSAMPROW ptr; -  register histptr histp; -  register hist3d histogram = cquantize->histogram; -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; - -  for (row = 0; row < num_rows; row++) { -    ptr = input_buf[row]; -    for (col = width; col > 0; col--) { -      /* get pixel value and index into the histogram */ -      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] -			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] -			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; -      /* increment, check for overflow and undo increment if so. */ -      if (++(*histp) <= 0) -	(*histp)--; -      ptr += 3; -    } -  } -} - - -/* - * Next we have the really interesting routines: selection of a colormap - * given the completed histogram. - * These routines work with a list of "boxes", each representing a rectangular - * subset of the input color space (to histogram precision). - */ - -typedef struct { -  /* The bounds of the box (inclusive); expressed as histogram indexes */ -  int c0min, c0max; -  int c1min, c1max; -  int c2min, c2max; -  /* The volume (actually 2-norm) of the box */ -  INT32 volume; -  /* The number of nonzero histogram cells within this box */ -  long colorcount; -} box; - -typedef box * boxptr; - - -LOCAL(boxptr) -find_biggest_color_pop (boxptr boxlist, int numboxes) -/* Find the splittable box with the largest color population */ -/* Returns NULL if no splittable boxes remain */ -{ -  register boxptr boxp; -  register int i; -  register long maxc = 0; -  boxptr which = NULL; -   -  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { -    if (boxp->colorcount > maxc && boxp->volume > 0) { -      which = boxp; -      maxc = boxp->colorcount; -    } -  } -  return which; -} - - -LOCAL(boxptr) -find_biggest_volume (boxptr boxlist, int numboxes) -/* Find the splittable box with the largest (scaled) volume */ -/* Returns NULL if no splittable boxes remain */ -{ -  register boxptr boxp; -  register int i; -  register INT32 maxv = 0; -  boxptr which = NULL; -   -  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { -    if (boxp->volume > maxv) { -      which = boxp; -      maxv = boxp->volume; -    } -  } -  return which; -} - - -LOCAL(void) -update_box (j_decompress_ptr cinfo, boxptr boxp) -/* Shrink the min/max bounds of a box to enclose only nonzero elements, */ -/* and recompute its volume and population */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  hist3d histogram = cquantize->histogram; -  histptr histp; -  int c0,c1,c2; -  int c0min,c0max,c1min,c1max,c2min,c2max; -  INT32 dist0,dist1,dist2; -  long ccount; -   -  c0min = boxp->c0min;  c0max = boxp->c0max; -  c1min = boxp->c1min;  c1max = boxp->c1max; -  c2min = boxp->c2min;  c2max = boxp->c2max; -   -  if (c0max > c0min) -    for (c0 = c0min; c0 <= c0max; c0++) -      for (c1 = c1min; c1 <= c1max; c1++) { -	histp = & histogram[c0][c1][c2min]; -	for (c2 = c2min; c2 <= c2max; c2++) -	  if (*histp++ != 0) { -	    boxp->c0min = c0min = c0; -	    goto have_c0min; -	  } -      } - have_c0min: -  if (c0max > c0min) -    for (c0 = c0max; c0 >= c0min; c0--) -      for (c1 = c1min; c1 <= c1max; c1++) { -	histp = & histogram[c0][c1][c2min]; -	for (c2 = c2min; c2 <= c2max; c2++) -	  if (*histp++ != 0) { -	    boxp->c0max = c0max = c0; -	    goto have_c0max; -	  } -      } - have_c0max: -  if (c1max > c1min) -    for (c1 = c1min; c1 <= c1max; c1++) -      for (c0 = c0min; c0 <= c0max; c0++) { -	histp = & histogram[c0][c1][c2min]; -	for (c2 = c2min; c2 <= c2max; c2++) -	  if (*histp++ != 0) { -	    boxp->c1min = c1min = c1; -	    goto have_c1min; -	  } -      } - have_c1min: -  if (c1max > c1min) -    for (c1 = c1max; c1 >= c1min; c1--) -      for (c0 = c0min; c0 <= c0max; c0++) { -	histp = & histogram[c0][c1][c2min]; -	for (c2 = c2min; c2 <= c2max; c2++) -	  if (*histp++ != 0) { -	    boxp->c1max = c1max = c1; -	    goto have_c1max; -	  } -      } - have_c1max: -  if (c2max > c2min) -    for (c2 = c2min; c2 <= c2max; c2++) -      for (c0 = c0min; c0 <= c0max; c0++) { -	histp = & histogram[c0][c1min][c2]; -	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) -	  if (*histp != 0) { -	    boxp->c2min = c2min = c2; -	    goto have_c2min; -	  } -      } - have_c2min: -  if (c2max > c2min) -    for (c2 = c2max; c2 >= c2min; c2--) -      for (c0 = c0min; c0 <= c0max; c0++) { -	histp = & histogram[c0][c1min][c2]; -	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) -	  if (*histp != 0) { -	    boxp->c2max = c2max = c2; -	    goto have_c2max; -	  } -      } - have_c2max: - -  /* Update box volume. -   * We use 2-norm rather than real volume here; this biases the method -   * against making long narrow boxes, and it has the side benefit that -   * a box is splittable iff norm > 0. -   * Since the differences are expressed in histogram-cell units, -   * we have to shift back to JSAMPLE units to get consistent