diff options
Diffstat (limited to 'plugins/FreeImage/src/LibJPEG/jchuff.c')
| -rw-r--r-- | plugins/FreeImage/src/LibJPEG/jchuff.c | 1576 | 
1 files changed, 0 insertions, 1576 deletions
diff --git a/plugins/FreeImage/src/LibJPEG/jchuff.c b/plugins/FreeImage/src/LibJPEG/jchuff.c deleted file mode 100644 index 257d7aa1f5..0000000000 --- a/plugins/FreeImage/src/LibJPEG/jchuff.c +++ /dev/null @@ -1,1576 +0,0 @@ -/* - * jchuff.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * Modified 2006-2009 by Guido Vollbeding. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains Huffman entropy encoding routines. - * Both sequential and progressive modes are supported in this single module. - * - * Much of the complexity here has to do with supporting output suspension. - * If the data destination module demands suspension, we want to be able to - * back up to the start of the current MCU.  To do this, we copy state - * variables into local working storage, and update them back to the - * permanent JPEG objects only upon successful completion of an MCU. - * - * We do not support output suspension for the progressive JPEG mode, since - * the library currently does not allow multiple-scan files to be written - * with output suspension. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - - -/* The legal range of a DCT coefficient is - *  -1024 .. +1023  for 8-bit data; - * -16384 .. +16383 for 12-bit data. - * Hence the magnitude should always fit in 10 or 14 bits respectively. - */ - -#if BITS_IN_JSAMPLE == 8 -#define MAX_COEF_BITS 10 -#else -#define MAX_COEF_BITS 14 -#endif - -/* Derived data constructed for each Huffman table */ - -typedef struct { -  unsigned int ehufco[256];	/* code for each symbol */ -  char ehufsi[256];		/* length of code for each symbol */ -  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ -} c_derived_tbl; - - -/* Expanded entropy encoder object for Huffman encoding. - * - * The savable_state subrecord contains fields that change within an MCU, - * but must not be updated permanently until we complete the MCU. - */ - -typedef struct { -  INT32 put_buffer;		/* current bit-accumulation buffer */ -  int put_bits;			/* # of bits now in it */ -  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ -} savable_state; - -/* This macro is to work around compilers with missing or broken - * structure assignment.  You'll need to fix this code if you have - * such a compiler and you change MAX_COMPS_IN_SCAN. - */ - -#ifndef NO_STRUCT_ASSIGN -#define ASSIGN_STATE(dest,src)  ((dest) = (src)) -#else -#if MAX_COMPS_IN_SCAN == 4 -#define ASSIGN_STATE(dest,src)  \ -	((dest).put_buffer = (src).put_buffer, \ -	 (dest).put_bits = (src).put_bits, \ -	 (dest).last_dc_val[0] = (src).last_dc_val[0], \ -	 (dest).last_dc_val[1] = (src).last_dc_val[1], \ -	 (dest).last_dc_val[2] = (src).last_dc_val[2], \ -	 (dest).last_dc_val[3] = (src).last_dc_val[3]) -#endif -#endif - - -typedef struct { -  struct jpeg_entropy_encoder pub; /* public fields */ - -  savable_state saved;		/* Bit buffer & DC state at start of MCU */ - -  /* These fields are NOT loaded into local working state. */ -  unsigned int restarts_to_go;	/* MCUs left in this restart interval */ -  int next_restart_num;		/* next restart number to write (0-7) */ - -  /* Pointers to derived tables (these workspaces have image lifespan) */ -  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; -  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; - -  /* Statistics tables for optimization */ -  long * dc_count_ptrs[NUM_HUFF_TBLS]; -  long * ac_count_ptrs[NUM_HUFF_TBLS]; - -  /* Following fields used only in progressive mode */ - -  /* Mode flag: TRUE for optimization, FALSE for actual data output */ -  boolean gather_statistics; - -  /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. -   */ -  JOCTET * next_output_byte;	/* => next byte to write in buffer */ -  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ -  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */ - -  /* Coding status for AC components */ -  int ac_tbl_no;		/* the table number of the single component */ -  unsigned int EOBRUN;		/* run length of EOBs */ -  unsigned int BE;		/* # of buffered correction bits before MCU */ -  char * bit_buffer;		/* buffer for correction bits (1 per char) */ -  /* packing correction bits tightly would save some space but cost time... */ -} huff_entropy_encoder; - -typedef huff_entropy_encoder * huff_entropy_ptr; - -/* Working state while writing an MCU (sequential mode). - * This struct contains all the fields that are needed by subroutines. - */ - -typedef struct { -  JOCTET * next_output_byte;	/* => next byte to write in buffer */ -  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ -  savable_state cur;		/* Current bit buffer & DC state */ -  j_compress_ptr cinfo;		/* dump_buffer needs access to this */ -} working_state; - -/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit - * buffer can hold.  Larger sizes may slightly improve compression, but - * 1000 is already well into the realm of overkill. - * The minimum safe size is 64 bits. - */ - -#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */ - -/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. - * We assume that int right shift is unsigned if INT32 right shift is, - * which should be safe. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define ISHIFT_TEMPS	int ishift_temp; -#define IRIGHT_SHIFT(x,shft)  \ -	((ishift_temp = (x)) < 0 ? \ -	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ -	 (ishift_temp >> (shft))) -#else -#define ISHIFT_TEMPS -#define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) -#endif - - -/* - * Compute the derived values for a Huffman table. - * This routine also performs some validation checks on the table. - */ - -LOCAL(void) -jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, -			 c_derived_tbl ** pdtbl) -{ -  JHUFF_TBL *htbl; -  c_derived_tbl *dtbl; -  int p, i, l, lastp, si, maxsymbol; -  char huffsize[257]; -  unsigned int huffcode[257]; -  unsigned int code; - -  /* Note that huffsize[] and huffcode[] are filled in code-length order, -   * paralleling the order of the symbols themselves in htbl->huffval[]. -   */ - -  /* Find the input Huffman table */ -  if (tblno < 0 || tblno >= NUM_HUFF_TBLS) -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); -  htbl = -    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; -  if (htbl == NULL) -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); - -  /* Allocate a workspace if we haven't already done so. */ -  if (*pdtbl == NULL) -    *pdtbl = (c_derived_tbl *) -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				  SIZEOF(c_derived_tbl)); -  dtbl = *pdtbl; -   -  /* Figure C.1: make table of Huffman code length for each symbol */ - -  p = 0; -  for (l = 1; l <= 16; l++) { -    i = (int) htbl->bits[l]; -    if (i < 0 || p + i > 256)	/* protect against table overrun */ -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); -    while (i--) -      huffsize[p++] = (char) l; -  } -  huffsize[p] = 0; -  lastp = p; -   -  /* Figure C.2: generate the codes themselves */ -  /* We also validate that the counts represent a legal Huffman code tree. */ - -  code = 0; -  si = huffsize[0]; -  p = 0; -  while (huffsize[p]) { -    while (((int) huffsize[p]) == si) { -      huffcode[p++] = code; -      code++; -    } -    /* code is now 1 more than the last code used for codelength si; but -     * it must still fit in si bits, since no code is allowed to be all ones. -     */ -    if (((INT32) code) >= (((INT32) 1) << si)) -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); -    code <<= 1; -    si++; -  } -   -  /* Figure C.3: generate encoding tables */ -  /* These are code and size indexed by symbol value */ - -  /* Set all codeless symbols to have code length 0; -   * this lets us detect duplicate VAL entries here, and later -   * allows emit_bits to detect any attempt to emit such symbols. -   */ -  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); - -  /* This is also a convenient place to check for out-of-range -   * and duplicated VAL entries.  We allow 0..255 for AC symbols -   * but only 0..15 for DC.  (We could constrain them further -   * based on data depth and mode, but this seems enough.) -   */ -  maxsymbol = isDC ? 15 : 255; - -  for (p = 0; p < lastp; p++) { -    i = htbl->huffval[p]; -    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); -    dtbl->ehufco[i] = huffcode[p]; -    dtbl->ehufsi[i] = huffsize[p]; -  } -} - - -/* Outputting bytes to the file. - * NB: these must be called only when actually outputting, - * that is, entropy->gather_statistics == FALSE. - */ - -/* Emit a byte, taking 'action' if must suspend. */ -#define emit_byte_s(state,val,action)  \ -	{ *(state)->next_output_byte++ = (JOCTET) (val);  \ -	  if (--(state)->free_in_buffer == 0)  \ -	    if (! dump_buffer_s(state))  \ -	      { action; } } - -/* Emit a byte */ -#define emit_byte_e(entropy,val)  \ -	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \ -	  if (--(entropy)->free_in_buffer == 0)  \ -	    dump_buffer_e(entropy); } - - -LOCAL(boolean) -dump_buffer_s (working_state * state) -/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ -{ -  struct jpeg_destination_mgr * dest = state->cinfo->dest; - -  if (! (*dest->empty_output_buffer) (state->cinfo)) -    return FALSE; -  /* After a successful buffer dump, must reset buffer pointers */ -  state->next_output_byte = dest->next_output_byte; -  state->free_in_buffer = dest->free_in_buffer; -  return TRUE; -} - - -LOCAL(void) -dump_buffer_e (huff_entropy_ptr entropy) -/* Empty the output buffer; we do not support suspension in this case. */ -{ -  struct jpeg_destination_mgr * dest = entropy->cinfo->dest; - -  if (! (*dest->empty_output_buffer) (entropy->cinfo)) -    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); -  /* After a successful buffer dump, must reset buffer pointers */ -  entropy->next_output_byte = dest->next_output_byte; -  entropy->free_in_buffer = dest->free_in_buffer; -} - - -/* Outputting bits to the file */ - -/* Only the right 24 bits of put_buffer are used; the valid bits are - * left-justified in this part.  At most 16 bits can be passed to emit_bits - * in one call, and we never retain more than 7 bits in put_buffer - * between calls, so 24 bits are sufficient. - */ - -INLINE -LOCAL(boolean) -emit_bits_s (working_state * state, unsigned int code, int size) -/* Emit some bits; return TRUE if successful, FALSE if must suspend */ -{ -  /* This routine is heavily used, so it's worth coding tightly. */ -  register INT32 put_buffer = (INT32) code; -  register int put_bits = state->cur.put_bits; - -  /* if size is 0, caller used an invalid Huffman table entry */ -  if (size == 0) -    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); - -  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ -   -  put_bits += size;		/* new number of bits in buffer */ -   -  put_buffer <<= 24 - put_bits; /* align incoming bits */ - -  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ -   -  while (put_bits >= 8) { -    int c = (int) ((put_buffer >> 16) & 0xFF); -     -    emit_byte_s(state, c, return FALSE); -    if (c == 0xFF) {		/* need to stuff a zero byte? */ -      emit_byte_s(state, 0, return FALSE); -    } -    put_buffer <<= 8; -    put_bits -= 8; -  } - -  state->cur.put_buffer = put_buffer; /* update state variables */ -  state->cur.put_bits = put_bits; - -  return TRUE; -} - - -INLINE -LOCAL(void) -emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) -/* Emit some bits, unless we are in gather mode */ -{ -  /* This routine is heavily used, so it's worth coding tightly. */ -  register INT32 put_buffer = (INT32) code; -  register int put_bits = entropy->saved.put_bits; - -  /* if size is 0, caller used an invalid Huffman table entry */ -  if (size == 0) -    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); - -  if (entropy->gather_statistics) -    