diff options
Diffstat (limited to 'plugins/FreeImage/src/FreeImageToolkit/BSplineRotate.cpp')
| -rw-r--r-- | plugins/FreeImage/src/FreeImageToolkit/BSplineRotate.cpp | 730 | 
1 files changed, 730 insertions, 0 deletions
diff --git a/plugins/FreeImage/src/FreeImageToolkit/BSplineRotate.cpp b/plugins/FreeImage/src/FreeImageToolkit/BSplineRotate.cpp new file mode 100644 index 0000000000..e4be1d0bd2 --- /dev/null +++ b/plugins/FreeImage/src/FreeImageToolkit/BSplineRotate.cpp @@ -0,0 +1,730 @@ +// ========================================================== +// Bitmap rotation using B-Splines +// +// Design and implementation by +// - Philippe Thévenaz (philippe.thevenaz@epfl.ch) +// Adaptation for FreeImage by +// - Hervé Drolon (drolon@infonie.fr) +// +// This file is part of FreeImage 3 +// +// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY +// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES +// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE +// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED +// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT +// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY +// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL +// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER +// THIS DISCLAIMER. +// +// Use at your own risk! +// ========================================================== + +/*  +========================================================== +This code was taken and adapted from the following reference :  + +[1] Philippe Thévenaz, Spline interpolation, a C source code  +implementation. http://bigwww.epfl.ch/thevenaz/ + +It implements ideas described in the following papers :  + +[2] Unser M., Splines: A Perfect Fit for Signal and Image Processing.  +IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999.  + +[3] Unser M., Aldroubi A., Eden M., B-Spline Signal Processing: Part I--Theory. +IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821-832, February 1993.  + +[4] Unser M., Aldroubi A., Eden M., B-Spline Signal Processing: Part II--Efficient Design and Applications. +IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 834-848, February 1993. + +==========================================================  +*/ + + +#include <float.h> +#include "FreeImage.h" +#include "Utilities.h" + +#define PI	((double)3.14159265358979323846264338327950288419716939937510) + +#define ROTATE_QUADRATIC 2L	// Use B-splines of degree 2 (quadratic interpolation) +#define ROTATE_CUBIC     3L	// Use B-splines of degree 3 (cubic interpolation) +#define ROTATE_QUARTIC   4L	// Use B-splines of degree 4 (quartic interpolation) +#define ROTATE_QUINTIC   5L	// Use B-splines of degree 5 (quintic interpolation) + + +///////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Prototypes definition + +static void ConvertToInterpolationCoefficients(double *c, long DataLength, double *z, long NbPoles,	double Tolerance); +static double InitialCausalCoefficient(double *c, long DataLength, double z, double Tolerance); +static void GetColumn(double *Image, long Width, long x, double *Line, long Height); +static void	GetRow(double *Image, long y, double *Line, long Width); +static double InitialAntiCausalCoefficient(double *c, long DataLength, double z); +static void	PutColumn(double *Image, long Width, long x, double *Line, long Height); +static void	PutRow(double *Image, long y, double *Line, long Width); +static bool SamplesToCoefficients(double *Image, long Width, long Height, long spline_degree); +static double InterpolatedValue(double *Bcoeff, long Width, long Height, double x, double y, long spline_degree); + +static FIBITMAP * Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, long spline_degree, BOOL