diff options
Diffstat (limited to 'plugins/FreeImage/Source/LibPNG/png.c')
| -rw-r--r-- | plugins/FreeImage/Source/LibPNG/png.c | 2870 | 
1 files changed, 0 insertions, 2870 deletions
diff --git a/plugins/FreeImage/Source/LibPNG/png.c b/plugins/FreeImage/Source/LibPNG/png.c deleted file mode 100644 index 0df53a62af..0000000000 --- a/plugins/FreeImage/Source/LibPNG/png.c +++ /dev/null @@ -1,2870 +0,0 @@ -
 -/* png.c - location for general purpose libpng functions
 - *
 - * Last changed in libpng 1.5.7 [December 15, 2011]
 - * Copyright (c) 1998-2011 Glenn Randers-Pehrson
 - * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
 - * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
 - *
 - * This code is released under the libpng license.
 - * For conditions of distribution and use, see the disclaimer
 - * and license in png.h
 - */
 -
 -#include "pngpriv.h"
 -
 -/* Generate a compiler error if there is an old png.h in the search path. */
 -typedef png_libpng_version_1_5_9 Your_png_h_is_not_version_1_5_9;
 -
 -/* Tells libpng that we have already handled the first "num_bytes" bytes
 - * of the PNG file signature.  If the PNG data is embedded into another
 - * stream we can set num_bytes = 8 so that libpng will not attempt to read
 - * or write any of the magic bytes before it starts on the IHDR.
 - */
 -
 -#ifdef PNG_READ_SUPPORTED
 -void PNGAPI
 -png_set_sig_bytes(png_structp png_ptr, int num_bytes)
 -{
 -   png_debug(1, "in png_set_sig_bytes");
 -
 -   if (png_ptr == NULL)
 -      return;
 -
 -   if (num_bytes > 8)
 -      png_error(png_ptr, "Too many bytes for PNG signature");
 -
 -   png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
 -}
 -
 -/* Checks whether the supplied bytes match the PNG signature.  We allow
 - * checking less than the full 8-byte signature so that those apps that
 - * already read the first few bytes of a file to determine the file type
 - * can simply check the remaining bytes for extra assurance.  Returns
 - * an integer less than, equal to, or greater than zero if sig is found,
 - * respectively, to be less than, to match, or be greater than the correct
 - * PNG signature (this is the same behavior as strcmp, memcmp, etc).
 - */
 -int PNGAPI
 -png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
 -{
 -   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
 -
 -   if (num_to_check > 8)
 -      num_to_check = 8;
 -
 -   else if (num_to_check < 1)
 -      return (-1);
 -
 -   if (start > 7)
 -      return (-1);
 -
 -   if (start + num_to_check > 8)
 -      num_to_check = 8 - start;
 -
 -   return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
 -}
 -
 -#endif /* PNG_READ_SUPPORTED */
 -
 -#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 -/* Function to allocate memory for zlib */
 -PNG_FUNCTION(voidpf /* PRIVATE */,
 -png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
 -{
 -   png_voidp ptr;
 -   png_structp p=(png_structp)png_ptr;
 -   png_uint_32 save_flags=p->flags;
 -   png_alloc_size_t num_bytes;
 -
 -   if (png_ptr == NULL)
 -      return (NULL);
 -
 -   if (items > PNG_UINT_32_MAX/size)
 -   {
 -     png_warning (p, "Potential overflow in png_zalloc()");
 -     return (NULL);
 -   }
 -   num_bytes = (png_alloc_size_t)items * size;
 -
 -   p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
 -   ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
 -   p->flags=save_flags;
 -
 -   return ((voidpf)ptr);
 -}
 -
 -/* Function to free memory for zlib */
 -void /* PRIVATE */
 -png_zfree(voidpf png_ptr, voidpf ptr)
 -{
 -   png_free((png_structp)png_ptr, (png_voidp)ptr);
 -}
 -
 -/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
 - * in case CRC is > 32 bits to leave the top bits 0.
 - */
 -void /* PRIVATE */
 -png_reset_crc(png_structp png_ptr)
 -{
 -   /* The cast is safe because the crc is a 32 bit value. */
 -   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
 -}
 -
 -/* Calculate the CRC over a section of data.  We can only pass as
 - * much data to this routine as the largest single buffer size.  We
 - * also check that this data will actually be used before going to the
 - * trouble of calculating it.
 - */
 -void /* PRIVATE */
 -png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
 -{
 -   int need_crc = 1;
 -
 -   if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name))
 -   {
 -      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
 -          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
 -         need_crc = 0;
 -   }
 -
 -   else /* critical */
 -   {
 -      if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
 -         need_crc = 0;
 -   }
 -
 -   /* 'uLong' is defined as unsigned long, this means that on some systems it is
 -    * a 64 bit value.  crc32, however, returns 32 bits so the following cast is
 -    * safe.  'uInt' may be no more than 16 bits, so it is necessary to perform a
 -    * loop here.
 -    */
 -   if (need_crc && length > 0)
 -   {
 -      uLong crc = png_ptr->crc; /* Should never issue a warning */
 -
 -      do
 -      {
 -         uInt safeLength = (uInt)length;
 -         if (safeLength == 0)
 -            safeLength = (uInt)-1; /* evil, but safe */
 -
 -         crc = crc32(crc, ptr, safeLength);
 -
 -         /* The following should never issue compiler warnings, if they do the
 -          * target system has characteristics that will probably violate other
 -          * assumptions within the libpng code.
 -          */
 -         ptr += safeLength;
 -         length -= safeLength;
 -      }
 -      while (length > 0);
 -
 -      /* And the following is always safe because the crc is only 32 bits. */
 -      png_ptr->crc = (png_uint_32)crc;
 -   }
 -}
 -
 -/* Check a user supplied version number, called from both read and write
 - * functions that create a png_struct
 - */
 -int
 -png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
 -{
 -   if (user_png_ver)
 -   {
 -      int i = 0;
 -
 -      do
 -      {
 -         if (user_png_ver[i] != png_libpng_ver[i])
 -            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
 -      } while (png_libpng_ver[i++]);
 -   }
 -
 -   else
 -      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
 -
 -   if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
 -   {
 -     /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
 -      * we must recompile any applications that use any older library version.
 -      * For versions after libpng 1.0, we will be compatible, so we need
 -      * only check the first digit.
 -      */
 -      if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
 -          (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
 -          (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
 -      {
 -#ifdef PNG_WARNINGS_SUPPORTED
 -         size_t pos = 0;
 -         char m[128];
 -
 -         pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
 -         pos = png_safecat(m, sizeof m, pos, user_png_ver);
 -         pos = png_safecat(m, sizeof m, pos, " but running with ");
 -         pos = png_safecat(m, sizeof m, pos, png_libpng_ver);
 -
 -         png_warning(png_ptr, m);
 -#endif
 -
 -#ifdef PNG_ERROR_NUMBERS_SUPPORTED
 -         png_ptr->flags = 0;
 -#endif
 -
 -         return 0;
 -      }
 -   }
 -
 -   /* Success return. */
 -   return 1;
 -}
 -
 -/* Allocate the memory for an info_struct for the application.  We don't
 - * really need the png_ptr, but it could potentially be useful in the
 - * future.  This should be used in favour of malloc(png_sizeof(png_info))
 - * and png_info_init() so that applications that want to use a shared
 - * libpng don't have to be recompiled if png_info changes size.
 - */
 -PNG_FUNCTION(png_infop,PNGAPI
 -png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
 -{
 -   png_infop info_ptr;
 -
 -   png_debug(1, "in png_create_info_struct");
 -
 -   if (png_ptr == NULL)
 -      return (NULL);
 -
 -#ifdef PNG_USER_MEM_SUPPORTED
 -   info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
 -      png_ptr->malloc_fn, png_ptr->mem_ptr);
 -#else
 -   info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
 -#endif
 -   if (info_ptr != NULL)
 -      png_info_init_3(&info_ptr, png_sizeof(png_info));
 -
 -   return (info_ptr);
 -}
 -
 -/* This function frees the memory associated with a single info struct.
 - * Normally, one would use either png_destroy_read_struct() or
 - * png_destroy_write_struct() to free an info struct, but this may be
 - * useful for some applications.
 - */
 -void PNGAPI
 -png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
 -{
 -   png_infop info_ptr = NULL;
 -
 -   png_debug(1, "in png_destroy_info_struct");
 -
 -   if (png_ptr == NULL)
 -      return;
 -
 -   if (info_ptr_ptr != NULL)
 -      info_ptr = *info_ptr_ptr;
 -
 -   if (info_ptr != NULL)
 -   {
 -      png_info_destroy(png_ptr, info_ptr);
 -
 -#ifdef PNG_USER_MEM_SUPPORTED
 -      png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
 -          png_ptr->mem_ptr);
 -#else
 -      png_destroy_struct((png_voidp)info_ptr);
 -#endif
 -      *info_ptr_ptr = NULL;
 -   }
 -}
 -
 -/* Initialize the info structure.  This is now an internal function (0.89)
 - * and applications using it are urged to use png_create_info_struct()
 - * instead.