return;			/* do nothing if we're only getting stats */ - -  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ -   -  put_bits += size;		/* new number of bits in buffer */ - -  put_buffer <<= 24 - put_bits; /* align incoming bits */ - -  /* and merge with old buffer contents */ -  put_buffer |= entropy->saved.put_buffer; - -  while (put_bits >= 8) { -    int c = (int) ((put_buffer >> 16) & 0xFF); - -    emit_byte_e(entropy, c); -    if (c == 0xFF) {		/* need to stuff a zero byte? */ -      emit_byte_e(entropy, 0); -    } -    put_buffer <<= 8; -    put_bits -= 8; -  } - -  entropy->saved.put_buffer = put_buffer; /* update variables */ -  entropy->saved.put_bits = put_bits; -} - - -LOCAL(boolean) -flush_bits_s (working_state * state) -{ -  if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ -    return FALSE; -  state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */ -  state->cur.put_bits = 0; -  return TRUE; -} - - -LOCAL(void) -flush_bits_e (huff_entropy_ptr entropy) -{ -  emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ -  entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ -  entropy->saved.put_bits = 0; -} - - -/* - * Emit (or just count) a Huffman symbol. - */ - -INLINE -LOCAL(void) -emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) -{ -  if (entropy->gather_statistics) -    entropy->dc_count_ptrs[tbl_no][symbol]++; -  else { -    c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; -    emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); -  } -} - - -INLINE -LOCAL(void) -emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) -{ -  if (entropy->gather_statistics) -    entropy->ac_count_ptrs[tbl_no][symbol]++; -  else { -    c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; -    emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); -  } -} - - -/* - * Emit bits from a correction bit buffer. - */ - -LOCAL(void) -emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, -		    unsigned int nbits) -{ -  if (entropy->gather_statistics) -    return;			/* no real work */ - -  while (nbits > 0) { -    emit_bits_e(entropy, (unsigned int) (*bufstart), 1); -    bufstart++; -    nbits--; -  } -} - - -/* - * Emit any pending EOBRUN symbol. - */ - -LOCAL(void) -emit_eobrun (huff_entropy_ptr entropy) -{ -  register int temp, nbits; - -  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */ -    temp = entropy->EOBRUN; -    nbits = 0; -    while ((temp >>= 1)) -      nbits++; -    /* safety check: shouldn't happen given limited correction-bit buffer */ -    if (nbits > 14) -      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); - -    emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); -    if (nbits) -      emit_bits_e(entropy, entropy->EOBRUN, nbits); - -    entropy->EOBRUN = 0; - -    /* Emit any buffered correction bits */ -    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); -    entropy->BE = 0; -  } -} - - -/* - * Emit a restart marker & resynchronize predictions. - */ - -LOCAL(boolean) -emit_restart_s (working_state * state, int restart_num) -{ -  int ci; - -  if (! flush_bits_s(state)) -    return FALSE; - -  emit_byte_s(state, 0xFF, return FALSE); -  emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); - -  /* Re-initialize DC predictions to 0 */ -  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) -    state->cur.last_dc_val[ci] = 0; - -  /* The restart counter is not updated until we successfully write the MCU. */ - -  return TRUE; -} - - -LOCAL(void) -emit_restart_e (huff_entropy_ptr entropy, int restart_num) -{ -  int ci; - -  emit_eobrun(entropy); - -  if (! entropy->gather_statistics) { -    flush_bits_e(entropy); -    emit_byte_e(entropy, 0xFF); -    emit_byte_e(entropy, JPEG_RST0 + restart_num); -  } - -  if (entropy->cinfo->Ss == 0) { -    /* Re-initialize DC predictions to 0 */ -    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) -      entropy->saved.last_dc_val[ci] = 0; -  } else { -    /* Re-initialize all AC-related fields to 0 */ -    entropy->EOBRUN = 0; -    entropy->BE = 0; -  } -} - - -/* - * MCU encoding for DC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  register int temp, temp2; -  register int nbits; -  int blkn, ci; -  int Al = cinfo->Al; -  JBLOCKROW block; -  jpeg_component_info * compptr; -  ISHIFT_TEMPS - -  entropy->next_output_byte = cinfo->dest->next_output_byte; -  entropy->free_in_buffer = cinfo->dest->free_in_buffer; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) -    if (entropy->restarts_to_go == 0) -      emit_restart_e(entropy, entropy->next_restart_num); - -  /* Encode the MCU data blocks */ -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    block = MCU_data[blkn]; -    ci = cinfo->MCU_membership[blkn]; -    compptr = cinfo->cur_comp_info[ci]; - -    /* Compute the DC value after the required point transform by Al. -     * This is simply an arithmetic right shift. -     */ -    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); - -    /* DC differences are figured on the point-transformed values. */ -    temp = temp2 - entropy->saved.last_dc_val[ci]; -    entropy->saved.last_dc_val[ci] = temp2; - -    /* Encode the DC coefficient difference per section G.1.2.1 */ -    temp2 = temp; -    if (temp < 0) { -      temp = -temp;		/* temp is abs value of input */ -      /* For a negative input, want temp2 = bitwise complement of abs(input) */ -      /* This code assumes we are on a two's complement machine */ -      temp2--; -    } -     -    /* Find the number of bits needed for the magnitude of the coefficient */ -    nbits = 0; -    while (temp) { -      nbits++; -      temp >>= 1; -    } -    /* Check for out-of-range coefficient values. -     * Since we're encoding a difference, the range limit is twice as much. -     */ -    if (nbits > MAX_COEF_BITS+1) -      ERREXIT(cinfo, JERR_BAD_DCT_COEF); -     -    /* Count/emit the Huffman-coded symbol for the number of bits */ -    emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); -     -    /* Emit that number of bits of the value, if positive, */ -    /* or the complement of its magnitude, if negative. */ -    if (nbits)			/* emit_bits rejects calls with size 0 */ -      emit_bits_e(entropy, (unsigned int) temp2, nbits); -  } - -  cinfo->dest->next_output_byte = entropy->next_output_byte; -  cinfo->dest->free_in_buffer = entropy->free_in_buffer; - -  /* Update restart-interval state too */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  return TRUE; -} - - -/* - * MCU encoding for AC initial scan (either spectral selection, - * or first pass of successive approximation). - */ - -METHODDEF(boolean) -encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  register int temp, temp2; -  register int nbits; -  register int r, k; -  int Se, Al; -  const int * natural_order; -  JBLOCKROW block; - -  entropy->next_output_byte = cinfo->dest->next_output_byte; -  entropy->free_in_buffer = cinfo->dest->free_in_buffer; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) -    if (entropy->restarts_to_go == 0) -      emit_restart_e(entropy, entropy->next_restart_num); - -  Se = cinfo->Se; -  Al = cinfo->Al; -  natural_order = cinfo->natural_order; - -  /* Encode the MCU data block */ -  block = MCU_data[0]; - -  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ -   -  r = 0;			/* r = run length of zeros */ -    -  for (k = cinfo->Ss; k <= Se; k++) { -    if ((temp = (*block)[natural_order[k]]) == 0) { -      r++; -      continue; -    } -    /* We must apply the point transform by Al.  For AC coefficients this -     * is an integer division with rounding towards 0.  To do this portably -     * in C, we shift after obtaining the absolute value; so the code is -     * interwoven with finding the abs value (temp) and output bits (temp2). -     */ -    if (temp < 0) { -      temp = -temp;		/* temp is abs value of input */ -      temp >>= Al;		/* apply the point transform */ -      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ -      temp2 = ~temp; -    } else { -      temp >>= Al;		/* apply the point transform */ -      temp2 = temp; -    } -    /* Watch out for case that nonzero coef is zero after point transform */ -    if (temp == 0) { -      r++; -      continue; -    } - -    /* Emit any pending EOBRUN */ -    if (entropy->EOBRUN > 0) -      emit_eobrun(entropy); -    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ -    while (r > 15) { -      emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); -      r -= 16; -    } - -    /* Find the number of bits needed for the magnitude of the coefficient */ -    nbits = 1;			/* there must be at least one 1 bit */ -    while ((temp >>= 1)) -      nbits++; -    /* Check for out-of-range coefficient values */ -    if (nbits > MAX_COEF_BITS) -      ERREXIT(cinfo, JERR_BAD_DCT_COEF); - -    /* Count/emit Huffman symbol for run length / number of bits */ -    emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); - -    /* Emit that number of bits of the value, if positive, */ -    /* or the complement of its magnitude, if negative. */ -    emit_bits_e(entropy, (unsigned int) temp2, nbits); - -    r = 0;			/* reset zero run length */ -  } - -  if (r > 0) {			/* If there are trailing zeroes, */ -    entropy->EOBRUN++;		/* count an EOB */ -    if (entropy->EOBRUN == 0x7FFF) -      emit_eobrun(entropy);	/* force it out to avoid overflow */ -  } - -  cinfo->dest->next_output_byte = entropy->next_output_byte; -  cinfo->dest->free_in_buffer = entropy->free_in_buffer; - -  /* Update restart-interval state too */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  return TRUE; -} - - -/* - * MCU encoding for DC successive approximation refinement scan. - * Note: we assume such scans can be multi-component, although the spec - * is not very clear on the point. - */ - -METHODDEF(boolean) -encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  register int temp; -  int blkn; -  int Al = cinfo->Al; -  JBLOCKROW block; - -  entropy->next_output_byte = cinfo->dest->next_output_byte; -  entropy->free_in_buffer = cinfo->dest->free_in_buffer; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) -    if (entropy->restarts_to_go == 0) -      emit_restart_e(entropy, entropy->next_restart_num); - -  /* Encode the MCU data blocks */ -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    block = MCU_data[blkn]; - -    /* We simply emit the Al'th bit of the DC coefficient value. */ -    temp = (*block)[0]; -    emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); -  } - -  cinfo->dest->next_output_byte = entropy->next_output_byte; -  cinfo->dest->free_in_buffer = entropy->free_in_buffer; - -  /* Update restart-interval state too */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  return TRUE; -} - - -/* - * MCU encoding for AC successive approximation refinement scan. - */ - -METHODDEF(boolean) -encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  register int temp; -  register int r, k; -  int EOB; -  char *BR_buffer; -  unsigned int BR; -  int Se, Al; -  const int * natural_order; -  JBLOCKROW block; -  int absvalues[DCTSIZE2]; - -  entropy->next_output_byte = cinfo->dest->next_output_byte; -  entropy->free_in_buffer = cinfo->dest->free_in_buffer; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) -    if (entropy->restarts_to_go == 0) -      emit_restart_e(entropy, entropy->next_restart_num); - -  Se = cinfo->Se; -  Al = cinfo->Al; -  natural_order = cinfo->natural_order; - -  /* Encode the MCU data block */ -  block = MCU_data[0]; - -  /* It is convenient to make a pre-pass to determine the transformed -   * coefficients' absolute values and the EOB position. -   */ -  EOB = 0; -  for (k = cinfo->Ss; k <= Se; k++) { -    temp = (*block)[natural_order[k]]; -    /* We must apply the point transform by Al.  For AC coefficients this -     * is an integer division with rounding towards 0.  