use_mask); + +///////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Coefficients routines + +/** + ConvertToInterpolationCoefficients + + @param c Input samples --> output coefficients + @param DataLength Number of samples or coefficients + @param z Poles + @param NbPoles Number of poles + @param Tolerance Admissible relative error +*/ +static void  +ConvertToInterpolationCoefficients(double *c, long DataLength, double *z, long NbPoles,	double Tolerance) { +	double	Lambda = 1; +	long	n, k; + +	// special case required by mirror boundaries +	if(DataLength == 1L) { +		return; +	} +	// compute the overall gain +	for(k = 0L; k < NbPoles; k++) { +		Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]); +	} +	// apply the gain  +	for (n = 0L; n < DataLength; n++) { +		c[n] *= Lambda; +	} +	// loop over all poles  +	for (k = 0L; k < NbPoles; k++) { +		// causal initialization  +		c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance); +		// causal recursion  +		for (n = 1L; n < DataLength; n++) { +			c[n] += z[k] * c[n - 1L]; +		} +		// anticausal initialization  +		c[DataLength - 1L] = InitialAntiCausalCoefficient(c, DataLength, z[k]); +		// anticausal recursion  +		for (n = DataLength - 2L; 0 <= n; n--) { +			c[n] = z[k] * (c[n + 1L] - c[n]); +		} +	} +}  + +/** + InitialCausalCoefficient + + @param c Coefficients + @param DataLength Number of coefficients + @param z Actual pole + @param Tolerance Admissible relative error + @return +*/ +static double  +InitialCausalCoefficient(double	*c, long DataLength, double	z, double Tolerance) { +	double	Sum, zn, z2n, iz; +	long	n, Horizon; + +	// this initialization corresponds to mirror boundaries  +	Horizon = DataLength; +	if(Tolerance > 0) { +		Horizon = (long)ceil(log(Tolerance) / log(fabs(z))); +	} +	if(Horizon < DataLength) { +		// accelerated loop +		zn = z; +		Sum = c[0]; +		for (n = 1L; n < Horizon; n++) { +			Sum += zn * c[n]; +			zn *= z; +		} +		return(Sum); +	} +	else { +		// full loop  +		zn = z; +		iz = 1.0 / z; +		z2n = pow(z, (double)(DataLength - 1L)); +		Sum = c[0] + z2n * c[DataLength - 1L]; +		z2n *= z2n * iz; +		for (n = 1L; n <= DataLength - 2L; n++) { +			Sum += (zn + z2n) * c[n]; +			zn *= z; +			z2n *= iz; +		} +		return(Sum / (1.0 - zn * zn)); +	} +} + +/** + GetColumn + + @param Image Input image array + @param Width Width of the image + @param x x coordinate of the selected line + @param Line Output linear array + @param Height Length of the line +*/ +static void  +GetColumn(double *Image, long Width, long x, double *Line, long Height) { +	long y; + +	Image = Image + x; +	for(y = 0L; y < Height; y++) { +		Line[y] = (double)*Image; +		Image += Width; +	} +} + +/** + GetRow + + @param Image Input image array + @param y y coordinate of the selected line + @param Line Output linear array + @param Width Length of the line +*/ +static void	 +GetRow(double *Image, long y, double *Line, long Width) { +	long	x; + +	Image = Image + (y * Width); +	for(x = 0L; x < Width; x++) { +		Line[x] = (double)*Image++; +	} +} + +/** + InitialAntiCausalCoefficient + + @param c Coefficients + @param DataLength Number of samples or coefficients + @param z Actual pole + @return +*/ +static double  +InitialAntiCausalCoefficient(double	*c, long DataLength, double	z) { +	// this initialization corresponds to mirror boundaries +	return((z / (z * z - 1.0)) * (z * c[DataLength - 2L] + c[DataLength - 1L])); +} + +/** + PutColumn + + @param Image Output image array + @param Width Width of the image + @param x x coordinate of the selected line + @param Line Input linear array + @param Height Length of the line and height of the image +*/ +static void	 +PutColumn(double *Image, long Width, long x, double *Line, long Height) { +	long	y; + +	Image = Image + x; +	for(y = 0L; y < Height; y++) { +		*Image = (double)Line[y]; +		Image += Width; +	} +} + +/** + PutRow + + @param Image Output image array + @param y y coordinate of the selected line + @param Line Input linear array + @param Width length of the line and width of the image +*/ +static void	 +PutRow(double *Image, long y, double *Line, long Width) { +	long	x; + +	Image = Image + (y * Width); +	for(x = 0L; x < Width; x++) { +		*Image++ = (double)Line[x]; +	} +} + +/** + SamplesToCoefficients.