 - */
 -
 -void PNGAPI
 -png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
 -{
 -   png_infop info_ptr = *ptr_ptr;
 -
 -   png_debug(1, "in png_info_init_3");
 -
 -   if (info_ptr == NULL)
 -      return;
 -
 -   if (png_sizeof(png_info) > png_info_struct_size)
 -   {
 -      png_destroy_struct(info_ptr);
 -      info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
 -      *ptr_ptr = info_ptr;
 -   }
 -
 -   /* Set everything to 0 */
 -   png_memset(info_ptr, 0, png_sizeof(png_info));
 -}
 -
 -void PNGAPI
 -png_data_freer(png_structp png_ptr, png_infop info_ptr,
 -   int freer, png_uint_32 mask)
 -{
 -   png_debug(1, "in png_data_freer");
 -
 -   if (png_ptr == NULL || info_ptr == NULL)
 -      return;
 -
 -   if (freer == PNG_DESTROY_WILL_FREE_DATA)
 -      info_ptr->free_me |= mask;
 -
 -   else if (freer == PNG_USER_WILL_FREE_DATA)
 -      info_ptr->free_me &= ~mask;
 -
 -   else
 -      png_warning(png_ptr,
 -         "Unknown freer parameter in png_data_freer");
 -}
 -
 -void PNGAPI
 -png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
 -   int num)
 -{
 -   png_debug(1, "in png_free_data");
 -
 -   if (png_ptr == NULL || info_ptr == NULL)
 -      return;
 -
 -#ifdef PNG_TEXT_SUPPORTED
 -   /* Free text item num or (if num == -1) all text items */
 -   if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
 -   {
 -      if (num != -1)
 -      {
 -         if (info_ptr->text && info_ptr->text[num].key)
 -         {
 -            png_free(png_ptr, info_ptr->text[num].key);
 -            info_ptr->text[num].key = NULL;
 -         }
 -      }
 -
 -      else
 -      {
 -         int i;
 -         for (i = 0; i < info_ptr->num_text; i++)
 -             png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
 -         png_free(png_ptr, info_ptr->text);
 -         info_ptr->text = NULL;
 -         info_ptr->num_text=0;
 -      }
 -   }
 -#endif
 -
 -#ifdef PNG_tRNS_SUPPORTED
 -   /* Free any tRNS entry */
 -   if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
 -   {
 -      png_free(png_ptr, info_ptr->trans_alpha);
 -      info_ptr->trans_alpha = NULL;
 -      info_ptr->valid &= ~PNG_INFO_tRNS;
 -   }
 -#endif
 -
 -#ifdef PNG_sCAL_SUPPORTED
 -   /* Free any sCAL entry */
 -   if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
 -   {
 -      png_free(png_ptr, info_ptr->scal_s_width);
 -      png_free(png_ptr, info_ptr->scal_s_height);
 -      info_ptr->scal_s_width = NULL;
 -      info_ptr->scal_s_height = NULL;
 -      info_ptr->valid &= ~PNG_INFO_sCAL;
 -   }
 -#endif
 -
 -#ifdef PNG_pCAL_SUPPORTED
 -   /* Free any pCAL entry */
 -   if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
 -   {
 -      png_free(png_ptr, info_ptr->pcal_purpose);
 -      png_free(png_ptr, info_ptr->pcal_units);
 -      info_ptr->pcal_purpose = NULL;
 -      info_ptr->pcal_units = NULL;
 -      if (info_ptr->pcal_params != NULL)
 -         {
 -            int i;
 -            for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
 -            {
 -               png_free(png_ptr, info_ptr->pcal_params[i]);
 -               info_ptr->pcal_params[i] = NULL;
 -            }
 -            png_free(png_ptr, info_ptr->pcal_params);
 -            info_ptr->pcal_params = NULL;
 -         }
 -      info_ptr->valid &= ~PNG_INFO_pCAL;
 -   }
 -#endif
 -
 -#ifdef PNG_iCCP_SUPPORTED
 -   /* Free any iCCP entry */
 -   if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
 -   {
 -      png_free(png_ptr, info_ptr->iccp_name);
 -      png_free(png_ptr, info_ptr->iccp_profile);
 -      info_ptr->iccp_name = NULL;
 -      info_ptr->iccp_profile = NULL;
 -      info_ptr->valid &= ~PNG_INFO_iCCP;
 -   }
 -#endif
 -
 -#ifdef PNG_sPLT_SUPPORTED
 -   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
 -   if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
 -   {
 -      if (num != -1)
 -      {
 -         if (info_ptr->splt_palettes)
 -         {
 -            png_free(png_ptr, info_ptr->splt_palettes[num].name);
 -            png_free(png_ptr, info_ptr->splt_palettes[num].entries);
 -            info_ptr->splt_palettes[num].name = NULL;
 -            info_ptr->splt_palettes[num].entries = NULL;
 -         }
 -      }
 -
 -      else
 -      {
 -         if (info_ptr->splt_palettes_num)
 -         {
 -            int i;
 -            for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
 -               png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
 -
 -            png_free(png_ptr, info_ptr->splt_palettes);
 -            info_ptr->splt_palettes = NULL;
 -            info_ptr->splt_palettes_num = 0;
 -         }
 -         info_ptr->valid &= ~PNG_INFO_sPLT;
 -      }
 -   }
 -#endif
 -
 -#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
 -   if (png_ptr->unknown_chunk.data)
 -   {
 -      png_free(png_ptr, png_ptr->unknown_chunk.data);
 -      png_ptr->unknown_chunk.data = NULL;
 -   }
 -
 -   if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
 -   {
 -      if (num != -1)
 -      {
 -          if (info_ptr->unknown_chunks)
 -          {
 -             png_free(png_ptr, info_ptr->unknown_chunks[num].data);
 -             info_ptr->unknown_chunks[num].data = NULL;
 -          }
 -      }
 -
 -      else
 -      {
 -         int i;
 -
 -         if (info_ptr->unknown_chunks_num)
 -         {
 -            for (i = 0; i < info_ptr->unknown_chunks_num; i++)
 -               png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
 -
 -            png_free(png_ptr, info_ptr->unknown_chunks);
 -            info_ptr->unknown_chunks = NULL;
 -            info_ptr->unknown_chunks_num = 0;
 -         }
 -      }
 -   }
 -#endif
 -
 -#ifdef PNG_hIST_SUPPORTED
 -   /* Free any hIST entry */
 -   if ((mask & PNG_FREE_HIST)  & info_ptr->free_me)
 -   {
 -      png_free(png_ptr, info_ptr->hist);
 -      info_ptr->hist = NULL;
 -      info_ptr->valid &= ~PNG_INFO_hIST;
 -   }
 -#endif
 -
 -   /* Free any PLTE entry that was internally allocated */
 -   if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
 -   {
 -      png_zfree(png_ptr, info_ptr->palette);
 -      info_ptr->palette = NULL;
 -      info_ptr->valid &= ~PNG_INFO_PLTE;
 -      info_ptr->num_palette = 0;
 -   }
 -
 -#ifdef PNG_INFO_IMAGE_SUPPORTED
 -   /* Free any image bits attached to the info structure */
 -   if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
 -   {
 -      if (info_ptr->row_pointers)
 -      {
 -         int row;
 -         for (row = 0; row < (int)info_ptr->height; row++)
 -         {
 -            png_free(png_ptr, info_ptr->row_pointers[row]);
 -            info_ptr->row_pointers[row] = NULL;
 -         }
 -         png_free(png_ptr, info_ptr->row_pointers);
 -         info_ptr->row_pointers = NULL;
 -      }
 -      info_ptr->valid &= ~PNG_INFO_IDAT;
 -   }
 -#endif
 -
 -   if (num != -1)
 -      mask &= ~PNG_FREE_MUL;
 -
 -   info_ptr->free_me &= ~mask;
 -}
 -
 -/* This is an internal routine to free any memory that the info struct is
 - * pointing to before re-using it or freeing the struct itself.  Recall
 - * that png_free() checks for NULL pointers for us.
 - */
 -void /* PRIVATE */
 -png_info_destroy(png_structp png_ptr, png_infop info_ptr)
 -{
 -   png_debug(1, "in png_info_destroy");
 -
 -   png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 -
 -#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
 -   if (png_ptr->num_chunk_list)
 -   {
 -      png_free(png_ptr, png_ptr->chunk_list);
 -      png_ptr->chunk_list = NULL;
 -      png_ptr->num_chunk_list = 0;
 -   }
 -#endif
 -
 -   png_info_init_3(&info_ptr, png_sizeof(png_info));
 -}
 -#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 -
 -/* This function returns a pointer to the io_ptr associated with the user
 - * functions.  The application should free any memory associated with this
 - * pointer before png_write_destroy() or png_read_destroy() are called.
 - */
 -png_voidp PNGAPI
 -png_get_io_ptr(png_structp png_ptr)
 -{
 -   if (png_ptr == NULL)
 -      return (NULL);
 -
 -   return (png_ptr->io_ptr);
 -}
 -
 -#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 -#  ifdef PNG_STDIO_SUPPORTED
 -/* Initialize the default input/output functions for the PNG file.  If you
 - * use your own read or write routines, you can call either png_set_read_fn()
 - * or png_set_write_fn() instead of png_init_io().  If you have defined
 - * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
 - * function of your own because "FILE *" isn't necessarily available.
 - */
 -void PNGAPI
 -png_init_io(png_structp png_ptr, png_FILE_p fp)
 -{
 -   png_debug(1, "in png_init_io");
 -
 -   if (png_ptr == NULL)
 -      return;
 -
 -   png_ptr->io_ptr = (png_voidp)fp;
 -}
 -#  endif
 -
 -#  ifdef PNG_TIME_RFC1123_SUPPORTED
 -/* Convert the supplied time into an RFC 1123 string suitable for use in
 - * a "Creation Time" or other text-based time string.
 - */
 -png_const_charp PNGAPI
 -png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
 -{
 -   static PNG_CONST char short_months[12][4] =
 -        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 -         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
 -
 -   if (png_ptr == NULL)
 -      return (NULL);
 -
 -   if (ptime->year > 9999 /* RFC1123 limitation */ ||
 -       ptime->month == 0    ||  ptime->month > 12  ||
 -       ptime->day   == 0    ||  ptime->day   > 31  ||
 -       ptime->hour  > 23    ||  ptime->minute > 59 ||
 -       ptime->second > 60)
 -   {
 -      png_warning(png_ptr, "Ignoring invalid time value");
 -      return (NULL);
 -   }
 -
 -   {
 -      size_t pos = 0;
 -      char number_buf[5]; /* enough for a four-digit year */
 -
 -#     define APPEND_STRING(string)\
 -         pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
 -            pos, (string))
 -#     define APPEND_NUMBER(format, value)\
 -         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
 -#     define APPEND(ch)\
 -         if (pos < (sizeof png_ptr->time_buffer)-1)\
 -            png_ptr->time_buffer[pos++] = (ch)
 -
 -      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
 -      APPEND(' ');
 -      APPEND_STRING(short_months[(ptime->month - 1)]);
 -      APPEND(' ');
 -      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
 -      APPEND(' ');
 -      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
 -      APPEND(':');
 -      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
 -      APPEND(':');
 -      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
 -      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
 -
 -#     undef APPEND
 -#     undef APPEND_NUMBER
 -#     undef APPEND_STRING
 -   }
 -
 -   return png_ptr->time_buffer;
 -}
 -#  endif /* PNG_TIME_RFC1123_SUPPORTED */
 -
 -#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 -
 -png_const_charp PNGAPI
 -png_get_copyright(png_const_structp png_ptr)
 -{
 -   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
 -#ifdef PNG_STRING_COPYRIGHT
 -   return PNG_STRING_COPYRIGHT
 -#else
 -#  ifdef __STDC__
 -   return PNG_STRING_NEWLINE \
 -     "libpng version 1.5.9 - February 18, 2012" PNG_STRING_NEWLINE \
 -     "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
 -     "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
 -     "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
 -     PNG_STRING_NEWLINE;
 -#  else
 -      return "libpng version 1.5.9 - February 18, 2012\
 -      Copyright (c) 1998-2011 Glenn Randers-Pehrson\
 -      Copyright (c) 1996-1997 Andreas Dilger\
 -      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
 -#  endif
 -#endif
 -}
 -
 -/* The following return the library version as a short string in the
 - * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
 - * used with your application, print out PNG_LIBPNG_VER_STRING, which
 - * is defined in png.h.
 - * Note: now there is no difference between png_get_libpng_ver() and
 - * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
 - * it is guaranteed that png.c uses the correct version of png.h.