distances; -   * after which, we scale according to the selected distance scale factors. -   */ -  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; -  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; -  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; -  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; -   -  /* Now scan remaining volume of box and compute population */ -  ccount = 0; -  for (c0 = c0min; c0 <= c0max; c0++) -    for (c1 = c1min; c1 <= c1max; c1++) { -      histp = & histogram[c0][c1][c2min]; -      for (c2 = c2min; c2 <= c2max; c2++, histp++) -	if (*histp != 0) { -	  ccount++; -	} -    } -  boxp->colorcount = ccount; -} - - -LOCAL(int) -median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, -	    int desired_colors) -/* Repeatedly select and split the largest box until we have enough boxes */ -{ -  int n,lb; -  int c0,c1,c2,cmax; -  register boxptr b1,b2; - -  while (numboxes < desired_colors) { -    /* Select box to split. -     * Current algorithm: by population for first half, then by volume. -     */ -    if (numboxes*2 <= desired_colors) { -      b1 = find_biggest_color_pop(boxlist, numboxes); -    } else { -      b1 = find_biggest_volume(boxlist, numboxes); -    } -    if (b1 == NULL)		/* no splittable boxes left! */ -      break; -    b2 = &boxlist[numboxes];	/* where new box will go */ -    /* Copy the color bounds to the new box. */ -    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; -    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; -    /* Choose which axis to split the box on. -     * Current algorithm: longest scaled axis. -     * See notes in update_box about scaling distances. -     */ -    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; -    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; -    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; -    /* We want to break any ties in favor of green, then red, blue last. -     * This code does the right thing for R,G,B or B,G,R color orders only. -     */ -#if RGB_RED == 0 -    cmax = c1; n = 1; -    if (c0 > cmax) { cmax = c0; n = 0; } -    if (c2 > cmax) { n = 2; } -#else -    cmax = c1; n = 1; -    if (c2 > cmax) { cmax = c2; n = 2; } -    if (c0 > cmax) { n = 0; } -#endif -    /* Choose split point along selected axis, and update box bounds. -     * Current algorithm: split at halfway point. -     * (Since the box has been shrunk to minimum volume, -     * any split will produce two nonempty subboxes.) -     * Note that lb value is max for lower box, so must be < old max. -     */ -    switch (n) { -    case 0: -      lb = (b1->c0max + b1->c0min) / 2; -      b1->c0max = lb; -      b2->c0min = lb+1; -      break; -    case 1: -      lb = (b1->c1max + b1->c1min) / 2; -      b1->c1max = lb; -      b2->c1min = lb+1; -      break; -    case 2: -      lb = (b1->c2max + b1->c2min) / 2; -      b1->c2max = lb; -      b2->c2min = lb+1; -      break; -    } -    /* Update stats for boxes */ -    update_box(cinfo, b1); -    update_box(cinfo, b2); -    numboxes++; -  } -  return numboxes; -} - - -LOCAL(void) -compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) -/* Compute representative color for a box, put it in colormap[icolor] */ -{ -  /* Current algorithm: mean weighted by pixels (not colors) */ -  /* Note it is important to get the rounding correct! */ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  hist3d histogram = cquantize->histogram; -  histptr histp; -  int c0,c1,c2; -  int c0min,c0max,c1min,c1max,c2min,c2max; -  long count; -  long total = 0; -  long c0total = 0; -  long c1total = 0; -  long c2total = 0; -   -  c0min = boxp->c0min;  c0max = boxp->c0max; -  c1min = boxp->c1min;  c1max = boxp->c1max; -  c2min = boxp->c2min;  c2max = boxp->c2max; -   -  for (c0 = c0min; c0 <= c0max; c0++) -    for (c1 = c1min; c1 <= c1max; c1++) { -      histp = & histogram[c0][c1][c2min]; -      for (c2 = c2min; c2 <= c2max; c2++) { -	if ((count = *histp++) != 0) { -	  total += count; -	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; -	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; -	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; -	} -      } -    } -   -  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); -  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); -  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); -} - - -LOCAL(void) -select_colors (j_decompress_ptr cinfo, int desired_colors) -/* Master routine for color selection */ -{ -  boxptr boxlist; -  int numboxes; -  int i; - -  /* Allocate workspace for box list */ -  boxlist = (boxptr) (*cinfo->mem->alloc_small) -    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); -  /* Initialize one box containing whole space */ -  numboxes = 1; -  boxlist[0].c0min = 0; -  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; -  boxlist[0].c1min = 0; -  