To do this portably -     * in C, we shift after obtaining the absolute value. -     */ -    if (temp < 0) -      temp = -temp;		/* temp is abs value of input */ -    temp >>= Al;		/* apply the point transform */ -    absvalues[k] = temp;	/* save abs value for main pass */ -    if (temp == 1) -      EOB = k;			/* EOB = index of last newly-nonzero coef */ -  } - -  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ -   -  r = 0;			/* r = run length of zeros */ -  BR = 0;			/* BR = count of buffered bits added now */ -  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ - -  for (k = cinfo->Ss; k <= Se; k++) { -    if ((temp = absvalues[k]) == 0) { -      r++; -      continue; -    } - -    /* Emit any required ZRLs, but not if they can be folded into EOB */ -    while (r > 15 && k <= EOB) { -      /* emit any pending EOBRUN and the BE correction bits */ -      emit_eobrun(entropy); -      /* Emit ZRL */ -      emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); -      r -= 16; -      /* Emit buffered correction bits that must be associated with ZRL */ -      emit_buffered_bits(entropy, BR_buffer, BR); -      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ -      BR = 0; -    } - -    /* If the coef was previously nonzero, it only needs a correction bit. -     * NOTE: a straight translation of the spec's figure G.7 would suggest -     * that we also need to test r > 15.  But if r > 15, we can only get here -     * if k > EOB, which implies that this coefficient is not 1. -     */ -    if (temp > 1) { -      /* The correction bit is the next bit of the absolute value. */ -      BR_buffer[BR++] = (char) (temp & 1); -      continue; -    } - -    /* Emit any pending EOBRUN and the BE correction bits */ -    emit_eobrun(entropy); - -    /* Count/emit Huffman symbol for run length / number of bits */ -    emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); - -    /* Emit output bit for newly-nonzero coef */ -    temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; -    emit_bits_e(entropy, (unsigned int) temp, 1); - -    /* Emit buffered correction bits that must be associated with this code */ -    emit_buffered_bits(entropy, BR_buffer, BR); -    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ -    BR = 0; -    r = 0;			/* reset zero run length */ -  } - -  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */ -    entropy->EOBRUN++;		/* count an EOB */ -    entropy->BE += BR;		/* concat my correction bits to older ones */ -    /* We force out the EOB if we risk either: -     * 1. overflow of the EOB counter; -     * 2. overflow of the correction bit buffer during the next MCU. -     */ -    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) -      emit_eobrun(entropy); -  } - -  cinfo->dest->next_output_byte = entropy->next_output_byte; -  cinfo->dest->free_in_buffer = entropy->free_in_buffer; - -  /* Update restart-interval state too */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  return TRUE; -} - - -/* Encode a single block's worth of coefficients */ - -LOCAL(boolean) -encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, -		  c_derived_tbl *dctbl, c_derived_tbl *actbl) -{ -  register int temp, temp2; -  register int nbits; -  register int k, r, i; -  int Se = state->cinfo->lim_Se; -  const int * natural_order = state->cinfo->natural_order; - -  /* Encode the DC coefficient difference per section F.1.2.1 */ - -  temp = temp2 = block[0] - last_dc_val; - -  if (temp < 0) { -    temp = -temp;		/* temp is abs value of input */ -    /* For a negative input, want temp2 = bitwise complement of abs(input) */ -    /* This code assumes we are on a two's complement machine */ -    temp2--; -  } - -  /* Find the number of bits needed for the magnitude of the coefficient */ -  nbits = 0; -  while (temp) { -    nbits++; -    temp >>= 1; -  } -  /* Check for out-of-range coefficient values. -   * Since we're encoding a difference, the range limit is twice as much. -   */ -  if (nbits > MAX_COEF_BITS+1) -    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); - -  /* Emit the Huffman-coded symbol for the number of bits */ -  if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) -    return FALSE; - -  /* Emit that number of bits of the value, if positive, */ -  /* or the complement of its magnitude, if negative. */ -  if (nbits)			/* emit_bits rejects calls with size 0 */ -    if (! emit_bits_s(state, (unsigned int) temp2, nbits)) -      return FALSE; - -  /* Encode the AC coefficients per section F.1.2.2 */ - -  r = 0;			/* r = run length of zeros */ - -  for (k = 1; k <= Se; k++) { -    if ((temp = block[natural_order[k]]) == 0) { -      r++; -    } else { -      /* if run length > 15, must emit special run-length-16 codes (0xF0) */ -      while (r > 15) { -	if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) -	  return FALSE; -	r -= 16; -      } - -      temp2 = temp; -      if (temp < 0) { -	temp = -temp;		/* temp is abs value of input */ -	/* This code assumes we are on a two's complement machine */ -	temp2--; -      } - -      /* Find the number of bits needed for the magnitude of the coefficient */ -      nbits = 1;		/* there must be at least one 1 bit */ -      while ((temp >>= 1)) -	nbits++; -      /* Check for out-of-range coefficient values */ -      if (nbits > MAX_COEF_BITS) -	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); - -      /* Emit Huffman symbol for run length / number of bits */ -      i = (r << 4) + nbits; -      if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) -	return FALSE; - -      /* Emit that number of bits of the value, if positive, */ -      /* or the complement of its magnitude, if negative. */ -      if (! emit_bits_s(state, (unsigned int) temp2, nbits)) -	return FALSE; - -      r = 0; -    } -  } - -  /* If the last coef(s) were zero, emit an end-of-block code */ -  if (r > 0) -    if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) -      return FALSE; - -  return TRUE; -} - - -/* - * Encode and output one MCU's worth of Huffman-compressed coefficients. - */ - -METHODDEF(boolean) -encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  working_state state; -  int blkn, ci; -  jpeg_component_info * compptr; - -  /* Load up working state */ -  state.next_output_byte = cinfo->dest->next_output_byte; -  state.free_in_buffer = cinfo->dest->free_in_buffer; -  ASSIGN_STATE(state.cur, entropy->saved); -  state.cinfo = cinfo; - -  /* Emit restart marker if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) -      if (! emit_restart_s(&state, entropy->next_restart_num)) -	return FALSE; -  } - -  /* Encode the MCU data blocks */ -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    ci = cinfo->MCU_membership[blkn]; -    compptr = cinfo->cur_comp_info[ci]; -    if (! encode_one_block(&state, -			   MCU_data[blkn][0], state.cur.last_dc_val[ci], -			   entropy->dc_derived_tbls[compptr->dc_tbl_no], -			   entropy->ac_derived_tbls[compptr->ac_tbl_no])) -      return FALSE; -    /* Update last_dc_val */ -    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; -  } - -  /* Completed MCU, so update state */ -  cinfo->dest->next_output_byte = state.next_output_byte; -  cinfo->dest->free_in_buffer = state.free_in_buffer; -  ASSIGN_STATE(entropy->saved, state.cur); - -  /* Update restart-interval state too */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      entropy->restarts_to_go = cinfo->restart_interval; -      entropy->next_restart_num++; -      entropy->next_restart_num &= 7; -    } -    entropy->restarts_to_go--; -  } - -  return TRUE; -} - - -/* - * Finish up at the end of a Huffman-compressed scan. - */ - -METHODDEF(void) -finish_pass_huff (j_compress_ptr cinfo) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  working_state state; - -  if (cinfo->progressive_mode) { -    entropy->next_output_byte = cinfo->dest->next_output_byte; -    entropy->free_in_buffer = cinfo->dest->free_in_buffer; - -    /* Flush out any buffered data */ -    emit_eobrun(entropy); -    flush_bits_e(entropy); - -    cinfo->dest->next_output_byte = entropy->next_output_byte; -    cinfo->dest->free_in_buffer = entropy->free_in_buffer; -  } else { -    /* Load up working state ... flush_bits needs it */ -    state.next_output_byte = cinfo->dest->next_output_byte; -    state.free_in_buffer = cinfo->dest->free_in_buffer; -    ASSIGN_STATE(state.cur, entropy->saved); -    state.cinfo = cinfo; - -    /* Flush out the last data */ -    if (! flush_bits_s(&state)) -      ERREXIT(cinfo, JERR_CANT_SUSPEND); - -    /* Update state */ -    cinfo->dest->next_output_byte = state.next_output_byte; -    cinfo->dest->free_in_buffer = state.free_in_buffer; -    ASSIGN_STATE(entropy->saved, state.cur); -  } -} - - -/* - * Huffman coding optimization. - * - * We first scan the supplied data and count the number of uses of each symbol - * that is to be Huffman-coded. (This process MUST agree with the code above.) - * Then we build a Huffman coding tree for the observed counts. - * Symbols which are not needed at all for the particular image are not - * assigned any code, which saves space in the DHT marker as well as in - * the compressed data. - */ - - -/* Process a single block's worth of coefficients */ - -LOCAL(void) -htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, -		 long dc_counts[], long ac_counts[]) -{ -  register int temp; -  register int nbits; -  register int k, r; -  int Se = cinfo->lim_Se; -  const int * natural_order = cinfo->natural_order; -   -  /* Encode the DC coefficient difference per section F.1.2.1 */ -   -  temp = block[0] - last_dc_val; -  if (temp < 0) -    temp = -temp; -   -  /* Find the number of bits needed for the magnitude of the coefficient */ -  nbits = 0; -  while (temp) { -    nbits++; -    temp >>= 1; -  } -  /* Check for out-of-range coefficient values. -   * Since we're encoding a difference, the range limit is twice as much. -   */ -  if (nbits > MAX_COEF_BITS+1) -    ERREXIT(cinfo, JERR_BAD_DCT_COEF); - -  /* Count the Huffman symbol for the number of bits */ -  dc_counts[nbits]++; -   -  /* Encode the AC coefficients per section F.1.2.2 */ -   -  r = 0;			/* r = run length of zeros */ -   -  for (k = 1; k <= Se; k++) { -    if ((temp = block[natural_order[k]]) == 0) { -      r++; -    } else { -      /* if run length > 15, must emit special run-length-16 codes (0xF0) */ -      while (r > 15) { -	ac_counts[0xF0]++; -	r -= 16; -      } -       -      /* Find the number of bits needed for the magnitude of the coefficient */ -      if (temp < 0) -	temp = -temp; -       -      /* Find the number of bits needed for the magnitude of the coefficient */ -      nbits = 1;		/* there must be at least one 1 bit */ -      while ((temp >>= 1)) -	nbits++; -      /* Check for out-of-range coefficient values */ -      if (nbits > MAX_COEF_BITS) -	ERREXIT(cinfo, JERR_BAD_DCT_COEF); -       -      /* Count Huffman symbol for run length / number of bits */ -      ac_counts[(r << 4) + nbits]++; -       -      r = 0; -    } -  } - -  /* If the last coef(s) were zero, emit an end-of-block code */ -  if (r > 0) -    ac_counts[0]++; -} - - -/* - * Trial-encode one MCU's worth of Huffman-compressed coefficients. - * No data is actually output, so no suspension return is possible. - */ - -METHODDEF(boolean) -encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int blkn, ci; -  jpeg_component_info * compptr; - -  /* Take care of restart intervals if needed */ -  if (cinfo->restart_interval) { -    if (entropy->restarts_to_go == 0) { -      /* Re-initialize DC predictions to 0 */ -      for (ci = 0; ci < cinfo->comps_in_scan; ci++) -	entropy->saved.last_dc_val[ci] = 0; -      /* Update restart state */ -      entropy->restarts_to_go = cinfo->restart_interval; -    } -    entropy->restarts_to_go--; -  } - -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { -    ci = cinfo->MCU_membership[blkn]; -    compptr = cinfo->cur_comp_info[ci]; -    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], -		    entropy->dc_count_ptrs[compptr->dc_tbl_no], -		    entropy->ac_count_ptrs[compptr->ac_tbl_no]); -    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; -  } - -  return TRUE; -} - - -/* - * Generate the best Huffman code table for the given counts, fill htbl. - * - * The JPEG standard requires that no symbol be assigned a codeword of all - * one bits (so that padding bits added at the end of a compressed segment - * can't look like a valid code).  