 - */
 -png_const_charp PNGAPI
 -png_get_libpng_ver(png_const_structp png_ptr)
 -{
 -   /* Version of *.c files used when building libpng */
 -   return png_get_header_ver(png_ptr);
 -}
 -
 -png_const_charp PNGAPI
 -png_get_header_ver(png_const_structp png_ptr)
 -{
 -   /* Version of *.h files used when building libpng */
 -   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
 -   return PNG_LIBPNG_VER_STRING;
 -}
 -
 -png_const_charp PNGAPI
 -png_get_header_version(png_const_structp png_ptr)
 -{
 -   /* Returns longer string containing both version and date */
 -   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
 -#ifdef __STDC__
 -   return PNG_HEADER_VERSION_STRING
 -#  ifndef PNG_READ_SUPPORTED
 -   "     (NO READ SUPPORT)"
 -#  endif
 -   PNG_STRING_NEWLINE;
 -#else
 -   return PNG_HEADER_VERSION_STRING;
 -#endif
 -}
 -
 -#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
 -int PNGAPI
 -png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
 -{
 -   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
 -   png_const_bytep p, p_end;
 -
 -   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0)
 -      return PNG_HANDLE_CHUNK_AS_DEFAULT;
 -
 -   p_end = png_ptr->chunk_list;
 -   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
 -
 -   /* The code is the fifth byte after each four byte string.  Historically this
 -    * code was always searched from the end of the list, so it should continue
 -    * to do so in case there are duplicated entries.
 -    */
 -   do /* num_chunk_list > 0, so at least one */
 -   {
 -      p -= 5;
 -      if (!png_memcmp(chunk_name, p, 4))
 -         return p[4];
 -   }
 -   while (p > p_end);
 -
 -   return PNG_HANDLE_CHUNK_AS_DEFAULT;
 -}
 -
 -int /* PRIVATE */
 -png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name)
 -{
 -   png_byte chunk_string[5];
 -
 -   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
 -   return png_handle_as_unknown(png_ptr, chunk_string);
 -}
 -#endif
 -
 -#ifdef PNG_READ_SUPPORTED
 -/* This function, added to libpng-1.0.6g, is untested. */
 -int PNGAPI
 -png_reset_zstream(png_structp png_ptr)
 -{
 -   if (png_ptr == NULL)
 -      return Z_STREAM_ERROR;
 -
 -   return (inflateReset(&png_ptr->zstream));
 -}
 -#endif /* PNG_READ_SUPPORTED */
 -
 -/* This function was added to libpng-1.0.7 */
 -png_uint_32 PNGAPI
 -png_access_version_number(void)
 -{
 -   /* Version of *.c files used when building libpng */
 -   return((png_uint_32)PNG_LIBPNG_VER);
 -}
 -
 -
 -
 -#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 -/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
 - * at libpng 1.5.5!
 - */
 -
 -/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
 -#  ifdef PNG_CHECK_cHRM_SUPPORTED
 -
 -int /* PRIVATE */
 -png_check_cHRM_fixed(png_structp png_ptr,
 -   png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
 -   png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
 -   png_fixed_point blue_x, png_fixed_point blue_y)
 -{
 -   int ret = 1;
 -   unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
 -
 -   png_debug(1, "in function png_check_cHRM_fixed");
 -
 -   if (png_ptr == NULL)
 -      return 0;
 -
 -   /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
 -    * y must also be greater than 0.  To test for the upper limit calculate
 -    * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
 -    * cannot overflow.)  At this point we know x and y are >= 0 and (x+y) is
 -    * <= PNG_FP_1.  The previous test on PNG_MAX_UINT_31 is removed because it
 -    * pointless (and it produces compiler warnings!)
 -    */
 -   if (white_x < 0 || white_y <= 0 ||
 -         red_x < 0 ||   red_y <  0 ||
 -       green_x < 0 || green_y <  0 ||
 -        blue_x < 0 ||  blue_y <  0)
 -   {
 -      png_warning(png_ptr,
 -        "Ignoring attempt to set negative chromaticity value");
 -      ret = 0;
 -   }
 -   /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
 -   if (white_x > PNG_FP_1 - white_y)
 -   {
 -      png_warning(png_ptr, "Invalid cHRM white point");
 -      ret = 0;
 -   }
 -
 -   if (red_x > PNG_FP_1 - red_y)
 -   {
 -      png_warning(png_ptr, "Invalid cHRM red point");
 -      ret = 0;
 -   }
 -
 -   if (green_x > PNG_FP_1 - green_y)
 -   {
 -      png_warning(png_ptr, "Invalid cHRM green point");
 -      ret = 0;
 -   }
 -
 -   if (blue_x > PNG_FP_1 - blue_y)
 -   {
 -      png_warning(png_ptr, "Invalid cHRM blue point");
 -      ret = 0;
 -   }
 -
 -   png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
 -   png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);
 -
 -   if (xy_hi == yx_hi && xy_lo == yx_lo)
 -   {
 -      png_warning(png_ptr,
 -         "Ignoring attempt to set cHRM RGB triangle with zero area");
 -      ret = 0;
 -   }
 -
 -   return ret;
 -}
 -#  endif /* PNG_CHECK_cHRM_SUPPORTED */
 -
 -#ifdef PNG_cHRM_SUPPORTED
 -/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
 - * cHRM, as opposed to using chromaticities.  These internal APIs return
 - * non-zero on a parameter error.  The X, Y and Z values are required to be
 - * positive and less than 1.0.
 - */
 -int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
 -{
 -   png_int_32 d, dwhite, whiteX, whiteY;
 -
 -   d = XYZ.redX + XYZ.redY + XYZ.redZ;
 -   if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
 -   if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
 -   dwhite = d;
 -   whiteX = XYZ.redX;
 -   whiteY = XYZ.redY;
 -
 -   d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
 -   if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
 -   if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
 -   dwhite += d;
 -   whiteX += XYZ.greenX;
 -   whiteY += XYZ.greenY;
 -
 -   d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
 -   if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
 -   if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
 -   dwhite += d;
 -   whiteX += XYZ.blueX;
 -   whiteY += XYZ.blueY;
 -
 -   /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
 -    * thus:
 -    */
 -   if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
 -   if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
 -
 -   return 0;
 -}
 -
 -int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
 -{
 -   png_fixed_point red_inverse, green_inverse, blue_scale;
 -   png_fixed_point left, right, denominator;
 -
 -   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
 -    * have end points with 0 tristimulus values (these are impossible end
 -    * points, but they are used to cover the possible colors.)
 -    */
 -   if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
 -   if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
 -   if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
 -   if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
 -   if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
 -   if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
 -   if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
 -   if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;
 -
 -   /* The reverse calculation is more difficult because the original tristimulus
 -    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
 -    * derived values were recorded in the cHRM chunk;
 -    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
 -    * therefore an arbitrary ninth value has to be introduced to undo the
 -    * original transformations.
 -    *
 -    * Think of the original end-points as points in (X,Y,Z) space.  The
 -    * chromaticity values (c) have the property:
 -    *
 -    *           C
 -    *   c = ---------
 -    *       X + Y + Z
 -    *
 -    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
 -    * three chromaticity values (x,y,z) for each end-point obey the
 -    * relationship:
 -    *
 -    *   x + y + z = 1
 -    *
 -    * This describes the plane in (X,Y,Z) space that intersects each axis at the
 -    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
 -    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
 -    * and chromaticity is the intersection of the vector from the origin to the
 -    * (X,Y,Z) value with the chromaticity plane.
 -    *
 -    * To fully invert the chromaticity calculation we would need the three
 -    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
 -    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
 -    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
 -    * given all three of the scale factors since:
 -    *
 -    *    color-C = color-c * color-scale
 -    *    white-C = red-C + green-C + blue-C
 -    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
 -    *
 -    * But cHRM records only white-x and white-y, so we have lost the white scale
 -    * factor:
 -    *
 -    *    white-C = white-c*white-scale
 -    *
 -    * To handle this the inverse transformation makes an arbitrary assumption
 -    * about white-scale:
 -    *
 -    *    Assume: white-Y = 1.0
 -    *    Hence:  white-scale = 1/white-y
 -    *    Or:     red-Y + green-Y + blue-Y = 1.0
 -    *
 -    * Notice the last statement of the assumption gives an equation in three of
 -    * the nine values we want to calculate.  8 more equations come from the
 -    * above routine as summarised at the top above (the chromaticity
 -    * calculation):
 -    *
 -    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
 -    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
 -    *
 -    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
 -    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
 -    * determinants, however this is not as bad as it seems because only 28 of
 -    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
 -    * Cramer's rule is notoriously numerically unstable because the determinant
 -    * calculation involves the difference of large, but similar, numbers.  It is
 -    * difficult to be sure that the calculation is stable for real world values
 -    * and it is certain that it becomes unstable where the end points are close
 -    * together.
 -    *
 -    * So this code uses the perhaps slighly less optimal but more understandable
 -    * and totally obvious approach of calculating color-scale.
 -    *
 -    * This algorithm depends on the precision in white-scale and that is
 -    * (1/white-y), so we can immediately see that as white-y approaches 0 the
 -    * accuracy inherent in the cHRM chunk drops off substantially.
 -    *
 -    * libpng arithmetic: a simple invertion of the above equations
 -    * ------------------------------------------------------------
 -    *
 -    *    white_scale = 1/white-y
 -    *    white-X = white-x * white-scale
 -    *    white-Y = 1.0
 -    *    white-Z = (1 - white-x - white-y) * white_scale
 -    *
 -    *    white-C = red-C + green-C + blue-C
 -    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
 -    *
 -    * This gives us three equations in (red-scale,green-scale,blue-scale) where
 -    * all the coefficients are now known:
 -    *
 -    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
 -    *       = white-x/white-y
 -    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
 -    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
 -    *       = (1 - white-x - white-y)/white-y
 -    *
 -    * In the last equation color-z is (1 - color-x - color-y) so we can add all
 -    * three equations together to get an alternative third:
 -    *
 -    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
 -    *
 -    * So now we have a Cramer's rule solution where the determinants are just
 -    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
 -    * multiplication of three coefficients so we can't guarantee to avoid
 -    * overflow in the libpng fixed point representation.  Using Cramer's rule in
 -    * floating point is probably a good choice here, but it's not an option for
 -    * fixed point.  Instead proceed to simplify the first two equations by
 -    * eliminating what is likely to be the largest value, blue-scale:
 -    *
 -    *    blue-scale = white-scale - red-scale - green-scale
 -    *
 -    * Hence:
 -    *
 -    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
 -    *                (white-x - blue-x)*white-scale
 -    *
 -    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
 -    *                1 - blue-y*white-scale
 -    *
 -    * And now we can trivially solve for (red-scale,green-scale):
 -    *
 -    *    green-scale =
 -    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
 -    *                -----------------------------------------------------------
 -    *                                  green-x - blue-x
 -    *
 -    *    red-scale =
 -    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
 -    *                ---------------------------------------------------------
 -    *                                  red-y - blue-y
 -    *
 -    * Hence:
 -    *
 -    *    red-scale =
 -    *          ( (green-x - blue-x) * (white-y - blue-y) -
 -    *            (green-y - blue-y) * (white-x - blue-x)) / white-y
 -    * -------------------------------------------------------------------------
 -    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
 -    *
 -    *    green-scale =
 -    *          ( (red-y - blue-y) * (white-x - blue-x) -
 -    *            (red-x - blue-x) * (white-y - blue-y)) / white-y
 -    * -------------------------------------------------------------------------
 -    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
 -    *
 -    * Accuracy:
 -    * The input values have 5 decimal digits of accuracy.  The values are all in
 -    * the range 0 < value < 1, so simple products are in the same range but may
 -    * need up to 10 decimal digits to preserve the original precision and avoid
 -    * underflow.  Because we are using a 32-bit signed representation we cannot
 -    * match this; the best is a little over 9 decimal digits, less than 10.