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; -  boxlist[0].c2min = 0; -  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; -  /* Shrink it to actually-used volume and set its statistics */ -  update_box(cinfo, & boxlist[0]); -  /* Perform median-cut to produce final box list */ -  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); -  /* Compute the representative color for each box, fill colormap */ -  for (i = 0; i < numboxes; i++) -    compute_color(cinfo, & boxlist[i], i); -  cinfo->actual_number_of_colors = numboxes; -  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); -} - - -/* - * These routines are concerned with the time-critical task of mapping input - * colors to the nearest color in the selected colormap. - * - * We re-use the histogram space as an "inverse color map", essentially a - * cache for the results of nearest-color searches.  All colors within a - * histogram cell will be mapped to the same colormap entry, namely the one - * closest to the cell's center.  This may not be quite the closest entry to - * the actual input color, but it's almost as good.  A zero in the cache - * indicates we haven't found the nearest color for that cell yet; the array - * is cleared to zeroes before starting the mapping pass.  When we find the - * nearest color for a cell, its colormap index plus one is recorded in the - * cache for future use.  The pass2 scanning routines call fill_inverse_cmap - * when they need to use an unfilled entry in the cache. - * - * Our method of efficiently finding nearest colors is based on the "locally - * sorted search" idea described by Heckbert and on the incremental distance - * calculation described by Spencer W. Thomas in chapter III.1 of Graphics - * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that - * the distances from a given colormap entry to each cell of the histogram can - * be computed quickly using an incremental method: the differences between - * distances to adjacent cells themselves differ by a constant.  This allows a - * fairly fast implementation of the "brute force" approach of computing the - * distance from every colormap entry to every histogram cell.  Unfortunately, - * it needs a work array to hold the best-distance-so-far for each histogram - * cell (because the inner loop has to be over cells, not colormap entries). - * The work array elements have to be INT32s, so the work array would need - * 256Kb at our recommended precision.  This is not feasible in DOS machines. - * - * To get around these problems, we apply Thomas' method to compute the - * nearest colors for only the cells within a small subbox of the histogram. - * The work array need be only as big as the subbox, so the memory usage - * problem is solved.  Furthermore, we need not fill subboxes that are never - * referenced in pass2; many images use only part of the color gamut, so a - * fair amount of work is saved.  An additional advantage of this - * approach is that we can apply Heckbert's locality criterion to quickly - * eliminate colormap entries that are far away from the subbox; typically - * three-fourths of the colormap entries are rejected by Heckbert's criterion, - * and we need not compute their distances to individual cells in the subbox. - * The speed of this approach is heavily influenced by the subbox size: too - * small means too much overhead, too big loses because Heckbert's criterion - * can't eliminate as many colormap entries.  Empirically the best subbox - * size seems to be about 1/512th of the histogram (1/8th in each direction). - * - * Thomas' article also describes a refined method which is asymptotically - * faster than the brute-force method, but it is also far more complex and - * cannot efficiently be applied to small subboxes.  It is therefore not - * useful for programs intended to be portable to DOS machines.  On machines - * with plenty of memory, filling the whole histogram in one shot with Thomas' - * refined method might be faster than the present code --- but then again, - * it might not be any faster, and it's certainly more complicated. - */ - - -/* log2(histogram cells in update box) for each axis; this can be adjusted */ -#define BOX_C0_LOG  (HIST_C0_BITS-3) -#define BOX_C1_LOG  (HIST_C1_BITS-3) -#define BOX_C2_LOG  (HIST_C2_BITS-3) - -#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */ -#define BOX_C1_ELEMS  (1<<BOX_C1_LOG) -#define BOX_C2_ELEMS  (1<<BOX_C2_LOG) - -#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG) -#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG) -#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG) - - -/* - * The next three routines implement inverse colormap filling.  