Because of the canonical ordering of - * codewords, this just means that there must be an unused slot in the - * longest codeword length category.  Section K.2 of the JPEG spec suggests - * reserving such a slot by pretending that symbol 256 is a valid symbol - * with count 1.  In theory that's not optimal; giving it count zero but - * including it in the symbol set anyway should give a better Huffman code. - * But the theoretically better code actually seems to come out worse in - * practice, because it produces more all-ones bytes (which incur stuffed - * zero bytes in the final file).  In any case the difference is tiny. - * - * The JPEG standard requires Huffman codes to be no more than 16 bits long. - * If some symbols have a very small but nonzero probability, the Huffman tree - * must be adjusted to meet the code length restriction.  We currently use - * the adjustment method suggested in JPEG section K.2.  This method is *not* - * optimal; it may not choose the best possible limited-length code.  But - * typically only very-low-frequency symbols will be given less-than-optimal - * lengths, so the code is almost optimal.  Experimental comparisons against - * an optimal limited-length-code algorithm indicate that the difference is - * microscopic --- usually less than a hundredth of a percent of total size. - * So the extra complexity of an optimal algorithm doesn't seem worthwhile. - */ - -LOCAL(void) -jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) -{ -#define MAX_CLEN 32		/* assumed maximum initial code length */ -  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */ -  int codesize[257];		/* codesize[k] = code length of symbol k */ -  int others[257];		/* next symbol in current branch of tree */ -  int c1, c2; -  int p, i, j; -  long v; - -  /* This algorithm is explained in section K.2 of the JPEG standard */ - -  MEMZERO(bits, SIZEOF(bits)); -  MEMZERO(codesize, SIZEOF(codesize)); -  for (i = 0; i < 257; i++) -    others[i] = -1;		/* init links to empty */ -   -  freq[256] = 1;		/* make sure 256 has a nonzero count */ -  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees -   * that no real symbol is given code-value of all ones, because 256 -   * will be placed last in the largest codeword category. -   */ - -  /* Huffman's basic algorithm to assign optimal code lengths to symbols */ - -  for (;;) { -    /* Find the smallest nonzero frequency, set c1 = its symbol */ -    /* In case of ties, take the larger symbol number */ -    c1 = -1; -    v = 1000000000L; -    for (i = 0; i <= 256; i++) { -      if (freq[i] && freq[i] <= v) { -	v = freq[i]; -	c1 = i; -      } -    } - -    /* Find the next smallest nonzero frequency, set c2 = its symbol */ -    /* In case of ties, take the larger symbol number */ -    c2 = -1; -    v = 1000000000L; -    for (i = 0; i <= 256; i++) { -      if (freq[i] && freq[i] <= v && i != c1) { -	v = freq[i]; -	c2 = i; -      } -    } - -    /* Done if we've merged everything into one frequency */ -    if (c2 < 0) -      break; -     -    /* Else merge the two counts/trees */ -    freq[c1] += freq[c2]; -    freq[c2] = 0; - -    /* Increment the codesize of everything in c1's tree branch */ -    codesize[c1]++; -    while (others[c1] >= 0) { -      c1 = others[c1]; -      codesize[c1]++; -    } -     -    others[c1] = c2;		/* chain c2 onto c1's tree branch */ -     -    /* Increment the codesize of everything in c2's tree branch */ -    codesize[c2]++; -    while (others[c2] >= 0) { -      c2 = others[c2]; -      codesize[c2]++; -    } -  } - -  /* Now count the number of symbols of each code length */ -  for (i = 0; i <= 256; i++) { -    if (codesize[i]) { -      /* The JPEG standard seems to think that this can't happen, */ -      /* but I'm paranoid... */ -      if (codesize[i] > MAX_CLEN) -	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); - -      bits[codesize[i]]++; -    } -  } - -  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure -   * Huffman procedure assigned any such lengths, we must adjust the coding. -   * Here is what the JPEG spec says about how this next bit works: -   * Since symbols are paired for the longest Huffman code, the symbols are -   * removed from this length category two at a time.  The prefix for the pair -   * (which is one bit shorter) is allocated to one of the pair; then, -   * skipping the BITS entry for that prefix length, a code word from the next -   * shortest nonzero BITS entry is converted into a prefix for two code words -   * one bit longer. -   */ -   -  for (i = MAX_CLEN; i > 16; i--) { -    while (bits[i] > 0) { -      j = i - 2;		/* find length of new prefix to be used */ -      while (bits[j] == 0) -	j--; -       -      bits[i] -= 2;		/* remove two symbols */ -      bits[i-1]++;		/* one goes in this length */ -      bits[j+1] += 2;		/* two new symbols in this length */ -      bits[j]--;		/* symbol of this length is now a prefix */ -    } -  } - -  /* Remove the count for the pseudo-symbol 256 from the largest codelength */ -  while (bits[i] == 0)		/* find largest codelength still in use */ -    i--; -  bits[i]--; -   -  /* Return final symbol counts (only for lengths 0..16) */ -  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); -   -  /* Return a list of the symbols sorted by code length */ -  /* It's not real clear to me why we don't need to consider the codelength -   * changes made above, but the JPEG spec seems to think this works. -   */ -  p = 0; -  for (i = 1; i <= MAX_CLEN; i++) { -    for (j = 0; j <= 255; j++) { -      if (codesize[j] == i) { -	htbl->huffval[p] = (UINT8) j; -	