 -    *
 -    * The approach used here is to preserve the maximum precision within the
 -    * signed representation.  Because the red-scale calculation above uses the
 -    * difference between two products of values that must be in the range -1..+1
 -    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
 -    * factor is irrelevant in the calculation because it is applied to both
 -    * numerator and denominator.
 -    *
 -    * Note that the values of the differences of the products of the
 -    * chromaticities in the above equations tend to be small, for example for
 -    * the sRGB chromaticities they are:
 -    *
 -    * red numerator:    -0.04751
 -    * green numerator:  -0.08788
 -    * denominator:      -0.2241 (without white-y multiplication)
 -    *
 -    *  The resultant Y coefficients from the chromaticities of some widely used
 -    *  color space definitions are (to 15 decimal places):
 -    *
 -    *  sRGB
 -    *    0.212639005871510 0.715168678767756 0.072192315360734
 -    *  Kodak ProPhoto
 -    *    0.288071128229293 0.711843217810102 0.000085653960605
 -    *  Adobe RGB
 -    *    0.297344975250536 0.627363566255466 0.075291458493998
 -    *  Adobe Wide Gamut RGB
 -    *    0.258728243040113 0.724682314948566 0.016589442011321
 -    */
 -   /* By the argument, above overflow should be impossible here. The return
 -    * value of 2 indicates an internal error to the caller.
 -    */
 -   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
 -   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
 -   denominator = left - right;
 -
 -   /* Now find the red numerator. */
 -   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
 -   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
 -
 -   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
 -    * chunk values.  This calculation actually returns the reciprocal of the
 -    * scale value because this allows us to delay the multiplication of white-y
 -    * into the denominator, which tends to produce a small number.
 -    */
 -   if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
 -       red_inverse <= xy.whitey /* r+g+b scales = white scale */)
 -      return 1;
 -
 -   /* Similarly for green_inverse: */
 -   if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
 -   if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
 -   if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
 -       green_inverse <= xy.whitey)
 -      return 1;
 -
 -   /* And the blue scale, the checks above guarantee this can't overflow but it
 -    * can still produce 0 for extreme cHRM values.
 -    */
 -   blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
 -      png_reciprocal(green_inverse);
 -   if (blue_scale <= 0) return 1;
 -
 -
 -   /* And fill in the png_XYZ: */
 -   if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
 -   if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
 -   if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
 -      red_inverse))
 -      return 1;
 -
 -   if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
 -   if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
 -   if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
 -      green_inverse))
 -      return 1;
 -
 -   if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
 -   if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
 -   if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
 -      PNG_FP_1))
 -      return 1;
 -
 -   return 0; /*success*/
 -}
 -
 -int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
 -{
 -   switch (png_XYZ_from_xy(XYZ, xy))
 -   {
 -      case 0: /* success */
 -         return 1;
 -
 -      case 1:
 -         /* The chunk may be technically valid, but we got png_fixed_point
 -          * overflow while trying to get XYZ values out of it.  This is
 -          * entirely benign - the cHRM chunk is pretty extreme.
 -          */
 -         png_warning(png_ptr,
 -            "extreme cHRM chunk cannot be converted to tristimulus values");
 -         break;
 -
 -      default:
 -         /* libpng is broken; this should be a warning but if it happens we
 -          * want error reports so for the moment it is an error.
 -          */
 -         png_error(png_ptr, "internal error in png_XYZ_from_xy");
 -         break;
 -   }
 -
 -   /* ERROR RETURN */
 -   return 0;
 -}
 -#endif
 -
 -void /* PRIVATE */
 -png_check_IHDR(png_structp png_ptr,
 -   png_uint_32 width, png_uint_32 height, int bit_depth,
 -   int color_type, int interlace_type, int compression_type,
 -   int filter_type)
 -{
 -   int error = 0;
 -
 -   /* Check for width and height valid values */
 -   if (width == 0)
 -   {
 -      png_warning(png_ptr, "Image width is zero in IHDR");
 -      error = 1;
 -   }
 -
 -   if (height == 0)
 -   {
 -      png_warning(png_ptr, "Image height is zero in IHDR");
 -      error = 1;
 -   }
 -
 -#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
 -   if (width > png_ptr->user_width_max)
 -
 -#  else
 -   if (width > PNG_USER_WIDTH_MAX)
 -#  endif
 -   {
 -      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
 -      error = 1;
 -   }
 -
 -#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
 -   if (height > png_ptr->user_height_max)
 -#  else
 -   if (height > PNG_USER_HEIGHT_MAX)
 -#  endif
 -   {
 -      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
 -      error = 1;
 -   }
 -
 -   if (width > PNG_UINT_31_MAX)
 -   {
 -      png_warning(png_ptr, "Invalid image width in IHDR");
 -      error = 1;
 -   }
 -
 -   if (height > PNG_UINT_31_MAX)
 -   {
 -      png_warning(png_ptr, "Invalid image height in IHDR");
 -      error = 1;
 -   }
 -
 -   if (width > (PNG_UINT_32_MAX
 -                 >> 3)      /* 8-byte RGBA pixels */
 -                 - 48       /* bigrowbuf hack */
 -                 - 1        /* filter byte */
 -                 - 7*8      /* rounding of width to multiple of 8 pixels */
 -                 - 8)       /* extra max_pixel_depth pad */
 -      png_warning(png_ptr, "Width is too large for libpng to process pixels");
 -
 -   /* Check other values */
 -   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
 -       bit_depth != 8 && bit_depth != 16)
 -   {
 -      png_warning(png_ptr, "Invalid bit depth in IHDR");
 -      error = 1;
 -   }
 -
 -   if (color_type < 0 || color_type == 1 ||
 -       color_type == 5 || color_type > 6)
 -   {
 -      png_warning(png_ptr, "Invalid color type in IHDR");
 -      error = 1;
 -   }
 -
 -   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
 -       ((color_type == PNG_COLOR_TYPE_RGB ||
 -         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
 -         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
 -   {
 -      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
 -      error = 1;
 -   }
 -
 -   if (interlace_type >= PNG_INTERLACE_LAST)
 -   {
 -      png_warning(png_ptr, "Unknown interlace method in IHDR");
 -      error = 1;
 -   }
 -
 -   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
 -   {
 -      png_warning(png_ptr, "Unknown compression method in IHDR");
 -      error = 1;
 -   }
 -
 -#  ifdef PNG_MNG_FEATURES_SUPPORTED
 -   /* Accept filter_method 64 (intrapixel differencing) only if
 -    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
 -    * 2. Libpng did not read a PNG signature (this filter_method is only
 -    *    used in PNG datastreams that are embedded in MNG datastreams) and
 -    * 3. The application called png_permit_mng_features with a mask that
 -    *    included PNG_FLAG_MNG_FILTER_64 and
 -    * 4. The filter_method is 64 and
 -    * 5. The color_type is RGB or RGBA
 -    */
 -   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
 -       png_ptr->mng_features_permitted)
 -      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
 -
 -   if (filter_type != PNG_FILTER_TYPE_BASE)
 -   {
 -      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
 -          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
 -          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
 -          (color_type == PNG_COLOR_TYPE_RGB ||
 -          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
 -      {
 -         png_warning(png_ptr, "Unknown filter method in IHDR");
 -         error = 1;
 -      }
 -
 -      if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
 -      {
 -         png_warning(png_ptr, "Invalid filter method in IHDR");
 -         error = 1;
 -      }
 -   }
 -
 -#  else
 -   if (filter_type != PNG_FILTER_TYPE_BASE)
 -   {
 -      png_warning(png_ptr, "Unknown filter method in IHDR");
 -      error = 1;
 -   }
 -#  endif
 -
 -   if (error == 1)
 -      png_error(png_ptr, "Invalid IHDR data");
 -}
 -
 -#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
 -/* ASCII to fp functions */
 -/* Check an ASCII formated floating point value, see the more detailed
 - * comments in pngpriv.h
 - */
 -/* The following is used internally to preserve the sticky flags */
 -#define png_fp_add(state, flags) ((state) |= (flags))
 -#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
 -
 -int /* PRIVATE */
 -png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
 -   png_size_tp whereami)
 -{
 -   int state = *statep;
 -   png_size_t i = *whereami;
 -
 -   while (i < size)
 -   {
 -      int type;
 -      /* First find the type of the next character */
 -      switch (string[i])
 -      {
 -      case 43:  type = PNG_FP_SAW_SIGN;                   break;
 -      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
 -      case 46:  type = PNG_FP_SAW_DOT;                    break;
 -      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
 -      case 49: case 50: case 51: case 52:
 -      case 53: case 54: case 55: case 56:
 -      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
 -      case 69:
 -      case 101: type = PNG_FP_SAW_E;                      break;
 -      default:  goto PNG_FP_End;
 -      }
 -
 -      /* Now deal with this type according to the current
 -       * state, the type is arranged to not overlap the
 -       * bits of the PNG_FP_STATE.
 -       */
 -      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
 -      {
 -      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
 -         if (state & PNG_FP_SAW_ANY)
 -            goto PNG_FP_End; /* not a part of the number */
 -
 -         png_fp_add(state, type);
 -         break;
 -
 -      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
 -         /* Ok as trailer, ok as lead of fraction. */
 -         if (state & PNG_FP_SAW_DOT) /* two dots */
 -            goto PNG_FP_End;
 -
 -         else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
 -            png_fp_add(state, type);
 -
 -         else
 -            png_fp_set(state, PNG_FP_FRACTION | type);
 -
 -         break;
 -
 -      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
 -         if (state & PNG_FP_SAW_DOT) /* delayed fraction */
 -            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
 -
 -         png_fp_add(state, type | PNG_FP_WAS_VALID);
 -
 -         break;
 -
 -      case PNG_FP_INTEGER + PNG_FP_SAW_E:
 -         if ((state & PNG_FP_SAW_DIGIT) == 0)
 -            goto PNG_FP_End;
 -
 -         png_fp_set(state, PNG_FP_EXPONENT);
 -
 -         break;
 -
 -   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
 -         goto PNG_FP_End; ** no sign in fraction */
 -
 -   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
 -         goto PNG_FP_End; ** Because SAW_DOT is always set */
 -
 -      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
 -         png_fp_add(state, type | PNG_FP_WAS_VALID);
 -         break;
 -
 -      case PNG_FP_FRACTION + PNG_FP_SAW_E:
 -         /* This is correct because the trailing '.' on an
 -          * integer is handled above - so we can only get here
 -          * with the sequence ".E" (with no preceding digits).