They could - * all be folded into one big routine, but splitting them up this way saves - * some stack space (the mindist[] and bestdist[] arrays need not coexist) - * and may allow some compilers to produce better code by registerizing more - * inner-loop variables. - */ - -LOCAL(int) -find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, -		    JSAMPLE colorlist[]) -/* Locate the colormap entries close enough to an update box to be candidates - * for the nearest entry to some cell(s) in the update box.  The update box - * is specified by the center coordinates of its first cell.  The number of - * candidate colormap entries is returned, and their colormap indexes are - * placed in colorlist[]. - * This routine uses Heckbert's "locally sorted search" criterion to select - * the colors that need further consideration. - */ -{ -  int numcolors = cinfo->actual_number_of_colors; -  int maxc0, maxc1, maxc2; -  int centerc0, centerc1, centerc2; -  int i, x, ncolors; -  INT32 minmaxdist, min_dist, max_dist, tdist; -  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */ - -  /* Compute true coordinates of update box's upper corner and center. -   * Actually we compute the coordinates of the center of the upper-corner -   * histogram cell, which are the upper bounds of the volume we care about. -   * Note that since ">>" rounds down, the "center" values may be closer to -   * min than to max; hence comparisons to them must be "<=", not "<". -   */ -  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); -  centerc0 = (minc0 + maxc0) >> 1; -  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); -  centerc1 = (minc1 + maxc1) >> 1; -  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); -  centerc2 = (minc2 + maxc2) >> 1; - -  /* For each color in colormap, find: -   *  1. its minimum squared-distance to any point in the update box -   *     (zero if color is within update box); -   *  2. its maximum squared-distance to any point in the update box. -   * Both of these can be found by considering only the corners of the box. -   * We save the minimum distance for each color in mindist[]; -   * only the smallest maximum distance is of interest. -   */ -  minmaxdist = 0x7FFFFFFFL; - -  for (i = 0; i < numcolors; i++) { -    /* We compute the squared-c0-distance term, then add in the other two. */ -    x = GETJSAMPLE(cinfo->colormap[0][i]); -    if (x < minc0) { -      tdist = (x - minc0) * C0_SCALE; -      min_dist = tdist*tdist; -      tdist = (x - maxc0) * C0_SCALE; -      max_dist = tdist*tdist; -    } else if (x > maxc0) { -      tdist = (x - maxc0) * C0_SCALE; -      min_dist = tdist*tdist; -      tdist = (x - minc0) * C0_SCALE; -      max_dist = tdist*tdist; -    } else { -      /* within cell range so no contribution to min_dist */ -      min_dist = 0; -      if (x <= centerc0) { -	tdist = (x - maxc0) * C0_SCALE; -	max_dist = tdist*tdist; -      } else { -	tdist = (x - minc0) * C0_SCALE; -	max_dist = tdist*tdist; -      } -    } - -    x = GETJSAMPLE(cinfo->colormap[1][i]); -    if (x < minc1) { -      tdist = (x - minc1) * C1_SCALE; -      min_dist += tdist*tdist; -      tdist = (x - maxc1) * C1_SCALE; -      max_dist += tdist*tdist; -    } else if (x > maxc1) { -      tdist = (x - maxc1) * C1_SCALE; -      min_dist += tdist*tdist; -      tdist = (x - minc1) * C1_SCALE; -      max_dist += tdist*tdist; -    } else { -      /* within cell range so no contribution to min_dist */ -      if (x <= centerc1) { -	tdist = (x - maxc1) * C1_SCALE; -	max_dist += tdist*tdist; -      } else { -	tdist = (x - minc1) * C1_SCALE; -	max_dist += tdist*tdist; -      } -    } - -    x = GETJSAMPLE(cinfo->colormap[2][i]); -    if (x < minc2) { -      tdist = (x - minc2) * C2_SCALE; -      min_dist += tdist*tdist; -      tdist = (x - maxc2) * C2_SCALE; -      max_dist += tdist*tdist; -    } else if (x > maxc2) { -      tdist = (x - maxc2) * C2_SCALE; -      min_dist += tdist*tdist; -      tdist = (x - minc2) * C2_SCALE; -      max_dist += tdist*tdist; -    } else { -      /* within cell range so no contribution to min_dist */ -      if (x <= centerc2) { -	tdist = (x - maxc2) * C2_SCALE; -	max_dist += tdist*tdist; -      } else { -	tdist = (x - minc2) * C2_SCALE; -	max_dist += tdist*tdist; -      } -    } - -    mindist[i] = min_dist;	/* save away the results */ -    if (max_dist < minmaxdist) -      minmaxdist = max_dist; -  } - -  /* Now we know that no cell in the update box is more than minmaxdist -   * away from some colormap entry.  