<br> + Implement the algorithm that converts the image samples into B-spline coefficients.  + This efficient procedure essentially relies on the three papers cited above;  + data are processed in-place.  + Even though this algorithm is robust with respect to quantization,  + we advocate the use of a floating-point format for the data.  + + @param Image Input / Output image (in-place processing) + @param Width Width of the image + @param Height Height of the image + @param spline_degree Degree of the spline model + @return Returns true if success, false otherwise +*/ +static bool	 +SamplesToCoefficients(double *Image, long Width, long Height, long spline_degree) { +	double	*Line; +	double	Pole[2]; +	long	NbPoles; +	long	x, y; + +	// recover the poles from a lookup table +	switch (spline_degree) { +		case 2L: +			NbPoles = 1L; +			Pole[0] = sqrt(8.0) - 3.0; +			break; +		case 3L: +			NbPoles = 1L; +			Pole[0] = sqrt(3.0) - 2.0; +			break; +		case 4L: +			NbPoles = 2L; +			Pole[0] = sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0; +			Pole[1] = sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0; +			break; +		case 5L: +			NbPoles = 2L; +			Pole[0] = sqrt(135.0 / 2.0 - sqrt(17745.0 / 4.0)) + sqrt(105.0 / 4.0) +				- 13.0 / 2.0; +			Pole[1] = sqrt(135.0 / 2.0 + sqrt(17745.0 / 4.0)) - sqrt(105.0 / 4.0) +				- 13.0 / 2.0; +			break; +		default: +			// Invalid spline degree +			return false; +	} + +	// convert the image samples into interpolation coefficients  + +	// in-place separable process, along x  +	Line = (double *)malloc(Width * sizeof(double)); +	if (Line == NULL) { +		// Row allocation failed +		return false; +	} +	for (y = 0L; y < Height; y++) { +		GetRow(Image, y, Line, Width); +		ConvertToInterpolationCoefficients(Line, Width, Pole, NbPoles, DBL_EPSILON); +		PutRow(Image, y, Line, Width); +	} +	free(Line); + +	// in-place separable process, along y  +	Line = (double *)malloc(Height * sizeof(double)); +	if (Line == NULL) { +		// Column allocation failed +		return false; +	} +	for (x = 0L; x < Width; x++) { +		GetColumn(Image, Width, x, Line, Height); +		ConvertToInterpolationCoefficients(Line, Height, Pole, NbPoles, DBL_EPSILON); +		PutColumn(Image, Width, x, Line, Height); +	} +	free(Line); + +	return true; +} + +///////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Interpolation routines + +/** +Perform the bidimensional interpolation of an image. +Given an array of spline coefficients, return the value of  +the underlying continuous spline model, sampled at the location (x, y).  +The model degree can be 2 (quadratic), 3 (cubic), 4 (quartic), or 5 (quintic). + +@param Bcoeff Input B-spline array of coefficients +@param Width Width of the image +@param Height Height of the image +@param x x coordinate where to interpolate +@param y y coordinate where to interpolate +@param spline_degree Degree of the spline model +@return Returns the value of the underlying continuous spline model,  +sampled at the location (x, y) +*/ +static double  +InterpolatedValue(double *Bcoeff, long Width, long Height, double x, double y, long spline_degree) { +	double	*p; +	double	xWeight[6], yWeight[6]; +	double	interpolated; +	double	