 -          */
 -         if ((state & PNG_FP_SAW_DIGIT) == 0)
 -            goto PNG_FP_End;
 -
 -         png_fp_set(state, PNG_FP_EXPONENT);
 -
 -         break;
 -
 -      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
 -         if (state & PNG_FP_SAW_ANY)
 -            goto PNG_FP_End; /* not a part of the number */
 -
 -         png_fp_add(state, PNG_FP_SAW_SIGN);
 -
 -         break;
 -
 -   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
 -         goto PNG_FP_End; */
 -
 -      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
 -         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
 -
 -         break;
 -
 -   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
 -         goto PNG_FP_End; */
 -
 -      default: goto PNG_FP_End; /* I.e. break 2 */
 -      }
 -
 -      /* The character seems ok, continue. */
 -      ++i;
 -   }
 -
 -PNG_FP_End:
 -   /* Here at the end, update the state and return the correct
 -    * return code.
 -    */
 -   *statep = state;
 -   *whereami = i;
 -
 -   return (state & PNG_FP_SAW_DIGIT) != 0;
 -}
 -
 -
 -/* The same but for a complete string. */
 -int
 -png_check_fp_string(png_const_charp string, png_size_t size)
 -{
 -   int        state=0;
 -   png_size_t char_index=0;
 -
 -   if (png_check_fp_number(string, size, &state, &char_index) &&
 -      (char_index == size || string[char_index] == 0))
 -      return state /* must be non-zero - see above */;
 -
 -   return 0; /* i.e. fail */
 -}
 -#endif /* pCAL or sCAL */
 -
 -#ifdef PNG_READ_sCAL_SUPPORTED
 -#  ifdef PNG_FLOATING_POINT_SUPPORTED
 -/* Utility used below - a simple accurate power of ten from an integral
 - * exponent.
 - */
 -static double
 -png_pow10(int power)
 -{
 -   int recip = 0;
 -   double d = 1;
 -
 -   /* Handle negative exponent with a reciprocal at the end because
 -    * 10 is exact whereas .1 is inexact in base 2
 -    */
 -   if (power < 0)
 -   {
 -      if (power < DBL_MIN_10_EXP) return 0;
 -      recip = 1, power = -power;
 -   }
 -
 -   if (power > 0)
 -   {
 -      /* Decompose power bitwise. */
 -      double mult = 10;
 -      do
 -      {
 -         if (power & 1) d *= mult;
 -         mult *= mult;
 -         power >>= 1;
 -      }
 -      while (power > 0);
 -
 -      if (recip) d = 1/d;
 -   }
 -   /* else power is 0 and d is 1 */
 -
 -   return d;
 -}
 -
 -/* Function to format a floating point value in ASCII with a given
 - * precision.
 - */
 -void /* PRIVATE */
 -png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
 -    double fp, unsigned int precision)
 -{
 -   /* We use standard functions from math.h, but not printf because
 -    * that would require stdio.  The caller must supply a buffer of
 -    * sufficient size or we will png_error.  The tests on size and
 -    * the space in ascii[] consumed are indicated below.
 -    */
 -   if (precision < 1)
 -      precision = DBL_DIG;
 -
 -   /* Enforce the limit of the implementation precision too. */
 -   if (precision > DBL_DIG+1)
 -      precision = DBL_DIG+1;
 -
 -   /* Basic sanity checks */
 -   if (size >= precision+5) /* See the requirements below. */
 -   {
 -      if (fp < 0)
 -      {
 -         fp = -fp;
 -         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
 -         --size;
 -      }
 -
 -      if (fp >= DBL_MIN && fp <= DBL_MAX)
 -      {
 -         int exp_b10;       /* A base 10 exponent */
 -         double base;   /* 10^exp_b10 */
 -
 -         /* First extract a base 10 exponent of the number,
 -          * the calculation below rounds down when converting
 -          * from base 2 to base 10 (multiply by log10(2) -
 -          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
 -          * be increased.  Note that the arithmetic shift
 -          * performs a floor() unlike C arithmetic - using a
 -          * C multiply would break the following for negative
 -          * exponents.
 -          */
 -         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
 -
 -         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
 -
 -         /* Avoid underflow here. */
 -         base = png_pow10(exp_b10); /* May underflow */
 -
 -         while (base < DBL_MIN || base < fp)
 -         {
 -            /* And this may overflow. */
 -            double test = png_pow10(exp_b10+1);
 -
 -            if (test <= DBL_MAX)
 -               ++exp_b10, base = test;
 -
 -            else
 -               break;
 -         }
 -
 -         /* Normalize fp and correct exp_b10, after this fp is in the
 -          * range [.1,1) and exp_b10 is both the exponent and the digit
 -          * *before* which the decimal point should be inserted
 -          * (starting with 0 for the first digit).  Note that this
 -          * works even if 10^exp_b10 is out of range because of the
 -          * test on DBL_MAX above.
 -          */
 -         fp /= base;
 -         while (fp >= 1) fp /= 10, ++exp_b10;
 -
 -         /* Because of the code above fp may, at this point, be
 -          * less than .1, this is ok because the code below can
 -          * handle the leading zeros this generates, so no attempt
 -          * is made to correct that here.
 -          */
 -
 -         {
 -            int czero, clead, cdigits;
 -            char exponent[10];
 -
 -            /* Allow up to two leading zeros - this will not lengthen
 -             * the number compared to using E-n.
 -             */
 -            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
 -            {
 -               czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
 -               exp_b10 = 0;      /* Dot added below before first output. */
 -            }
 -            else
 -               czero = 0;    /* No zeros to add */
 -
 -            /* Generate the digit list, stripping trailing zeros and
 -             * inserting a '.' before a digit if the exponent is 0.
 -             */
 -            clead = czero; /* Count of leading zeros */
 -            cdigits = 0;   /* Count of digits in list. */
 -
 -            do
 -            {
 -               double d;
 -
 -               fp *= 10;
 -               /* Use modf here, not floor and subtract, so that
 -                * the separation is done in one step.  At the end
 -                * of the loop don't break the number into parts so
 -                * that the final digit is rounded.
 -                */
 -               if (cdigits+czero-clead+1 < (int)precision)
 -                  fp = modf(fp, &d);
 -
 -               else
 -               {
 -                  d = floor(fp + .5);
 -
 -                  if (d > 9)
 -                  {
 -                     /* Rounding up to 10, handle that here. */
 -                     if (czero > 0)
 -                     {
 -                        --czero, d = 1;
 -                        if (cdigits == 0) --clead;
 -                     }
 -                     else
 -                     {
 -                        while (cdigits > 0 && d > 9)
 -                        {
 -                           int ch = *--ascii;
 -
 -                           if (exp_b10 != (-1))
 -                              ++exp_b10;
 -
 -                           else if (ch == 46)
 -                           {
 -                              ch = *--ascii, ++size;
 -                              /* Advance exp_b10 to '1', so that the
 -                               * decimal point happens after the
 -                               * previous digit.
 -                               */
 -                              exp_b10 = 1;
 -                           }
 -
 -                           --cdigits;
 -                           d = ch - 47;  /* I.e. 1+(ch-48) */
 -                        }
 -
 -                        /* Did we reach the beginning? If so adjust the
 -                         * exponent but take into account the leading
 -                         * decimal point.
 -                         */
 -                        if (d > 9)  /* cdigits == 0 */
 -                        {
 -                           if (exp_b10 == (-1))
 -                           {
 -                              /* Leading decimal point (plus zeros?), if
 -                               * we lose the decimal point here it must
 -                               * be reentered below.
 -                               */
 -                              int ch = *--ascii;
 -
 -                              if (ch == 46)
 -                                 ++size, exp_b10 = 1;
 -
 -                              /* Else lost a leading zero, so 'exp_b10' is
 -                               * still ok at (-1)
 -                               */
 -                           }
 -                           else
 -                              ++exp_b10;
 -
 -                           /* In all cases we output a '1' */
 -                           d = 1;
 -                        }
 -                     }
 -                  }
 -                  fp = 0; /* Guarantees termination below. */
 -               }
 -
 -               if (d == 0)
 -               {
 -                  ++czero;
 -                  if (cdigits == 0) ++clead;
 -               }
 -               else
 -               {
 -                  /* Included embedded zeros in the digit count. */
 -                  cdigits += czero - clead;
 -                  clead = 0;
 -
 -                  while (czero > 0)
 -                  {
 -                     /* exp_b10 == (-1) means we just output the decimal
 -                      * place - after the DP don't adjust 'exp_b10' any
 -                      * more!
 -                      */
 -                     if (exp_b10 != (-1))
 -                     {
 -                        if (exp_b10 == 0) *ascii++ = 46, --size;
 -                        /* PLUS 1: TOTAL 4 */
 -                        --exp_b10;
 -                     }
 -                     *ascii++ = 48, --czero;
 -                  }
 -
 -                  if (exp_b10 != (-1))
 -                  {
 -                     if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
 -                                                                 above */
 -                     --exp_b10;
 -                  }
 -                  *ascii++ = (char)(48 + (int)d), ++cdigits;
 -               }
 -            }
 -            while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
 -
 -            /* The total output count (max) is now 4+precision */
 -
 -            /* Check for an exponent, if we don't need one we are
 -             * done and just need to terminate the string.  At
 -             * this point exp_b10==(-1) is effectively if flag - it got
 -             * to '-1' because of the decrement after outputing
 -             * the decimal point above (the exponent required is
 -             * *not* -1!)
 -             */
 -            if (exp_b10 >= (-1) && exp_b10 <= 2)
 -            {
 -               /* The following only happens if we didn't output the
 -                * leading zeros above for negative exponent, so this
 -                * doest add to the digit requirement.  Note that the
 -                * two zeros here can only be output if the two leading
 -                * zeros were *not* output, so this doesn't increase
 -                * the output count.
 -                */
 -               while (--exp_b10 >= 0) *ascii++ = 48;
 -
 -               *ascii = 0;
 -
 -               /* Total buffer requirement (including the '\0') is
 -                * 5+precision - see check at the start.
 -                */
 -               return;
 -            }
 -
 -            /* Here if an exponent is required, adjust size for
 -             * the digits we output but did not count.  The total
 -             * digit output here so far is at most 1+precision - no
 -             * decimal point and no leading or trailing zeros have
 -             * been output.
 -             */
 -            size -= cdigits;
 -
 -            *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision */
 -
 -            /* The following use of an unsigned temporary avoids ambiguities in
 -             * the signed arithmetic on exp_b10 and permits GCC at least to do
 -             * better optimization.