Therefore, only colors that are -   * within minmaxdist of some part of the box need be considered. -   */ -  ncolors = 0; -  for (i = 0; i < numcolors; i++) { -    if (mindist[i] <= minmaxdist) -      colorlist[ncolors++] = (JSAMPLE) i; -  } -  return ncolors; -} - - -LOCAL(void) -find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, -		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) -/* Find the closest colormap entry for each cell in the update box, - * given the list of candidate colors prepared by find_nearby_colors. - * Return the indexes of the closest entries in the bestcolor[] array. - * This routine uses Thomas' incremental distance calculation method to - * find the distance from a colormap entry to successive cells in the box. - */ -{ -  int ic0, ic1, ic2; -  int i, icolor; -  register INT32 * bptr;	/* pointer into bestdist[] array */ -  JSAMPLE * cptr;		/* pointer into bestcolor[] array */ -  INT32 dist0, dist1;		/* initial distance values */ -  register INT32 dist2;		/* current distance in inner loop */ -  INT32 xx0, xx1;		/* distance increments */ -  register INT32 xx2; -  INT32 inc0, inc1, inc2;	/* initial values for increments */ -  /* This array holds the distance to the nearest-so-far color for each cell */ -  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; - -  /* Initialize best-distance for each cell of the update box */ -  bptr = bestdist; -  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) -    *bptr++ = 0x7FFFFFFFL; -   -  /* For each color selected by find_nearby_colors, -   * compute its distance to the center of each cell in the box. -   * If that's less than best-so-far, update best distance and color number. -   */ -   -  /* Nominal steps between cell centers ("x" in Thomas article) */ -#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE) -#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE) -#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE) -   -  for (i = 0; i < numcolors; i++) { -    icolor = GETJSAMPLE(colorlist[i]); -    /* Compute (square of) distance from minc0/c1/c2 to this color */ -    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; -    dist0 = inc0*inc0; -    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; -    dist0 += inc1*inc1; -    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; -    dist0 += inc2*inc2; -    /* Form the initial difference increments */ -    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; -    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; -    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; -    /* Now loop over all cells in box, updating distance per Thomas method */ -    bptr = bestdist; -    cptr = bestcolor; -    xx0 = inc0; -    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { -      dist1 = dist0; -      xx1 = inc1; -      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { -	dist2 = dist1; -	xx2 = inc2; -	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { -	  if (dist2 < *bptr) { -	    *bptr = dist2; -	    *cptr = (JSAMPLE) icolor; -	  } -	  dist2 += xx2; -	  xx2 += 2 * STEP_C2 * STEP_C2; -	  bptr++; -	  cptr++; -	} -	dist1 += xx1; -	xx1 += 2 * STEP_C1 * STEP_C1; -      } -      dist0 += xx0; -      xx0 += 2 * STEP_C0 * STEP_C0; -    } -  } -} - - -LOCAL(void) -fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) -/* Fill the inverse-colormap entries in the update box that contains */ -/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */ -/* we can fill as many others as we wish.) */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  hist3d histogram = cquantize->histogram; -  int minc0, minc1, minc2;	/* lower left corner of update box */ -  int ic0, ic1, ic2; -  register JSAMPLE * cptr;	/* pointer into bestcolor[] array */ -  register histptr cachep;	/* pointer into main cache array */ -  /* This array lists the candidate colormap indexes. */ -  JSAMPLE colorlist[MAXNUMCOLORS]; -  int numcolors;		/* number of candidate colors */ -  /* This array holds the actually closest colormap index for each cell. */ -  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; - -  /* Convert cell coordinates to update box ID */ -  c0 >>= BOX_C0_LOG; -  c1 >>= BOX_C1_LOG; -  c2 >>= BOX_C2_LOG; - -  /* Compute true coordinates of update box's origin corner. -   * Actually we compute the coordinates of the center of the corner -   * histogram cell, which are the lower bounds of the volume we care about. -   */ -  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); -  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); -  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); -   -  /* Determine which colormap entries are close enough to be candidates -   * for the nearest entry to some cell in the update box. -   */ -  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); - -  /* Determine the actually nearest colors. */ -  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, -		   bestcolor); - -  /* Save the best color numbers (plus 1) in the main cache array */ -  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */ -  c1 <<= BOX_C1_LOG; -  c2 <<= BOX_C2_LOG; -  cptr = bestcolor; -  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { -    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { -      cachep = & histogram[c0+ic0][c1+ic1][c2]; -      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { -	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); -      } -    } -  } -} - - -/* - * Map some rows of pixels to the output colormapped representation. - */ - -METHODDEF(void) -pass2_no_dither (j_decompress_ptr cinfo, -		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) -/* This version performs no dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  hist3d histogram = cquantize->histogram; -  register JSAMPROW inptr, outptr; -  register histptr cachep; -  register int c0, c1, c2; -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; - -  for (row = 0; row < num_rows; row++) { -    inptr = input_buf[row]; -    outptr = output_buf[row]; -    for (col = width; col > 0; col--) { -      /* get pixel value and index into the cache */ -      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; -      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; -      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; -      cachep = & histogram[c0][c1][c2]; -      /* If we have not seen this color before, find nearest colormap entry */ -      /* and update the cache */ -      if (*cachep == 0) -	fill_inverse_cmap(cinfo, c0,c1,c2); -      /* Now emit the colormap index for this cell */ -      *outptr++ = (JSAMPLE) (*cachep - 1); -    } -  } -} - - -METHODDEF(void) -pass2_fs_dither (j_decompress_ptr cinfo, -		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) -/* This version performs Floyd-Steinberg dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  hist3d histogram = cquantize->histogram; -  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */ -  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ -  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ -  register FSERRPTR errorptr;	/* => fserrors[] at column before current */ -  JSAMPROW inptr;		/* => current input pixel */ -  JSAMPROW outptr;		/* => current output pixel */ -  histptr cachep; -  int dir;			/* +1 or -1 depending on direction */ -  int dir3;			/* 3*dir, for advancing inptr & errorptr */ -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; -  JSAMPLE *range_limit = cinfo->sample_range_limit; -  int *error_limit = cquantize->error_limiter; -  JSAMPROW colormap0 = cinfo->colormap[0]; -  JSAMPROW colormap1 = cinfo->colormap[1]; -  JSAMPROW colormap2 = cinfo->colormap[2]; -  SHIFT_TEMPS - -  for (row = 0; row < num_rows; row++) { -    inptr = input_buf[row]; -    outptr = output_buf[row]; -    if (cquantize->on_odd_row) { -      /* work right to left in this row */ -      inptr += (width-1) * 3;	/* so point to rightmost pixel */ -      outptr += width-1; -      dir = -1; -      dir3 = -3; -      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ -      cquantize->on_odd_row = FALSE; /* flip for next time */ -    } else { -      /* work left to right in this row */ -      dir = 1; -      dir3 = 3; -      errorptr = cquantize->fserrors; /* => entry before first real column */ -      cquantize->on_odd_row = TRUE; /* flip for next time */ -    } -    /* Preset error values: no error propagated to first pixel from left */ -    cur0 = cur1 = cur2 = 0; -    /* and no error propagated to row below yet */ -    belowerr0 = belowerr1 = belowerr2 = 0; -    bpreverr0 = bpreverr1 = bpreverr2 = 0; - -    for (col = width; col > 0; col--) { -      /* curN holds the error propagated from the previous pixel on the -       * current line.  Add the error propagated from the previous line -       * to form the complete error correction term for this pixel, and -       * round the error term (which is expressed * 16) to an integer. -       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct -       * for either sign of the error value. -       * Note: errorptr points to *previous* column's array entry. -       */ -      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); -      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); -      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); -      /* Limit the error using transfer function set by init_error_limit. -       * See comments with init_error_limit for rationale. -       */ -      cur0 = error_limit[cur0]; -      cur1 = error_limit[cur1]; -      cur2 = error_limit[cur2]; -      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. -       * The maximum error is +- MAXJSAMPLE (or less with error limiting); -       * this sets the required size of the range_limit array. -       */ -      cur0 += GETJSAMPLE(inptr[0]); -      cur1 += GETJSAMPLE(inptr[1]); -      cur2 += GETJSAMPLE(inptr[2]); -      cur0 = GETJSAMPLE(range_limit[cur0]); -      cur1 = GETJSAMPLE(range_limit[cur1]); -      cur2 = GETJSAMPLE(range_limit[cur2]); -      /* Index into the cache with adjusted pixel value */ -      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; -      /* If we have not seen this color before, find nearest colormap */ -      /* entry and update the cache */ -      if (*cachep == 0) -	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); -      /* Now emit the colormap index for this cell */ -      { register int pixcode = *cachep - 1; -	*outptr = (JSAMPLE) pixcode; -	/* Compute representation error for this pixel */ -	cur0 -= GETJSAMPLE(colormap0[pixcode]); -	cur1 -= GETJSAMPLE(colormap1[pixcode]); -	cur2 -= GETJSAMPLE(colormap2[pixcode]); -      } -      /* Compute error fractions to be propagated to adjacent pixels. -       * Add these into the running sums, and simultaneously shift the -       * next-line error sums left by 1 column. -       */ -      { register LOCFSERROR bnexterr, delta; - -	bnexterr = cur0;	/* Process component 0 */ -	delta = cur0 * 2; -	cur0 += delta;		/* form error * 3 */ -	errorptr[0] = (FSERROR) (bpreverr0 + cur0); -	cur0 += delta;		/* form error * 5 */ -	bpreverr0 = belowerr0 + cur0; -	belowerr0 = bnexterr; -	cur0 += delta;		/* form error * 7 */ -	bnexterr = cur1;	/* Process component 1 */ -	delta = cur1 * 2; -	cur1 += delta;		/* form error * 3 */ -	errorptr[1] = (FSERROR) (bpreverr1 + cur1); -	cur1 += delta;		/* form error * 5 */ -	bpreverr1 = belowerr1 + cur1; -	belowerr1 = bnexterr; -	cur1 += delta;		/* form error * 7 */ -	bnexterr = cur2;	/* Process component 2 */ -	delta = cur2 * 2; -	cur2 += delta;		/* form error * 3 */ -	errorptr[2] = (FSERROR) (bpreverr2 + cur2); -	cur2 += delta;		/* form error * 5 */ -	bpreverr2 = belowerr2 + cur2; -	belowerr2 = bnexterr; -	cur2 += delta;		/* form error * 7 */ -      } -      /* At this point curN contains the 7/16 error value to be propagated -       * to the next pixel on the current line, and all the errors for the -       * next line have been shifted over.  We are therefore ready to move on. -       */ -      inptr += dir3;		/* Advance pixel pointers to next column */ -      outptr += dir; -      errorptr += dir3;		/* advance errorptr to current column */ -    } -    /* Post-loop cleanup: we must unload the final error values into the -     * final fserrors[] entry.  Note we need not unload belowerrN because -     * it is for the dummy column before or after the actual array. -     */ -    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ -    errorptr[1] = (FSERROR) bpreverr1; -    errorptr[2] = (FSERROR) bpreverr2; -  } -} - - -/* - * Initialize the error-limiting transfer function (lookup table). - * The raw F-S error computation can potentially compute error values of up to - * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be - * much less, otherwise obviously wrong pixels will be created.  (Typical - * effects include weird fringes at color-area boundaries, isolated bright - * pixels in a dark area, etc.)  The standard advice for avoiding this problem - * is to ensure that the "corners" of the color cube are allocated as output - * colors; then repeated errors in the same direction cannot cause cascading - * error buildup.  However, that only prevents the error from getting - * completely out of hand; Aaron Giles reports that error limiting improves - * the results even with corner colors allocated. - * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty - * well, but the smoother transfer function used below is even better.  Thanks - * to Aaron Giles for this idea. - */ - -LOCAL(void) -init_error_limit (j_decompress_ptr cinfo) -/* Allocate and fill in the error_limiter table */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  int * table; -  int in, out; - -  table = (int *) (*cinfo->mem->alloc_small) -    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); -  table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ -  cquantize->error_limiter = table; - -#define STEPSIZE ((MAXJSAMPLE+1)/16) -  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ -  out = 0; -  for (in = 0; in < STEPSIZE; in++, out++) { -    table[in] = out; table[-in] = -out; -  } -  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ -  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { -    table[in] = out; table[-in] = -out; -  } -  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ -  for (; in <= MAXJSAMPLE; in++) { -    table[in] = out; table[-in] = -out; -  } -#undef STEPSIZE -} - - -/* - * Finish up at the end of each pass. - */ - -METHODDEF(void) -finish_pass1 (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - -  /* Select the representative colors and fill in cinfo->colormap */ -  cinfo->colormap = cquantize->sv_colormap; -  select_colors(cinfo, cquantize->desired); -  /* Force next pass to zero the color index table */ -  cquantize->needs_zeroed = TRUE; -} - - -METHODDEF(void) -finish_pass2 (j_decompress_ptr cinfo) -{ -  /* no work */ -} - - -/* - * Initialize for each processing pass. - */ - -METHODDEF(void) -start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  hist3d histogram = cquantize->histogram; -  int i; - -  /* Only F-S dithering or no dithering is supported. */ -  /* If user asks for ordered dither, give