w, w2, w4, t, t0, t1; +	long	xIndex[6], yIndex[6]; +	long	Width2 = 2L * Width - 2L, Height2 = 2L * Height - 2L; +	long	i, j, k; + +	// compute the interpolation indexes +	if (spline_degree & 1L) { +		i = (long)floor(x) - spline_degree / 2L; +		j = (long)floor(y) - spline_degree / 2L; +		for(k = 0; k <= spline_degree; k++) { +			xIndex[k] = i++; +			yIndex[k] = j++; +		} +	} +	else { +		i = (long)floor(x + 0.5) - spline_degree / 2L; +		j = (long)floor(y + 0.5) - spline_degree / 2L; +		for (k = 0; k <= spline_degree; k++) { +			xIndex[k] = i++; +			yIndex[k] = j++; +		} +	} + +	// compute the interpolation weights +	switch (spline_degree) { +		case 2L: +			/* x */ +			w = x - (double)xIndex[1]; +			xWeight[1] = 3.0 / 4.0 - w * w; +			xWeight[2] = (1.0 / 2.0) * (w - xWeight[1] + 1.0); +			xWeight[0] = 1.0 - xWeight[1] - xWeight[2]; +			/* y */ +			w = y - (double)yIndex[1]; +			yWeight[1] = 3.0 / 4.0 - w * w; +			yWeight[2] = (1.0 / 2.0) * (w - yWeight[1] + 1.0); +			yWeight[0] = 1.0 - yWeight[1] - yWeight[2]; +			break; +		case 3L: +			/* x */ +			w = x - (double)xIndex[1]; +			xWeight[3] = (1.0 / 6.0) * w * w * w; +			xWeight[0] = (1.0 / 6.0) + (1.0 / 2.0) * w * (w - 1.0) - xWeight[3]; +			xWeight[2] = w + xWeight[0] - 2.0 * xWeight[3]; +			xWeight[1] = 1.0 - xWeight[0] - xWeight[2] - xWeight[3]; +			/* y */ +			w = y - (double)yIndex[1]; +			yWeight[3] = (1.0 / 6.0) * w * w * w; +			yWeight[0] = (1.0 / 6.0) + (1.0 / 2.0) * w * (w - 1.0) - yWeight[3]; +			yWeight[2] = w + yWeight[0] - 2.0 * yWeight[3]; +			yWeight[1] = 1.0 - yWeight[0] - yWeight[2] - yWeight[3]; +			break; +		case 4L: +			/* x */ +			w = x - (double)xIndex[2]; +			w2 = w * w; +			t = (1.0 / 6.0) * w2; +			xWeight[0] = 1.0 / 2.0 - w; +			xWeight[0] *= xWeight[0]; +			xWeight[0] *= (1.0 / 24.0) * xWeight[0]; +			t0 = w * (t - 11.0 / 24.0); +			t1 = 19.0 / 96.0 + w2 * (1.0 / 4.0 - t); +			xWeight[1] = t1 + t0; +			xWeight[3] = t1 - t0; +			xWeight[4] = xWeight[0] + t0 + (1.0 / 2.0) * w; +			xWeight[2] = 1.0 - xWeight[0] - xWeight[1] - xWeight[3] - xWeight[4]; +			/* y */ +			w = y - (double)yIndex[2]; +			w2 = w * w; +			t = (1.0 / 6.0) * w2; +			yWeight[0] = 1.0 / 2.0 - w; +			yWeight[0] *= yWeight[0]; +			yWeight[0] *= (1.0 / 24.0) * yWeight[0]; +			t0 = w * (t - 11.0 / 24.0); +			t1 = 19.0 / 96.0 + w2 * (1.0 / 4.0 - t); +			yWeight[1] = t1 + t0; +			yWeight[3] = t1 - t0; +			yWeight[4] = yWeight[0] + t0 + (1.0 / 2.0) * w; +			yWeight[2] = 1.0 - yWeight[0] - yWeight[1] - yWeight[3] - yWeight[4]; +			break; +		case 5L: +			/* x */ +			w = x - (double)xIndex[2]; +			w2 = w * w; +			xWeight[5] = (1.0 / 120.0) * w * w2 * w2; +			w2 -= w; +			w4 = w2 * w2; +			w -= 1.0 / 2.0; +			t = w2 * (w2 - 3.0); +			xWeight[0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - xWeight[5]; +			t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0); +			t1 = (-1.0 / 12.0) * w * (t + 4.0); +			xWeight[2] = t0 + t1; +			xWeight[3] = t0 - t1; +			t0 = (1.0 / 16.0) * (9.0 / 5.0 - t); +			t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0); +			xWeight[1] = t0 + t1; +			xWeight[4] = t0 - t1; +			/* y */ +			w = y - (double)yIndex[2]; +			w2 = w * w; +			yWeight[5] = (1.0 / 120.0) * w * w2 * w2; +			w2 -= w; +			w4 = w2 * w2; +			w -= 1.0 / 2.0; +			t = w2 * (w2 - 3.0); +			yWeight[0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - yWeight[5]; +			t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0); +			t1 = (-1.0 / 12.0) * w * (t + 4.0); +			yWeight[2] = t0 + t1; +			yWeight[3] = t0 - t1; +			t0 = (1.0 / 16.0) * (9.0 / 5.0 - t); +			t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0); +			yWeight[1] = t0 + t1; +			yWeight[4] = t0 - t1; +			break; +		default: +			// Invalid spline degree +			return 