 -             */
 -            {
 -               unsigned int uexp_b10;
 -
 -               if (exp_b10 < 0)
 -               {
 -                  *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
 -                  uexp_b10 = -exp_b10;
 -               }
 -
 -               else
 -                  uexp_b10 = exp_b10;
 -
 -               cdigits = 0;
 -
 -               while (uexp_b10 > 0)
 -               {
 -                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
 -                  uexp_b10 /= 10;
 -               }
 -            }
 -
 -            /* Need another size check here for the exponent digits, so
 -             * this need not be considered above.
 -             */
 -            if ((int)size > cdigits)
 -            {
 -               while (cdigits > 0) *ascii++ = exponent[--cdigits];
 -
 -               *ascii = 0;
 -
 -               return;
 -            }
 -         }
 -      }
 -      else if (!(fp >= DBL_MIN))
 -      {
 -         *ascii++ = 48; /* '0' */
 -         *ascii = 0;
 -         return;
 -      }
 -      else
 -      {
 -         *ascii++ = 105; /* 'i' */
 -         *ascii++ = 110; /* 'n' */
 -         *ascii++ = 102; /* 'f' */
 -         *ascii = 0;
 -         return;
 -      }
 -   }
 -
 -   /* Here on buffer too small. */
 -   png_error(png_ptr, "ASCII conversion buffer too small");
 -}
 -
 -#  endif /* FLOATING_POINT */
 -
 -#  ifdef PNG_FIXED_POINT_SUPPORTED
 -/* Function to format a fixed point value in ASCII.
 - */
 -void /* PRIVATE */
 -png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
 -    png_fixed_point fp)
 -{
 -   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
 -    * trailing \0, 13 characters:
 -    */
 -   if (size > 12)
 -   {
 -      png_uint_32 num;
 -
 -      /* Avoid overflow here on the minimum integer. */
 -      if (fp < 0)
 -         *ascii++ = 45, --size, num = -fp;
 -      else
 -         num = fp;
 -
 -      if (num <= 0x80000000) /* else overflowed */
 -      {
 -         unsigned int ndigits = 0, first = 16 /* flag value */;
 -         char digits[10];
 -
 -         while (num)
 -         {
 -            /* Split the low digit off num: */
 -            unsigned int tmp = num/10;
 -            num -= tmp*10;
 -            digits[ndigits++] = (char)(48 + num);
 -            /* Record the first non-zero digit, note that this is a number
 -             * starting at 1, it's not actually the array index.
 -             */
 -            if (first == 16 && num > 0)
 -               first = ndigits;
 -            num = tmp;
 -         }
 -
 -         if (ndigits > 0)
 -         {
 -            while (ndigits > 5) *ascii++ = digits[--ndigits];
 -            /* The remaining digits are fractional digits, ndigits is '5' or
 -             * smaller at this point.  It is certainly not zero.  Check for a
 -             * non-zero fractional digit:
 -             */
 -            if (first <= 5)
 -            {
 -               unsigned int i;
 -               *ascii++ = 46; /* decimal point */
 -               /* ndigits may be <5 for small numbers, output leading zeros
 -                * then ndigits digits to first:
 -                */
 -               i = 5;
 -               while (ndigits < i) *ascii++ = 48, --i;
 -               while (ndigits >= first) *ascii++ = digits[--ndigits];
 -               /* Don't output the trailing zeros! */
 -            }
 -         }
 -         else
 -            *ascii++ = 48;
 -
 -         /* And null terminate the string: */
 -         *ascii = 0;
 -         return;
 -      }
 -   }
 -
 -   /* Here on buffer too small. */
 -   png_error(png_ptr, "ASCII conversion buffer too small");
 -}
 -#   endif /* FIXED_POINT */
 -#endif /* READ_SCAL */
 -
 -#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
 -   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
 -png_fixed_point
 -png_fixed(png_structp png_ptr, double fp, png_const_charp text)
 -{
 -   double r = floor(100000 * fp + .5);
 -
 -   if (r > 2147483647. || r < -2147483648.)
 -      png_fixed_error(png_ptr, text);
 -
 -   return (png_fixed_point)r;
 -}
 -#endif
 -
 -#if defined(PNG_READ_GAMMA_SUPPORTED) || \
 -    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
 -/* muldiv functions */
 -/* This API takes signed arguments and rounds the result to the nearest
 - * integer (or, for a fixed point number - the standard argument - to
 - * the nearest .00001).  Overflow and divide by zero are signalled in
 - * the result, a boolean - true on success, false on overflow.
 - */
 -int
 -png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
 -    png_int_32 divisor)
 -{
 -   /* Return a * times / divisor, rounded. */
 -   if (divisor != 0)
 -   {
 -      if (a == 0 || times == 0)
 -      {
 -         *res = 0;
 -         return 1;
 -      }
 -      else
 -      {
 -#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -         double r = a;
 -         r *= times;
 -         r /= divisor;
 -         r = floor(r+.5);
 -
 -         /* A png_fixed_point is a 32-bit integer. */
 -         if (r <= 2147483647. && r >= -2147483648.)
 -         {
 -            *res = (png_fixed_point)r;
 -            return 1;
 -         }
 -#else
 -         int negative = 0;
 -         png_uint_32 A, T, D;
 -         png_uint_32 s16, s32, s00;
 -
 -         if (a < 0)
 -            negative = 1, A = -a;
 -         else
 -            A = a;
 -
 -         if (times < 0)
 -            negative = !negative, T = -times;
 -         else
 -            T = times;
 -
 -         if (divisor < 0)
 -            negative = !negative, D = -divisor;
 -         else
 -            D = divisor;
 -
 -         /* Following can't overflow because the arguments only
 -          * have 31 bits each, however the result may be 32 bits.
 -          */
 -         s16 = (A >> 16) * (T & 0xffff) +
 -                           (A & 0xffff) * (T >> 16);
 -         /* Can't overflow because the a*times bit is only 30
 -          * bits at most.
 -          */
 -         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
 -         s00 = (A & 0xffff) * (T & 0xffff);
 -
 -         s16 = (s16 & 0xffff) << 16;
 -         s00 += s16;
 -
 -         if (s00 < s16)
 -            ++s32; /* carry */
 -
 -         if (s32 < D) /* else overflow */
 -         {
 -            /* s32.s00 is now the 64-bit product, do a standard
 -             * division, we know that s32 < D, so the maximum
 -             * required shift is 31.
 -             */
 -            int bitshift = 32;
 -            png_fixed_point result = 0; /* NOTE: signed */
 -
 -            while (--bitshift >= 0)
 -            {
 -               png_uint_32 d32, d00;
 -
 -               if (bitshift > 0)
 -                  d32 = D >> (32-bitshift), d00 = D << bitshift;
 -
 -               else
 -                  d32 = 0, d00 = D;
 -
 -               if (s32 > d32)
 -               {
 -                  if (s00 < d00) --s32; /* carry */
 -                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
 -               }
 -
 -               else
 -                  if (s32 == d32 && s00 >= d00)
 -                     s32 = 0, s00 -= d00, result += 1<<bitshift;
 -            }
 -
 -            /* Handle the rounding. */
 -            if (s00 >= (D >> 1))
 -               ++result;
 -
 -            if (negative)
 -               result = -result;
 -
 -            /* Check for overflow. */
 -            if ((negative && result <= 0) || (!negative && result >= 0))
 -            {
 -               *res = result;
 -               return 1;
 -            }
 -         }
 -#endif
 -      }
 -   }
 -
 -   return 0;
 -}
 -#endif /* READ_GAMMA || INCH_CONVERSIONS */
 -
 -#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
 -/* The following is for when the caller doesn't much care about the
 - * result.
 - */
 -png_fixed_point
 -png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
 -    png_int_32 divisor)
 -{
 -   png_fixed_point result;
 -
 -   if (png_muldiv(&result, a, times, divisor))
 -      return result;
 -
 -   png_warning(png_ptr, "fixed point overflow ignored");
 -   return 0;
 -}
 -#endif
 -
 -#ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
 -/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
 -png_fixed_point
 -png_reciprocal(png_fixed_point a)
 -{
 -#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -   double r = floor(1E10/a+.5);
 -
 -   if (r <= 2147483647. && r >= -2147483648.)
 -      return (png_fixed_point)r;
 -#else
 -   png_fixed_point res;
 -
 -   if (png_muldiv(&res, 100000, 100000, a))
 -      return res;
 -#endif
 -
 -   return 0; /* error/overflow */
 -}
 -
 -/* A local convenience routine. */
 -static png_fixed_point
 -png_product2(png_fixed_point a, png_fixed_point b)
 -{
 -   /* The required result is 1/a * 1/b; the following preserves accuracy. */
 -#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -   double r = a * 1E-5;
 -   r *= b;
 -   r = floor(r+.5);
 -
 -   if (r <= 2147483647. && r >= -2147483648.)
 -      return (png_fixed_point)r;
 -#else
 -   png_fixed_point res;
 -
 -   if (png_muldiv(&res, a, b, 100000))
 -      return res;
 -#endif
 -
 -   return 0; /* overflow */
 -}
 -
 -/* The inverse of the above. */
 -png_fixed_point
 -png_reciprocal2(png_fixed_point a, png_fixed_point b)
 -{
 -   /* The required result is 1/a * 1/b; the following preserves accuracy. */
 -#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -   double r = 1E15/a;
 -   r /= b;
 -   r = floor(r+.5);
 -
 -   if (r <= 2147483647. && r >= -2147483648.)
 -      return (png_fixed_point)r;
 -#else
 -   /* This may overflow because the range of png_fixed_point isn't symmetric,
 -    * but this API is only used for the product of file and screen gamma so it
 -    * doesn't matter that the smallest number it can produce is 1/21474, not
 -    * 1/100000
 -    */
 -   png_fixed_point res = png_product2(a, b);
 -
 -   if (res != 0)
 -      return png_reciprocal(res);
 -#endif
 -
 -   return 0; /* overflow */
 -}
 -#endif /* READ_GAMMA */
 -
 -#ifdef PNG_CHECK_cHRM_SUPPORTED
 -/* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
 - * 2010: moved from pngset.c) */
 -/*
 - *    Multiply two 32-bit numbers, V1 and V2, using 32-bit
 - *    arithmetic, to produce a 64-bit result in the HI/LO words.
 - *
 - *                  A B
 - *                x C D
 - *               ------
 - *              AD || BD
 - *        AC || CB || 0
 - *
 - *    where A and B are the high and low 16-bit words of V1,
 - *    C and D are the 16-bit words of V2, AD is the product of
 - *    A and D, and X || Y is (X << 16) + Y.
 -*/
 -
 -void /* PRIVATE */
 -png_64bit_product (long v1, long v2, unsigned long *hi_product,
 -    unsigned long *lo_product)
 -{
 -   int a, b, c, d;
 -   long lo, hi, x, y;
 -
 -   a = (v1 >> 16) & 0xffff;
 -   b = v1 & 0xffff;
 -   c = (v2 >> 16) & 0xffff;
 -   d = v2 & 0xffff;
 -
 -   lo = b * d;                   /* BD */
 -   x = a * d + c * b;            /* AD + CB */
 -   y = ((lo >> 16) & 0xffff) + x;
 -
 -   lo = (lo & 0xffff) | ((y & 0xffff) << 16);
 -   hi = (y >> 16) & 0xffff;
 -
 -   hi += a * c;                  /* AC */
 -
 -   *hi_product = (unsigned long)hi;
 -   *lo_product = (unsigned long)lo;
 -}
 -#endif /* CHECK_cHRM */
 -
 -#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
 -#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -/* Fixed point gamma.