him F-S. */ -  if (cinfo->dither_mode != JDITHER_NONE) -    cinfo->dither_mode = JDITHER_FS; - -  if (is_pre_scan) { -    /* Set up method pointers */ -    cquantize->pub.color_quantize = prescan_quantize; -    cquantize->pub.finish_pass = finish_pass1; -    cquantize->needs_zeroed = TRUE; /* Always zero histogram */ -  } else { -    /* Set up method pointers */ -    if (cinfo->dither_mode == JDITHER_FS) -      cquantize->pub.color_quantize = pass2_fs_dither; -    else -      cquantize->pub.color_quantize = pass2_no_dither; -    cquantize->pub.finish_pass = finish_pass2; - -    /* Make sure color count is acceptable */ -    i = cinfo->actual_number_of_colors; -    if (i < 1) -      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); -    if (i > MAXNUMCOLORS) -      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); - -    if (cinfo->dither_mode == JDITHER_FS) { -      size_t arraysize = (size_t) ((cinfo->output_width + 2) * -				   (3 * SIZEOF(FSERROR))); -      /* Allocate Floyd-Steinberg workspace if we didn't already. */ -      if (cquantize->fserrors == NULL) -	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) -	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); -      /* Initialize the propagated errors to zero. */ -      FMEMZERO((void FAR *) cquantize->fserrors, arraysize); -      /* Make the error-limit table if we didn't already. */ -      if (cquantize->error_limiter == NULL) -	init_error_limit(cinfo); -      cquantize->on_odd_row = FALSE; -    } - -  } -  /* Zero the histogram or inverse color map, if necessary */ -  if (cquantize->needs_zeroed) { -    for (i = 0; i < HIST_C0_ELEMS; i++) { -      FMEMZERO((void FAR *) histogram[i], -	       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); -    } -    cquantize->needs_zeroed = FALSE; -  } -} - - -/* - * Switch to a new external colormap between output passes. - */ - -METHODDEF(void) -new_color_map_2_quant (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; - -  /* Reset the inverse color map */ -  cquantize->needs_zeroed = TRUE; -} - - -/* - * Module initialization routine for 2-pass color quantization. - */ - -GLOBAL(void) -jinit_2pass_quantizer (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize; -  int i; - -  cquantize = (my_cquantize_ptr) -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				SIZEOF(my_cquantizer)); -  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; -  cquantize->pub.start_pass = start_pass_2_quant; -  cquantize->pub.new_color_map = new_color_map_2_quant; -  cquantize->fserrors = NULL;	/* flag optional arrays not allocated */ -  cquantize->error_limiter = NULL; - -  /* Make sure jdmaster didn't give me a case I can't handle */ -  if (cinfo->out_color_components != 3) -    ERREXIT(cinfo, JERR_NOTIMPL); - -  /* Allocate the histogram/inverse colormap storage */ -  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) -    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); -  for (i = 0; i < HIST_C0_ELEMS; i++) { -    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) -      ((j_common_ptr) cinfo, JPOOL_IMAGE, -       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); -  } -  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ - -  /* Allocate storage for the completed colormap, if required. -   * We do this now since it is FAR storage and may affect -   * the memory manager's space calculations. -   */ -  if (cinfo->enable_2pass_quant) { -    /* Make sure color count is acceptable */ -    int desired = cinfo->desired_number_of_colors; -    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ -    if (desired < 8) -      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); -    /* Make sure colormap indexes can be represented by JSAMPLEs */ -    if (desired > MAXNUMCOLORS) -      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); -    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) -      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); -    cquantize->desired = desired; -  } else -    cquantize->sv_colormap = NULL; - -  /* Only F-S dithering or no dithering is supported. */ -  /* If user asks for ordered dither, give him F-S. */ -  if (cinfo->dither_mode != JDITHER_NONE) -    cinfo->dither_mode = JDITHER_FS; - -  /* Allocate Floyd-Steinberg workspace if necessary. -   * This isn't really needed until pass 2, but again it is FAR storage. -   * Although we will cope with a later change in dither_mode, -   * we do not promise to honor max_memory_to_use if dither_mode changes. -   */ -  if (cinfo->dither_mode == JDITHER_FS) { -    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) -      ((j_common_ptr) cinfo, JPOOL_IMAGE, -       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); -    /* Might as well create the error-limiting table too. */ -    init_error_limit(cinfo); -  } -} - -#endif /* QUANT_2PASS_SUPPORTED */  | 