0; +	} + +	// apply the mirror boundary conditions +	for(k = 0; k <= spline_degree; k++) { +		xIndex[k] = (Width == 1L) ? (0L) : ((xIndex[k] < 0L) ? +			(-xIndex[k] - Width2 * ((-xIndex[k]) / Width2)) +			: (xIndex[k] - Width2 * (xIndex[k] / Width2))); +		if (Width <= xIndex[k]) { +			xIndex[k] = Width2 - xIndex[k]; +		} +		yIndex[k] = (Height == 1L) ? (0L) : ((yIndex[k] < 0L) ? +			(-yIndex[k] - Height2 * ((-yIndex[k]) / Height2)) +			: (yIndex[k] - Height2 * (yIndex[k] / Height2))); +		if (Height <= yIndex[k]) { +			yIndex[k] = Height2 - yIndex[k]; +		} +	} + +	// perform interpolation +	interpolated = 0.0; +	for(j = 0; j <= spline_degree; j++) { +		p = Bcoeff + (yIndex[j] * Width); +		w = 0.0; +		for(i = 0; i <= spline_degree; i++) { +			w += xWeight[i] * p[xIndex[i]]; +		} +		interpolated += yWeight[j] * w; +	} + +	return interpolated; +} + +///////////////////////////////////////////////////////////////////////////////////////////////////////////// +// FreeImage implementation + + +/**  + Image translation and rotation using B-Splines. + + @param dib Input 8-bit greyscale image + @param angle Output image rotation in degree + @param x_shift Output image horizontal shift + @param y_shift Output image vertical shift + @param x_origin Output origin of the x-axis + @param y_origin Output origin of the y-axis + @param spline_degree Output degree of the B-spline model + @param use_mask Whether or not to mask the image + @return Returns the translated & rotated dib if successful, returns NULL otherwise +*/ +static FIBITMAP *  +Rotate8Bit(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, long spline_degree, BOOL use_mask) { +	double	*ImageRasterArray; +	double	p; +	double	a11, a12, a21, a22; +	double	x0, y0, x1, y1; +	long	x, y; +	long	spline; +	bool	bResult; + +	int bpp = FreeImage_GetBPP(dib); +	if(bpp != 8) { +		return NULL; +	} +	 +	int width = FreeImage_GetWidth(dib); +	int height = FreeImage_GetHeight(dib); +	switch(spline_degree) { +		case ROTATE_QUADRATIC: +			spline = 2L;	// Use splines of degree 2 (quadratic interpolation) +			break; +		case ROTATE_CUBIC: +			spline = 3L;	// Use splines of degree 3 (cubic interpolation) +			break; +		case ROTATE_QUARTIC: +			spline = 4L;	// Use splines of degree 4 (quartic interpolation) +			break; +		case ROTATE_QUINTIC: +			spline = 5L;	// Use splines of degree 5 (quintic interpolation) +			break; +		default: +			spline = 3L; +	} + +	// allocate output image +	FIBITMAP *dst = FreeImage_Allocate(width, height, bpp); +	if (!dst) +		return NULL; +	// buid a grey scale palette +	RGBQUAD *pal = FreeImage_GetPalette(dst); +	for(int i = 0; i < 256; i++) { +		pal[i].rgbRed = pal[i].rgbGreen = pal[i].rgbBlue = (BYTE)i; +	} + +	// allocate a temporary array +	ImageRasterArray = (double*)malloc(width * height * sizeof(double)); +	if (!ImageRasterArray) { +		FreeImage_Unload(dst); +		return NULL; +	} +	// copy data samples +	for(y = 0; y < height; y++) { +		double *pImage = &ImageRasterArray[y*width]; +		BYTE *src_bits = FreeImage_GetScanLine(dib, height-1-y); + +		for(x = 0; x < width; x++) { +			pImage[x] = (double)src_bits[x]; +		} +	} + +	// convert between a representation based on image samples +	// and a representation based on image B-spline coefficients +	bResult = SamplesToCoefficients(ImageRasterArray, width, height, spline); +	if (!bResult) { +		FreeImage_Unload(dst); +		free(ImageRasterArray); +		return NULL; +	} + +	// prepare the geometry +	angle *= PI / 180.0; +	a11 = cos(angle); +	a12 = -sin(angle); +	a21 = sin(angle); +	a22 = cos(angle); +	x0 = a11 * (x_shift + x_origin) + a12 * (y_shift + y_origin); +	y0 = a21 * (x_shift + x_origin) + a22 * (y_shift + y_origin); +	x_shift = x_origin - x0; +	y_shift = y_origin - y0; + +	// visit all pixels of the output image and assign their value +	for(y = 0; y < height; y++) { +		BYTE *dst_bits = FreeImage_GetScanLine(dst, height-1-y); +		 +		x0 = a12 * (double)y + x_shift; +		y0 = a22 * (double)y + y_shift; + +		for(x = 0; x < width; x++) { +			x1 = x0 + a11 * (double)x; +			y1 = y0 + a21 * (double)x; +			if(use_mask) { +				if ((x1 <= -0.5) || (((double)width - 0.5) <= x1) || (y1 <= -0.5) || (((double)height - 0.5) <= y1)) { +					p = 0; +				} +				else { +					p = (double)InterpolatedValue(ImageRasterArray, width, height, x1, y1, spline); +				} +			} +			else { +				p = (double)InterpolatedValue(ImageRasterArray, width, height, x1, y1, spline); +			} +			// clamp and convert to BYTE +			dst_bits[x] = (BYTE)MIN(MAX((int)0, (int)(p + 0.5)), (int)255); +		} +	} + +	// free working array and return +	free(ImageRasterArray); + +	return dst; +} + +/**  + Image rotation using a 3rd order (cubic) B-Splines. + + @param dib Input dib (8, 24 or 32-bit) + @param angle Output image rotation + @param x_shift Output image horizontal shift + @param y_shift Output image vertical shift + @param x_origin Output origin of the x-axis + @param y_origin Output origin of the y-axis + @param use_mask Whether or not to mask the image + @return Returns the translated & rotated dib if successful, returns NULL otherwise +*/ +FIBITMAP * DLL_CALLCONV  +FreeImage_RotateEx(FIBITMAP *dib, double angle, double x_shift, double y_shift, double x_origin, double y_origin, BOOL use_mask) { + +	int x, y, bpp; +	int channel, nb_channels; +	BYTE *src_bits, *dst_bits; +	FIBITMAP *src8 = NULL, *dst8 = NULL, *dst = NULL; + +	if (!FreeImage_HasPixels(dib)) return NULL; + +	try { + +		bpp = FreeImage_GetBPP(dib); + +		if(bpp == 8) { +			FIBITMAP *dst_8 = Rotate8Bit(dib, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask); +			if(dst_8) { +				// copy metadata from src to dst +				FreeImage_CloneMetadata(dst_8, dib); +			} +			return dst_8; +		} +		if ((bpp == 24) || (bpp == 32)) { +			// allocate dst image +			int width  = FreeImage_GetWidth(dib); +			int height = FreeImage_GetHeight(dib); +			if ( bpp == 24 ) { +				dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); +			} else { +				dst = FreeImage_Allocate(width, height, bpp, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); +			} +			if (!dst) throw(1); + +			// allocate a temporary 8-bit dib (no need to build a palette) +			src8 = FreeImage_Allocate(width, height, 8); +			if (!src8) throw(1); + +			// process each channel separately +			// ------------------------------- +			nb_channels = (bpp / 8); + +			for(channel = 0; channel < nb_channels; channel++) { +				// extract channel from source dib +				for(y = 0; y < height; y++) { +					src_bits = FreeImage_GetScanLine(dib, y); +					dst_bits = FreeImage_GetScanLine(src8, y); +					for(x = 0; x < width; x++) { +						dst_bits[x] = src_bits[channel]; +						src_bits += nb_channels; +					} +				} + +				// process channel +				dst8 = Rotate8Bit(src8, angle, x_shift, y_shift, x_origin, y_origin, ROTATE_CUBIC, use_mask); +				if (!dst8) throw(1); + +				// insert channel to destination dib +				for(y = 0; y < height; y++) { +					src_bits = FreeImage_GetScanLine(dst8, y); +					dst_bits = FreeImage_GetScanLine(dst, y); +					for(x = 0; x < width; x++) { +						dst_bits[channel] = src_bits[x]; +						dst_bits += nb_channels; +					} +				} + +				FreeImage_Unload(dst8); +			} + +			FreeImage_Unload(src8); + +			// copy metadata from src to dst +			FreeImage_CloneMetadata(dst, dib); +			 +			return dst; +		} +	} catch(int) { +		if(src8) FreeImage_Unload(src8); +		if(dst8) FreeImage_Unload(dst8); +		if(dst)  FreeImage_Unload(dst); +	} + +	return NULL; +}  | 