 - *
 - * To calculate gamma this code implements fast log() and exp() calls using only
 - * fixed point arithmetic.  This code has sufficient precision for either 8-bit
 - * or 16-bit sample values.
 - *
 - * The tables used here were calculated using simple 'bc' programs, but C double
 - * precision floating point arithmetic would work fine.  The programs are given
 - * at the head of each table.
 - *
 - * 8-bit log table
 - *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
 - *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
 - *   mantissa.  The numbers are 32-bit fractions.
 - */
 -static png_uint_32
 -png_8bit_l2[128] =
 -{
 -#  ifdef PNG_DO_BC
 -      for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
 -#  else
 -   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
 -   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
 -   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
 -   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
 -   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
 -   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
 -   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
 -   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
 -   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
 -   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
 -   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
 -   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
 -   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
 -   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
 -   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
 -   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
 -   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
 -   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
 -   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
 -   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
 -   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
 -   24347096U, 0U
 -#  endif
 -
 -#if 0
 -   /* The following are the values for 16-bit tables - these work fine for the
 -    * 8-bit conversions but produce very slightly larger errors in the 16-bit
 -    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
 -    * use these all the shifts below must be adjusted appropriately.
 -    */
 -   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
 -   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
 -   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
 -   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
 -   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
 -   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
 -   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
 -   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
 -   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
 -   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
 -   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
 -   1119, 744, 372
 -#endif
 -};
 -
 -PNG_STATIC png_int_32
 -png_log8bit(unsigned int x)
 -{
 -   unsigned int lg2 = 0;
 -   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
 -    * because the log is actually negate that means adding 1.  The final
 -    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
 -    * input), return 7.99998 for the overflow (log 0) case - so the result is
 -    * always at most 19 bits.
 -    */
 -   if ((x &= 0xff) == 0)
 -      return 0xffffffff;
 -
 -   if ((x & 0xf0) == 0)
 -      lg2  = 4, x <<= 4;
 -
 -   if ((x & 0xc0) == 0)
 -      lg2 += 2, x <<= 2;
 -
 -   if ((x & 0x80) == 0)
 -      lg2 += 1, x <<= 1;
 -
 -   /* result is at most 19 bits, so this cast is safe: */
 -   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
 -}
 -
 -/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
 - * for 16-bit images we use the most significant 8 bits of the 16-bit value to
 - * get an approximation then multiply the approximation by a correction factor
 - * determined by the remaining up to 8 bits.  This requires an additional step
 - * in the 16-bit case.
 - *
 - * We want log2(value/65535), we have log2(v'/255), where:
 - *
 - *    value = v' * 256 + v''
 - *          = v' * f
 - *
 - * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
 - * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
 - * than 258.  The final factor also needs to correct for the fact that our 8-bit
 - * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
 - *
 - * This gives a final formula using a calculated value 'x' which is value/v' and
 - * scaling by 65536 to match the above table:
 - *
 - *   log2(x/257) * 65536
 - *
 - * Since these numbers are so close to '1' we can use simple linear
 - * interpolation between the two end values 256/257 (result -368.61) and 258/257
 - * (result 367.179).  The values used below are scaled by a further 64 to give
 - * 16-bit precision in the interpolation:
 - *
 - * Start (256): -23591
 - * Zero  (257):      0
 - * End   (258):  23499
 - */
 -PNG_STATIC png_int_32
 -png_log16bit(png_uint_32 x)
 -{
 -   unsigned int lg2 = 0;
 -
 -   /* As above, but now the input has 16 bits. */
 -   if ((x &= 0xffff) == 0)
 -      return 0xffffffff;
 -
 -   if ((x & 0xff00) == 0)
 -      lg2  = 8, x <<= 8;
 -
 -   if ((x & 0xf000) == 0)
 -      lg2 += 4, x <<= 4;
 -
 -   if ((x & 0xc000) == 0)
 -      lg2 += 2, x <<= 2;
 -
 -   if ((x & 0x8000) == 0)
 -      lg2 += 1, x <<= 1;
 -
 -   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
 -    * value.
 -    */
 -   lg2 <<= 28;
 -   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
 -
 -   /* Now we need to interpolate the factor, this requires a division by the top
 -    * 8 bits.  Do this with maximum precision.
 -    */
 -   x = ((x << 16) + (x >> 9)) / (x >> 8);
 -
 -   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
 -    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
 -    * 16 bits to interpolate to get the low bits of the result.  Round the
 -    * answer.  Note that the end point values are scaled by 64 to retain overall
 -    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
 -    * the overall scaling by 6-12.  Round at every step.
 -    */
 -   x -= 1U << 24;
 -
 -   if (x <= 65536U) /* <= '257' */
 -      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
 -
 -   else
 -      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
 -
 -   /* Safe, because the result can't have more than 20 bits: */
 -   return (png_int_32)((lg2 + 2048) >> 12);
 -}
 -
 -/* The 'exp()' case must invert the above, taking a 20-bit fixed point
 - * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
 - * each case only the low 16 bits are relevant - the fraction - since the
 - * integer bits (the top 4) simply determine a shift.
 - *
 - * The worst case is the 16-bit distinction between 65535 and 65534, this
 - * requires perhaps spurious accuracy in the decoding of the logarithm to
 - * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
 - * of getting this accuracy in practice.
 - *
 - * To deal with this the following exp() function works out the exponent of the
 - * frational part of the logarithm by using an accurate 32-bit value from the
 - * top four fractional bits then multiplying in the remaining bits.
 - */
 -static png_uint_32
 -png_32bit_exp[16] =
 -{
 -#  ifdef PNG_DO_BC
 -      for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
 -#  else
 -   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
 -   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
 -   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
 -   2553802834U, 2445529972U, 2341847524U, 2242560872U
 -#  endif
 -};
 -
 -/* Adjustment table; provided to explain the numbers in the code below. */
 -#ifdef PNG_DO_BC
 -for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
 -   11 44937.64284865548751208448
 -   10 45180.98734845585101160448
 -    9 45303.31936980687359311872
 -    8 45364.65110595323018870784
 -    7 45395.35850361789624614912
 -    6 45410.72259715102037508096
 -    5 45418.40724413220722311168
 -    4 45422.25021786898173001728
 -    3 45424.17186732298419044352
 -    2 45425.13273269940811464704
 -    1 45425.61317555035558641664
 -    0 45425.85339951654943850496
 -#endif
 -
 -PNG_STATIC png_uint_32
 -png_exp(png_fixed_point x)
 -{
 -   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
 -   {
 -      /* Obtain a 4-bit approximation */
 -      png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
 -
 -      /* Incorporate the low 12 bits - these decrease the returned value by
 -       * multiplying by a number less than 1 if the bit is set.  The multiplier
 -       * is determined by the above table and the shift. Notice that the values
 -       * converge on 45426 and this is used to allow linear interpolation of the
 -       * low bits.
 -       */
 -      if (x & 0x800)
 -         e -= (((e >> 16) * 44938U) +  16U) >> 5;
 -
 -      if (x & 0x400)
 -         e -= (((e >> 16) * 45181U) +  32U) >> 6;
 -
 -      if (x & 0x200)
 -         e -= (((e >> 16) * 45303U) +  64U) >> 7;
 -
 -      if (x & 0x100)
 -         e -= (((e >> 16) * 45365U) + 128U) >> 8;
 -
 -      if (x & 0x080)
 -         e -= (((e >> 16) * 45395U) + 256U) >> 9;
 -
 -      if (x & 0x040)
 -         e -= (((e >> 16) * 45410U) + 512U) >> 10;
 -
 -      /* And handle the low 6 bits in a single block. */
 -      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
 -
 -      /* Handle the upper bits of x. */
 -      e >>= x >> 16;
 -      return e;
 -   }
 -
 -   /* Check for overflow */
 -   if (x <= 0)
 -      return png_32bit_exp[0];
 -
 -   /* Else underflow */
 -   return 0;
 -}
 -
 -PNG_STATIC png_byte
 -png_exp8bit(png_fixed_point lg2)
 -{
 -   /* Get a 32-bit value: */
 -   png_uint_32 x = png_exp(lg2);
 -
 -   /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
 -    * second, rounding, step can't overflow because of the first, subtraction,
 -    * step.
 -    */
 -   x -= x >> 8;
 -   return (png_byte)((x + 0x7fffffU) >> 24);
 -}
 -
 -PNG_STATIC png_uint_16
 -png_exp16bit(png_fixed_point lg2)
 -{
 -   /* Get a 32-bit value: */
 -   png_uint_32 x = png_exp(lg2);
 -
 -   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
 -   x -= x >> 16;
 -   return (png_uint_16)((x + 32767U) >> 16);
 -}
 -#endif /* FLOATING_ARITHMETIC */
 -
 -png_byte
 -png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
 -{
 -   if (value > 0 && value < 255)
 -   {
 -#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -         double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
 -         return (png_byte)r;
 -#     else
 -         png_int_32 lg2 = png_log8bit(value);
 -         png_fixed_point res;
 -
 -         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
 -            return png_exp8bit(res);
 -
 -         /* Overflow. */
 -         value = 0;
 -#     endif
 -   }
 -
 -   return (png_byte)value;
 -}
 -
 -png_uint_16
 -png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
 -{
 -   if (value > 0 && value < 65535)
 -   {
 -#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -         double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
 -         return (png_uint_16)r;
 -#     else
 -         png_int_32 lg2 = png_log16bit(value);
 -         png_fixed_point res;
 -
 -         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
 -            return png_exp16bit(res);
 -
 -         /* Overflow. */
 -         value = 0;
 -#     endif
 -   }
 -
 -   return (png_uint_16)value;
 -}
 -
 -/* This does the right thing based on the bit_depth field of the
 - * png_struct, interpreting values as 8-bit or 16-bit.  While the result
 - * is nominally a 16-bit value if bit depth is 8 then the result is
 - * 8-bit (as are the arguments.)
 - */
 -png_uint_16 /* PRIVATE */
 -png_gamma_correct(png_structp png_ptr, unsigned int value,
 -    png_fixed_point gamma_val)
 -{
 -   if (png_ptr->bit_depth == 8)
 -      return png_gamma_8bit_correct(value, gamma_val);
 -
 -   else
 -      return png_gamma_16bit_correct(value, gamma_val);
 -}
 -
 -/* This is the shared test on whether a gamma value is 'significant' - whether
 - * it is worth doing gamma correction.