p++; -      } -    } -  } - -  /* Set sent_table FALSE so updated table will be written to JPEG file. */ -  htbl->sent_table = FALSE; -} - - -/* - * Finish up a statistics-gathering pass and create the new Huffman tables. - */ - -METHODDEF(void) -finish_pass_gather (j_compress_ptr cinfo) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int ci, tbl; -  jpeg_component_info * compptr; -  JHUFF_TBL **htblptr; -  boolean did_dc[NUM_HUFF_TBLS]; -  boolean did_ac[NUM_HUFF_TBLS]; - -  /* It's important not to apply jpeg_gen_optimal_table more than once -   * per table, because it clobbers the input frequency counts! -   */ -  if (cinfo->progressive_mode) -    /* Flush out buffered data (all we care about is counting the EOB symbol) */ -    emit_eobrun(entropy); - -  MEMZERO(did_dc, SIZEOF(did_dc)); -  MEMZERO(did_ac, SIZEOF(did_ac)); - -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -    compptr = cinfo->cur_comp_info[ci]; -    /* DC needs no table for refinement scan */ -    if (cinfo->Ss == 0 && cinfo->Ah == 0) { -      tbl = compptr->dc_tbl_no; -      if (! did_dc[tbl]) { -	htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; -	if (*htblptr == NULL) -	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); -	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); -	did_dc[tbl] = TRUE; -      } -    } -    /* AC needs no table when not present */ -    if (cinfo->Se) { -      tbl = compptr->ac_tbl_no; -      if (! did_ac[tbl]) { -	htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; -	if (*htblptr == NULL) -	  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); -	jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); -	did_ac[tbl] = TRUE; -      } -    } -  } -} - - -/* - * Initialize for a Huffman-compressed scan. - * If gather_statistics is TRUE, we do not output anything during the scan, - * just count the Huffman symbols used and generate Huffman code tables. - */ - -METHODDEF(void) -start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) -{ -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; -  int ci, tbl; -  jpeg_component_info * compptr; - -  if (gather_statistics) -    entropy->pub.finish_pass = finish_pass_gather; -  else -    entropy->pub.finish_pass = finish_pass_huff; - -  if (cinfo->progressive_mode) { -    entropy->cinfo = cinfo; -    entropy->gather_statistics = gather_statistics; - -    /* We assume jcmaster.c already validated the scan parameters. */ - -    /* Select execution routine */ -    if (cinfo->Ah == 0) { -      if (cinfo->Ss == 0) -	entropy->pub.encode_mcu = encode_mcu_DC_first; -      else -	entropy->pub.encode_mcu = encode_mcu_AC_first; -    } else { -      if (cinfo->Ss == 0) -	entropy->pub.encode_mcu = encode_mcu_DC_refine; -      else { -	entropy->pub.encode_mcu = encode_mcu_AC_refine; -	/* AC refinement needs a correction bit buffer */ -	if (entropy->bit_buffer == NULL) -	  entropy->bit_buffer = (char *) -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -					MAX_CORR_BITS * SIZEOF(char)); -      } -    } - -    /* Initialize AC stuff */ -    entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; -    entropy->EOBRUN = 0; -    entropy->BE = 0; -  } else { -    if (gather_statistics) -      entropy->pub.encode_mcu = encode_mcu_gather; -    else -      entropy->pub.encode_mcu = encode_mcu_huff; -  } - -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) { -    compptr = cinfo->cur_comp_info[ci]; -    /* DC needs no table for refinement scan */ -    if (cinfo->Ss == 0 && cinfo->Ah == 0) { -      tbl = compptr->dc_tbl_no; -      if (gather_statistics) { -	/* Check for invalid table index */ -	/* (make_c_derived_tbl does this in the other path) */ -	if (tbl < 0 || tbl >= NUM_HUFF_TBLS) -	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); -	/* Allocate and zero the statistics tables */ -	/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ -	if (entropy->dc_count_ptrs[tbl] == NULL) -	  entropy->dc_count_ptrs[tbl] = (long *) -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -					257 * SIZEOF(long)); -	MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); -      } else { -	/* Compute derived values for Huffman tables */ -	/* We may do this more than once for a table, but it's not expensive */ -	jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, -				& entropy->dc_derived_tbls[tbl]); -      } -      /* Initialize DC predictions to 0 */ -      entropy->saved.last_dc_val[ci] = 0; -    } -    /* AC needs no table when not present */ -    if (cinfo->Se) { -      tbl = compptr->ac_tbl_no; -      if (gather_statistics) { -	if (tbl < 0 || tbl >= NUM_HUFF_TBLS) -	  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); -	if (entropy->ac_count_ptrs[tbl] == NULL) -	  entropy->ac_count_ptrs[tbl] = (long *) -	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -					257 * SIZEOF(long)); -	MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); -      } else { -	jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, -				& entropy->ac_derived_tbls[tbl]); -      } -    } -  } - -  /* Initialize bit buffer to empty */ -  entropy->saved.put_buffer = 0; -  entropy->saved.put_bits = 0; - -  /* Initialize restart stuff */ -  entropy->restarts_to_go = cinfo->restart_interval; -  entropy->next_restart_num = 0; -} - - -/* - * Module initialization routine for Huffman entropy encoding. - */ - -GLOBAL(void) -jinit_huff_encoder (j_compress_ptr cinfo) -{ -  huff_entropy_ptr entropy; -  int i; - -  entropy = (huff_entropy_ptr) -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				SIZEOF(huff_entropy_encoder)); -  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; -  entropy->pub.start_pass = start_pass_huff; - -  /* Mark tables unallocated */ -  for (i = 0; i < NUM_HUFF_TBLS; i++) { -    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; -    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; -  } - -  if (cinfo->progressive_mode) -    entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */ -}  | 