 - */
 -int /* PRIVATE */
 -png_gamma_significant(png_fixed_point gamma_val)
 -{
 -   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
 -       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
 -}
 -
 -/* Internal function to build a single 16-bit table - the table consists of
 - * 'num' 256-entry subtables, where 'num' is determined by 'shift' - the amount
 - * to shift the input values right (or 16-number_of_signifiant_bits).
 - *
 - * The caller is responsible for ensuring that the table gets cleaned up on
 - * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
 - * should be somewhere that will be cleaned.
 - */
 -static void
 -png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
 -   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
 -{
 -   /* Various values derived from 'shift': */
 -   PNG_CONST unsigned int num = 1U << (8U - shift);
 -   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
 -   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
 -   unsigned int i;
 -
 -   png_uint_16pp table = *ptable =
 -       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 -
 -   for (i = 0; i < num; i++)
 -   {
 -      png_uint_16p sub_table = table[i] =
 -          (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
 -
 -      /* The 'threshold' test is repeated here because it can arise for one of
 -       * the 16-bit tables even if the others don't hit it.
 -       */
 -      if (png_gamma_significant(gamma_val))
 -      {
 -         /* The old code would overflow at the end and this would cause the
 -          * 'pow' function to return a result >1, resulting in an
 -          * arithmetic error.  This code follows the spec exactly; ig is
 -          * the recovered input sample, it always has 8-16 bits.
 -          *
 -          * We want input * 65535/max, rounded, the arithmetic fits in 32
 -          * bits (unsigned) so long as max <= 32767.
 -          */
 -         unsigned int j;
 -         for (j = 0; j < 256; j++)
 -         {
 -            png_uint_32 ig = (j << (8-shift)) + i;
 -#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
 -               /* Inline the 'max' scaling operation: */
 -               double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
 -               sub_table[j] = (png_uint_16)d;
 -#           else
 -               if (shift)
 -                  ig = (ig * 65535U + max_by_2)/max;
 -
 -               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
 -#           endif
 -         }
 -      }
 -      else
 -      {
 -         /* We must still build a table, but do it the fast way. */
 -         unsigned int j;
 -
 -         for (j = 0; j < 256; j++)
 -         {
 -            png_uint_32 ig = (j << (8-shift)) + i;
 -
 -            if (shift)
 -               ig = (ig * 65535U + max_by_2)/max;
 -
 -            sub_table[j] = (png_uint_16)ig;
 -         }
 -      }
 -   }
 -}
 -
 -/* NOTE: this function expects the *inverse* of the overall gamma transformation
 - * required.
 - */
 -static void
 -png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
 -   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
 -{
 -   PNG_CONST unsigned int num = 1U << (8U - shift);
 -   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
 -   unsigned int i;
 -   png_uint_32 last;
 -
 -   png_uint_16pp table = *ptable =
 -       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 -
 -   /* 'num' is the number of tables and also the number of low bits of the
 -    * input 16-bit value used to select a table.  Each table is itself indexed
 -    * by the high 8 bits of the value.
 -    */
 -   for (i = 0; i < num; i++)
 -      table[i] = (png_uint_16p)png_malloc(png_ptr,
 -          256 * png_sizeof(png_uint_16));
 -
 -   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
 -    * pow(out,g) is an *input* value.  'last' is the last input value set.
 -    *
 -    * In the loop 'i' is used to find output values.  Since the output is
 -    * 8-bit there are only 256 possible values.  The tables are set up to
 -    * select the closest possible output value for each input by finding
 -    * the input value at the boundary between each pair of output values
 -    * and filling the table up to that boundary with the lower output
 -    * value.
 -    *
 -    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
 -    * values the code below uses a 16-bit value in i; the values start at
 -    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
 -    * entries are filled with 255).  Start i at 128 and fill all 'last'
 -    * table entries <= 'max'
 -    */
 -   last = 0;
 -   for (i = 0; i < 255; ++i) /* 8-bit output value */
 -   {
 -      /* Find the corresponding maximum input value */
 -      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
 -
 -      /* Find the boundary value in 16 bits: */
 -      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
 -
 -      /* Adjust (round) to (16-shift) bits: */
 -      bound = (bound * max + 32768U)/65535U + 1U;
 -
 -      while (last < bound)
 -      {
 -         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
 -         last++;
 -      }
 -   }
 -
 -   /* And fill in the final entries. */
 -   while (last < (num << 8))
 -   {
 -      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
 -      last++;
 -   }
 -}
 -
 -/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
 - * typically much faster).  Note that libpng currently does no sBIT processing
 - * (apparently contrary to the spec) so a 256-entry table is always generated.
 - */
 -static void
 -png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
 -   PNG_CONST png_fixed_point gamma_val)
 -{
 -   unsigned int i;
 -   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
 -
 -   if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
 -      table[i] = png_gamma_8bit_correct(i, gamma_val);
 -
 -   else for (i=0; i<256; ++i)
 -      table[i] = (png_byte)i;
 -}
 -
 -/* Used from png_read_destroy and below to release the memory used by the gamma
 - * tables.
 - */
 -void /* PRIVATE */
 -png_destroy_gamma_table(png_structp png_ptr)
 -{
 -   png_free(png_ptr, png_ptr->gamma_table);
 -   png_ptr->gamma_table = NULL;
 -
 -   if (png_ptr->gamma_16_table != NULL)
 -   {
 -      int i;
 -      int istop = (1 << (8 - png_ptr->gamma_shift));
 -      for (i = 0; i < istop; i++)
 -      {
 -         png_free(png_ptr, png_ptr->gamma_16_table[i]);
 -      }
 -   png_free(png_ptr, png_ptr->gamma_16_table);
 -   png_ptr->gamma_16_table = NULL;
 -   }
 -
 -#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 -   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
 -   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 -   png_free(png_ptr, png_ptr->gamma_from_1);
 -   png_ptr->gamma_from_1 = NULL;
 -   png_free(png_ptr, png_ptr->gamma_to_1);
 -   png_ptr->gamma_to_1 = NULL;
 -
 -   if (png_ptr->gamma_16_from_1 != NULL)
 -   {
 -      int i;
 -      int istop = (1 << (8 - png_ptr->gamma_shift));
 -      for (i = 0; i < istop; i++)
 -      {
 -         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
 -      }
 -   png_free(png_ptr, png_ptr->gamma_16_from_1);
 -   png_ptr->gamma_16_from_1 = NULL;
 -   }
 -   if (png_ptr->gamma_16_to_1 != NULL)
 -   {
 -      int i;
 -      int istop = (1 << (8 - png_ptr->gamma_shift));
 -      for (i = 0; i < istop; i++)
 -      {
 -         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
 -      }
 -   png_free(png_ptr, png_ptr->gamma_16_to_1);
 -   png_ptr->gamma_16_to_1 = NULL;
 -   }
 -#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
 -}
 -
 -/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
 - * tables, we don't make a full table if we are reducing to 8-bit in
 - * the future.  Note also how the gamma_16 tables are segmented so that
 - * we don't need to allocate > 64K chunks for a full 16-bit table.
 - */
 -void /* PRIVATE */
 -png_build_gamma_table(png_structp png_ptr, int bit_depth)
 -{
 -  png_debug(1, "in png_build_gamma_table");
 -
 -  /* Remove any existing table; this copes with multiple calls to
 -   * png_read_update_info.  The warning is because building the gamma tables
 -   * multiple times is a performance hit - it's harmless but the ability to call
 -   * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
 -   * to warn if the app introduces such a hit.
 -   */
 -  if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
 -  {
 -    png_warning(png_ptr, "gamma table being rebuilt");
 -    png_destroy_gamma_table(png_ptr);
 -  }
 -
 -  if (bit_depth <= 8)
 -  {
 -     png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
 -         png_ptr->screen_gamma > 0 ?  png_reciprocal2(png_ptr->gamma,
 -         png_ptr->screen_gamma) : PNG_FP_1);
 -
 -#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 -   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
 -   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 -     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
 -     {
 -        png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
 -            png_reciprocal(png_ptr->gamma));
 -
 -        png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
 -            png_ptr->screen_gamma > 0 ?  png_reciprocal(png_ptr->screen_gamma) :
 -            png_ptr->gamma/* Probably doing rgb_to_gray */);
 -     }
 -#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
 -  }
 -  else
 -  {
 -     png_byte shift, sig_bit;
 -
 -     if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
 -     {
 -        sig_bit = png_ptr->sig_bit.red;
 -
 -        if (png_ptr->sig_bit.green > sig_bit)
 -           sig_bit = png_ptr->sig_bit.green;
 -
 -        if (png_ptr->sig_bit.blue > sig_bit)
 -           sig_bit = png_ptr->sig_bit.blue;
 -     }
 -     else
 -        sig_bit = png_ptr->sig_bit.gray;
 -
 -     /* 16-bit gamma code uses this equation:
 -      *
 -      *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
 -      *
 -      * Where 'iv' is the input color value and 'ov' is the output value -
 -      * pow(iv, gamma).
 -      *
 -      * Thus the gamma table consists of up to 256 256-entry tables.  The table
 -      * is selected by the (8-gamma_shift) most significant of the low 8 bits of
 -      * the color value then indexed by the upper 8 bits:
 -      *
 -      *   table[low bits][high 8 bits]
 -      *
 -      * So the table 'n' corresponds to all those 'iv' of:
 -      *
 -      *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
 -      *
 -      */
 -     if (sig_bit > 0 && sig_bit < 16U)
 -        shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
 -
 -     else
 -        shift = 0; /* keep all 16 bits */
 -
 -     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
 -     {
 -        /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
 -         * the significant bits in the *input* when the output will
 -         * eventually be 8 bits.  By default it is 11.
 -         */
 -        if (shift < (16U - PNG_MAX_GAMMA_8))
 -           shift = (16U - PNG_MAX_GAMMA_8);
 -     }
 -
 -     if (shift > 8U)
 -        shift = 8U; /* Guarantees at least one table! */
 -
 -     png_ptr->gamma_shift = shift;
 -
 -#ifdef PNG_16BIT_SUPPORTED
 -     /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
 -      * PNG_COMPOSE).  This effectively smashed the background calculation for
 -      * 16-bit output because the 8-bit table assumes the result will be reduced
 -      * to 8 bits.
 -      */
 -     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
 -#endif
 -         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
 -         png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
 -         png_ptr->screen_gamma) : PNG_FP_1);
 -
 -#ifdef PNG_16BIT_SUPPORTED
 -     else
 -         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
 -         png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
 -         png_ptr->screen_gamma) : PNG_FP_1);
 -#endif
 -
 -#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
 -   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
 -   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
 -     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
 -     {
 -        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
 -            png_reciprocal(png_ptr->gamma));
 -
 -        /* Notice that the '16 from 1' table should be full precision, however
 -         * the lookup on this table still uses gamma_shift, so it can't be.
 -         * TODO: fix this.
 -         */
 -        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
 -            png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
 -            png_ptr->gamma/* Probably doing rgb_to_gray */);
 -     }
 -#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
 -  }
 -}
 -#endif /* READ_GAMMA */
 -#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
  | 
